Sample records for climate interannual variability

  1. Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro

    2011-01-01

    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology

  2. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  3. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China.

    PubMed

    Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.

  4. Effects of Climatic Factors and Ecosystem Responses on the Inter-Annual Variability of Evapotranspiration in a Coniferous Plantation in Subtropical China

    PubMed Central

    Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610

  5. How important is interannual variability in the climatic interpretation of moraine sequences?

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2017-12-01

    Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.

  6. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    PubMed

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  7. How are interannual modes of variability IOD, ENSO, SAM, AMO excited by natural and anthropogenic forcing?

    NASA Astrophysics Data System (ADS)

    Maher, Nicola; Marotzke, Jochem

    2017-04-01

    Natural climate variability is found in observations, paleo-proxies, and climate models. Such climate variability can be intrinsic internal variability or externally forced, for example by changes in greenhouse gases or large volcanic eruptions. There are still questions concerning how external forcing, both natural (e.g., volcanic eruptions and solar variability) and anthropogenic (e.g., greenhouse gases and ozone) may excite both interannual modes of variability in the climate system. This project aims to address some of these problems, utilising the large ensemble of the MPI-ESM-LR climate model. In this study we investigate the statistics of four modes of interannual variability, namely the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the El Niño Southern Oscillation (ENSO). Using the 100-member ensemble of MPI-ESM-LR the statistical properties of these modes (amplitude and standard deviation) can be assessed over time. Here we compare the properties in the pre-industrial control run, historical run and future scenarios (RCP4.5, RCP2.6) and present preliminary results.

  8. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon-Cerrado border

    NASA Astrophysics Data System (ADS)

    Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.

    2018-02-01

    Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.

  9. Quantifying the increasing sensitivity of power systems to climate variability

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  10. Mars dust storms - Interannual variability and chaos

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Lyons, James R.

    1993-01-01

    The hypothesis is that the global climate system, consisting of atmospheric dust interacting with the circulation, produces its own interannual variability when forced at the annual frequency. The model has two time-dependent variables representing the amount of atmospheric dust in the northern and southern hemispheres, respectively. Absorption of sunlight by the dust drives a cross-equatorial Hadley cell that brings more dust into the heated hemisphere. The circulation decays when the dust storm covers the globe. Interannual variability manifests itself either as a periodic solution in which the period is a multiple of the Martian year, or as an aperiodic (chaotic) solution that never repeats. Both kinds of solution are found in the model, lending support to the idea that interannual variability is an intrinsic property of the global climate system. The next step is to develop a hierarchy of dust-circulation models capable of being integrated for many years.

  11. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  12. Climate change enhances interannual variability of the Nile river flow

    NASA Astrophysics Data System (ADS)

    Siam, Mohamed S.; Eltahir, Elfatih A. B.

    2017-04-01

    The human population living in the Nile basin countries is projected to double by 2050, approaching one billion. The increase in water demand associated with this burgeoning population will put significant stress on the available water resources. Potential changes in the flow of the Nile River as a result of climate change may further strain this critical situation. Here, we present empirical evidence from observations and consistent projections from climate model simulations suggesting that the standard deviation describing interannual variability of total Nile flow could increase by 50% (+/-35%) (multi-model ensemble mean +/- 1 standard deviation) in the twenty-first century compared to the twentieth century. We attribute the relatively large change in interannual variability of the Nile flow to projected increases in future occurrences of El Niño and La Niña events and to observed teleconnection between the El Niño-Southern Oscillation and Nile River flow. Adequacy of current water storage capacity and plans for additional storage capacity in the basin will need to be re-evaluated given the projected enhancement of interannual variability in the future flow of the Nile river.

  13. Nonlinear dynamics and predictability in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Kimoto, M.; Neelin, J. D.

    1991-01-01

    Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.

  14. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  15. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE PAGES

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    2016-11-23

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  16. 1996-2007 Interannual Spatio-Temporal Variability in Snowmelt in Two Montane Watersheds

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Molotch, N. P.; Rittger, K. E.

    2009-12-01

    Snowmelt is a primary water source for ecosystems within, and urban/agricultural centers near, mountain regions. Stream chemistry from montane catchments is controlled by the flowpaths of water from snowmelt and the timing and duration of snow coverage. A process level understanding of the variability in these processes requires an understanding of the effect of changing climate and anthropogenic loading on spatio-temporal snowmelt patterns. With this as our objective, we are applying a snow reconstruction model to two well-studied montane watersheds, Tokopah Basin (TOK), California and Green Lakes Valley (GLV), Colorado, to examine interannual variability in the timing and location of snowmelt in response to variable climate conditions during the period from 1996 to 2007. The reconstruction model back solves for snowmelt by combining surface energy fluxes, inferred from meteorological data, with sequences of melt season snow images derived from satellite data (i.e., snowmelt depletion curves). Preliminary model results for 2002 were tested against measured snow water equivalent (SWE) and hydrograph data for the two watersheds. The computed maximum SWE averaged over TOK and GLV were 94 cm (~+17% error) and 50.2 cm (~+1% error), respectively. We present an analysis of interannual variability in these errors, in addition to reconstructed snowmelt maps over different land cover types under changing climate conditions between 1996-2007, focusing on the variability with interannual variation in climate.

  17. What is the Effect of Interannual Hydroclimatic Variability on Water Supply Reservoir Operations?

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Turner, S. W. D.

    2015-12-01

    Rather than deriving from a single distribution and uniform persistence structure, hydroclimatic data exhibit significant trends and shifts in their mean, variance, and lagged correlation through time. Consequentially, observed and reconstructed streamflow records are often characterized by features of interannual variability, including long-term persistence and prolonged droughts. This study examines the effect of these features on the operating performance of water supply reservoirs. We develop a Stochastic Dynamic Programming (SDP) model that can incorporate a regime-shifting climate variable. We then compare the performance of operating policies—designed with and without climate variable—to quantify the contribution of interannual variability to standard policy sub-optimality. The approach uses a discrete-time Markov chain to partition the reservoir inflow time series into small number of 'hidden' climate states. Each state defines a distinct set of inflow transition probability matrices, which are used by the SDP model to condition the release decisions on the reservoir storage, current-period inflow and hidden climate state. The experimental analysis is carried out on 99 hypothetical water supply reservoirs fed from pristine catchments in Australia—all impacted by the Millennium drought. Results show that interannual hydroclimatic variability is a major cause of sub-optimal hedging decisions. The practical import is that conventional optimization methods may misguide operators, particularly in regions susceptible to multi-year droughts.

  18. Post-Fire Recovery of Eco-Hydrologic Behavior Given Historic and Projected Climate Variability in California Mediterranean Type Environments

    NASA Astrophysics Data System (ADS)

    Seaby, L. P.; Tague, C. L.; Hope, A. S.

    2006-12-01

    The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.

  19. Changes in climate variability with reference to land quality and agriculture in Scotland.

    PubMed

    Brown, Iain; Castellazzi, Marie

    2015-06-01

    Classification and mapping of land capability represents an established format for summarising spatial information on land quality and land-use potential. By convention, this information incorporates bioclimatic constraints through the use of a long-term average. However, climate change means that land capability classification should also have a dynamic temporal component. Using an analysis based upon Land Capability for Agriculture in Scotland, it is shown that this dynamism not only involves the long-term average but also shorter term spatiotemporal patterns, particularly through changes in interannual variability. Interannual and interdecadal variations occur both in the likelihood of land being in prime condition (top three capability class divisions) and in class volatility from year to year. These changing patterns are most apparent in relation to the west-east climatic gradient which is mainly a function of precipitation regime and soil moisture. Analysis is also extended into the future using climate results for the 2050s from a weather generator which show a complex interaction between climate interannual variability and different soil types for land quality. In some locations, variability of land capability is more likely to decrease because the variable climatic constraints are relaxed and the dominant constraint becomes intrinsic soil properties. Elsewhere, climatic constraints will continue to be influential. Changing climate variability has important implications for land-use planning and agricultural management because it modifies local risk profiles in combination with the current trend towards agricultural intensification and specialisation.

  20. The predicted CLARREO sampling error of the inter-annual SW variability

    NASA Astrophysics Data System (ADS)

    Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.

    2009-12-01

    The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as well as sun-synchronous orbits will be evaluated. This study will focus on the SW radiance, since these low earth orbits are only in daylight for half the orbit. The precessionary orbits were designed to cycle through all solar zenith angles over the course of a year. The inter-annual variability sampling error will be stratified globally/zonally and annually/seasonally and compared with the corresponding truth anomalies.

  1. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  2. Underestimated interannual variability of East Asian summer rainfall under climate change

    NASA Astrophysics Data System (ADS)

    Ren, Yongjian; Song, Lianchun; Xiao, Ying; Du, Liangmin

    2018-02-01

    This study evaluates the performance of climate models in simulating the climatological mean and interannual variability of East Asian summer rainfall (EASR) using Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the observation, the interannual variability of EASR during 1979-2005 is underestimated by the CMIP5 with a range of 0.86 16.08%. Based on bias correction of CMIP5 simulations with historical data, the reliability of future projections will be enhanced. The corrected EASR under representative concentration pathways (RCPs) 4.5 and 8.5 increases by 5.6 and 7.5% during 2081-2100 relative to the baseline of 1986-2005, respectively. After correction, the areas with both negative and positive anomalies decrease, which are mainly located in the South China Sea and central China, and southern China and west of the Philippines, separately. In comparison to the baseline, the interannual variability of EASR increases by 20.8% under RCP4.5 but 26.2% under RCP8.5 in 2006-2100, which is underestimated by 10.7 and 11.1% under both RCPs in the original CMIP5 simulation. Compared with the mean precipitation, the interannual variability of EASR is notably larger under global warming. Thus, the probabilities of floods and droughts may increase in the future.

  3. Climate variability has a stabilizing effect on the coexistence of prairie grasses

    PubMed Central

    Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.

    2006-01-01

    How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862

  4. Effect of Ocean Interannual Variability on Acoustic Propagation in the Philippine Sea and South China Sea

    DTIC Science & Technology

    2017-06-01

    Coronas , 1920). The dominant pattern of interannual variability is the El Nino Southern Oscillation (ENSO), which has two quasi-periodic states...Validation of Wavewatch-III using TOPEX/ Poseidon data. J. Atmos. Oceanic Technol., 21, 1718–1733. Coronas , J., 1920: The climate and weather of the

  5. Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA

    USGS Publications Warehouse

    Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.

    2007-01-01

    Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.

  6. 1996-2007 Interannual Spatio-Temporal Variability in Snowmelt in Two Montane Watersheds

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Molotch, N. P.; Williams, M. W.; Rittger, K. E.; Sickman, J. O.

    2010-12-01

    Snowmelt is a primary water resource for urban/agricultural centers and ecosystems near mountain regions. Stream chemistry from montane catchments is controlled by the flowpaths of water from snowmelt and the timing and duration of snow coverage. A process level understanding of the variability in these processes requires an understanding of the effect of changing climate and anthropogenic loading on spatio-temporal snowmelt patterns. With this as our objective, we applied a snow reconstruction model (SRM) to two well-studied montane watersheds, Tokopah Basin (TOK), California and Green Lake 4 Valley (GLV), Colorado, to examine interannual variability in the timing and location of snowmelt in response to variable climate conditions during the period from 1996 to 2007. The reconstruction model back solves for snowmelt by combining surface energy fluxes, inferred from meteorological data, with sequences of melt season snow images derived from satellite data (i.e., snowmelt depletion curves). The SRM explained 84% of the observed interannual variability in maximum watershed SWE in TOK, with errors ranging from -23 to +27% for the different years. For GLV4, the SRM explained 61% of the interannual variability, with errors ranging from -37 to +34%. In GLV4, interannual variability in snowmelt timing is a factor of four greater than the variability in streamflow timing, unlike in TOK where the ratio is nearly 1:1. We attribute this difference primarily to differences in the magnitude of the turbulent fluxes and the hydrogeology of the two study areas.

  7. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data

    NASA Astrophysics Data System (ADS)

    Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin

    2018-04-01

    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.

  8. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.

    PubMed

    Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher

    2015-01-15

    Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adaptation with climate uncertainty: An examination of agricultural land use in the United States

    USGS Publications Warehouse

    Mu, Jianhong E.; McCarl, Bruce A.; Sleeter, Benjamin M.; Abatzoglou, John T.; Zhang, Hongliang

    2018-01-01

    This paper examines adaptation responses to climate change through adjustment of agricultural land use. The climate drivers we examine are changes in long-term climate normals (e.g., 10-year moving averages) and changes in inter-annual climate variability. Using US county level data over 1982 to 2012 from Census of Agriculture, we find that impacts of long-term climate normals are as important as that of inter-annual climate variability. Projecting into the future, we find projected climate change will lead to an expansion in crop land share across the northern and interior western United States with decreases in the south. We also find that grazing land share increases in southern regions and Inland Pacific Northwest and declines in the northern areas. However, the extent to which the adaptation potential would be is dependent on the climate model, emission scenario and time horizon under consideration.

  10. Interannual variability and climatic noise in satellite-observed outgoing longwave radiation

    NASA Technical Reports Server (NTRS)

    Short, D. A.; Cahalan, R. F.

    1983-01-01

    Upwelling-IR observations of the North Pacific by polar orbiters NOAA 3, 4, 5, and 6 and TIROS-N from 1974 to 1981 are analyzed statistically in terms of interannual variability (IAV) in monthly averages and climatic noise due to short-term weather fluctuations. It is found that although the daily variance in the observations is the same in summer and winter months, and although IAV in winter is smaller than that in summer, the climatic noise in winter is so much smaller that a greater fraction of winter anomalies are statistically significant. The smaller winter climatic noise level is shown to be due to shorter autocorrelation times. It is demonstrated that increasing averaging area does not reduce the climatic noise level, suggesting that continuing collection of high-resolution satellite IR data on a global basis is necessary if better models of short-term variability are to be constructed.

  11. Interannual to Decadal Variability of Ocean Evaporation as Viewed from Climate Reanalyses

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.; Wang, Hailan

    2015-01-01

    Questions we'll address: Given the uncoupled framework of "AMIP" (Atmosphere Model Inter-comparison Project) experiments, what can they tell us regarding evaporation variability? Do Reduced Observations Reanalyses (RedObs) using Surface Fluxes and Clouds (SFC) pressure (and wind) provide a more realistic picture of evaporation variability? What signals of interannual variability (e.g. El Nino/Southern Oscillation (ENSO)) and decadal variability (Interdecadal Pacific Oscillation (IPO)) are detectable with this hierarchy of evaporation estimates?

  12. Dominance of ENSO-Like Variability in Controlling Tropical Ocean Surface Energy Fluxes in the Satellite Era

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.

    2008-01-01

    Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.

  13. Climate variability and plant response at the Santa Rita Experimental Range, Arizona

    Treesearch

    Michael A. Crimmins; Theresa M. Mau-Crimmins

    2003-01-01

    Climatic variability is reflected in differential establishment, persistence, and spread of plant species. Although studies have investigated these relationships for some species and functional groups, few have attempted to characterize the specific sequences of climatic conditions at various temporal scales (subseasonal, seasonal, and interannual) associated with...

  14. Validation of China-wide interpolated daily climate variables from 1960 to 2011

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang

    2015-02-01

    Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.

  15. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak, Malaysia.

    PubMed

    Impoinvil, Daniel E; Ooi, Mong How; Diggle, Peter J; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P; Baylis, Matthew; Solomon, Tom

    2013-01-01

    Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.

  16. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific

    PubMed Central

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-01-01

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other. PMID:26678931

  17. A two-fold increase of carbon cycle sensitivity to tropical temperature variations.

    PubMed

    Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping

    2014-02-13

    Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.

  18. Inter-Annual and Shorter-Term Variability in Physical and Biological Characteristics Across Barrow Canyon in August - September 2005-2014

    NASA Astrophysics Data System (ADS)

    Ashjian, C. J.; Okkonen, S. R.; Campbell, R. G.; Alatalo, P.

    2014-12-01

    Late summer physical and biological conditions along a 37-km transect crossing Barrow Canyon have been described for the past ten years as part of an ongoing program, supported by multiple funding sources including the NSF AON, focusing on inter-annual variability and the formation of a bowhead whale feeding hotspot near Barrow. These repeated transects (at least two per year, separated in time by days-weeks) provide an opportunity to assess the inter-annual and shorter term (days-weeks) changes in hydrographic structure, ocean temperature, current velocity and transport, chlorophyll fluorescence, nutrients, and micro- and mesozooplankton community composition and abundance. Inter-annual variability in all properties was high and was associated with larger scale, meteorological forcing. Shorter-term variability could also be high but was strongly influenced by changes in local wind forcing. The sustained sampling at this location provided critical measures of inter-annual variability that should permit detection of longer-term trends that are associated with ongoing climate change.

  19. Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Shindell, Drew T.; Asner, Gregory P.

    2016-08-01

    A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980-2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.

  20. Trends and Controls of inter-annual Variability in the Carbon Budget of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Marcolla, B.

    2014-12-01

    The climate sensitivity of the terrestrial carbon budget will substantially affect the sign and strength of the land-climate feedbacks and the future climate trajectories. Current trends in the inter-annual variability of terrestrial carbon fluxes (IAV) may contribute to clarify the relative role of physical and biological controls of ecosystem responses to climate change. For this purpose we investigated how recent climate variability has impacted the carbon fluxes at long-term FLUXNET sites. Using a novel method, the IAV has been factored out in climate induced variability (physical control), variability due to changes in ecosystem functioning (biological control) and the interaction of the two terms. The relative control of the main climatic drivers (temperature, water availability) on the physical and biological sources of IAV has been investigated using both site level fluxes and global gridded products generated from the up-scaling of flux data. Results of this analysis highlight the fundamental role of precipitation trends on the pattern of IAV in the last 30 years. Our findings on the spatial/temporal trends of IAV have been finally confirmed using the signal derived from the global network of atmospheric CO2 concentrations measurements.

  1. Refractory periods and climate forcing in cholera dynamics.

    PubMed

    Koelle, Katia; Rodó, Xavier; Pascual, Mercedes; Yunus, Md; Mostafa, Golam

    2005-08-04

    Outbreaks of many infectious diseases, including cholera, malaria and dengue, vary over characteristic periods longer than 1 year. Evidence that climate variability drives these interannual cycles has been highly controversial, chiefly because it is difficult to isolate the contribution of environmental forcing while taking into account nonlinear epidemiological dynamics generated by mechanisms such as host immunity. Here we show that a critical interplay of environmental forcing, specifically climate variability, and temporary immunity explains the interannual disease cycles present in a four-decade cholera time series from Matlab, Bangladesh. We reconstruct the transmission rate, the key epidemiological parameter affected by extrinsic forcing, over time for the predominant strain (El Tor) with a nonlinear population model that permits a contributing effect of intrinsic immunity. Transmission shows clear interannual variability with a strong correspondence to climate patterns at long periods (over 7 years, for monsoon rains and Brahmaputra river discharge) and at shorter periods (under 7 years, for flood extent in Bangladesh, sea surface temperatures in the Bay of Bengal and the El Niño-Southern Oscillation). The importance of the interplay between extrinsic and intrinsic factors in determining disease dynamics is illustrated during refractory periods, when population susceptibility levels are low as the result of immunity and the size of cholera outbreaks only weakly reflects climate forcing.

  2. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0: Climate variability of sea salt aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Pierce, David W.; Russell, Lynn M.

    This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less

  3. Climate Downscaling over Nordeste, Brazil, Using the NCEP RSM97.

    NASA Astrophysics Data System (ADS)

    Sun, Liqiang; Ferran Moncunill, David; Li, Huilan; Divino Moura, Antonio; de Assis de Souza Filho, Francisco

    2005-02-01

    The NCEP Regional Spectral Model (RSM), with horizontal resolution of 60 km, was used to downscale the ECHAM4.5 AGCM (T42) simulations forced with observed SSTs over northeast Brazil. An ensemble of 10 runs for the period January-June 1971-2000 was used in this study. The RSM can resolve the spatial patterns of observed seasonal precipitation and capture the interannual variability of observed seasonal precipitation as well. The AGCM bias in displacement of the Atlantic ITCZ is partially corrected in the RSM. The RSM probability distribution function of seasonal precipitation anomalies is in better agreement with observations than that of the driving AGCM. Good potential prediction skills are demonstrated by the RSM in predicting the interannual variability of regional seasonal precipitation. The RSM can also capture the interannual variability of observed precipitation at intraseasonal time scales, such as precipitation intensity distribution and dry spells. A drought index and a flooding index were adopted to indicate the severity of drought and flooding conditions, and their interannual variability was reproduced by the RSM. The overall RSM performance in the downscaled climate of the ECHAM4.5 AGCM is satisfactory over Nordeste. The primary deficiency is a systematic dry bias for precipitation simulation.

  4. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    NASA Astrophysics Data System (ADS)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  5. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia.

    PubMed

    Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu

    2014-08-01

    The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  7. North-South precipitation patterns in western North America on interannual-to-decadal timescales

    USGS Publications Warehouse

    Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.

    1998-01-01

    The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation variations in the southern parts of western North America and are closely related to the first EOF. Central latitude of precipitation moves south (north) with tropical warming (cooling) in association with midlatitude western Pacific SLP variations, on both interannual and decadal timescales. Regional patterns and zonal averages of precipitation-sensitive tree-ring series are used to corroborate these patterns and to extend them into the past and appear to share much long- and short-term information with the instrumentally based zonal precipitation EOFs and moments.The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25?? to 55 ??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both tim

  8. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Tietsche, S.; Collins, M.; Goessling, H. F.; Guemas, V.; Guillory, A.; Hurlin, W. J.; Ishii, M.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Sigmond, M.; Tatebe, H.; Hawkins, E.

    2015-10-01

    Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre) and an update of the project's results. Although designed to address Arctic predictability, this data set could also be used to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño Southern Oscillation.

  9. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century. However, the most prominent feature of the new coral records is an unprecedented freshening trend since the mid-20th century, in line with global climate models (GCMs) projections of enhanced hydrological patterns (wet areas are getting wetter and vice versa) under greenhouse forcing. Taken together, the coral records provide key constraints on tropical Pacific climate trends that may improve regional climate projections in areas affected by tropical Pacific climate variability.
    Central Tropical Pacific SST and Salinity Proxy Records

  10. Recent climate variability and its impacts on soybean yields in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Danielle Barros; Rao, V. Brahmananda

    2011-08-01

    Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.

  11. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  12. Coral-inferred Variability of Upstream Kuroshio Current from 1953-2004 AD

    NASA Astrophysics Data System (ADS)

    Li, X.; Yi, L.; Shen, C. C.; Hsin, Y. C.

    2016-12-01

    The Kuroshio Current (KC), one of the most important western boundary currents in the North Pacific Ocean, strongly impacts regional climate in East Asia and upper-ocean thermal structure. However, the responses of KC to regional and remote climate forcing are poorly understood owing to lacking of long-term KC observations. Here, we present a sea surface temperature (SST) record from 1953 to 2004 AD derived from monthly skeletal δ18O data of a living coral Porites core, drilled in Nanwan, southern Taiwan (22°N, 121°E), located on the western front of the Upstream KC. The increased/reduced Kuroshio transport would generate stronger/weaker upwelling in Southern Taiwan, which can cause lower/higher SST. Agreement between dynamics of interannual coral δ18O and modern KC data shows that the regional coral δ18O can be used as a promising proxy for Upstream KC intensity. The KC-induced SST anomaly record reveals prominent interannual and decadal variability predominantly controlled by the bifurcation latitude of North Equatorial Current. We also find that the reconstructed KC intensity at east of Taiwan and south of Japan have nearly simultaneous interannual changes, suggesting the same dominant forcing(s) for the entire KC system. Additional work is needed to understand the KC system with respect to the interannual to decadal climate variability and the influences of global warming.

  13. Linkages Between Terrestrial Carbon Uptake and Interannual Climate Variability over the Texas-northern Mexico High Plains

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Barnes, E. A.; Worden, J.; Harper, A. B.; Bowman, K. W.; Frankenberg, C.

    2014-12-01

    The Texas-northern Mexico high plains experienced record drought conditions in 2011 during strong negative phases of ENSO and the NAO. Given predictions of increased frequency and severity of drought under projected climate change [e.g., Reichstein et al., 2013] and recent findings of CO2 growth rate sensitivity to interannual variability of carbon uptake in semi-arid ecosystems [Poulter et al., 2014], we investigate the response of carbon uptake in the Texas high plains to interannual climate variability with the goal of improved mechanistic understanding of climate-carbon cycle links. Specifically, we examine (1) observed tendencies in regional scale carbon uptake and soil moisture from 2010 to 2011 using satellite observations of gross primary production (GPP) (from plant fluorescence) from GOSAT and soil moisture from SMOS, and (2) the interannual relationship between GPP and ENSO & NAO variability using terrestrial biosphere simulations from 1950-2012. Observations reveal widespread decline of GPP in 2011 (0.42 +/- 0.04 Pg C yr-1) correlated with negative soil moisture tendencies (r = 0.85 +/- 0.21) which leads to corresponding declines in net carbon uptake and transpiration (according to model simulations). Further examination of model results over the period 1950-2012 indicates that negative GPP anomalies are linked systematically to winter and spring precipitation deficits associated with overlapping negative phases of winter NAO and ENSO, with increasing magnitude of negative anomalies in strong La Niña years. Furthermore, the strongest decline of GPP, carbon uptake, and transpiration on record occurred during the 2011 drought and were associated with extreme negative phases of ENSO and NAO, with 2011 being the only year since 1950 that both indices exceeded 1 σ standard deviation.

  14. Regional patterns of interannual variability of catchment water balances across the continental U.S.: A Budyko framework

    NASA Astrophysics Data System (ADS)

    Carmona, Alejandra M.; Sivapalan, Murugesu; Yaeger, Mary A.; Poveda, Germán.

    2014-12-01

    Patterns of interannual variability of the annual water balance are explored using data from 190 MOPEX catchments across the continental U.S. This analysis has led to the derivation of a quantitative, dimensionless, Budyko-type framework to characterize the observed interannual variability of annual water balances. The resulting model is expressed in terms of a humidity index that measures the competition between water and energy availability at the annual time scale, and a similarity parameter (α) that captures the net effects of other short-term climate features and local landscape characteristics. This application of the model to the 190 study catchments revealed the existence of space-time symmetry between spatial (between-catchment) variability and general trends in the temporal (between-year) variability of the annual water balances. The MOPEX study catchments were classified into eight similar catchment groups on the basis of magnitudes of the similarity parameter α. Interesting regional trends of α across the continental U.S. were brought out through identification of similarities between the spatial positions of the catchment groups with the mapping of distinctive ecoregions that implicitly take into account common climatic and vegetation characteristics. In this context, this study has introduced a deep sense of similarity that is evident in observed space-time variability of water balances that also reflect the codependence and coevolution of climate and landscape properties.

  15. A Fiji multi-coral δ18O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region

    NASA Astrophysics Data System (ADS)

    Dassié, Emilie P.; Linsley, Braddock K.; Corrège, Thierry; Wu, Henry C.; Lemley, Gavin M.; Howe, Steve; Cabioch, Guy

    2014-12-01

    The limited availability of oceanographic data in the tropical Pacific Ocean prior to the satellite era makes coral-based climate reconstructions a key tool for extending the instrumental record back in time, thereby providing a much needed test for climate models and projections. We have generated a unique regional network consisting of five Porites coral δ18O time series from different locations in the Fijian archipelago. Our results indicate that using a minimum of three Porites coral δ18O records from Fiji is statistically sufficient to obtain a reliable signal for climate reconstruction, and that application of an approach used in tree ring studies is a suitable tool to determine this number. The coral δ18O composite indicates that while sea surface temperature (SST) variability is the primary driver of seasonal δ18O variability in these Fiji corals, annual average coral δ18O is more closely correlated to sea surface salinity (SSS) as previously reported. Our results highlight the importance of water mass advection in controlling Fiji coral δ18O and salinity variability at interannual and decadal time scales despite being located in the heavy rainfall region of the South Pacific Convergence Zone (SPCZ). The Fiji δ18O composite presents a secular freshening and warming trend since the 1850s coupled with changes in both interannual (IA) and decadal/interdecadal (D/I) variance. The changes in IA and D/I variance suggest a re-organization of climatic variability in the SPCZ region beginning in the late 1800s to period of a more dominant interannual variability, which could correspond to a southeast expansion of the SPCZ.

  16. Inter-annual variability and spatial coherence of net primary productivity across a western Oregon Cascades landscape

    Treesearch

    Travis J. Woolley; Mark E. Harmon; Kari B. O’Connell

    2015-01-01

    Inter-annual variability (IAV) of forest Net Primary Productivity (NPP) is a function of both extrinsic (e.g., climate) and intrinsic (e.g., stand dynamics) drivers. As estimates of NPP in forests are scaled from trees to stands to the landscape, an understanding of the relative effects of these factors on spatial and temporal behavior of NPP is important. Although a...

  17. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2018-01-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.

  18. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink

    Treesearch

    William R. L. Anderegg; Ashley P. Ballantyne; W. Kolby Smith; Joseph Majkut; Sam Rabin; Claudie Beaulieu; Richard Birdsey; John P. Dunne; Richard A. Houghton; Ranga B. Myneni; Yude Pan; Jorge L. Sarmiento; Nathan Serota; Elena Shevliakova; Pieter Tans; Stephen W. Pacala

    2015-01-01

    The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link...

  19. Interannual Atmospheric Variability Simulated by a Mars GCM: Impacts on the Polar Regions

    NASA Technical Reports Server (NTRS)

    Bridger, Alison F. C.; Haberle, R. M.; Hollingsworth, J. L.

    2003-01-01

    It is often assumed that in the absence of year-to-year dust variations, Mars weather and climate are very repeatable, at least on decadal scales. Recent multi-annual simulations of a Mars GCM reveal however that significant interannual variations may occur with constant dust conditions. In particular, interannual variability (IAV) appears to be associated with the spectrum of atmospheric disturbances that arise due to baroclinic instability. One quantity that shows significant IAV is the poleward heat flux associated with these waves. These variations and their impacts on the polar heat balance will be examined here.

  20. Projected Changes in Mean and Interannual Variability of Surface Water over Continental China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi

    Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China,more » which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti-scale guidance for assessing effective adaptation strategies for the country on a river basin, regional, or as whole.« less

  1. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in climate over long timescales.

  2. Interannual and spatial variability of maple syrup yield as related to climatic factors

    PubMed Central

    Houle, Daniel

    2014-01-01

    Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001–2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions. PMID:24949244

  3. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.

    2003-01-01

    Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.

  4. Ecophysiological and phenological strategies in seasonally-dry ecosystems: an ecohydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare

    2015-04-01

    Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.

  5. The Effect of Vaccination Coverage and Climate on Japanese Encephalitis in Sarawak, Malaysia

    PubMed Central

    Impoinvil, Daniel E.; Ooi, Mong How; Diggle, Peter J.; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P.

    2013-01-01

    Background Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Methodology/principal findings Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. Conclusions/significance This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored. PMID:23951373

  6. Regional climate services: A regional partnership between NOAA and USDA

    USDA-ARS?s Scientific Manuscript database

    Climate services in the Midwest and Northern Plains regions have been enhanced by a recent addition of the USDA Climate Hubs to NOAA’s existing network of partners. This new partnership stems from the intrinsic variability of intra and inter-annual climatic conditions, which makes decision-making fo...

  7. The essential interactions between understanding climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  8. Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations

    NASA Astrophysics Data System (ADS)

    Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang

    2018-05-01

    Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.

  9. Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Douville, Hervé

    2011-10-01

    The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.

  10. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    DOE Data Explorer

    Raich, James W. [Iowa State University, Ames, IA (USA); Potter, Christopher S. [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bhagawat, Dwipen [Iowa State Univ., Ames, IA (United States); Olson, L. M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN

    2003-08-01

    The Principal Investigators used a climate-driven regression model to develop spatially resolved estimates of soil-CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO2 fluxes. The mean annual global soil-CO2 flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO2 emmissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY-1 per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.

  11. Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China

    NASA Astrophysics Data System (ADS)

    Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.

    2017-12-01

    Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.

  12. Interannual influence of spring phenological transitions on the water use efficiency of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Jin, Jiaxin; Wang, Ying

    2017-04-01

    Climate change has significantly influenced the productivity of terrestrial ecosystems through water cycles. Understanding the phenological regulation mechanisms underlying coupled carbon-water cycles is important for improving ecological assessments and projecting terrestrial ecosystem responses and feedback to climate change. In this study, we present an analysis of the interannual relationships among flux-based spring phenological transitions (referred as photosynthetic onset) and water use efficiency (WUE) in North America and Europe using 166 site-years of data from 22 flux sites, including 10 deciduous broadleaf forest (DBF) and 12 evergreen needleleaf forest (ENF) ecosystems. We found that the WUE responses to variations in spring phenological transitions differed substantially across plant functional types (PFTs) and growth periods. During the early spring (defined as one month from spring onset) in the DBF ecosystem, photosynthetic onset dominated changes in WUE by dominating gross primary production (GPP), with one day of advanced onset increasing the WUE by 0.037 gC kg-1H2O in early spring. For the ENF sites, although advanced photosynthetic onset also significantly promoted GPP, earlier onset did not have a significant positive impact on WUE in early spring because it was not significantly correlated to evapotranspiration (ET), which is a more dominant factor for WUE than GPP across the ENF sites. Statistically significant correlations were not observed between interannual variability in photosynthetic onset and WUE for either the DBF or ENF ecosystems following a prolonged period after photosynthetic onset. For the DBF sites, the interannual variability of photosynthetic onset provided a better explanation of the variations in WUE (ca. 51.4%) compared with climatic factors, although this was only applicable to the early spring. For the ENF sites, photosynthetic onset variations did not provide a better explanation of the interannual WUE variations compared with climatic factors within any growth period. Notably, the negative correlation between the interannual variability of early spring WUE and photosynthetic onset gradually declined from boreal forests (r = -0.73) to subtropical Mediterranean forests (r = 0.35), indicating that the positive effect of earlier spring phenological transitions decreased or even reversed from cold climates to warm climates. This result suggests that the effect of the phenological regulatory mechanism on coupled carbon-water cycles is not only determined by the PFT but also by the habitat climate of an ecosystem. These observed differences between the ENF and DBF ecosystems will likely influence future phenological shifts related to competition for water and other resources in mixed species stands.

  13. Communicating uncertainty in seasonal and interannual climate forecasts in Europe.

    PubMed

    Taylor, Andrea L; Dessai, Suraje; de Bruin, Wändi Bruine

    2015-11-28

    Across Europe, organizations in different sectors are sensitive to climate variability and change, at a range of temporal scales from the seasonal to the interannual to the multi-decadal. Climate forecast providers face the challenge of communicating the uncertainty inherent in these forecasts to these decision-makers in a way that is transparent, understandable and does not lead to a false sense of certainty. This article reports the findings of a user-needs survey, conducted with 50 representatives of organizations in Europe from a variety of sectors (e.g. water management, forestry, energy, tourism, health) interested in seasonal and interannual climate forecasts. We find that while many participating organizations perform their own 'in house' risk analysis most require some form of processing and interpretation by forecast providers. However, we also find that while users tend to perceive seasonal and interannual forecasts to be useful, they often find them difficult to understand, highlighting the need for communication formats suitable for both expert and non-expert users. In addition, our results show that people tend to prefer familiar formats for receiving information about uncertainty. The implications of these findings for both the providers and users of climate information are discussed. © 2015 The Authors.

  14. Communicating uncertainty in seasonal and interannual climate forecasts in Europe

    PubMed Central

    Taylor, Andrea L.; Dessai, Suraje; de Bruin, Wändi Bruine

    2015-01-01

    Across Europe, organizations in different sectors are sensitive to climate variability and change, at a range of temporal scales from the seasonal to the interannual to the multi-decadal. Climate forecast providers face the challenge of communicating the uncertainty inherent in these forecasts to these decision-makers in a way that is transparent, understandable and does not lead to a false sense of certainty. This article reports the findings of a user-needs survey, conducted with 50 representatives of organizations in Europe from a variety of sectors (e.g. water management, forestry, energy, tourism, health) interested in seasonal and interannual climate forecasts. We find that while many participating organizations perform their own ‘in house’ risk analysis most require some form of processing and interpretation by forecast providers. However, we also find that while users tend to perceive seasonal and interannual forecasts to be useful, they often find them difficult to understand, highlighting the need for communication formats suitable for both expert and non-expert users. In addition, our results show that people tend to prefer familiar formats for receiving information about uncertainty. The implications of these findings for both the providers and users of climate information are discussed. PMID:26460115

  15. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  16. Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations

    NASA Astrophysics Data System (ADS)

    Fisher, Jeremy Isaac

    Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat) and 500m Moderate Resolution Imaging Spectrometer (MODIS). A robust logistic-growth model of canopy cover was employed to determine phenological characteristics at each forest stand. The duel analyses revealed important findings: (a) local phenological gradients from microclimatic structures are highly influential in broad-scale phenological observations; (b) satellite observed phenology reflects observations of canopy growth from field studies; (c) phenological anomalies in urban areas which were previously attributed to urban heat may be a function of urban-specific land cover (i.e. green lawns); and (d) patterns of interannual variability in phenology at the regional scale have high spatial coherency and appear to be driven by broad-scale climatic change. Satellite-observed phenology may reflect temperatures during spring and provides a proxy of climate variability.

  17. A century of hydrological variability and trends in the Fraser River Basin

    NASA Astrophysics Data System (ADS)

    Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.

    2012-06-01

    This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.

  18. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  19. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.

  20. Building climate resilience in the Blue Nile/Abay Highlands: Part II-arole for earth system sciences

    USDA-ARS?s Scientific Manuscript database

    The Blue Nile (Abay) Highlands of Ethiopia are characterized by significant interannual climate variability, dissected topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely...

  1. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  2. Interannual variability in the gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr

    2018-05-01

    Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.

  3. Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature

    PubMed Central

    Wang, Guojian; Cai, Wenju

    2013-01-01

    The positive phase of the El Niño-Southern Oscillation (ENSO) increases global mean temperature, and contributes to a negative phase of the Southern Annular Mode (SAM), the dominant mode of climate variability in the Southern Hemisphere. This interannual relationship of a high global mean temperature associated with a negative SAM, however, is opposite to the relationship between their trends under greenhouse warming. We show that over much of the 20th century this relationship undergoes multidecadal fluctuations depending on the intensity of ENSO. During the period 1925–1955, subdued ENSO activities weakened the relationship. However, a similar weakening has occurred since the late 1970s despite the strong ENSO. We demonstrate that this recent weakening is induced by climate change in the Southern Hemisphere. Our result highlights a rare situation in which climate change signals emerge against an opposing property of interannual variability, underscoring the robustness of the recent climate change. PMID:23784087

  4. Modelling spatial and temporal vegetation variability with the Climate Constrained Vegetation Index: evidence of CO2 fertilisation and of water stress in continental interiors

    NASA Astrophysics Data System (ADS)

    Los, S. O.

    2015-06-01

    A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen-Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.

  5. Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing

    NASA Astrophysics Data System (ADS)

    Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.

    2015-12-01

    Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.

  6. Evidence for a possible modern and mid-Holocene solar influence on climate from Lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Theissen, K. M.; Dunbar, R. B.

    2005-12-01

    In tropical regions, there are few paleoclimate archives with the necessary resolution to investigate climate variability at interannual-to-decadal timescales prior to the onset of the instrumental record. Interannual variability associated with the El Niño Southern Oscillation (ENSO) is well documented in the instrumental record and the importance of the precessional forcing of millennial variability has been established in studies of tropical paleoclimate records. In contrast, decade-to-century variability is still poorly understood. Here, we examine interannual to decadal variability in the northern Altiplano of South America using digital image analysis of a floating interval of varved sediments of middle Holocene age (~6160-6310 yr BP) from Lake Titicaca. Multi-taper method (MTM) and wavelet frequency-domain analyses were performed on a time series generated from a gray-scaled digital image of the mm-thick laminations. Our results indicate significant power at a decadal periodicity (10-12 years) associated with the Schwabe cycle of solar activity. Frequency-domain analysis also indicates power at 2-2.5 year periodicities associated with ENSO. Similarly, spectral analysis of a 75 year instrumental record of Titicaca lake level shows significant power at both solar and ENSO periodicities. Although both of the examined records are short, our results imply that during both the mid-Holocene and modern times, solar and ENSO variability may have contributed to high frequency climate fluctuations over the northern Altiplano. We suspect that solar influence on large-scale atmospheric circulation features may account for the decadal variability in the mid-Holocene and present-day water balance of the Altiplano.

  7. Interannual Variations in Earth's Low-Degree Gravity Field and the Connections With Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.

  8. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales

    USGS Publications Warehouse

    Knowles, Noah

    2002-01-01

    Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.

  9. Interannual variability: a crucial component of space use at the territory level.

    PubMed

    Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W

    2015-01-01

    Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.

  10. Seasonal and interannual variability of climate and vegetation indices across the Amazon.

    PubMed

    Brando, Paulo M; Goetz, Scott J; Baccini, Alessandro; Nepstad, Daniel C; Beck, Pieter S A; Christman, Mary C

    2010-08-17

    Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.

  11. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects

    USGS Publications Warehouse

    Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, Joy S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2002-01-01

    An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.

  12. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution

    NASA Astrophysics Data System (ADS)

    Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.

    2016-05-01

    The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.

  13. Changes in interannual climate sensitivities of terrestrial carbon fluxes during the 21st century predicted by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Liu, Yongwen; Wang, Tao; Huang, Mengtian; Yao, Yitong; Ciais, Philippe; Piao, Shilong

    2016-03-01

    Terrestrial carbon fluxes are sensitive to climate change, but the interannual climate sensitivity of the land carbon cycle can also change with time. We analyzed the changes in responses of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual climate variations over the 21st century in the Earth System Models (ESMs) from the Coupled Model Intercomparison Project 5. Under Representative Concentration Pathway (RCP) 4.5, interannual temperature sensitivities of NBP (γTempNBP), NPP (γTempNPP), and Rh (γTempRh) remain relatively stable at global scale, yet with large differences among ESMs and spatial heterogeneity. Modeled γTempNPP and γTempRh appear to increase in parallel in boreal regions, resulting in unchanged γTempNBP. Tropical γTempNBP decreases in most models, due to decreasing γTempNPP and relatively stable γTempRh. Across models, the changes in γTempNBP can be mainly explained by changes in γTempNPP rather than changes in γTempRh, at both global and regional scales. Interannual precipitation sensitivities of global NBP (γPrecNBP), NPP (γPrecNPP), and Rh (γPrecRh) are predicted not to change significantly, with large differences among ESMs. Across models, the changes in γPrecNBP can be mainly explained by changes in γPrecNPP rather than changes in γPrecRh in temperate regions, but not in other regions. Changes in the interannual climate sensitivities of carbon fluxes are consistent across RCPs 4.5, 6.0, and 8.5 but larger in more intensive scenarios. More effort should be considered to improve terrestrial carbon flux responses to interannual climate variability, e.g., incorporating biogeochemical processes of nutrient limitation, permafrost dynamics, and microbial decomposition.

  14. The Effect of the Interannual Variability of the OH Sink on the Interannual Variability of the Atmospheric Methane Mixing Ratio and Carbon Stable Isotope Composition

    NASA Astrophysics Data System (ADS)

    Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin

    2013-04-01

    The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and isotopic compositions at global reference stations were used to construct more robust indicators such as global and zonal means and interhemispheric differences. We also compared the model CH4 mixing ratio to satellite observations, for the period 2003 to 2004 with SCIAMACHY and from 2009 to 2010 with GOSAT. The interannual variability of the different OH fields imprinted an interannual variation of the atmospheric CH4 mixing ratio with a magnitude of ±10 ppb, which is comparable to the effect of all sources combined. Meanwhile its effect on the interannual variability of δ13C-CH4 was minor (< 10%). The interannual variability of the mixing ratio interhemispheric difference is dominated by the sources because the OH sink is concentrated in the tropics, thus its interannual variability affects both hemispheres. Meanwhile, although the OH plays an important role in the establishment of an interhemispheric gradient of δ13C-CH4, the interannual variation of this gradient is negligibly affected by the choice of OH field. Overall the study showed that the variability of the OH sink plays a significant role in the interannual variability of the atmospheric methane mixing ratio, and must be considered to improve our understanding of the recent trends in the global methane budget.

  15. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.

    PubMed

    Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian

    2018-01-21

    Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Global linkages between teleconnection patterns and the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Dahlin, Kyla M.; Ault, Toby R.

    2018-07-01

    Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.

  17. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S A; Huang, Yongmei

    2016-01-11

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature (Tmax) in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer Tmax, particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth.

  18. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S. A.; Huang, Yongmei

    2016-01-01

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature () in ~22–25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer , particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24–26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth. PMID:26751166

  19. Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas

    NASA Astrophysics Data System (ADS)

    Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.

    2007-05-01

    Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently marginal areas if precipitations decrease.

  20. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  1. An Assessment of Multimodel Simulations for the Variability of Western North Pacific Tropical Cyclones and Its Association with ENSO

    NASA Technical Reports Server (NTRS)

    Han, Rongqing; Wang, Hui; Hu, Zeng-Zhen; Kumar, Arun; Li, Weijing; Long, Lindsey N.; Schemm, Jae-Kyung E.; Peng, Peitao; Wang, Wanqiu; Si, Dong; hide

    2016-01-01

    An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño-Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño-namely, eastern Pacific (EP) and central Pacific (CP) El Niño-and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.

  2. Characteristics of the East Asian Winter Climate Associated with the Westerly Jet Stream and ENSO

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In this study, the influences of the East Asian jet stream (EAJS) and El Nino/Southern Oscillation (ENSO) on the interannual variability of the East Asian winter climate are examined with a focus on the relative climate impacts of the two phenomena. Although the variations of the East Asian winter monsoon and the temperature and precipitation of China, Japan, and Korea are emphasized, the associated changes in the broad-scale atmospheric circulation patterns over Asia and the Pacific and in the extratropical North Pacific sea surface temperature (SST) are also investigated. It is demonstrated that there is no apparent relationship between ENSO and the interannual variability of EAJS core. The EAJS and ENSO are associated with distinctly different patterns of atmospheric circulation and SST in the Asian-Pacific regions. While ENSO causes major climate signals in the Tropics and over the North Pacific east of the dateline, the EAJS produces significant changes in the atmospheric circulation over East Asia and western Pacific. In particular, the EAJS explains larger variance of the interannual signals of the East Asian trough, the Asian continental high, the Aleutian low, and the East Asian winter monsoon. When the EAJS is strong, all these atmospheric systems intensify significantly. The response of surface temperature and precipitation to EAJS variability and ENSO is more complex. In general, the East Asian winter climate is cold (warm) and dry (wet) when the EAJS is strong (weak) and it is warm during El Nino years. However, different climate signals are found during different La Nina years. In terms of linear correlation, both the temperature and precipitation of northern China, Korea, and central Japan are more significantly associated with the EAJS than with ENSO.

  3. Inter-model Diversity of ENSO simulation and its relation to basic states

    NASA Astrophysics Data System (ADS)

    Kug, J. S.; Ham, Y. G.

    2016-12-01

    In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupledglobal climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the closeconnection between the interannual variability and climatological states, the distinctive relation between theintermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,the simulated interannual variabilities can be improved, by correcting their climatological bias. To test thismethodology, the dominant intermodel difference in precipitation responses during El Niño-SouthernOscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominantintermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominantintermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatologythan the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positiveENSO precipitation anomalies to the east (west). Based on the model's systematic errors in atmosphericENSO response and bias, the models with better climatological state tend to simulate more realistic atmosphericENSO responses.Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. Afterthe statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. Theseresults provide a possibility that the present methodology can be also applied to improving climate projectionand seasonal climate prediction.

  4. Climate Exposure of US National Parks in a New Era of Change

    PubMed Central

    Monahan, William B.; Fisichelli, Nicholas A.

    2014-01-01

    US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change. PMID:24988483

  5. Climate exposure of US national parks in a new era of change.

    PubMed

    Monahan, William B; Fisichelli, Nicholas A

    2014-01-01

    US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901-2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change.

  6. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: Examples from two alpine watersheds

    NASA Astrophysics Data System (ADS)

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-02-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996-2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54-0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  7. Interannual variability of snowmelt in the Sierra Nevada and Rocky Mountains, United States: examples from two alpine watersheds

    USGS Publications Warehouse

    Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.

    2012-01-01

    The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.

  8. Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt.

    PubMed

    Haynes, Kristine M; Mitchell, Carl P J

    2012-08-01

    Spring snowmelt is an important period of mercury (Hg) export from watersheds. Limited research has investigated the potential effects of climate variability on hydrologic and Hg fluxes during spring snowmelt. The purpose of this research was to assess the potential impacts of inter-annual climate variability on Hg mobility in forested uplands, as well as spatial variability in hillslope hydrology and Hg fluxes. We compared hydrological flows, Hg and solute mobility from three adjacent hillslopes in the S7 watershed of the Marcell Experimental Forest, Minnesota during two very different spring snowmelt periods: one following a winter (2009-2010) with severely diminished snow accumulation (snow water equivalent (SWE) = 48 mm) with an early melt, and a second (2010-2011) with significantly greater winter snow accumulation (SWE = 98 mm) with average to late melt timing. Observed inter-annual differences in total Hg (THg) and dissolved organic carbon (DOC) yields were predominantly flow-driven, as the proportion by which solute yields increased was the same as the increase in runoff. Accounting for inter-annual differences in flow, there was no significant difference in THg and DOC export between the two snowmelt periods. The spring 2010 snowmelt highlighted the important contribution of melting soil frost in the timing of a considerable portion of THg exported from the hillslope, accounting for nearly 30% of the THg mobilized. Differences in slope morphology and soil depths to the confining till layer were important in controlling the large observed spatial variability in hydrological flowpaths, transmissivity feedback responses, and Hg flux trends across the adjacent hillslopes.

  9. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raich, J.W.

    2003-09-15

    We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreenmore » broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.« less

  10. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    NASA Astrophysics Data System (ADS)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  11. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    NASA Astrophysics Data System (ADS)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the Arctic basin. The intermediate mode, with negative anomalies centered on the East Siberian shelf and positive anomalies along the North American side of the basin, has predominately dynamic characteristics. The associated sea ice concentration (SIC) clusters vary more between different seasons and months, but the SIC patterns are physically framed by the SIT cluster patterns.

  12. Interannual variability of physical oceanographic characteristics of Gilbert Bay: A marine protected area in Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Best, Sara; Lundrigan, Sarah; Demirov, Entcho; Wroblewski, Joe

    2011-10-01

    Gilbert Bay on the southeast coast of Labrador is the site of the first Marine Protected Area (MPA) established in the subarctic coastal zone of eastern Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. This article presents results from a study of the interannual variability in atmospheric and physical oceanographic characteristics of Gilbert Bay over the period 1949-2006. We describe seasonal and interannual variability of the atmospheric parameters at the sea surface in the bay. The interannual variability of the atmosphere in the Gilbert Bay region is related to the North Atlantic Oscillation (NAO) and a recent warming trend in the local climate of coastal Labrador. The related changes in seawater temperature, salinity and sea-ice thickness in winter are simulated with a one-dimensional water column model, the General Ocean Turbulence Model (GOTM). A warming Gilbert Bay ecosystem would be favorable for cod growth, but reduced sea-ice formation during the winter months increases the danger of traveling across the bay by snowmobile.

  13. Faithful or not: direct and indirect effects of climate on extra-pair paternities in a population of Alpine marmots

    PubMed Central

    Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie

    2016-01-01

    Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. PMID:28003452

  14. Faithful or not: direct and indirect effects of climate on extra-pair paternities in a population of Alpine marmots.

    PubMed

    Bichet, Coraline; Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie

    2016-12-28

    Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. © 2016 The Author(s).

  15. The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wang, H.

    2004-01-01

    The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.

  16. Technical Report Series on Global Modeling and Data Assimilation. Volume 13; Interannual Variability and Potential Predictability in Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Min, Wei; Schubert, Siegfried D.; Suarez, Max J. (Editor)

    1997-01-01

    The Data Assimilation Office (DAO) at Goddard Space Flight Center and the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) have produced multi-year global assimilations of historical data employing fixed analysis systems. These "reanalysis" products are ideally suited for studying short-term climatic variations. The availability of multiple reanalysis products also provides the opportunity to examine the uncertainty in the reanalysis data. The purpose of this document is to provide an updated estimate of seasonal and interannual variability based on the DAO and NCEP/NCAR reanalyses for the 15-year period 1980-1995. Intercomparisons of the seasonal means and their interannual variations are presented for a variety of prognostic and diagnostic fields. In addition, atmospheric potential predictability is re-examined employing selected DAO reanalysis variables.

  17. Seasonal and interannual variability of climate and vegetation indices across the Amazon

    PubMed Central

    Brando, Paulo M.; Goetz, Scott J.; Baccini, Alessandro; Nepstad, Daniel C.; Beck, Pieter S. A.; Christman, Mary C.

    2010-01-01

    Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996−2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002–2005. Using improved enhanced vegetation index (EVI) measurements (2000–2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development. PMID:20679201

  18. Interannual Variability of the Tropical Water Cycle: Capabilities in the TRMM Era and Challenges for GPM

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    2003-01-01

    Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30" NE) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans, produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Robertson et al., [2001 GRL] for example, showed that substantial disagreement exists among contemporary satellite estimates of interannual variations in tropical rainfall that are associated with SST changes. Berg et al., [2002 J. Climate] have documented the distinct differences between precipitation structure over the eastern and western Pacific ITCZ and noted how various satellite precipitation algorithms may respond quite differently to ENSO modulations of these precipitation regimes. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.

  19. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    USGS Publications Warehouse

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.

  20. Climate teleconnections and recent patterns of human and animal disease outbreaks

    USDA-ARS?s Scientific Manuscript database

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the p...

  1. Effects of Uncertainty in TRMM Precipitation Radar Path Integrated Attenuation on Interannual Variations of Tropical Oceanic Rainfall

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan E.; Kummerow, Christian D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.

  2. Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline C.; Kulüke, Marco; Tierney, Jessica E.

    2018-04-01

    East African hydroclimate exhibits considerable variability across a range of timescales, with implications for its population that depends on the region's two rainy seasons. Recent work demonstrated that current state-of-the-art climate models consistently underestimate the long rains in boreal spring over the Horn of Africa while overestimating the short rains in autumn. This inability to represent the seasonal cycle makes it problematic for climate models to project changes in East African precipitation. Here we consider whether this bias also has implications for understanding interannual and decadal variability in the East African long and short rains. Using a consistent framework with an unforced multi-century global coupled climate model simulation, the role of Indo-Pacific variability for East African rainfall is compared across timescales and related to observations. The dominant driver of East African rainfall anomalies critically depends on the timescale under consideration: Interannual variations in East African hydroclimate coincide with significant sea surface temperature (SST) anomalies across the Indo-Pacific, including those associated with the El Niño-Southern Oscillation (ENSO) in the eastern Pacific, and are linked to changes in the Walker circulation, regional winds and vertical velocities over East Africa. Prolonged drought/pluvial periods in contrast exhibit anomalous SST predominantly in the Indian Ocean and Indo-Pacific warm pool (IPWP) region, while eastern Pacific anomalies are insignificant. We assessed dominant frequencies in Indo-Pacific SST and found the eastern equatorial Pacific dominated by higher-frequency variability in the ENSO band, while the tropical Indian Ocean and IPWP exhibit lower-frequency variability beyond 10 years. This is consistent with the different contribution to regional precipitation anomalies for the eastern Pacific versus Indian Ocean and IPWP on interannual and decadal timescales, respectively. In the model, the dominant low-frequency signal seen in the observations in the Indo-Pacific is not well-represented as it instead exhibits overly strong variability on subdecadal timescales. The overly strong ENSO-teleconnection likely contributes to the overestimated role of the short rains in the seasonal cycle in the model compared to observations.

  3. Storm-tracks interannual variability and large-scale climate modes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2013-04-01

    In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern hemisphere. Trigo IF., TD Davies, GR Bigg (1999) Objective climatology of cyclones in the Mediterranean region. J. Climate 12: 1685-1696. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 26: 127-143.

  4. Little Ice Age climatic erraticism as an analogue for future enhanced hydroclimatic variability across the American Southwest

    PubMed Central

    Loisel, Julie; MacDonald, Glen M.; Thomson, Marcus J.

    2017-01-01

    The American Southwest has experienced a series of severe droughts interspersed with strong wet episodes over the past decades, prompting questions about future climate patterns and potential intensification of weather disruptions under warming conditions. Here we show that interannual hydroclimatic variability in this region has displayed a significant level of non-stationarity over the past millennium. Our tree ring-based analysis of past drought indicates that the Little Ice Age (LIA) experienced high interannual hydroclimatic variability, similar to projections for the 21st century. This is contrary to the Medieval Climate Anomaly (MCA), which had reduced variability and therefore may be misleading as an analog for 21st century warming, notwithstanding its warm (and arid) conditions. Given past non-stationarity, and particularly erratic LIA, a ‘warm LIA’ climate scenario for the coming century that combines high precipitation variability (similar to LIA conditions) with warm and dry conditions (similar to MCA conditions) represents a plausible situation that is supported by recent climate simulations. Our comparison of tree ring-based drought analysis and records from the tropical Pacific Ocean suggests that changing variability in El Niño Southern Oscillation (ENSO) explains much of the contrasting variances between the MCA and LIA conditions across the American Southwest. Greater ENSO variability for the 21st century could be induced by a decrease in meridional sea surface temperature gradient caused by increased greenhouse gas concentration, as shown by several recent climate modeling experiments. Overall, these results coupled with the paleo-record suggests that using the erratic LIA conditions as benchmarks for past hydroclimatic variability can be useful for developing future water-resource management and drought and flood hazard mitigation strategies in the Southwest. PMID:29036207

  5. Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns

    PubMed Central

    Ramírez, Alonso; Pringle, Catherine M.

    2018-01-01

    Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548

  6. Cold Regime Interannual Variability of Primary and Secondary Producer Community Composition in the Southeastern Bering Sea

    PubMed Central

    Stauffer, Beth A.; Miksis-Olds, Jennifer; Goes, Joaquim I.

    2015-01-01

    Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios. PMID:26110822

  7. Cold Regime interannual variability of primary and secondary producer community composition in the southeastern Bering Sea.

    PubMed

    Stauffer, Beth A; Miksis-Olds, Jennifer; Goes, Joaquim I

    2015-01-01

    Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.

  8. Indices of climate change in the Artic zone derived from radiosondes

    NASA Astrophysics Data System (ADS)

    Añel, J. A.; Gimeno, L.; de La Torre, L.; Nieto, R.; Tesouro, M.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    The use of indices has been traditionally one of the main tools to identify climatic change. Here we present a study of the interannual variability of parameters derived from radiosonde data to study climate change in the artic zone. Trends, oscillations and the relationship with the principal climate variability mode for this region ( Northern Annular Mode) have been studied. We calculate the indices from the Upper Air Digital Files of the National Climatic Data Center (CARDS). We chose for our work the radiosonde data of stations over the studied region, with a temporal coverage of 27 years (1973-1998).

  9. The Inter-Annual Variability Analysis of Carbon Exchange in Low Artic Fen Uncovers The Climate Sensitivity And The Uncertainties Around Net Ecosystem Exchange Partitioning

    NASA Astrophysics Data System (ADS)

    Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.

    2015-12-01

    An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.

  10. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  11. Sensitivity of the interannual variability of mineral aerosol simulations to meteorological forcing dataset

    DOE PAGES

    Smith, Molly B.; Mahowald, Natalie M.; Albani, Samuel; ...

    2017-03-07

    Interannual variability in desert dust is widely observed and simulated, yet the sensitivity of these desert dust simulations to a particular meteorological dataset, as well as a particular model construction, is not well known. Here we use version 4 of the Community Atmospheric Model (CAM4) with the Community Earth System Model (CESM) to simulate dust forced by three different reanalysis meteorological datasets for the period 1990–2005. We then contrast the results of these simulations with dust simulated using online winds dynamically generated from sea surface temperatures, as well as with simulations conducted using other modeling frameworks but the same meteorological forcings, in order tomore » determine the sensitivity of climate model output to the specific reanalysis dataset used. For the seven cases considered in our study, the different model configurations are able to simulate the annual mean of the global dust cycle, seasonality and interannual variability approximately equally well (or poorly) at the limited observational sites available. Altogether, aerosol dust-source strength has remained fairly constant during the time period from 1990 to 2005, although there is strong seasonal and some interannual variability simulated in the models and seen in the observations over this time period. Model interannual variability comparisons to observations, as well as comparisons between models, suggest that interannual variability in dust is still difficult to simulate accurately, with averaged correlation coefficients of 0.1 to 0.6. Because of the large variability, at least 1 year of observations at most sites are needed to correctly observe the mean, but in some regions, particularly the remote oceans of the Southern Hemisphere, where interannual variability may be larger than in the Northern Hemisphere, 2–3 years of data are likely to be needed.« less

  12. Variability of North Atlantic Hurricane Frequency in a Large Ensemble of High-Resolution Climate Simulations

    NASA Astrophysics Data System (ADS)

    Mei, W.; Kamae, Y.; Xie, S. P.

    2017-12-01

    Forced and internal variability of North Atlantic hurricane frequency during 1951-2010 is studied using a large ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The simulations well capture the interannual-to-decadal variability of hurricane frequency in best track data, and further suggest a possible underestimate of hurricane counts in the current best track data prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the Main Development Region (MDR) accounts for more than 80% of the forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a simple but useful predictor; a one-degree increase in this SST difference produces 7.1±1.4 more hurricanes. The hurricane frequency also exhibits internal variability that is comparable in magnitude to the interannual variability. The 100-member ensemble allows us to address the following important questions: (1) Are the observations equivalent to one realization of such a large ensemble? (2) How many ensemble members are needed to reproduce the variability in observations and in the forced component of the simulations? The sources of the internal variability in hurricane frequency will be identified and discussed. The results provide an explanation for the relatively week correlation ( 0.6) between MDR GPI and hurricane frequency on interannual timescales in observations.

  13. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.

    PubMed

    Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick

    2017-05-01

    An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.

  14. 140-year subantarctic tree-ring temperature reconstruction reveals tropical forcing of increased Southern Ocean climate variability

    NASA Astrophysics Data System (ADS)

    Turney, C. S.; Fogwill, C. J.; Palmer, J. G.; VanSebille, E.; Thomas, Z.; McGlone, M.; Richardson, S.; Wilmshurst, J.; Fenwick, P.; Zunz, V.; Goosse, H.; Wilson, K. J.; Carter, L.; Lipson, M.; Jones, R. T.; Harsch, M.; Clark, G.; Marzinelli, E.; Rogers, T.; Rainsley, E.; Ciasto, L.; Waterman, S.; Thomas, E. R.; Visbeck, M.

    2017-12-01

    Occupying about 14 % of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on south-west Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54˚S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record, and coincident with major changes in mammalian and bird populations. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes.

  15. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  16. Masting in ponderosa pine: comparisons of pollen and seed over space and time.

    PubMed

    Mooney, Kailen A; Linhart, Yan B; Snyder, Marc A

    2011-03-01

    Many plant species exhibit variable and synchronized reproduction, or masting, but less is known of the spatial scale of synchrony, effects of climate, or differences between patterns of pollen and seed production. We monitored pollen and seed cone production for seven Pinus ponderosa populations (607 trees) separated by up to 28 km and 1,350 m in elevation in Boulder County, Colorado, USA for periods of 4-31 years for a mean per site of 8.7 years for pollen and 12.1 for seed cone production. We also analyzed climate data and a published dataset on 21 years of seed production for an eighth population (Manitou) 100 km away. Individual trees showed high inter-annual variation in reproduction. Synchrony was high within populations, but quickly became asynchronous among populations with a combination of increasing distance and elevational difference. Inter-annual variation in temperature and precipitation had differing influences on seed production for Boulder County and Manitou. We speculate that geographically variable effects of climate on reproduction arise from environmental heterogeneity and population genetic differentiation, which in turn result in localized synchrony. Although individual pines produce pollen and seed, only one-third of the covariation within trees was shared. As compared to seed cones, pollen had lower inter-annual variation at the level of the individual tree and was more synchronous. However, pollen and seed production were similar with respect to inter-annual variation at the population level, spatial scales of synchrony and associations with climate. Our results show that strong masting can occur at a localized scale, and that reproductive patterns can differ between pollen and seed cone production in a hermaphroditic plant.

  17. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, B.C.; Tieszen, L.T.

    2003-01-01

    Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.

  18. Pteropods and climate off the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Loeb, Valerie J.; Santora, Jarrod A.

    2013-09-01

    Shelled (thecosome) and naked (gymnosome) pteropods are regular, at times abundant, members of Southern Ocean zooplankton assemblages. Regionally, shelled species can play a major role in food webs and carbon cycling. Because of their aragonite shells thecosome pteropods may be vulnerable to the impacts of ocean acidification; without shells they cannot survive and their demise would have major implications for food webs and carbon cycling in the Southern Ocean. Additionally, pteropod species in the southwest Atlantic sector of the Southern Ocean inhabit a region of rapid warming and climate change, the impacts of which are predicted to be observed as poleward distribution shifts. Here we provide baseline information on intraseasonal, interannual and longer scale variability of pteropod populations off the Antarctic Peninsula between 1994 and 2009. Concentrations of the 4 dominant taxa, Limacina helicina antarctica f. antarctica, Clio pyramidata f. sulcata, Spongiobranchaea australis and Clione limacina antarctica, are similar to those monitored during the 1928-1935 Discovery Investigations and reflect generally low values but with episodic interannual abundance peaks that, except for C. pyr. sulcata, are related to basin-scale climate forcing associated with the El Niño-Southern Oscillation (ENSO) climate mode. Significant abundance increases of L. helicina and S. australis after 1998 were associated with a climate regime shift that initiated a period dominated by cool La Niña conditions and increased nearshore influence of the Antarctic Circumpolar Current (ACC). This background information is essential to assess potential future changes in pteropod species distribution and abundance associated with ocean warming and acidification. construct maps of pteropod spatial frequency and mean abundance to assess their oceanographic associations; quantify pteropod abundance anomalies for comparing intraseasonal and interannual variability relative to m-3 environmental variables and climate modes; investigate the presence of long-term trends and/or cycles of peak abundance of the pteropod species in this region as have been described for krill and salps (Loeb et al., 2009, 2010; Loeb and Santora, 2012). We then examine interannual and longer-term variability of pteropod species abundance with respect to possible effects of the El Niño-Southern Oscillation (ENSO) and Southern Annular Mode (SAM) on population size, advection into and retention within the survey area. In doing so we highlight the importance of having sufficient spatial and temporal sampling coverage, as well as appropriate net mesh size, to establish statistically significant abundance changes associated with climate modes and long-term warming.

  19. Robust signals of future projections of Indian summer monsoon rainfall by IPCC AR5 climate models: Role of seasonal cycle and interannual variability

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan

    2015-05-01

    Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.

  20. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  1. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on group-specific primary production in the Southern Ocean. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  2. Climate Based Predictability of Oil Palm Tree Yield in Malaysia.

    PubMed

    Oettli, Pascal; Behera, Swadhin K; Yamagata, Toshio

    2018-02-02

    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.

  3. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    PubMed

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Natural Resources Canada.

  4. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case

    NASA Astrophysics Data System (ADS)

    Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.

    2016-03-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.

  5. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments

    NASA Astrophysics Data System (ADS)

    Johnson, Fiona; Sharma, Ashish

    2011-04-01

    Empirical scaling approaches for constructing rainfall scenarios from general circulation model (GCM) simulations are commonly used in water resources climate change impact assessments. However, these approaches have a number of limitations, not the least of which is that they cannot account for changes in variability or persistence at annual and longer time scales. Bias correction of GCM rainfall projections offers an attractive alternative to scaling methods as it has similar advantages to scaling in that it is computationally simple, can consider multiple GCM outputs, and can be easily applied to different regions or climatic regimes. In addition, it also allows for interannual variability to evolve according to the GCM simulations, which provides additional scenarios for risk assessments. This paper compares two scaling and four bias correction approaches for estimating changes in future rainfall over Australia and for a case study for water supply from the Warragamba catchment, located near Sydney, Australia. A validation of the various rainfall estimation procedures is conducted on the basis of the latter half of the observational rainfall record. It was found that the method leading to the lowest prediction errors varies depending on the rainfall statistic of interest. The flexibility of bias correction approaches in matching rainfall parameters at different frequencies is demonstrated. The results also indicate that for Australia, the scaling approaches lead to smaller estimates of uncertainty associated with changes to interannual variability for the period 2070-2099 compared to the bias correction approaches. These changes are also highlighted using the case study for the Warragamba Dam catchment.

  6. Relative importance of precipitation frequency and intensity in inter-annual variation of precipitation in Singapore during 1980-2013

    NASA Astrophysics Data System (ADS)

    Li, Xin; Babovic, Vladan

    2017-04-01

    Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.

  7. Sole larval supply to coastal nurseries: Interannual variability and connectivity at interregional and interpopulation scales

    NASA Astrophysics Data System (ADS)

    Savina, M.; Lunghi, M.; Archambault, B.; Baulier, L.; Huret, M.; Le Pape, O.

    2016-05-01

    Simulating fish larval drift helps assess the sensitivity of recruitment variability to early life history. An individual-based model (IBM) coupled to a hydrodynamic model was used to simulate common sole larval supply from spawning areas to coastal and estuarine nursery grounds at the meta-population scale (4 assessed stocks), from the southern North Sea to the Bay of Biscay (Western Europe) on a 26-yr time series, from 1982 to 2007. The IBM allowed each particle released to be transported by currents, to grow depending on temperature, to migrate vertically depending on development stage, to die along pelagic stages or to settle on a nursery, representing the life history from spawning to metamorphosis. The model outputs were analysed to explore interannual patterns in the amounts of settled sole larvae at the population scale; they suggested: (i) a low connectivity between populations at the larval stage, (ii) a moderate influence of interannual variation in the spawning biomass, (iii) dramatic consequences of life history on the abundance of settling larvae and (iv) the effects of climate variability on the interannual variability of the larvae settlement success.

  8. Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast

    USGS Publications Warehouse

    Velasco, Elzie M.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Corona, Claudia

    2017-01-01

    Study regionThe U.S. West Coast, including the Pacific Northwest and California Coastal Basins aquifer systems.Study focusGroundwater response to interannual to multidecadal climate variability has important implications for security within the water–energy–food nexus. Here we use Singular Spectrum Analysis to quantify the teleconnections between AMO, PDO, ENSO, and PNA and precipitation and groundwater level fluctuations. The computer program DAMP was used to provide insight on the influence of soil texture, depth to water, and mean and period of a surface infiltration flux on the damping of climate signals in the vadose zone.New hydrological insights for the regionWe find that PDO, ENSO, and PNA have significant influence on precipitation and groundwater fluctuations across a north-south gradient of the West Coast, but the lower frequency climate modes (PDO) have a greater influence on hydrologic patterns than higher frequency climate modes (ENSO and PNA). Low frequency signals tend to be preserved better in groundwater fluctuations than high frequency signals, which is a function of the degree of damping of surface variable fluxes related to soil texture, depth to water, mean and period of the infiltration flux. The teleconnection patterns that exist in surface hydrologic processes are not necessarily the same as those preserved in subsurface processes, which are affected by damping of some climate variability signals within infiltrating water.

  9. The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Tietsche, Steffen; Collins, Mat; Goessling, Helge F.; Guemas, Virginie; Guillory, Anabelle; Hurlin, William J.; Ishii, Masayoshi; Keeley, Sarah P. E.; Matei, Daniela; Msadek, Rym; Sigmond, Michael; Tatebe, Hiroaki; Hawkins, Ed

    2016-06-01

    Recent decades have seen significant developments in climate prediction capabilities at seasonal-to-interannual timescales. However, until recently the potential of such systems to predict Arctic climate had rarely been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to interannual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability estimates in these models, and an investigation into to what extent predictability is dependent on the initial state. The inclusion of additional models expands the range of sea ice volume and extent predictability estimates, demonstrating that there is model diversity in the potential to make seasonal-to-interannual timescale predictions. We also investigate whether sea ice forecasts started from extreme high and low sea ice initial states exhibit higher levels of potential predictability than forecasts started from close to the models' mean state, and find that the result depends on the metric. Although designed to address Arctic predictability, we describe the archived data here so that others can use this data set to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño-Southern Oscillation.

  10. Vegetation change, malnutrition and violence in the Horn of Africa

    NASA Astrophysics Data System (ADS)

    Rowhani, P.; Degomme, O.; Linderman, M.; Guha-Sapir, D.; Lambin, E.

    2008-12-01

    In certain circumstances, climate change in association with a broad range of social factors may increase the risk of famines and subsequently, violent conflict. The impacts of climate change on society will be experienced both through changes in mean conditions over long time periods and through increases in extreme events. Recent studies have shown the historical effects of long term climate change on societies and the importance of short term climatic triggers on armed conflict. However, most of these studies are at the state level ignoring local conditions. Here we use detailed information extracted from wide-swath satellite data (MODIS) to analyze the impact of climate variability change on malnutrition and violent conflict. More specifically, we perform multivariate logistic regression analysis in order to explain the geographical distribution of malnutrition and conflict in the Horn of Africa on a sub-national level. This region, constituted by several unstable and poor states, has been affected by droughts, floods, famines, and violence in the past few years. Three commonly used nutrition and mortality indicators are used to characterize the health situation (CE-DAT database). To map violence we use the georeferenced Armed Conflicts dataset developed by the Center for the Study of Civil War. Explanatory variables include several socio-economic variables and environmental variables characterizing land degradation, vegetation activity, and interannual variability in land-surface conditions. First results show that interannual variability in land-surface conditions is associated with malnutrition but not with armed conflict. Furthermore, land degradation seems not to be associated with either malnutrition or armed conflict.

  11. Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability

    NASA Astrophysics Data System (ADS)

    Hess, P.; Kinnison, D.; Tang, Q.

    2015-03-01

    Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30-90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30-90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere-troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño-Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.

  12. Paleoclimatological perspective on the hydrometeorology of the Mekong Basin

    NASA Astrophysics Data System (ADS)

    Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

    2012-11-01

    During recent decades the Mekong River has experienced substantial interannual variations between droughts and major floods. The causes of these variations have been sought in climate change and dam construction. However, so far little research has addressed whether these recent variations are significantly different to long-term variations in the past. Hence, the aim of our paper is to place the recent variations between droughts and floods into a historical and paleoclimatological context. To achieve this we analysed the Mekong's meteorological conditions over the period 1300-2005 with a basin scale approach by using the Monsoon Asia Drought Atlas (MADA), which is a Palmer Drought Severity Index (PDSI) dataset derived from tree-ring growth records. The correlation analyses, both in time and frequency domains, showed correlation between MADA and the Mekong's discharge over the period 1910-2005 which suggests that MADA can be used as proxy for the hydrometeorology of the Mekong Basin. We found that the meteorological conditions of the Mekong varied at multi-annual, decadal and centennial scales over the study period. We found two especially distinct features: firstly, multi-annual and decadal variation between prolonged wet and dry epochs; and secondly, epochs with higher or lower interannual variability between very dry and wet years. Furthermore we found two epochs with exceptionally large interannual variability, one at the beginning of 17th century and the other in the post 1950 epoch. Both epochs are characterized by distinct increases in variability between very wet and dry years. The variability in the post 1950 epoch is much higher compared to any of the other epochs included in this study. Thus, during recent decades the climate in the Mekong has exhibited features that have not been experienced for at least several centuries. These findings call for further climate research, particularly regarding increased climate variability, and resilient adaptation and development approaches in the basin.

  13. Disentangling the effects of climate variability and functional change on ecosystem carbon dynamics using semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.

    2012-04-01

    The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).

  14. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  15. Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA

    Treesearch

    Danelle M. Laflower; Matthew D. Hurteau; George W. Koch; Malcolm P. North; Bruce A. Hungate

    2016-01-01

    Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition...

  16. Inter-annual Variability of Snowfall in the Lower Peninsula of Michigan, USA

    NASA Astrophysics Data System (ADS)

    Meng, L.

    2016-12-01

    Winter snowfall, particularly lake-effect snowfall, impacts all aspects of Michigan life in the wintertime, from motorsports and tourism to impacting the day-to-day lives of residents. Understanding the inter-annual variability of winter snowfall will provide sound basis for local community safety management and improve weather forecasting. This study attempts to understand the trend in winter snowfall and the influencing factors of winter snowfall variability in the Lower Peninsula of Michigan (LPM) using station snowfall measurements and statistical analysis. Our study demonstrates that snowfall has significantly increased from 1932 to 2015. Correlation analysis suggests that regionally average air temperatures have a strong negative relationship with snowfall in LPM. On average, approximately 27% of inter-annual variability in snowfall can be explained by regionally average air temperatures. ENSO events are also negatively related to snowfall in LPM and can explain 8% of inter-annual variability. North Atlantic Oscillation (NAO) does not have strong influence on snowfall. Composite analysis demonstrates that on annual basis, more winter snowfall occurs during the years with higher maximum ice cover (MIC) than during the years with lower MIC in Lake Michigan. Higher MIC is often associated with lower air temperatures which are negatively related to winter snowfall. This study could provide insight on future snow related climate model improvement and weather forecasting.

  17. [Application of regression tree in analyzing the effects of climate factors on NDVI in loess hilly area of Shaanxi Province].

    PubMed

    Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding

    2010-05-01

    Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.

  18. Using climate model simulations to assess the current climate risk to maize production

    NASA Astrophysics Data System (ADS)

    Kent, Chris; Pope, Edward; Thompson, Vikki; Lewis, Kirsty; Scaife, Adam A.; Dunstone, Nick

    2017-05-01

    The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world’s maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions—a multi-breadbasket failure—is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.

  19. A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2007-06-01

    Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.

  20. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

    PubMed

    Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel

    2016-09-15

    Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Regional simulation of interannual variability over South America

    NASA Astrophysics Data System (ADS)

    Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.

    2002-08-01

    Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.

  2. Trends and natural variability of North American spring onset as evaluated by a new gridded dataset of spring indices

    USGS Publications Warehouse

    Ault, Toby R.; Schwartz, Mark D.; Zurita-Milla, Raul; Weltzin, Jake F.; Betancourt, Julio L.

    2015-01-01

    Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous United States. This dataset is derived from daily interpolated meteorological data, and the results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from 20.8 to 21.6 days decade21, while first bloom index trends are between20.4 and 21.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal time scales. Finally, there is some potential for successful subseasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.

  3. Trends and Natural Variability of Spring Onset in the Coterminous United States as Evaluated by a New Gridded Dataset of Spring Indices

    NASA Astrophysics Data System (ADS)

    Ault, T.; Schwartz, M. D.; Zurita-Milla, R.; Weltzin, J. F.; Betancourt, J. L.

    2015-12-01

    Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous US. This dataset is derived from daily interpolated meteorological data, and results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from -0.8 to -1.6 days per decade, while first bloom index trends are between -0.4 and -1.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal timescales. Finally, there is some potential for successful sub-seasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.

  4. Effects of climate change and variability on population dynamics in a long-lived shorebird.

    PubMed

    van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J; Oosterbeek, Kees; Tinbergen, Joost M

    2010-04-01

    Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.

  5. Interannual Variability In the Atmospheric CO2 Rectification Over Boreal Forests Based On A Coupled Ecosystem-Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Worthy, D.

    2004-05-01

    Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.

  6. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.

    PubMed

    D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C

    2016-09-01

    The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An assessment of precipitation and surface air temperature over China by regional climate models

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  8. The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.

    2017-12-01

    Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.

  9. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    NASA Technical Reports Server (NTRS)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  10. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.

  11. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.

    PubMed

    Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael

    2014-01-01

    We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Sensitivity of regional forest carbon budgets to continuous and stochastic climate change pressures

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Desai, A. R.; Scheller, R. M.

    2010-12-01

    Climate change is expected to impact forest-atmosphere carbon budgets through three processes: 1. Increased disturbance rates, including fires, mortality due to pest outbreaks, and severe storms 2. Changes in patterns of inter-annual variability, related to increased incidence of severe droughts and defoliating insect outbreaks 3. Continuous changes in forest productivity and respiration, related to increases in mean temperature, growing season length, and CO2 fertilization While the importance of these climate change effects in future regional carbon budgets has been established, quantitative characterization of the relative sensitivity of forested landscapes to these different types of pressures is needed. We present a model- and- data-based approach to understanding the sensitivity of forested landscapes to climate change pressures. Eddy-covariance and biometric measurements from forests in the northern United States were used to constrain two forest landscape models. The first, LandNEP, uses a prescribed functional form for the evolution of net ecosystem productivity (NEP) over the age of a forested grid cell, which is reset following a disturbance event. This model was used for investigating the basic statistical properties of a simple landscape’s responses to climate change pressures. The second model, LANDIS-II, includes different tree species and models forest biomass accumulation and succession, allowing us to investigate the effects of more complex forest processes such as species change and carbon pool accumulation on landscape responses to climate change effects. We tested the sensitivity of forested landscapes to these three types of climate change pressures by applying ensemble perturbations of random disturbance rates, distribution functions of inter-annual variability, and maximum potential carbon uptake rates, in the two models. We find that landscape-scale net carbon exchange responds linearly to continuous changes in potential carbon uptake and inter-annual variability, while responses to stochastic changes are non-linear and become more important at shorter mean disturbance intervals. These results provide insight on how to better parameterize coupled carbon-climate models to more realistically simulate feedbacks between forests and the atmosphere.

  13. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  14. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.

    2016-12-01

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.

  15. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    DOE PAGES

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; ...

    2016-12-02

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less

  16. Statistical modeling of interannual shoreline change driven by North Atlantic climate variability spanning 2000-2014 in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Robinet, A.; Castelle, B.; Idier, D.; Le Cozannet, G.; Déqué, M.; Charles, E.

    2016-12-01

    Modeling studies addressing daily to interannual coastal evolution typically relate shoreline change with waves, currents and sediment transport through complex processes and feedbacks. For wave-dominated environments, the main driver (waves) is controlled by the regional atmospheric circulation. Here a simple weather regime-driven shoreline model is developed for a 15-year shoreline dataset (2000-2014) collected at Truc Vert beach, Bay of Biscay, SW France. In all, 16 weather regimes (four per season) are considered. The centroids and occurrences are computed using the ERA-40 and ERA-Interim reanalyses, applying k-means and EOF methods to the anomalies of the 500-hPa geopotential height over the North Atlantic Basin. The weather regime-driven shoreline model explains 70% of the observed interannual shoreline variability. The application of a proven wave-driven equilibrium shoreline model to the same period shows that both models have similar skills at the interannual scale. Relation between the weather regimes and the wave climate in the Bay of Biscay is investigated and the primary weather regimes impacting shoreline change are identified. For instance, the winter zonal regime characterized by a strengthening of the pressure gradient between the Iceland low and the Azores high is associated with high-energy wave conditions and is found to drive an increase in the shoreline erosion rate. The study demonstrates the predictability of interannual shoreline change from a limited number of weather regimes, which opens new perspectives for shoreline change modeling and encourages long-term shoreline monitoring programs.

  17. Marine climate influences on interannual variability of tropical cyclones in the eastern Caribbean: 1979-2008

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2015-04-01

    Interannual variability of tropical cyclones (TCs) in the eastern Caribbean is studied using MIT-Hurdat fields during the July-October season from 1979 to 2008. TC intensity shows local climate sensitivity particularly for upper ocean currents, salinity and mixed-layer depth, and 200-850 mb wind shear. Remote influences from the Southern Oscillation, Saharan dust, and the South American monsoon are also identified as important. Ocean currents diminish along the coast of South America, so interbasin transfer between the North Brazil and Caribbean Currents declines in seasons of frequent and intense TCs. This is related to a dipole pattern in the sea surface height formed mainly by reduced trade wind upwelling northeast of Venezuela. A low-salinity plume from the Orinoco River spreads across the eastern Caribbean. It is the weaker currents and shallower mixed layer that conspire with surplus heat to build thermodynamic energy available for TC intensification.

  18. Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor

    NASA Astrophysics Data System (ADS)

    Ye, Hao; Dessler, Andrew E.; Yu, Wandi

    2018-04-01

    Water vapor interannual variability in the tropical tropopause layer (TTL) is investigated using satellite observations and model simulations. We break down the influences of the Brewer-Dobson circulation (BDC), the quasi-biennial oscillation (QBO), and the tropospheric temperature (ΔT) on TTL water vapor as a function of latitude and longitude using a two-dimensional multivariate linear regression. This allows us to examine the spatial distribution of the impact of each process on TTL water vapor. In agreement with expectations, we find that the impacts from the BDC and QBO act on TTL water vapor by changing TTL temperature. For ΔT, we find that TTL temperatures alone cannot explain the influence. We hypothesize a moistening role for the evaporation of convective ice from increased deep convection as the troposphere warms. Tests using a chemistry-climate model, the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), support this hypothesis.

  19. Tropical cloud feedbacks and natural variability of climate

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Del Genio, A. D.

    1994-01-01

    Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.

  20. The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach

    NASA Technical Reports Server (NTRS)

    Rousseaux, C. S.; Gregg, W. W.

    2012-01-01

    Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, P<0.05), while cyanobacteria concentrations decreased significantly (r=0.61; P<0.05). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. This represented a radical shift in the phytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, P<0.05). Spatially, the satellite-derived approach was closer to an independent in situ dataset for all phytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.

  1. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.

    PubMed

    Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru

    2012-06-15

    Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.

  2. A Bayesian methodological framework for accommodating interannual variability of nutrient loading with the SPARROW model

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan

    2012-10-01

    Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.

  3. Multidecadal simulation of coastal fog with a regional climate model

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis A.; Sloan, Lisa C.; Chuang, Patrick Y.; Faloona, Ian C.; Johnstone, James A.

    2013-06-01

    In order to model stratocumulus clouds and coastal fog, we have coupled the University of Washington boundary layer model to the regional climate model, RegCM (RegCM-UW). By comparing fog occurrences observed at various coastal airports in the western United States, we show that RegCM-UW has success at modeling the spatial and temporal (diurnal, seasonal, and interannual) climatology of northern California coastal fog. The quality of the modeled fog estimate depends on whether coast-adjacent ocean or land grid cells are used; for the model runs shown here, the oceanic grid cells seem to be most appropriate. The interannual variability of oceanic northern California summertime fog, from a multi-decadal simulation, has a high and statistically significant correlation with the observed interannual variability ( r = 0.72), which indicates that RegCM-UW is capable of investigating the response of fog to long-term climatological forcing. While RegCM-UW has a number of aspects that would benefit from further investigation and development, RegCM-UW is a new tool for investigating the climatology of coastal fog and the physical processes that govern it. We expect that with appropriate physical parameterizations and moderate horizontal resolution, other climate models should be capable of simulating coastal fog. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics.

  4. Interannual Variations In the Low-Degree Components of the Geopotential derived from SLR and the Connections With Geophysical/Climatic Processes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.; Au, Andrew Y.

    2004-01-01

    Recent Satellite Laser Ranging derived long wavelength gravity time series analysis has focused to a large extent on the effects of the recent large changes in the Earth s 52, and the potential causes. However, it is difficult to determine whether there are corresponding signals in the shorter wavelength zonals from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic coefficient series have significant interannual signal that appears to be related to mass transport. The non-zonal degree 2 terms show reasonable correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. While the formal uncertainty of these terms is significantly higher than that for J2, it is also clear that there is useful signal to be extracted. Consequently, the SLR time series is being reprocessed to improve the time variable gravity field recovery. We will present recent updates on the J2 evolution, as well as a look at other components of the interannual variations of the gravity field, complete through degree 4, and possible geophysical and climatic causes.

  5. How potentially predictable are midlatitude ocean currents?

    PubMed Central

    Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi

    2016-01-01

    Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954

  6. An analysis of the decadal variability of Carbon fluxes in three evergreen European forests through modelling

    NASA Astrophysics Data System (ADS)

    Delpierre, N.; Dufrêne, E.

    2009-04-01

    With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) and water balances in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in forest ecosystems. We used the CASTANEA process-based model to simulate the C and W fluxes and balances of three European evergreen forests for the 2000-2007 period (FRPue Quercus ilex, 44°N; DETha Picea abies, 51°N; FIHyy Pinus sylvestris, 62°N). The model fairly reproduced the day-to-day variability of measured fluxes, accounting for 70-81%, 77-91% and 59-90% of the daily variance of measured NEP, GPP and TER, respectively. However, the model was challenged in representing the IAV of fluxes integrated on an annual time scale. It reproduced ca. 80% of the interannual variance of measured GPP, but no significant relationship could be established between annual measured and modelled NEP or TER. Accordingly, CASTANEA appeared as a suitable tool for disentangling the influence of climate and biological processes on GPP at mutiple time scales. We show that climate and biological processes relative influences on the modelled GPP vary from year to year in European evergreen forests. Water-stress related and phenological processes (i.e. release of the winter thermal constraint on photosynthesis in evergreens) appear as primary drivers for the particular 2003 and 2007 years, respectively, but the relative influence of other climatic factors widely varies for less remarkable years at all sites. We discuss shortcomings of the method, as related to the influence of compensating errors in the simulated fluxes, and assess the causes of the model poor ability to represent the IAV of the annual sums of NEP and TER.

  7. Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel

    NASA Technical Reports Server (NTRS)

    Zeng, Ning; Neelin, J. David; Lau, William K.-M.

    1999-01-01

    The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.

  8. Streamflow variability over the 1881–2011 period in northern Quebec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis

    DOE PAGES

    Brigode, Pierre; Brissette, Francois; Nicault, Antoine; ...

    2016-09-06

    Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less

  9. Streamflow variability over the 1881–2011 period in northern Quebec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigode, Pierre; Brissette, Francois; Nicault, Antoine

    Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less

  10. Comparative Analysis of Upper Ocean Heat Content Variability from Ensemble Operational Ocean Analyses

    NASA Technical Reports Server (NTRS)

    Xue, Yan; Balmaseda, Magdalena A.; Boyer, Tim; Ferry, Nicolas; Good, Simon; Ishikawa, Ichiro; Rienecker, Michele; Rosati, Tony; Yin, Yonghong; Kumar, Arun

    2012-01-01

    Upper ocean heat content (HC) is one of the key indicators of climate variability on many time-scales extending from seasonal to interannual to long-term climate trends. For example, HC in the tropical Pacific provides information on thermocline anomalies that is critical for the longlead forecast skill of ENSO. Since HC variability is also associated with SST variability, a better understanding and monitoring of HC variability can help us understand and forecast SST variability associated with ENSO and other modes such as Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), Tropical Atlantic Variability (TAV) and Atlantic Multidecadal Oscillation (AMO). An accurate ocean initialization of HC anomalies in coupled climate models could also contribute to skill in decadal climate prediction. Errors, and/or uncertainties, in the estimation of HC variability can be affected by many factors including uncertainties in surface forcings, ocean model biases, and deficiencies in data assimilation schemes. Changes in observing systems can also leave an imprint on the estimated variability. The availability of multiple operational ocean analyses (ORA) that are routinely produced by operational and research centers around the world provides an opportunity to assess uncertainties in HC analyses, to help identify gaps in observing systems as they impact the quality of ORAs and therefore climate model forecasts. A comparison of ORAs also gives an opportunity to identify deficiencies in data assimilation schemes, and can be used as a basis for development of real-time multi-model ensemble HC monitoring products. The OceanObs09 Conference called for an intercomparison of ORAs and use of ORAs for global ocean monitoring. As a follow up, we intercompared HC variations from ten ORAs -- two objective analyses based on in-situ data only and eight model analyses based on ocean data assimilation systems. The mean, annual cycle, interannual variability and longterm trend of HC have been analyzed

  11. In the hot seat : Insolation and ENSO controls on vegetation productivity in tropical Africa inferred from NDVI

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. L.; Cohen, A. S.

    2010-12-01

    Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.

  12. Compounding nonlinearities in the climate and wildfire system contribute to high uncertainty in estimates of future burned area in the western United State

    NASA Astrophysics Data System (ADS)

    Williams, P.

    2015-12-01

    Ecological studies are increasingly recognizing the importance of atmospheric vapor-pressure deficit (VPD) as a driver of forest drought stress and disturbance processes such as wildfire. Because of the nonlinear Clausius-Clapeyron relationship between temperature and saturation vapor pressure, small variations in temperature can have large impacts on VPD, and therefore drought, particularly in warm, dry areas and particularly during the warm season. It is also clear that VPD and drought affect forest fire nonlinearly, as incremental drying leads to increasingly large burned areas. Forest fire is also affected by fuel amount and connectivity, which are promoted by vegetation growth in previous years, which is in turn promoted by lack of drought, highlighting the importance of nuances in the sequencing of natural interannual climate variations in modulating the impacts of drought on wildfire. The many factors affecting forest fire, and the nonlinearities embedded within the climate and wildfire systems, cause interannual variability in forest-fire area and frequency to be wildly variable and strongly affected by internal climate variability. In addition, warming over the past century has produced a background increase in forest fire frequency and area in many regions. In this talk I focus on the western United States and will explore whether the relationships between internal climate variability on forest fire area have been amplified by the effects of warming as a result of the compounding nonlinearities described above. I will then explore what this means for future burned area in the western United States and make the case that uncertainties in the future global greenhouse gas emissions trajectory, model projections of mean temperatures, model projections of precipitation, and model projections of natural climate variability translate to very large uncertainties in the effects of future climate variability on forest fire area in the United States and globally.

  13. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  14. ENSO in a warming world: interannual climate variability in the early Miocene Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Wilson, Gary; Lee, Daphne

    2016-04-01

    The El Niño - Southern Oscillation (ENSO) is the dominant source of interannual variability in the modern-day climate system. ENSO is a quasi-periodic cycle with a recurrence interval of 2-8 years. A major question in modern climatology is how ENSO will respond to increased climatic warmth. ENSO-like (2-8 year) cycles have been detected in many palaeoclimate records for the Holocene. However, the temporal resolution of pre-Quaternary palaeoclimate archives is generally too coarse to investigate ENSO-scale variability. We present a 100-kyr record of ENSO-like variability during the second half of the Oligocene/Miocene Mi-1 event, a period of increasing global temperatures and Antarctic deglaciation (~23.032-2.93 Ma). This record is drawn from an annually laminated lacustrine diatomite from southern New Zealand, a region strongly affected by ENSO in the present day. The diatomite consists of seasonal alternations of light (diatom bloom) and dark (low diatom productivity) layers. Each light-dark couplet represents one year's sedimentation. Light-dark couplet thickness is characterised by ENSO-scale variability. We use high-resolution (sub-annual) measurements of colour spectra to detect couplet thickness variability. Wavelet analysis indicates that absolute values are modulated by orbital cycles. However, when orbital effects are taken into account, ENSO-like variability occurs throughout the entire depositional period, with no clear increase or reduction in relation to Antarctic deglaciation and increasing global warmth.

  15. Climate change impact on the annual water balance in the northwest Florida coastal

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.

    2012-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the their coefficients are quantified. For necessary future predictions, data obtained from climate regional models starting 2040 to 2069 will be utilized. To accommodate the inherent uncertainty of climate projections, an ensemble of regional climate models will be used to assess changes of rainfall and potential evaporation. Then, the climate change impact on seasonal and annual runoff, evaporation, and water storage changes will be projected.

  16. Inter-Annual Variability in Stream Water Temperature, Microclimate and Heat Exchanges: a Comparison of Forest and Moorland Environments

    NASA Astrophysics Data System (ADS)

    Garner, G.; Hannah, D. M.; Malcolm, I.; Sadler, J. P.

    2012-12-01

    Riparian forest is recognised as important for moderating stream temperature variability and has the potential to mitigate thermal extremes in a changing climate. Previous research on the heat exchanges controlling water column temperature has often been short-term or seasonally-constrained, with the few multi-year studies limited to a maximum of two years. This study advances previous work by providing a longer-term perspective which allows assessment of inter-annual variability in stream temperature, microclimate and heat exchange dynamics between a semi-natural woodland and a moorland (no trees) reach of the Girnock Burn, a tributary of the Scottish Dee. Automatic weather stations collected 15-minute data over seven consecutive years, which to our knowledge is a unique data set in providing the longest term perspective to date on stream temperature, microclimate and heat exchange processes. Results for spring-summer indicate that the presence of a riparian canopy has a consistent effect between years in reducing the magnitude and variability of mean daily water column temperature and daily net energy totals. Differences in the magnitude and variability in net energy fluxes between the study reaches were driven primarily by fluctuations in net radiation and latent heat fluxes in response to between- and within-year variability in growth of the riparian forest canopy at the forest and prevailing weather conditions at both the forest and moorland. This research provides new insights on the inter-annual variability of stream energy exchanges for moorland and forested reaches under a wide range of climatological and hydrological conditions. The findings therefore provide a more robust process basis for modelling the impact of changes in forest practice and climate change on river thermal dynamics.

  17. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    PubMed

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  18. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  19. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  20. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  1. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    NASA Technical Reports Server (NTRS)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  2. Interannual Variation in Phytoplankton Concentration and Community in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, C. S.; Gregg, W. W.

    2011-01-01

    Climate events such as El Nino have been shown to have an effect on the biology of our ocean. Because of the lack of data, we still have very little knowledge about the spatial and temporal effect these climate events may have on biological marine systems. In this study, we used the NASA Ocean Biogeochemical Model (NOBM) to assess the interannual variability in phytoplankton community in the Pacific Ocean between 1998 and 2005. In the North Central and Equatorial Pacific Ocean, changes in the Multivariate El Nino Index were associated with changes in phytoplankton composition. The model identified an increase in diatoms of approx.33 % in the equatorial Pacific in 1999 during a La Nina event. This increase in diatoms coincided with a decrease of approx.11 % in cyanobacteria concentration. The inverse relationship between cyanobacteria and diatoms concentration was significant (p<0.05) throughout the period of study. The use of a numerical model allows us to assess the impact climate variability has on key phytoplankton groups known to lead to contrasting food chain at a spatial and temporal resolution unachievable when relying solely on in-situ observations.

  3. Low-frequency variability of the Atlantic MOC in the eddying regime : the intrinsic component.

    NASA Astrophysics Data System (ADS)

    Gregorio, S.; Penduff, T.; Barnier, B.; Molines, J.-M.; Le Sommer, J.

    2012-04-01

    A 327-year 1/4° global ocean/sea-ice simulation has been produced by the DRAKKAR ocean modeling consortium. This simulation is forced by a repeated seasonal atmospheric forcing but nevertheless exhibits a substantial low-frequency variability (at interannual and longer timescales), which is therefore of intrinsic origin. This nonlinearly-generated intrinsic variability is almost absent from the coarse-resolution (2°) version of this simulation. Comparing the 1/4° simulation with its fully-forced counterpart, Penduff et al. (2011) have shown that the low-frequency variability of local sea-level is largely generated by the ocean itself in eddying areas, rather than directly forced by the atmosphere. Using the same simulations, the present study quantifies the imprint of the intrinsic low-frequency variability on the Meridional Overturning Circulation (MOC) at interannual-to-decadal timescales in the Atlantic. We first compare the intrinsic and atmospherically-forced interannual variances of the Atlantic MOC calculated in geopotential coordinates. This analysis reveals substantial sources of intrinsic MOC variability in the South Atlantic (driven by the Agulhas mesoscale activity according to Biastoch et al. (2008)), but also in the North Atlantic. We extend our investigation to the MOC calculated in isopycnal coordinates, and identify regions in the basin where the water mass transformation exhibits low-frequency intrinsic variability. In this eddy-permitting regime, intrinsic processes are shown to generate about half the total (geopotential and isopycnal) MOC interannual variance in certain key regions of the Atlantic. This intrinsic variability is absent from 2° simulations. Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W.K., Treguier, A.-M., Molines, J.-M., Audiffren, N., 2011: Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 5652-5670. doi: 10.1175/JCLI-D-11-00077.1. Biastoch, A., Böning, C. W., Lutjeharms, J. R. E., 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489-492, doi: 10.1038/nature07426.

  4. Intraseasonal and Interannual Variability of Mars Present Climate

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1996-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.

  5. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  6. Global modeling of land water and energy balances. Part III: Interannual variability

    USGS Publications Warehouse

    Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.

    2002-01-01

    The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.

  7. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America: Revisions for all taxa from the United States and Canada and new taxa from the western United States

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.; McFadden, Andrew K.

    2015-01-01

    This volume of the atlas provides numerous changes, updates, and enhancements from previous volumes. Its geographic coverage is now restricted to Canada and the continental United States, and the source and time period of the climatic data have changed. New variables were added, including monthly values for temperature and precipitation, and measures of interannual variability. The distribution maps for all previously published species were redigitized, some distribution maps were revised, and 148 new species were added from the arid and semiarid western United States. The graphical displays were expanded to illustrate the new climatic variables, and the data tables were modified to provide more detail on the population distributions of plant taxa relative to climatic variables.

  8. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  9. Seasonal and Inter-annual Variation in Wood Production in Tropical Trees on Barro Colorado Island, Panama, is Related to Local Climate and Species Functional Traits

    NASA Astrophysics Data System (ADS)

    Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.

    2015-12-01

    Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous findings that seed production at this site is higher in sunnier (and drier) years, this suggests strong climate-related shifts in allocation. This study highlights the importance of considering forest species composition and potential allocational shifts when predicting carbon fluxes in response to local climate variation.

  10. Ecological controls on water-cycle response to climate variability in deserts.

    PubMed

    Scanlon, B R; Levitt, D G; Reedy, R C; Keese, K E; Sully, M J

    2005-04-26

    The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Nino southern oscillation in the Mojave Desert. Extreme El Nino winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Nino southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes.

  11. Seasonal and interannual variations of atmospheric CO2 and climate

    USGS Publications Warehouse

    Dettinger, M.D.; Ghil, M.

    1998-01-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) issued here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7 days at Mauna Loa and 18 days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3 years)-1 and (4 years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6-8 months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and ??13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in CO2 mostly reflect upwelling variations in the eastern tropical Pacific. QQ variations are dominated by the CO2 signature of terrestrial-ecosystem response to global QQ climate variations. Climate variations associated with these two interannual components of tropical variability have very different effects on global climate and, especially, on terrestrial ecosystems and the carbon cycle.

  12. The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    1997-01-01

    The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.

  13. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    USGS Publications Warehouse

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the pelagic food webs that support these seabirds in the BSAI ecosystem.

  14. Satellite-derived SIF and CO2 Observations Show Coherent Responses to Interannual Climate Variations

    NASA Astrophysics Data System (ADS)

    Butterfield, Z.; Hogikyan, A.; Kulawik, S. S.; Keppel-Aleks, G.

    2017-12-01

    Gross primary production (GPP) is the single largest carbon flux in the Earth system, but its sensitivity to changes in climate is subject to significant uncertainty. Satellite measurements of solar-induced chlorophyll fluorescence (SIF) offer insight into spatial and temporal patterns in GPP at a global scale and, combined with other satellite-derived datasets, provide unprecedented opportunity to explore interactions between atmospheric CO2, GPP, and climate variability. To explore potential drivers of GPP in the Northern Hemisphere (NH), we compare monthly-averaged SIF data from the Global Ozone Monitoring Experiment 2 (GOME-2) with observed anomalies in temperature (T; CRU-TS), liquid water equivalent (LWE) from the Gravity Recovery and Climate Experiment (GRACE), and photosynthetically active radiation (PAR; CERES SYN1deg). Using observations from 2007 through 2015 for several NH regions, we calculate month-specific sensitivities of SIF to variability in T, LWE, and PAR. These sensitivities provide insight into the seasonal progression of how productivity is affected by climate variability and can be used to effectively model the observed SIF signal. In general, we find that high temperatures are beneficial to productivity in the spring, but detrimental in the summer. The influences of PAR and LWE are more heterogeneous between regions; for example, higher LWE in North American temperate forest leads to decreased springtime productivity, while exhibiting a contrasting effect in water-limited regions. Lastly, we assess the influence of variations in terrestrial productivity on atmospheric carbon using a new lower tropospheric CO2 product derived from the Greenhouse Gases Observing Satellite (GOSAT). Together, these data shed light on the drivers of interannual variability in the annual cycle of NH atmospheric CO2, and may provide improved constraints on projections of long-term carbon cycle responses to climate change.

  15. Future hotspots of increasing temperature variability in tropical countries

    NASA Astrophysics Data System (ADS)

    Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T. M.

    2017-12-01

    Resolving how climate variability will change in future is crucial to determining how challenging it will be for societies and ecosystems to adapt to climate change. We show that the largest increases in temperature variability - that are robust between state-of-the art climate models - are concentrated in tropical countries. On average, temperature variability increases by 15% per degree of global warming in Amazonia and Southern Africa during austral summer, and by up to 10% °C-1 in the Sahel, India and South East Asia. Southern hemisphere changes can be explained by drying soils, whereas shifts in atmospheric structure play a more important role in the Northern hemisphere. These robust regional changes in variability are associated with monthly timescale events, whereas uncertain changes in inter-annual modes of variability make the response of global temperature variability uncertain. Our results suggest that regional changes in temperature variability will create new inequalities in climate change impacts between rich and poor nations.

  16. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  17. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  18. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    PubMed Central

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104

  19. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate

    PubMed Central

    Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.

    2017-01-01

    The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940

  20. Effects of ocean-atmosphere coupling on rainfall over the Indian Ocean and northwestern Pacific Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Q.; Xie, S. P.; Zhou, W.

    2016-12-01

    Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.

  1. Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Fricker, H. A.; Padman, L.

    2015-12-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.

  2. The East Asian Jet Stream and Asian-Pacific Climate

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, the NASA GEOS and NCEP/NCAR reanalyses and GPCP rainfall data have been used to study the variability of the East Asian westerly jet stream and its impact on the Asian-Pacific climate, with a focus on interannual time scales. Results indicate that external forcings such as sea surface temperature (SST) and land surface processes also play an important role in the variability of the jet although this variability is strongly governed by internal dynamics. There is a close link between the jet and Asian-Pacific climate including the Asian winter monsoon and tropical convection. The atmospheric teleconnection pattern associated with the jet is different from the ENSO-related pattern. The influence of the jet on eastern Pacific and North American climate is also discussed.

  3. Zooplankton time-series in the Balearic Sea (Western Mediterranean): Variability during the decade 1994 2003

    NASA Astrophysics Data System (ADS)

    Fernández de Puelles, Maria Luz; Alemany, Francisco; Jansá, Javier

    2007-08-01

    Studies of plankton time-series from the Balearic islands waters are presented for the past decade, with main emphasis on the variability of zooplankton and how it relates to the environment. The seasonal and interannual patterns of temperature, salinity, nutrients, chlorophyll concentration and zooplankton abundance are described with data obtained between 1994 and 2003. Samples were collected every 10 days at a monitoring station in the Mallorca channel, an area with marked hydrographic variability in the Western Mediterranean. Mesoscale variability was also assessed using data from monthly sampling survey carried out between 1994 and 1999 in a three station transect located in the same study area. The copepods were the most abundant group with three higher peaks (March, May and September) distinguished during the annual cycle and a clear coastal-offshore decreasing gradient. Analysis of the zooplankton community revealed two distinct periods: the mixing period during winter and early spring, where copepods, siphonophores and ostracods were most abundant and, the stratified period characterised by an increase of cladocerans and meroplankton abundances. Remarkable interannual zooplankton variability was observed in relation to hydrographic regime with higher abundances of main groups during cool years, when northern Mediterranean waters prevailed in the area. The warmer years showed the lowest zooplankton abundances, associated with the inflow of less saline and nutrient-depleted Atlantic Waters. Moreover, the correlation found between copepod abundance and large scale climatic factors (e.g., NAO) suggested that they act as main driver of the zooplankton variability. Therefore, the seasonal but particularly the interannual variation observed in plankton abundance and structure patterns of the Balearic Sea seems to be highly modulated by large-scale forcing and can be considered an ideal place where to investigate potential consequences of global climate change.

  4. Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.

    2014-12-01

    The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.

  5. Social Memory of Short-term and Long-term Variability in the Sahelian Climate

    Treesearch

    Roderick J. McIntosh

    2006-01-01

    The 170,000 km2 interior floodplain of the Middle Niger (Mali) is a tight mosaic of alluvial and desert microenvironments. The interannual to intermillennial climate change profiles of this fluvial anomaly thrust deep into the Sahel and southern Sahara are masterpieces of abrupt phase shifts and unpredictability. Response has been of two kinds. The Office du Niger was...

  6. Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate

    DOE PAGES

    Ong, Rebecca Garlock; Higbee, Alan; Bottoms, Scott; ...

    2016-11-08

    Here, interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strainsmore » of Saccharomyces cerevisiae and Zymomonas mobilis. As a result, a chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.« less

  7. Ozone trends over the United States at different times of day

    NASA Astrophysics Data System (ADS)

    Yan, Yingying; Lin, Jintai; He, Cenlin

    2018-01-01

    In the United States, the decline of summertime daytime peak ozone in the last 20 years has been clearly connected to reductions in anthropogenic emissions. However, questions remain about how and through what mechanisms ozone at other times of day have changed over recent decades. Here we analyze the interannual variability and trends of ozone at different hours of day, using observations from about 1000 US sites during 1990-2014. We find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes. Interannual climate variability has mainly been associated with the detrended fluctuation in the US annual daytime ozone over 1990-2014, with a much smaller effect on the nighttime ozone. Reductions in anthropogenic emissions of nitrogen oxides have led to substantial growth in the US annual average nighttime ozone due to reduced ozone titration, while the summertime daytime ozone has declined. Environmental policymaking might consider further improvements to reduce ozone levels at night and other non-peak hours.

  8. Ozone trends over the United States at different times of day

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yan, Y.

    2017-12-01

    In the United States, the decline of summertime daytime peak ozone in the last 20 years has been clearly connected to reductions in anthropogenic emissions. Yet questions remain on how and through what mechanisms ozone at other times of day have changed over the recent decades. Here we analyze the interannual variability and trends of ozone at different hours of day, using observations from about 1000 US sites during 1990-2014. We find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes. Interannual climate variability has mainly been associated with the de-trended fluctuation in the US annual daytime ozone over 1990-2014, with a much smaller effect on the nighttime ozone. Reductions in anthropogenic emissions of nitrogen oxides have led to substantial growth in the US annual average nighttime ozone due to reduced ozone titration, while the summertime daytime ozone has declined. Environmental policymaking might consider further improvements to reduce ozone levels at night and other non-peak hours.

  9. Climate-driven ichthyoplankton drift model predicts growth of top predator young.

    PubMed

    Myksvoll, Mari S; Erikstad, Kjell E; Barrett, Robert T; Sandvik, Hanno; Vikebø, Frode

    2013-01-01

    Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.

  10. Climate-Driven Ichthyoplankton Drift Model Predicts Growth of Top Predator Young

    PubMed Central

    Myksvoll, Mari S.; Erikstad, Kjell E.; Barrett, Robert T.; Sandvik, Hanno; Vikebø, Frode

    2013-01-01

    Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator. PMID:24265761

  11. Relative Sea Level Trends Along the Coast of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Becker, M.; Calmant, S.; Papa, F.; Delebecque, C.; Islam, A. S.; Shum, C. K.

    2016-12-01

    In the coastal belt of the Bay of Bengal, the sea level rise is one of a major threat, linked to climate change, which drastically affects the livelihoods of millions of people. A comprehensive understanding of sea level trends and its variability in this region is therefore crucial and should help to anticipate the impacts of climate change and implement adaptation strategies. This region is bordered mostly by Bangladesh, India, Malaysia, Myanmar, and Thailand. Here, we revisit the sea level changes in the Bay of Bengal region from tide gauges and satellite altimetry over the period 1993-2014. The 23 monthly mean tide gauge records, used in this study, are retrieved from PSMSL (15 records) and supplemented with Bangladeshi observations (8 records). We show that, over the satellite altimetry era, the sea level interannual/decadal variability is mainly due to ocean thermal expansion variability driven by IOD/ENSO events and their low frequency modulation. We focus on relative sea level rise at major coastal cities and try to separate the climatic signal (long term trend plus interannual/decadal variability) from local effects, in particular vertical land movements. Results from GPS are analysed where available. When no such data exist, vertical land movements are deduced from the combined use of tide gauge and altimetry data. While the analysis is performed over the whole region, a particular attention is given to the low-lyingBangladesh's coastal area.

  12. Using altimetry to help explain patchy changes in hydrographic carbon measurements

    NASA Astrophysics Data System (ADS)

    Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro

    2009-09-01

    Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).

  13. Learning Across Time Scales: Science, Policy, Management, and Communication

    NASA Astrophysics Data System (ADS)

    Stewart, M. M.

    2002-05-01

    This presentation will draw together common themes raised in the session and discuss lessons learned across time scales and their implications for managers and policy makers concerned with both climate change and variability. Session themes will be examined in the context of the upcoming World Summit on Sustainable Development (WSSD) and considered as opportunities for linking climate change policy discussions with lessons learned from the study of adaptation on seasonal to interannual time scales. The presentation will raise questions about future research directions, discuss recommendations for promoting learning across time scales, and explore options for better communicating the links between climate change and variability.

  14. Frontiers in Decadal Climate Variability: Proceedings of a Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purcell, Amanda

    A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several naturalmore » variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.« less

  15. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: The Australian case

    Treesearch

    Grant J. Williamson; Lynda D. Prior; Matt Jolly; Mark A. Cochrane; Brett P. Murphy; David M. J. S. Bowman

    2016-01-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-...

  16. Modeling the influence of precipitation and nitrogen deposition on forest understory fuel connectivity in Sierra Nevada mixed-conifer forest

    Treesearch

    M. Hurteau; M. North; T. Foines

    2009-01-01

    Climate change models for California’s Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition fromfossil fuel consumption are likely to result in increased productivity levels and significant increases in...

  17. Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.

    1998-01-01

    Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.

  18. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature

    DOE PAGES

    Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.; ...

    2015-03-02

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR). Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research and elsewhere, demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we findmore » no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. Furthermore, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.« less

  19. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR). Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research and elsewhere, demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we findmore » no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. Furthermore, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.« less

  20. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.

    2014-09-01

    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.

  1. Regionally synchronous fires in interior British Columbia, Canada, driven by interannual climate variability and weakly associated with large-scale climate patterns between AD 1600-1900

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Smith, D. J.

    2016-12-01

    We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.

  2. Fluctuations in Tree Ring Cellulose d18O during the Little Ice Age Correlate with Solar Activity

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y. T.; Yokoyama, Y.; Miyahara, H.; Nakatsuka, T.

    2008-12-01

    The Maunder Minimum (AD1645-1715), when sunspots became exceedingly rare, is known to coincide with the coldest period during the Little Ice Age. This is a useful period to investigate possible linkage between solar activity and climate because variation in solar activity was different from that of today. The solar cycle length was longer (14 and 28 years) than that of today (11 and 22 years) hence any climate archives that have similar periodic changes could be separated from other internal climate forcing. We have reported that Greenland temperature variations coincided with decadal-scale variability in solar activity during the Maunder Minimum (Miyahara et al. 2008). Here we report interannual and intra-annual relative humidity (RH) variations in central Japan during that period, using tree ring cellulose d18O in a 382-year-old Japanese cedar tree (Cryptomeria japonica). The isotopic composition of tree rings can be a powerful tool to study the relationship between solar activity and climate, because we can directly compare solar activity (D14C) and climate (d18O) with little dating error. The climate proxy obtained using tree ring cellulose d18O is correlated both negatively and positively with RH and d18O in precipitation, respectively. Since d18O in precipitation is negatively correlated with the amount of precipitation in the monsoon area, tree ring cellulose d18O can be a reliable proxy for past RH and/or amount of precipitation in the area of the interest. Tree ring cellulose d18O of the cedar tree during AD1938-1998 in fact correlates significantly with the mean RH in June in central Japan. Tree ring d18O inferred RH variability during the Maunder Minimum shows distinct high RH spikes with an approximate 14-year quasiperiodicity. All nine solar minima during AD1640-1756 deduced from tree ring D14C coincided with high RH spikes, and seven of which coincided within 1-year. Interannual RH variations also coincided with Greenland temperature during this period. These results suggest that weakening of solar activity at solar minima caused distinct hemispheric scale climate change during the Maunder Minimum. We discuss the mechanism in which the solar activity variation caused the climate change, based on intra-annual RH variability and further data analysis of interannual RH variability. H. Miyahara et al., Earth Planet. Sci. Lett. 272, 1-2, 290-295 (2008).

  3. Drivers of interannual variability in virioplankton abundance at the coastal western Antarctic peninsula and the potential effects of climate change.

    PubMed

    Evans, Claire; Brandsma, Joost; Pond, David W; Venables, Hugh J; Meredith, Michael P; Witte, Harry J; Stammerjohn, Sharon; Wilson, William H; Clarke, Andrew; Brussaard, Corina P D

    2017-02-01

    An 8-year time-series in the Western Antarctic Peninsula (WAP) with an approximately weekly sampling frequency was used to elucidate changes in virioplankton abundance and their drivers in this climatically sensitive region. Virioplankton abundances at the coastal WAP show a pronounced seasonal cycle with interannual variability in the timing and magnitude of the summer maxima. Bacterioplankton abundance is the most influential driving factor of the virioplankton, and exhibit closely coupled dynamics. Sea ice cover and duration predetermine levels of phytoplankton stock and thus, influence virioplankton by dictating the substrates available to the bacterioplankton. However, variations in the composition of the phytoplankton community and particularly the prominence of Diatoms inferred from silicate drawdown, drive interannual differences in the magnitude of the virioplankton bloom; likely again mediated through changes in the bacterioplankton. Their findings suggest that future warming within the WAP will cause changes in sea ice that will influence viruses and their microbial hosts through changes in the timing, magnitude and composition of the phytoplankton bloom. Thus, the flow of matter and energy through the viral shunt may be decreased with consequences for the Antarctic food web and element cycling. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with amore » smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.« less

  5. Climatic Influences on Southern Makassar Strait Salinity Over the Past Century

    NASA Astrophysics Data System (ADS)

    Murty, S. A.; Goodkin, N. F.; Halide, H.; Natawidjaja, D.; Suwargadi, B.; Suprihanto, I.; Prayudi, D.; Switzer, A. D.; Gordon, A. L.

    2017-12-01

    The Indonesian Throughflow (ITF) is a globally important ocean current that fuels heat and buoyancy fluxes throughout the Indo-Pacific and is known to covary in strength with the El Niño Southern Oscillation at interannual time scales. A climate system with a less well-quantified impact on the ITF is the East Asian Winter Monsoon (EAWM), which drives less saline surface waters from the South China Sea (SCS) into the Makassar Strait, obstructing surface ITF flow. We present a subannually resolved record of sea surface salinity (SSS) from 1927 to 2011 based on coral δ18O from the Makassar Strait that reveals variability in the relative contributions of different source waters to the surface waters of the Makassar Strait during the boreal winter monsoon. We find that the EAWM (January-March) strongly influences interannual SSS variability during boreal winter over the twentieth century (r = 0.54, p << 0.0001), impacting surface water circulation in the SCS and Indonesian Seas.

  6. Impacts of Interannual Climate Variability on Agricultural and Marine Ecosystems

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Zebiak, S.; Kaplan, A.; Chen, D.

    2001-01-01

    The El Nino - Southern Oscillation (ENSO) is the dominant mode of global interannual climate variability, and seems to be the only mode for which current prediction methods are more skillful than climatology or persistence. The Zebiak and Cane intermediate coupled ocean-atmosphere model has been in use for ENSO prediction for more than a decade, with notable success. However, the sole dependence of its original initialization scheme and the improved initialization on wind fields derived from merchant ship observations proved to be a liability during 1997/1998 El Nino event: the deficiencies of wind observations prevented the oceanic component of the model from reaching the realistic state during the year prior to the event, and the forecast failed. Our work on the project was concentrated on the use of satellite data for improving various stages of ENSO prediction technology: model initialization, bias correction, and data assimilation. Close collaboration with other teams of the IDS project was maintained throughout.

  7. Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin

    NASA Astrophysics Data System (ADS)

    Gerkema, Theo; Duran-Matute, Matias

    2017-12-01

    The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west-east component of the net wind energy, with some further improvement if one also includes the south-north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west-east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.

  8. Constraints on Variability of Brightness and Surface Magnetism on Time Scales of Decades to Centuries in the Sun and Sun-Like Stars: A Source of Potential Terrestrial Climate Variability

    NASA Technical Reports Server (NTRS)

    Baliunas, Sallie L.; Sharber, James (Technical Monitor)

    2001-01-01

    These four points summarize our work to date. (1) Conciliation of solar and stellar photometric variability. Previous research by us and colleagues suggested that the Sun might at present be showing unusually low photometric variability compared to other sun-like stars. Those early results would question the suitability of the technique of using sun-like stars as proxies for solar irradiance change on time scales of decades to centuries. However, our results indicate the contrary: the Sun's observed short-term (seasonal) and longterm (year-to-year) brightness variations closely agree with observed brightness variations in stars of similar mass and age. (2) We have demonstrated an inverse correlation between the global temperature of the terrestrial lower troposphere, inferred from the NASA Microwave Sounding Unit (MSU) radiometers, and the total area of the Sun covered by coronal holes from January 1979 to present (up to May 2000). Variable fluxes of either solar charged particles or cosmic rays, or both, may influence the terrestrial tropospheric temperature. The geographical pattern of the correlation is consistent with our interpretation of an extra-terrestrial charged particle forcing. (3) Possible climate mechanism amplifying the impact of solar ultraviolet irradiance variations. The key points of our proposed climate hypersensitivity mechanism are: (a) The Sun is more variable in the UV (ultraviolet) than in the visible. However, the increased UV irradiance is mainly absorbed in the lower stratosphere/upper troposphere rather than at the surface. (b) Absorption in the stratosphere raises the temperature moderately around the vicinity of the tropopause, and tends to stabilize the atmosphere against vertical convective/diffusive transport, thus decreasing the flux of heat and moisture carried upward from surface. (c) The decrease in the upward convection of heat and moisture tends to raise the surface temperature because a drier upper atmosphere becomes less cloudy, which in turn allows more solar radiation to reach the Earth's surface. (4) Natural variability in an ocean-atmosphere climate model. We use a 14-region, 6-layer, global thermo-hydrodynamic ocean-atmosphere model to study natural climate variability. All the numerical experiments were performed with no change in the prescribed external boundary conditions (except for the seasonal cycle of the Sun's tilt angle). Therefore, the observed inter-annual variability is of an internal kind. The model results are helpful toward the understanding of the role of nonlinearity in climate change. We have demonstrated a range of possible climate behaviors using our newly developed ocean-atmosphere model. These include climate configurations with no interannual variability, with multi-year periodicities, with continuous chaos, or with chaotically occuring transitions between two discrete substrates. These possible modes of climate behavior are all possible for the real climate, as well as the model. We have shown that small temporary climate influences can trigger shifts both in the mean climate, and among these different types of behavior. Such shifts are not only theoretically plausible, as shown here and elsewhere; they are omnipresent in the climate record on time scales from several years to the age of the Earth. This has two apparently opposite implications for the possibility of anthropogenic global warming. First, any warming which might occur as a result of human influence would be only a fraction of the small-to-large unpredictable natural changes and changes which result from other external causes. On the other hand, small temporary influences such as human influence do have the potential of causing large permanent shifts in mean climate and interannual variability.

  9. Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand.

    PubMed

    Dewes, Candida F; Rangwala, Imtiaz; Barsugli, Joseph J; Hobbins, Michael T; Kumar, Sanjiv

    2017-01-01

    Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models' expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change.

  10. What can surface measurements of long-lived trace gases tell us about interannual variability in UTLS transport?

    NASA Astrophysics Data System (ADS)

    Ray, E. A.; Daniel, J. S.; Montzka, S. A.; Portmann, R. W.; Yu, P.; Rosenlof, K. H.; Moore, F. L.

    2017-12-01

    We use surface measurements of a number of long-lived trace gases, including CFC-11, CFC-12 and N2O, and a 3-box model to estimate the interannual variability of bulk stratospheric transport characteristics. Coherent features among the different surface measurements suggest that there have been periods over the last two decades with significant variability in the amount of stratospheric loss transported downward to the troposphere both globally and between the NH and SH. This is especially apparent around the year 2000 and in the recent period since 2013 when surface measurements suggest an overall slowdown of the transport of stratospheric air to the troposphere as well as a shift towards a relatively stronger stratospheric circulation in the SH compared to the NH. We compare these results to stratospheric satellite measurements, residual circulation estimates and global model simulations to check for consistency. The implications of not accounting for interannual variability in stratospheric loss transported to the surface in emission estimates of long-lived trace gases can be significant, including for those gases monitored by the Montreal Protocol and/or of climatic importance.

  11. The summer North Atlantic Oscillation (SNAO) variability on decadal to paleoclimate time scales

    NASA Astrophysics Data System (ADS)

    Linderholm, H. W.; Folland, C. K.; Zhang, P.; Gunnarson, B. E.; Jeong, J. H.; Ren, H.

    2017-12-01

    The summer North Atlantic Oscillation (SNAO), strongly related to the latitude of the North Atlantic and European summer storm tracks, exerts a considerable influence on European summer climate variability and extremes. Here we extend the period covered by the SNAO from July and August to June, July and August (JJA). As well as marked interannual variability, the JJA SNAO has shown a large inter-decadal change since the 1970s. Decadally averaged, there has been a change from a very positive to a rather negative SNAO phase. This change in SNAO phase is opposite in sign from that expected by a number of climate models under enhanced greenhouse forcing by the late twenty first century. It has led to noticeably wetter summers in North West Europe in the last decade. On interannual to multidecadal timescales, SNAO variability is linked to variations in North Atlantic sea surface temperature (SST): observations and models indicate an association between the Atlantic Multi-decadal Oscillation (AMO) where the cold (warm) phase of the AMO corresponds a positive (negative) phase of the SNAO. Observations also indicate a link with SST in the Gulf Stream region of the North Atlantic where, particularly on decadal time scales, SST warming may favour a more positive phase of the SNAO. Influences of Arctic climate change on North Atlantic and European atmospheric circulation may also exist, particularly reduced sea ice coverage, perhaps favouring the negative phase of the SNAO. A new tree-ring data based JJA SNAO reconstruction extending over the last millennium, as well as climate model output for the same period, enables us to examine the influence of North Atlantic SST and Arctic sea-ice coverage, as well as SNAO impacts on European summer climate, in a long-term, pre-industrial context.

  12. Coupling between air travel and climate

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Donnelly, Jeffrey P.; Barkley, Hannah C.; Martin, Jonathan E.

    2015-12-01

    The airline industry closely monitors the midlatitude jet stream for short-term planning of flight paths and arrival times. In addition to passenger safety and on-time metrics, this is due to the acute sensitivity of airline profits to fuel cost. US carriers spent US$47 billion on jet fuel in 2011, compared with a total industry operating revenue of US$192 billion. Beyond the timescale of synoptic weather, the El Niño/Southern Oscillation (ENSO), Arctic Oscillation (AO) and other modes of variability modulate the strength and position of the Aleutian low and Pacific high on interannual timescales, which influence the tendency of the exit region of the midlatitude Pacific jet stream to extend, retract and meander poleward and equatorward. The impact of global aviation on climate change has been studied for decades owing to the radiative forcing of emitted greenhouse gases, contrails and other effects. The impact of climate variability on air travel, however, has only recently come into focus, primarily in terms of turbulence. Shifting attention to flight durations, here we show that 88% of the interannual variance in domestic flight times between Hawaii and the continental US is explained by a linear combination of ENSO and the AO. Further, we extend our analysis to CMIP5 model projections to explore potential feedbacks between anthropogenic climate change and air travel.

  13. ENSO-related Interannual Variability of Southern Hemisphere Atmospheric Circulation: Assessment and Projected Changes in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice

    2013-04-01

    ENSO variability is an important driver of the Southern Hemisphere (SH) atmospheric circulation. Understanding the observed and projected changes in ENSO variability is therefore important to understanding changes in Australian surface climate. Using a recently developed methodology (Zheng et al., 2009), the coherent patterns, or modes, of ENSO-related variability in the SH atmospheric circulation can be separated from modes that are related to intraseasonal variability or to changes in radiative forcings. Under this methodology, the seasonal mean SH 500 hPa geopotential height is considered to consist of three components. These are: (1) an intraseasonal component related to internal dynamics on intraseasonal time scales; (2) a slow-internal component related to internal dynamics on slowly varying (interannual or longer) time scales, including ENSO; and (3) a slow-external component related to external (i.e. radiative) forcings. Empirical Orthogonal Functions (EOFs) are used to represent the modes of variability of the interannual covariance of the three components. An assessment is first made of the modes in models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset for the SH summer and winter seasons in the 20th century. In reanalysis data, two EOFs of the slow component (which includes the slow-internal and slow-external components) have been found to be related to ENSO variability (Frederiksen and Zheng, 2007). In SH summer, the CMIP5 models reproduce the leading ENSO mode very well when the structures of the EOF and the associated SST, and associated variance are considered. There is substantial improvement in this mode when compared with the CMIP3 models shown in Grainger et al. (2012). However, the second ENSO mode in SH summer has a poorly reproduced EOF structure in the CMIP5 models, and the associated variance is generally underestimated. In SH winter, the performance of the CMIP5 models in reproducing the structure and variance is similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.

  14. A methodological critique on using temperature-conditioned resampling for climate projections as in the paper of Gerstengarbe et al. (2013) winter storm- and summer thunderstorm-related loss events in Theoretical and Applied Climatology (TAC)

    NASA Astrophysics Data System (ADS)

    Wechsung, Frank; Wechsung, Maximilian

    2016-11-01

    The STatistical Analogue Resampling Scheme (STARS) statistical approach was recently used to project changes of climate variables in Germany corresponding to a supposed degree of warming. We show by theoretical and empirical analysis that STARS simply transforms interannual gradients between warmer and cooler seasons into climate trends. According to STARS projections, summers in Germany will inevitably become dryer and winters wetter under global warming. Due to the dominance of negative interannual correlations between precipitation and temperature during the year, STARS has a tendency to generate a net annual decrease in precipitation under mean German conditions. Furthermore, according to STARS, the annual level of global radiation would increase in Germany. STARS can be still used, e.g., for generating scenarios in vulnerability and uncertainty studies. However, it is not suitable as a climate downscaling tool to access risks following from changing climate for a finer than general circulation model (GCM) spatial scale.

  15. Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asia-Australia Region

    NASA Astrophysics Data System (ADS)

    Huang, Ruping; Chen, Shangfeng; Chen, Wen; Hu, Peng

    2018-01-01

    This study investigates interannual variability of boreal winter regional Hadley circulation over western Pacific (WPHC) and its climatic impacts. A WPHC intensity index (WPHCI) is defined as the vertical shear of the divergent meridional winds. It shows that WPHCI correlates well with the El Niño-Southern Oscillation (ENSO). To investigate roles of the ENSO-unrelated part of WPHCI (WPHCIres), variables that are linearly related to the Niño-3 index have been removed. It reveals that meridional sea surface temperature gradient over the western Pacific plays an essential role in modulating the WPHCIres. The climatic impacts of WPHCIres are further investigated. Below-normal (above-normal) precipitation appears over south China (North Australia) when WPHCIres is stronger. This is due to the marked convergence (divergence) anomalies at the upper troposphere, divergence (convergence) at the lower troposphere, and the accompanied downward (upward) motion over south China (North Australia), which suppresses (enhances) precipitation there. In addition, a pronounced increase in surface air temperature (SAT) appears over south and central China when WPHCIres is stronger. A temperature diagnostic analysis suggests that the increase in SAT tendency over central China is primarily due to the warm zonal temperature advection and subsidence-induced adiabatic heating. In addition, the increase in SAT tendency over south China is primarily contributed by the warm meridional temperature advection. Further analysis shows that the correlation of WPHCIres with the East Asian winter monsoon (EAWM) is weak. Thus, this study may provide additional sources besides EAWM and ENSO to improve understanding of the Asia-Australia climate variability.

  16. Ecological controls on water-cycle response to climate variability in deserts

    PubMed Central

    Scanlon, B. R.; Levitt, D. G.; Reedy, R. C.; Keese, K. E.; Sully, M. J.

    2005-01-01

    The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Niño southern oscillation in the Mojave Desert. Extreme El Niño winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Niño southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes. PMID:15837922

  17. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.

    PubMed

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas

    2015-01-01

    The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2)  day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.

  18. Complex effect of projected sea temperature and wind change on flatfish dispersal.

    PubMed

    Lacroix, Geneviève; Barbut, Léo; Volckaert, Filip A M

    2018-01-01

    Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability in larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (-9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%) and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management. © 2017 John Wiley & Sons Ltd.

  19. Stable Carbon Isotopes in Treerings; Revisiting the Paleocloud Proxy.

    NASA Astrophysics Data System (ADS)

    Gagen, M.; Zorita, E.; Dorado Liñán, I.; Loader, N.; McCarroll, D.; Robertson, I.; Young, G.

    2017-12-01

    The long term relationship between cloud cover and temperature is one of the most important climate feedbacks contributing to determining the value of climate sensitivity. Climate models still reveal a large spread in the simulation of changes in cloud cover under future warming scenarios and clarity might be aided by a picture of the past variability of cloudiness. Stable carbon isotope ratios from tree ring records have been successfully piloted as a palaeocloud proxy in geographical areas traditionally producing strong dendroclimatological reconstructions (high northern latitudes in the Northern Hemisphere) and with some notable successes elsewhere too. An expansion of tree-ring based palaeocloud reconstructions might help to estimate past variations of cloud cover in periods colder or warmer than the 20th century, providing a way to test model test this specific aspect. Calibration with measured instrumental sunshine and cloud data reveals stable carbon isotope ratios from tree rings as an indicator of incoming short wave solar radiation (SWR) in non-moisture stressed sites, but the statistical identification of the SWR signal is hampered by its interannual co-variability with air temperature during the growing season. Here we present a spatio-temporal statistical analysis of a multivariate stable carbon isotope tree ring data set over Europe to assess its usefulness to reconstruct past solar radiation changes. The interannual co-variability of the tree ring records stronger covariation with SWR than with air temperature. The resulting spatial patterns of interannual co-variability are strongly linked to atmospheric circulation in a physically consistent manner. However, the multidecadal variations in the proxy records show a less physically coherent picture. We explore whether atmospheric corrections applied to the proxy series are contributing to differences in the multi decadal signal and investigate whether multidecadal variations in soil moisture perturb the SWR. Preliminary results of strategies to bypass these problems are explored.

  20. On climate prediction: how much can we expect from climate memory?

    NASA Astrophysics Data System (ADS)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  1. Virtual water trade in the Roman Mediterranean

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; van Beek, Rens; Meeks, Elijah; Klein Goldewijk, Kees; Scheidel, Walter; van der Velde, Ype; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2015-04-01

    The Romans were perhaps the most impressive exponents of water resource management in pre-industrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socio-economic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we found that irrigation and virtual water trade increased Roman resilience to inter-annual climate variability. However, urbanisation and population growth arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. Our newest findings also assess the impact that persistent climate change associated with Holocene climate anomalies had on Roman water resource management. Specifically we assess the impact of the change in climate from the Roman Warm Period to the Dark Ages Cold Period on the Roman food supply and whether it could have contributed to the fall of the Western Roman Empire.

  2. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2015-09-30

    spatial and temporal distribution of key marine organisms over multiple trophic levels, and (2) natural and anthropogenic variability in ecosystem...areas of climate modeling in upwelling regions (E. Curchitser), physical-biological modeling in the CCLME (J. Fiechter and C. Edwards), data...optimal growth conditions). By comparing interannual changes in fat depot against EOF modes for environmental variability (i.e., SST) and prey

  3. Recent Climate Variability in Antarctica from Satellite-derived Temperature Data

    NASA Technical Reports Server (NTRS)

    Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.

    2004-01-01

    Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.

  4. Response of Marine Taxa to Climate Variability in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Morley, J. W.; Pinsky, M. L.; Batt, R. D.

    2016-02-01

    Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.

  5. Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia.

    PubMed

    Midekisa, Alemayehu; Beyene, Belay; Mihretie, Abere; Bayabil, Estifanos; Wimberly, Michael C

    2015-06-24

    The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria (weeks to months), but fewer have explored the possibility of longer-term seasonal effects. This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara region of Ethiopia. We tested for associations of climate variables summarized during the dry (January-April), early transition (May-June), and wet (July-September) seasons with malaria incidence in the early peak (May-July) and late peak (September-December) epidemic seasons using generalized linear models. Climate variables included land surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI). We found that both early and late peak malaria incidence had the strongest associations with meteorological conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in both of the study sub-regions. These findings suggest that climatic effects on malaria prior to the main rainy season can carry over through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also emphasize the value of combining environmental monitoring with epidemiological surveillance to develop forecasts of malaria outbreaks, as well as the need for spatially stratified approaches that reflect the differential effects of climatic variations in the different sub-regions.

  6. The role of ecosystem memory in predicting inter-annual variations of the tropical carbon balance.

    NASA Astrophysics Data System (ADS)

    Bloom, A. A.; Liu, J.; Bowman, K. W.; Konings, A. G.; Saatchi, S.; Worden, J. R.; Worden, H. M.; Jiang, Z.; Parazoo, N.; Williams, M. D.; Schimel, D.

    2017-12-01

    Understanding the trajectory of the tropical carbon balance remains challenging, in part due to large uncertainties in the integrated response of carbon cycle processes to climate variability. Satellite observations atmospheric CO2 from GOSAT and OCO-2, together with ancillary satellite measurements, provide crucial constraints on continental-scale terrestrial carbon fluxes. However, an integrated understanding of both climate forcings and legacy effects (or "ecosystem memory") on the terrestrial carbon balance is ultimately needed to reduce uncertainty on its future trajectory. Here we use the CARbon DAta-MOdel fraMework (CARDAMOM) diagnostic model-data fusion approach - constrained by an array of C cycle satellite surface observations, including MODIS leaf area, biomass, GOSAT solar-induced fluorescence, as well as "top-down" atmospheric inversion estimates of CO2 and CO surface fluxes from the NASA Carbon Monitoring System Flux (CMS-Flux) - to constrain and predict spatially-explicit tropical carbon state variables during 2010-2015. We find that the combined assimilation of land surface and atmospheric datasets places key constraints on the temperature sensitivity and first order carbon-water feedbacks throughout the tropics and combustion factors within biomass burning regions. By varying the duration of the assimilation period, we find that the prediction skill on inter-annual net biospheric exchange is primarily limited by record length rather than model structure and process representation. We show that across all tropical biomes, quantitative knowledge of memory effects - which account for 30-50% of interannual variations across the tropics - is critical for understanding and ultimately predicting the inter-annual tropical carbon balance.

  7. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun; Peng, Dongdong

    2016-02-01

    The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of East Asia and will become the basis for the generation of climate change scenarios for the CORDEX East Asia domain that will be described in future reports.

  8. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.

  9. Predicting phenology by integrating ecology, evolution and climate science

    USGS Publications Warehouse

    Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.

    2011-01-01

    Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.

  10. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  11. Seasonal and interannual variations of atmospheric CO2 and climate

    NASA Astrophysics Data System (ADS)

    Dettinger, Michael D.; Ghil, Michael

    1998-02-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) is used here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7days at Mauna Loa and 18days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3years)-1 and (4years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6 8months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and δ13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in CO2 mostly reflect upwelling variations in the eastern tropical Pacific. QQ variations are dominated by the CO2 signature of terrestrial-ecosystem response to global QQ climate variations. Climate variations associated with these two interannual components of tropical variability have very different effects on global climate and, especially, on terrestrial ecosystems and the carbon cycle.

  12. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  13. Statistical link between external climate forcings and modes of ocean variability

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan; Perona, Paolo

    2017-07-01

    In this study we investigate statistical link between external climate forcings and modes of ocean variability on inter-annual (3-year) to centennial (100-year) timescales using de-trended semi-partial-cross-correlation analysis technique. To investigate this link we employ observations (AD 1854-1999), climate proxies (AD 1600-1999), and coupled Atmosphere-Ocean-Chemistry Climate Model simulations with SOCOL-MPIOM (AD 1600-1999). We find robust statistical evidence that Atlantic multi-decadal oscillation (AMO) has intrinsic positive correlation with solar activity in all datasets employed. The strength of the relationship between AMO and solar activity is modulated by volcanic eruptions and complex interaction among modes of ocean variability. The observational dataset reveals that El Niño southern oscillation (ENSO) has statistically significant negative intrinsic correlation with solar activity on decadal to multi-decadal timescales (16-27-year) whereas there is no evidence of a link on a typical ENSO timescale (2-7-year). In the observational dataset, the volcanic eruptions do not have a link with AMO on a typical AMO timescale (55-80-year) however the long-term datasets (proxies and SOCOL-MPIOM output) show that volcanic eruptions have intrinsic negative correlation with AMO on inter-annual to multi-decadal timescales. The Pacific decadal oscillation has no link with solar activity, however, it has positive intrinsic correlation with volcanic eruptions on multi-decadal timescales (47-54-year) in reconstruction and decadal to multi-decadal timescales (16-32-year) in climate model simulations. We also find evidence of a link between volcanic eruptions and ENSO, however, the sign of relationship is not consistent between observations/proxies and climate model simulations.

  14. The influence of intra- and inter-annual meteorological variability on dengue transmission: a multi-level modeling analysis

    NASA Astrophysics Data System (ADS)

    Wen, Tzai-Hung; Chen, Tzu-Hsin

    2017-04-01

    Dengue fever is one of potentially life-threatening mosquito-borne diseases and IPCC Fifth Assessment Report (AR5) has confirmed that dengue incidence is sensitive to the critical weather conditions, such as effects of temperature. However, previous literature focused on the effects of monthly or weekly average temperature or accumulative precipitation on dengue incidence. The influence of intra- and inter-annual meteorological variability on dengue outbreak is under investigated. The purpose of the study focuses on measuring the effect of the intra- and inter-annual variations of temperature and precipitation on dengue outbreaks. We developed the indices of intra-annual temperature variability are maximum continuity, intermittent, and accumulation of most suitable temperature (MST) for dengue vectors; and also the indices of intra-annual precipitation variability, including the measure of continuity of wetness or dryness during a pre-epidemic period; and rainfall intensity during an epidemic period. We used multi-level modeling to investigate the intra- and inter-annual meteorological variations on dengue outbreaks in southern Taiwan from 1998-2015. Our results indicate that accumulation and maximum continuity of MST are more significant than average temperature on dengue outbreaks. The effect of continuity of wetness during the pre-epidemic period is significantly more positive on promoting dengue outbreaks than the rainfall effect during the epidemic period. Meanwhile, extremely high or low rainfall density during an epidemic period do not promote the spread of dengue epidemics. Our study differentiates the effects of intra- and inter-annual meteorological variations on dengue outbreaks and also provides policy implications for further dengue control under the threats of climate change. Keywords: dengue fever, meteorological variations, multi-level model

  15. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)

  16. Effects of diversity, topography, and interannual climate variability on pathogen spillover

    Treesearch

    Whalen W. Dillon; Ross K. Meentemeyer; David M. Rizzo

    2017-01-01

    Our knowledge of sudden oak death (SOD) disease dynamics indicate that without bay laurel (Umbellularia californica) there is seldom oak (Quercus) infection. This requirement of an alternate host species for disease transmission to oak species is an example of pathogen spillover. We developed a path analysis to test...

  17. INTER-ANNUAL AND SEASONAL VARIABILITY OF METEOROLOGICALLY-INFLUENCED EMISSIONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is a participant in the U.S. Global Change Research Program (CGRP). The air quality portion of the GCRP addresses the effect on air quality attributable to climate change in the intermediate future (e.g., 2050). The first phase of ...

  18. INTER-ANNUAL AND SEASONAL VARIABILITY OF METEOROLOGICALLY-INFLUENCED EMISSIONS

    EPA Science Inventory

    The EPA is a participant in the U.S. Global Change Research Program. The air quality portion of the GCRP addresses the effect on air quality attributable to climate change in the intermediate future (e.g., 2050). The first phase of the program examines the change in air quality...

  19. INTERANNUAL VARIABILITY OF NDVI AND ITS RELATIONSHIP TO CLIMATE FOR NORTH AMERICAN SHRUBLANDS AND GRASSLANDS. (R824993)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Simulation of climatology and Interannual Variability of Spring Persistent Rains by Meteorological Research Institute Model: Impacts of different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Li, Puxi; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.

  1. Assessing Canada's Forest Carbon Sinks from 1901 TO 2008 BY Combining Inventory with Climate Data (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Wu, C.; Gonsamo, A.; Kurz, W.; Hember, R.; Price, D. T.; Boisvenue, C.; Zhang, F.; Chang, K.

    2013-12-01

    The forest carbon cycle is not only controlled by climate, tree species and site conditions, but also by disturbance affecting the biomass and age of forest stands. The Carbon Budget Model of the Canadian forest sector (CBM-CFS3) calculates the complete forest carbon cycle by combining forest inventory data on forest species, biomass and stand age with empirical yield information and statistics on forest disturbances, management and land-use change. It is used for national reporting and climate policy purposes. The Integrated Terrestrial Ecosystem Carbon model (InTEC) is driven by remotely-sensed vegetation parameters (forest type, leaf area index, clumping index) and fire scar, soil and climate data and simulates forest growth and the carbon cycle as a function of stand age using a process-based approach. Gridded forest biomass, stand age and disturbance data based on forest inventory are also used as inputs to InTEC. Efforts are being made to enhance the CBM-CFS3's capacity to assess the impacts of global change on the forest carbon budget by utilizing InTEC process modeling methodology. For this purpose, InTEC is first implemented on 3432 permanent sampling plots in coastal and interior BC, and it is found that climate warming explained 70% and 75% of forest growth enhancement over the period from 1956 to 2001 in coastal and interior BC, respectively, and the remainder is attributed to CO2 and nitrogen fertilization effects. The growth enhancement, in terms of the increase in the stemwood accumulation rate after adjusting for the stand age effect, is about 24% for both areas over the same period. To assess the impact of climate change on the forest carbon cycle across Canada, polygon-based CBM and gridded InTEC results are aggregated to 60 reconciliation units (RU), and their interannual variabilities over the period from 1990 to 2008 are compared in each RU. CBM results show interannual variability in response to forest disturbance, while InTEC results show larger interannual variability because it is affected by both disturbance and climate. The impact of climate at the RU level is generally positive (increased sink) due to warming, but sometimes negative due to water stress. Averaged over Canada, climate warming induced a longer growing season by about one week from 1901 to 2008, enhancing the annual forest carbon sink by about 42×30 TgC y-1 over the period from 1990 to 2008, while CO2 and nitrogen fertilization effects each also contributed about the same amount to Canada's forest carbon sink.

  2. Climatology and trend of wind power resources in China and its surrounding regions: a revisit using Climate Forecast System Reanalysis data

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    The mean climatology, seasonal and interannual variability and trend of wind speeds at the hub height (80 m) of modern wind turbines over China and its surrounding regions are revisited using 33-year (1979–2011) wind data from the Climate Forecast System Reanalysis (CFSR) that has many improvements including higher spatial resolution over previous global reanalysis...

  3. Seasonal hypoxia in eutrophic stratified coastal shelves: mechanisms, sensibilities and interannual variability from the North-Western Black Sea case

    NASA Astrophysics Data System (ADS)

    Capet, A.; Beckers, J.-M.; Grégoire, M.

    2012-12-01

    The Black Sea north-western shelf (NWS) is a~shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3-D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14 500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N, C) and climate (T, D) predictors explain a similar amount of variability (~35%) when considered separately. A typical timescale of 9.3 yr is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.

  4. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability.

    PubMed

    Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.

  5. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

    PubMed Central

    Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453

  6. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  7. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.

    2000-01-01

    Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.

  8. The Seasonal and Interannual Variability of the Budgets of N2O and CCl3F

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Prather, Michael J.; Rind, David H.

    1999-01-01

    The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.

  9. Using the concept of Shannon's Entropy to evaluate impacts of climate extremes on interannual variability in ecosystem CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Ma, S.; Baldocchi, D. D.

    2016-12-01

    Although interannual variability in ecosystem CO2 fluxes have been observed in the field and described with empirical or process-based models, we still lack tools for evaluating and comparing impacts of climate extremes or unusual biogeophysical events on the variability. We examined a 15-year-long dataset of net ecosystem exchange of CO2 (NEE) measured at a woody savanna and a grassland site in California from 2000 to 2015. We proposed a conceptual framework to quantify season contributions by computing relatively contributions of each season to annual anomalies of gross ecosystem productivity (GPP) and ecosystem respiration (Reco). According to the framework, we calculated the Shannon's Entropy for each year. The values of Shannon Entropy were higher in the year that variations in GPP and Reco were beyond predictions of empirical models established for the study site. We specifically examined the outliers compared to model predictions and concluded that the outliers were related to occurrences of unexpected biogeophysical events in those years. This study offers a new application of Shannon's Entropy in understanding complicated biophysical and ecological processes involved in ecosystem carbon cycling.

  10. Tropical cloud forest climate variability and the demise of the Monteverde golden toad

    PubMed Central

    Anchukaitis, Kevin J.; Evans, Michael N.

    2010-01-01

    Widespread amphibian extinctions in the mountains of the American tropics have been blamed on the interaction of anthropogenic climate change and a lethal pathogen. However, limited meteorological records make it difficult to conclude whether current climate conditions at these sites are actually exceptional in the context of natural variability. We use stable oxygen isotope measurements from trees without annual rings to reconstruct a century of hydroclimatology in the Monteverde Cloud Forest of Costa Rica. High-resolution measurements reveal coherent isotope cycles that provide annual chronological control and paleoclimate information. Climate variability is dominated by interannual variance in dry season moisture associated with El Niño Southern Oscillation events. There is no evidence of a trend associated with global warming. Rather, the extinction of the Monteverde golden toad (Bufo periglenes) appears to have coincided with an exceptionally dry interval caused by the 1986–1987 El Niño event. PMID:20194772

  11. Emerging trends in global freshwater availability.

    PubMed

    Rodell, M; Famiglietti, J S; Wiese, D N; Reager, J T; Beaudoing, H K; Landerer, F W; Lo, M-H

    2018-05-01

    Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.

  12. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  13. Interannual variability in global mean sea level estimated from the CESM Large and Last Millennium Ensembles

    DOE PAGES

    Fasullo, John T.; Nerem, Robert S.

    2016-10-31

    To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less

  14. Interannual variability in global mean sea level estimated from the CESM Large and Last Millennium Ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, John T.; Nerem, Robert S.

    To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less

  15. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    NASA Astrophysics Data System (ADS)

    Hui, Chang; Zheng, Xiao-Tong

    2018-01-01

    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  16. Thermosphere Extension of the Whole Atmosphere Community Climate Model

    DTIC Science & Technology

    2010-12-04

    tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784, doi:10.1029/2002JD002853. Immel, T... troposphere to the upper thermosphere and their variability on interannual, seasonal, and daily scales. These quantities are compared with observational and...gravity waves are excited by tropospheric processes. As their amplitudes grow exponen- tially with altitude, they will cause larger variability

  17. Watershed-scale response of groundwater recharge to inter-annual and inter-decadal variability in precipitation (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Hayashi, Masaki; Farrow, Christopher R.

    2014-12-01

    Groundwater recharge sets a constraint on aquifer water balance in the context of water management. Historical data on groundwater and other relevant hydrological processes can be used to understand the effects of climatic variability on recharge, but such data sets are rare. The climate of the Canadian prairies is characterized by large inter-annual and inter-decadal variability in precipitation, which provides opportunities to examine the response of groundwater recharge to changes in meteorological conditions. A decadal study was conducted in a small (250 km2) prairie watershed in Alberta, Canada. Relative magnitude of annual recharge, indicated by water-level rise, was significantly correlated with a combination of growing-season precipitation and snowmelt runoff, which drives depression-focussed infiltration of meltwater. Annual precipitation was greater than vapour flux at an experimental site in some years and smaller in other years. On average precipitation minus vapour flux was 10 mm y-1, which was comparable to the magnitude of watershed-scale groundwater recharge estimated from creek baseflow. Average baseflow showed a distinct shift from a low value (4 mm y-1) in 1982-1995 to a high value (15 mm y-1) in 2003-2013, indicating the sensitivity of groundwater recharge to a decadal-scale variability of meteorological conditions.

  18. El Niño-Southern oscillation variability from the late cretaceous marca shale of California

    USGS Publications Warehouse

    Davies, Andrew; Kemp, Alan E.S.; Weedon, Graham P.; Barron, John A.

    2012-01-01

    Changes in the possible behavior of El Niño–Southern Oscillation (ENSO) with global warming have provoked interest in records of ENSO from past “greenhouse” climate states. The latest Cretaceous laminated Marca Shale of California permits a seasonal-scale reconstruction of water column flux events and hence interannual paleoclimate variability. The annual flux cycle resembles that of the modern Gulf of California with diatoms characteristic of spring upwelling blooms followed by silt and clay, and is consistent with the existence of a paleo–North American Monsoon that brought input of terrigenous sediment during summer storms and precipitation runoff. Variation is also indicated in the extent of water column oxygenation by differences in lamina preservation. Time series analysis of interannual variability in terrigenous sediment and diatom flux and in the degree of bioturbation indicates strong periodicities in the quasi-biennial (2.1–2.8 yr) and low-frequency (4.1–6.3 yr) bands both characteristic of ENSO forcing, as well as decadal frequencies. This evidence for robust Late Cretaceous ENSO variability does not support the theory of a “permanent El Niño,” in the sense of a continual El Niño–like state, in periods of warmer climate.

  19. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management

    USGS Publications Warehouse

    Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.

    2015-01-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1

  20. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    PubMed

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.

  1. Southern Hemisphere origins for interannual variations of Tibetan Plateau snow cover in boreal summer

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2017-12-01

    The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have devoted to revealing the potential factors that can contribute to the TPSC variability on the interannual time scale. Especially during the boreal summer, snow cover can persist over the TP at high elevations, which exerts profound influences on the local and remote climate change. The present study finds that May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the boreal summer TPSC interannual variability. Observational analysis and numerical experiments manifest that the signal of May SAM can be "prolonged" by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere-ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal vertical circulation. Subsequently, a positive (or negative) tropical dipole rainfall (TDR) mode is induced with deficient (or sufficient) precipitation in tropical western Indian Ocean and sufficient (or deficient) precipitation in eastern Indian Ocean-Maritime continent. Rossby wave source diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, propagate northward into western TP. As a response, abnormal cyclonic circulation and upward movement are triggered and prevail over western TP, providing favorable dynamical conditions for more TPSC, and vice versa. Hence, the IOT SSTA plays an "ocean bridge" role and the TDR mode acts as an "atmosphere bridge" role in the process of May SAM impacting the following summer TPSC variability. The results of our work may provide new insight about the cross-equatorial propagation of the SAM influence. Keywords Southern Hemisphere annular mode; Tibetan Plateau snow cover; Rossby wave source

  2. Meteorological influences on the interannual variability of meningitis incidence in northwest Nigeria.

    NASA Astrophysics Data System (ADS)

    Abdussalam, Auwal; Monaghan, Andrew; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Leckebusch, Gregor

    2013-04-01

    Northwest Nigeria is a region with high risk of bacterial meningitis. Since the first documented epidemic of meningitis in Nigeria in 1905, the disease has been endemic in the northern part of the country, with epidemics occurring regularly. In this study we examine the influence of climate on the interannual variability of meningitis incidence and epidemics. Monthly aggregate counts of clinically confirmed hospital-reported cases of meningitis were collected in northwest Nigeria for the 22-year period spanning 1990-2011. Several generalized linear statistical models were fit to the monthly meningitis counts, including generalized additive models. Explanatory variables included monthly records of temperatures, humidity, rainfall, wind speed, sunshine and dustiness from weather stations nearest to the hospitals, and a time series of polysaccharide vaccination efficacy. The effects of other confounding factors -- i.e., mainly non-climatic factors for which records were not available -- were estimated as a smooth, monthly-varying function of time in the generalized additive models. Results reveal that the most important explanatory climatic variables are mean maximum monthly temperature, relative humidity and dustiness. Accounting for confounding factors (e.g., social processes) in the generalized additive models explains more of the year-to-year variation of meningococcal disease compared to those generalized linear models that do not account for such factors. Promising results from several models that included only explanatory variables that preceded the meningitis case data by 1-month suggest there may be potential for prediction of meningitis in northwest Nigeria to aid decision makers on this time scale.

  3. Interannual growth dynamics of vegetation in the Kuparuk River watershed, Alaska based on the Normalized Difference Vegetation Index

    USGS Publications Warehouse

    Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, David C.

    2003-01-01

    Interannual above-ground production patterns are characterized for three tundra ecosystems in the Kuparuk River watershed of Alaska using NOAA-AVHRR Normalized Difference Vegetation Index (NDVI) data. NDVI values integrated over each growing season (SINDVI) were used to represent seasonal production patterns between 1989 and 1996. Spatial differences in ecosystem production were expected to follow north-south climatic and soil gradients, while interannual differences in production were expected to vary with variations in seasonal precipitation and temperature. It was hypothesized that the increased vegetation growth in high latitudes between 1981 and 1991 previously reported would continue through the period of investigation for the study watershed. Zonal differences in vegetation production were confirmed but interannual variations did not covary with seasonal precipitation or temperature totals. A sharp reduction in the SINDVI in 1992 followed by a consistent increase up to 1996 led to a further hypothesis that the interannual variations in SINDVI were associated with variations in stratospheric optical depth. Using published stratospheric optical depth values derived from the SAGE and SAGE-II satellites, it is demonstrated that variations in these depths are likely the primary cause of SINDVI interannual variability.

  4. Integration of ENSO Signal Power Through Hydrological Processes in the Little River Watershed

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Jones, J. W.; Bosch, D. D.; Cho, J.

    2011-12-01

    The relationship of the El-Nino/Southern Oscillation (ENSO) to hydrology is typically discussed in terms of the ability to separate significantly different hydrologic variable responses versus the anomaly that has taken place. Most of the work relating ENSO trends to proxy variables had been done on precipitation records until the mid 1990s, at which point increasing numbers of studies started to focus on ENSO relationships with streamflow as well as other environmental variables. The signals in streamflow are typically complex, representing the integration of both climatic, landscape, and anthropological responses that are able to strengthen the inherent ENSO signal in chaotic regional precipitation data. There is a need to identify climate non-stationarities related to ENSO and their links to watershed-scale outcomes. For risk-management in particular, inter-annual modes of climate variability and their seasonal expression are of interest. In this study, we analyze 36 years of historical monthly streamflow data from the Little River Watershed (LWR), a coastal plain ecosystem in Georgia, in conjunction with wavelet spectral analysis and modeling via the Soil & Water Assessment Tool (SWAT). Using both spectral and physical models allows us to identify the mechanism by which the ENSO signal power in surface and simulated groundwater flow is strengthened as compared to precipitation. The clear increase in the power of the inter-annual climate signal is demonstrated by shared patterns in water budget and exceedance curves, as well as in high ENSO related energy in the 95% significant wavelet spectra for each variable and the NINO 3.4 index. In the LRW, the power of the ENSO teleconnection is increased in both the observed and simulated stream flow through the mechanisms of groundwater flow and interflow, through confinement by a geological layer, the Hawthorn Formation. This non-intuitive relationship between ENSO signal strength and streamflow could prove to be helpful for making seasonal climate predictions in a geographic area with a weaker than desirable ENSO signal, as a predictive relationship could be found between streamflow or other proxy hydro-climatic variables.

  5. Reconstructing medieval climate in the tropical North Atlantic with corals from Anegada, British Virgin Islands

    NASA Astrophysics Data System (ADS)

    Kilbourne, K. H.; Xu, Y. Y.

    2014-12-01

    Resolving the patterns of climate variability during the Medieval Climate Anomaly (MCA) is key for exploring forced versus unforced variability during the last 1000 years. Tropical Atlantic climate is currently not well resolved during the MCA despite it being an important source of heat and moisture to the climate system today. To fill this data gap, we collected cores from Diploria strigosa corals brought onto the low-lying island of Anegada, British Virgin Islands (18.7˚N, 64.3˚S) during an overwash event and use paired analysis of Sr/Ca and δ18O in the skeletal aragonite to explore climate in the tropical Atlantic at the end of the MCA. The three sub-fossil corals used in this analysis overlap temporally and together span the years 1256-1372 C.E. An assessment of three modern corals from the study site indicates that the most robust features of climate reconstructions using Sr/Ca and δ18O in this species are the seasonal cycle and inter-annual variability. The modern seasonal temperature range is 2.8 degrees Celsius and the similarity between the modern and sub-fossil coral Sr/Ca indicates a similar range during the MCA. Today seasonal salinity changes locally are driven in large part by the migration of a regional salinity front. The modern corals capture the related large seasonal seawater δ18O change, but the sub-fossil corals indicate stable seawater δ18O throughout the year, supporting the idea that this site remained on one side of the salinity front continuously throughout the year. Inter-annual variability in the region is influenced by the cross-equatorial SST gradient, the North Atlantic Oscillation and ENSO. Gridded instrumental SST from the area surrounding Anegada and coral geochemical records from nearby Puerto Rico demonstrate concentrations of variance in specific frequency bands associated with these phenomena. The sub-fossil coral shows no concentration of variance in the modern ENSO frequency band, consistent with reduced ENSO variability found in central Pacific corals growing at the same time.

  6. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. I - Results of decadal integrations

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.; Semtner, A. J., Jr.

    1984-01-01

    Anomalies in ocean surface temperature have been identified as possible causes of variations in the climate of particular seasons or as a source of interannual climatic variability, and attempts have been made to forecast seasonal climate by using ocean temperatures as predictor variables. However, the seasonal atmospheric response to ocean temperature anomalies has not yet been systematically investigated with nonlinear models. The present investigation is concerned with ten-year integrations involving a model of intermediate complexity, the Held-Suarez climate model. The calculations have been performed to investigate the changes in seasonal climate which result from a fixed anomaly imposed on a seasonally varying, global ocean temperature field. Part I of the paper provides a report on the results of these decadal integrations. Attention is given to model properties, the experimental design, and the anomaly experiments.

  7. Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation

    USGS Publications Warehouse

    Hoell, Andrew; Barlow, Mathew; Wheeler, Mathew; Funk, Christopher C.

    2014-01-01

    The El Niño–Southern Oscillation (ENSO) is the leading mode of interannual variability, with global impacts on weather and climate that have seasonal predictability. Research on the link between interannual ENSO variability and the leading mode of intraseasonal variability, the Madden–Julian oscillation (MJO), has focused mainly on the role of MJO initiating or terminating ENSO. We use observational analysis and modeling to show that the MJO has an important simultaneous link to ENSO: strong MJO activity significantly weakens the atmospheric branch of ENSO. For weak MJO conditions relative to strong MJO conditions, the average magnitude of ENSO-associated tropical precipitation anomalies increases by 63%, and the strength of hemispheric teleconnections increases by 58%. Since the MJO has predictability beyond three weeks, the relationships shown here suggest that there may be subseasonal predictability of the ENSO teleconnections to continental circulation and precipitation.

  8. North American west coast summer low cloudiness: Broadscale variability associated with sea surface temperature

    NASA Astrophysics Data System (ADS)

    Schwartz, Rachel E.; Gershunov, Alexander; Iacobellis, Sam F.; Cayan, Daniel R.

    2014-05-01

    Six decades of observations at 20 coastal airports, from Alaska to southern California, reveal coherent interannual to interdecadal variation of coastal low cloudiness (CLC) from summer to summer over this broad region. The leading mode of CLC variability represents coherent variation, accounting for nearly 40% of the total CLC variance spanning 1950-2012. This leading mode and the majority of individual airports exhibit decreased low cloudiness from the earlier to the later part of the record. Exploring climatic controls on CLC, we identify North Pacific Sea Surface Temperature anomalies, largely in the form of the Pacific Decadal Oscillation (PDO) as well correlated with, and evidently helping to organize, the coherent patterns of summer coastal cloud variability. Links from the PDO to summer CLC appear a few months in advance of the summer. These associations hold up consistently in interannual and interdecadal frequencies.

  9. CMIP5 models' shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent

    NASA Astrophysics Data System (ADS)

    Lipat, Bernard R.; Tselioudis, George; Grise, Kevin M.; Polvani, Lorenzo M.

    2017-06-01

    This study analyzes Coupled Model Intercomparison Project phase 5 (CMIP5) model output to examine the covariability of interannual Southern Hemisphere Hadley cell (HC) edge latitude shifts and shortwave cloud radiative effect (SWCRE). In control climate runs, during years when the HC edge is anomalously poleward, most models substantially reduce the shortwave radiation reflected by clouds in the lower midlatitude region (LML; ˜28°S-˜48°S), although no such reduction is seen in observations. These biases in HC-SWCRE covariability are linked to biases in the climatological HC extent. Notably, models with excessively equatorward climatological HC extents have weaker climatological LML subsidence and exhibit larger increases in LML subsidence with poleward HC edge expansion. This behavior, based on control climate interannual variability, has important implications for the CO2-forced model response. In 4×CO2-forced runs, models with excessively equatorward climatological HC extents produce stronger SW cloud radiative warming in the LML region and tend to have larger climate sensitivity values than models with more realistic climatological HC extents.

  10. Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Parsons, Luke Alexander

    Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). In Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014). In Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limon) record indicates that precipitation variability in western Amazonia is 'red' (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly 'white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving how we simulate climate extremes as we enter a warmer (and often drier) world in the coming centuries; if climate models underestimate low-frequency variability, we will underestimate the risk of future abrupt change and extreme events, such as megadroughts.

  11. Contribution of climate-driven change in continental water storage to recent sea-level rise

    PubMed Central

    Milly, P. C. D.; Cazenave, A.; Gennero, C.

    2003-01-01

    Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277

  12. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction.

    PubMed

    Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew

    2017-12-20

    Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.

  13. Contribution of climate-driven change in continental water storage to recent sea-level rise

    USGS Publications Warehouse

    Milly, P.C.D.; Cazenave, A.; Gennero, M.C.

    2003-01-01

    Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993-1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system.

  14. Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand

    PubMed Central

    Barsugli, Joseph J.; Hobbins, Michael T.; Kumar, Sanjiv

    2017-01-01

    Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change. PMID:28301603

  15. Interannual Variability of the Bimodal Distribution of Summertime Rainfall Over Central America and Tropical Storm Activity in the Far-Eastern Pacific

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Starr, David OC. (Technical Monitor)

    2002-01-01

    The summer climate of southern Mexico and Central America is characterized by a mid summer drought (MSD), where rainfall is reduced by 40% in July as compared to June and September. A mid-summer reduction in the climatological number of eastern Pacific tropical cyclones has also been noted. Little is understood about the climatology and interannual variability of these minima. The present study uses a novel approach to quantify the bimodal distribution of summertime rainfall for the globe and finds that this feature of the annual cycle is most extreme over Pan America and adjacent oceans. One dominant interannual signal in this region occurs the summer before a strong winter El Nino/Southern Oscillation ENSO. Before El Nino events the region is dry, the MSD is strong and centered over the ocean, and the mid-summer minimum in tropical cyclone frequency is most pronounced. This is significantly different from Neutral cases (non-El Nino and non-La Nina) when the MSD is weak and positioned over the land bridge. The MSD is highly variable for La Nina years, and there is not an obvious mid-summer minimum in the number of tropical cyclones.

  16. Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon hindcasted by BCC_CSM1.1(m)

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Wu, Tongwen; Yang, Song; Li, Qiaoping; Cheng, Yanjie; Liang, Xiaoyun; Fang, Yongjie; Jie, Weihua; Nie, Suping

    2014-09-01

    Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of El Niño-Southern Oscillation with forecast time in the model.

  17. Revisiting drought impact on tropical forest photosynthesis: a novel multi-scale integrated approach reveals new insights

    NASA Astrophysics Data System (ADS)

    Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.

    2017-12-01

    A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi-scale integrated study aims to improve ecophysiological understanding of tropical forest response to interannual climate variability, highlighting the importance to combine state-of-the-art technology and theories to improve future projections of carbon dynamics in the tropics.

  18. Linkages Between Multiscale Global Sea Surface Temperature Change and Precipitation Variabilities in the US

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Heng-Yi

    1999-01-01

    A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.

  19. Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography

    NASA Astrophysics Data System (ADS)

    Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.

    2018-02-01

    The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.

  20. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  1. Numerical modelling assessment of climate-change impacts and mitigation measures on the Querença-Silves coastal aquifer (Algarve, Portugal)

    NASA Astrophysics Data System (ADS)

    Hugman, Rui; Stigter, Tibor; Costa, Luis; Monteiro, José Paulo

    2017-11-01

    Predicted changes in climate will lead to seawater intrusion in the Querença-Silves (QS) coastal aquifer (south Portugal) during the coming century if the current water-resource-management strategy is maintained. As for much of the Mediterranean, average rainfall is predicted to decrease along with increasing seasonal and inter-annual variability and there is a need to understand how these changes will affect the sustainable use of groundwater resources. A density-coupled flow and transport model of the QS was used to simulate an ensemble of climate, water-use and adaptation scenarios from 2010 to 2099 taking into account intra- and inter-annual variability in recharge and groundwater use. By considering several climate models, bias correction and recharge calculation methods, a degree of uncertainty was included. Changes in rainfall regimes will have an immediate effect on groundwater discharge; however, the effect on saltwater intrusion is attenuated by the freshwater-saltwater interfaces' comparatively slow rate of movement. Comparing the effects of adaptation measures demonstrates that the extent of intrusion in the QS is controlled by the long-term water budget, as the effectiveness of both demand and supply oriented measures is proportional to the change in water budget, and that to maintain the current position, average groundwater discharge should be in the order of 50 × 106 m3 yr-1.

  2. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.

  3. Confronting the demand and supply of snow seasonal forecasts for ski resorts : the case of French Alps

    NASA Astrophysics Data System (ADS)

    Dubois, Ghislain

    2017-04-01

    Alpine ski resorts are highly dependent on snow, which availability is characterized by a both a high inter-annual variability and a gradual diminution due to climate change. Due to this dependency to climatic resources, the ski industry is increasingly affected by climate change: higher temperatures limit snow falls, increase melting and limit the possibilities of technical snow making. Therefore, since the seventies, managers drastically improved their practices, both to adapt to climate change and to this inter-annual variability of snow conditions. Through slope preparation and maintenance, snow stock management, artificial snow making, a typical resort can approximately keep the same season duration with 30% less snow. The ski industry became an activity of high technicity The EUPORIAS FP7 (www.euporias.eu) project developed between 2012 and 2016 a deep understanding of the supply and demand conditions for the provision of climate services disseminating seasonal forecasts. In particular, we developed a case study, which allowed conducting several activities for a better understanding of the demand and of the business model of future services applied to the ski industry. The investigations conducted in France inventoried the existing tools and databases, assessed the decision making process and data needs of ski operators, and provided evidences that some discernable skill of seasonal forecasts exist. This case study formed the basis of the recently funded PROSNOW H2020 project. We will present the main results of EUPORIAS project for the ski industry.

  4. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  5. Linking the variability of atmospheric carbon monoxide to climate modes in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Buchholz, Rebecca; Monks, Sarah; Hammerling, Dorit; Worden, Helen; Deeter, Merritt; Emmons, Louisa; Edwards, David

    2017-04-01

    Biomass burning is a major driver of atmospheric carbon monoxide (CO) variability in the Southern Hemisphere. The magnitude of emissions, such as CO, from biomass burning is connected to climate through both the availability and dryness of fuel. We investigate the link between CO and climate using satellite measured CO and climate indices. Observations of total column CO from the satellite instrument MOPITT are used to build a record of interannual variability in CO since 2001. Four biomass burning regions in the Southern Hemisphere are explored. Data driven relationships are determined between CO and climate indices for the climate modes: El Niño Southern Oscillation (ENSO); the Indian Ocean Dipole (IOD); the Tropical Southern Atlantic (TSA); and the Southern Annular Mode (SAM). Stepwise forward and backward regression is used to select the best statistical model from combinations of lagged indices. We find evidence for the importance of first-order interaction terms of the climate modes when explaining CO variability. Implications of the model results are discussed for the Maritime Southeast Asia and Australasia regions. We also draw on the chemistry-climate model CAM-chem to explain the source contribution as well as the relative contributions of emissions and meteorology to CO variability.

  6. Adapting to climate variability and change: experiences from cereal-based farming in the central rift and Kobo Valleys, Ethiopia.

    PubMed

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions-the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers' perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers' perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.

  7. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia

    NASA Astrophysics Data System (ADS)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions—the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers’ perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers’ perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.

  8. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali

    Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less

  9. Interannual variability of the annual cycle of the surface temperature in the NCAR-NCEP reanalysis over the Northern Atlantic

    NASA Astrophysics Data System (ADS)

    Tesouro, M.; Gimeno, L.; Añel, J. A.; de La Torre, L.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    The seasonal cycle of the surface temperature in the Northern Atlantic was investigated with the aim of studying interannual variability. To know how seasonal cycle is influenced by main climate modes could be a powerful tool to improve our seasonal prediction abilities. Data consist of daily temperatures at 2 metres taken from the Climate Research Unit (University of East Anglic_UK) (www.cru.uea.ac.uk) corresponding to the region from 90 W to 90 E longitude and from 88.5 N to 21.9 N latitude and for the last 44 years. Daily data were adjusted to the following expression for each year: y=a+b*sin(((2*PI)/d)x+c) The amplitude of the wave and the first inflexion point were used as indicators of the seasonal cycle. Results show a negative correlation between the NAO index and the amplitude over Northern Europe and over Mexico and a positive correlation over Northern United States and Canada. They also show a negative correlation between the NAO index and the first inflexion point over Northern Europe.

  10. Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795

    PubMed Central

    Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.

    2014-01-01

    Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736

  11. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    NASA Astrophysics Data System (ADS)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  12. Predictability of the summer East Asian upper-tropospheric westerly jet in ENSEMBLES multi-model forecasts

    NASA Astrophysics Data System (ADS)

    Li, Chaofan; Lin, Zhongda

    2015-12-01

    The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint, from the perspective of upper-tropospheric circulation, to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts, initiated from 1 May, in the five state-of-the-art coupled models from ENSEMBLES during 1960-2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ, which reflects the models' performance in the first leading empirical orthogonal function (EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally, the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast, the models are powerless in describing the variation over the region north of the EAJ axis, associated with the meridional displacement, and interannual intensity change of the EAJ, the second leading EOF mode, meaning it still remains a challenge to better predict the EAJ and, subsequently, summer climate in East Asia, using current coupled models.

  13. Precipitation event tracking reveals that precipitation characteristics respond differently under seasonal, interannual, and anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Chen, C.; Chang, W.; Kong, W.; Wang, J.; Kotamarthi, V. R.; Stein, M.; Moyer, E. J.

    2017-12-01

    Change in precipitation characteristics is an especially concerning potential impact of climate change, and both model and observational studies suggest that increases in precipitation intensity are likely. However, studies to date have focused on mean accumulated precipitation rather than on the characteristics of individual events. We report here on a study using a novel rainstorm identification tracking algorithm (Chang et al. 2016) that allows evaluating changes in spatio-temporal characteristics of events. We analyze high-resolution precipitation from dynamically downscaled regional climate simulations over the continental U.S. (WRF driven by CCSM4) of present and future climate conditions. We show that precipitation events show distinct characteristic changes for natural seasonal and interannual variations and for anthropogenic greenhouse-gas forcing. In all cases, wetter seasons/years/future climate states are associated with increased precipitation intensity, but other precipitation characteristics respond differently to the different drivers. For example, under anthropogenic forcing, future wetter climate states involve smaller individual event sizes (partially offsetting their increased intensity). Under natural variability, however, wetter years involve larger mean event sizes. Event identification and tracking algorithms thus allow distinguishing drivers of different types of precipitation changes, and in relating those changes to large-scale processes.

  14. El Niño$-$Southern Oscillation frequency cascade

    DOE PAGES

    Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel

    2015-10-19

    The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less

  15. El Niño$-$Southern Oscillation frequency cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel

    The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less

  16. Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, C.D.; Hunter, D.E.; Fairbanks, R.G.

    1997-08-15

    The oxygen isotopic composition of a banded coral from the western equatorial Indian Ocean provides a 150-year-long history of the relation between the El Nino-Southern Oscillation (ENSO) phenomenon and the Asian monsoon. Interannual cycles in the coral time series were found to correlate with Pacific coral and instrumental climate records, suggesting a consistent linkage across ocean basins, despite the changing frequency and amplitude of the ENSO. However, decadal variability that is characteristic of the monsoon system also dominates the coral record, which implies important interactions between tropical and midlatitude climate variability. One prominent manifestation of this interaction is the strongmore » amplitude modulation of the quasi-biennial cycle. 26 refs., 4 figs.« less

  17. An interdecadal climate dipole between Northeast Asia and Antarctica over the past five centuries

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Chen, Deliang; Guo, Zhengtang; Zhao, Yan; Frank, David; He, Maosheng; Zhou, Feifei; Shi, Feng; Seppä, Heikki; Zhang, Peng; Neukom, Raphael

    2018-03-01

    Climate models emphasize the need to investigate inter-hemispheric climatic interactions. However, these models often underestimate the inter-hemispheric differences in climate change. With the wide application of reanalysis data since 1948, we identified a dipole pattern between the geopotential heights (GPHs) in Northeast Asia and Antarctica on the interdecadal scale in boreal summer. This Northeast Asia/Antarctica (NAA) dipole pattern is not conspicuous on the interannual scale, probably in that the interannual inter-hemispheric climate interaction is masked by strong interannual signals in the tropics associated with the El Niño-Southern Oscillation (ENSO). Unfortunately, the instrumental records are not sufficiently long-lasting to detect the interdecadal variability of the NAA. We thus reconstructed GPHs since 1565, making using the proxy records mostly from tree rings in Northeast Asia and ice cores from Antarctica. The strength of the NAA is time-varying and it is most conspicuous in the eighteenth century and after the late twentieth century. The strength of the NAA matches well with the variations of the solar radiation and tends to increase in along with its enhancement. In boreal summer, enhanced heating associated with high solar radiation in the Northern Hemisphere drives more air masses from the South to the North. This inter-hemispheric interaction is particularly strong in East Asia as a result of the Asian summer monsoon. Northeast Asia and Antarctica appear to be the key regions responsible for inter-hemispheric interactions on the interdecadal scale in boreal summer since they are respectively located at the front and the end of this inter-hemispheric trajectory.

  18. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Xu, Peng; Xu, Tengfei

    2017-01-01

    An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.

  19. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  20. Trace gas variability within the Asian monsoon anticyclone on intraseasonal and interannual timescales

    NASA Astrophysics Data System (ADS)

    Nützel, Matthias; Dameris, Martin; Fierli, Federico; Stiller, Gabriele; Garny, Hella; Jöckel, Patrick

    2016-04-01

    The Asian monsoon and the associated monsoon anticyclone have the potential of substantially influencing the composition of the UTLS (upper troposphere/lower stratosphere) and hence global climate. Here we study the variability of the Asian summer monsoon anticyclone in the UTLS on intraseasonal and interannual timescales using results from long term simulations performed with the CCM EMAC (ECHAM5/MESSy Atmospheric Chemistry). In particular, we focus on specified dynamics simulations (Newtonian relaxation to ERA-Interim data) covering the period 1980-2013, which have been performed within the ESCiMo (Earth System Chemistry integrated Modelling) project (Jöckel et al., GMDD, 2015). Our main focus lies on variability of the anticyclone's strength (in terms of potential vorticity, geopotential and circulation) and variability in trace gas signatures (O3, H2O) within the anticyclone. To support our findings, we also include observations from satellites (MIPAS, MLS). Our work is linked to the EU StratoClim campaign in 2016.

  1. Detection of Historical and Future Precipitation Variations and Extremes Over the Continental United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce T.

    2015-12-11

    Problem: The overall goal of this proposal is to detect observed seasonal-mean precipitation variations and extreme event occurrences over the United States. Detection, e.g. the process of demonstrating that an observed change in climate is unusual, first requires some means of estimating the range of internal variability absent any external drivers. Ideally, the internal variability would be derived from the observations themselves, however generally the observed variability is a confluence of both internal variability and variability in response to external drivers. Further, numerical climate models—the standard tool for detection studies—have their own estimates of intrinsic variability, which may differ substantiallymore » from that found in the observed system as well as other model systems. These problems are further compounded for weather and climate extremes, which as singular events are particularly ill-suited for detection studies because of their infrequent occurrence, limited spatial range, and underestimation within global and even regional numerical models. Rationale: As a basis for this research we will show how stochastic daily-precipitation models—models in which the simulated interannual-to-multidecadal precipitation variance is purely the result of the random evolution of daily precipitation events within a given time period—can be used to address many of these issues simultaneously. Through the novel application of these well-established models, we can first estimate the changes/trends in various means and extremes that can occur even with fixed daily-precipitation characteristics, e.g. that can occur simply as a result of the stochastic evolution of daily weather events within a given climate. Detection of a change in the observed climate—either naturally or anthropogenically forced—can then be defined as any change relative to this stochastic variability, e.g. as changes/trends in the means and extremes that could only have occurred through a change in the underlying climate. As such, this method is capable of detecting “hot spot” regions—as well as “flare ups” within the hot spot regions—that have experienced interannual to multi-decadal scale variations and trends in seasonal-mean precipitation and extreme events. Further by applying the same methods to numerical climate models we can discern the fidelity of the current-generation climate models in representing detectability within the observed climate system. In this way, we can objectively determine the utility of these model systems for performing detection studies of historical and future climate change.« less

  2. Effect of climate, intra and inter-annual variability, on nutrients emission (C,N, P) in stream water: lessons from an agricultural long term observatory of the temperate zone

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Remi, Dupas; Patrick, Durand; Ophélie, Fovet; Gerard, Gruau; Anne, Jaffrezic; Guillaume, Humbert; Philippe, Merot; Gu, Sen

    2016-04-01

    Agriculture greatly contributes to modify C, N and P cycles, particularly in animal breeding regions due to high inputs. Climatic conditions, intra and inter-annual variabilities, modify nutrient stream water emissions, acting in time on transfer and transformation, accumulation and mobilization processes, connecting and disconnecting in time different compartments (soil, riparian areas, groundwater). In agricultural catchments, nutrient perturbations are dominated by agricultural land use, and decoupling human activities and climate effects is far from easy. Climate change generally appears as a secondary driver compared to land use. If studied, generally only one nutrient is considered. Only long term, high frequency and multiple element data series can decouple these two drivers. The Kervidy-Naizin watershed belongs to the AgrHyS environmental research observatory (http://www6.inra.fr/ore_agrhys_eng), itself included in RBV (French catchment network of the CZO). On this catchment, 6 years of daily data on DOC, NO3, SRP, TP concentrations allow us to analyze the effect of seasonal and inter-annual climatic variabilities on water quality (C, N, P). Different papers have been published on the effect of climate on nitrate (Molenat et al, 2008), SRP and TP (Dupas et al, 2015) and DOC (Humbert et al, 2015). We will present first results comparing the effect of climate on these three major solute forms of C, N and P. While C and P dynamics are very close and controlled by fluctuation of water table downslope, i.e. in riparian areas, mobilizing C and P in time, nitrate dynamics is controlled by GW dynamics upslope acting as the major N reservoir. As example, the dryness conditions in summer appears a key factor of the C and P emissions in autumn. All the three solute forms interact when anoxic conditions are observed in riparian zones. These basic processes explain how climatic variability can influence and explain interactions between C, N and P emissions in stream water. These results underline three major lack in most of our observatories: high frequency data as flood event are important for C and P emissions; multiple element approach, as very few observatories have currently C, N and P, their solute and particulate forms; climate but also soil wetness, GW fluctuations explaining biotransformation and connection between reservoirs on catchments, so that linking hydrological and biogeochimical condition is necessary to explain export. These lacks of observations is a barrier to develop process based models assessing and predicting the effect of climate on water quality. References Dupas R., Gruau G., Sen Gu, Humbert G., Jaffrezic A., Gascuel-Odoux C., 2015. Groundwater control of biogeochemical processes causing phosphorus release from riparian wetlands. Water Research 84, 307-314 Humbert G., Jaffrezic A., Fovet O., Gruau G., Durand P., 2015. Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed. Water Resources Research. Molenat J., Gascuel-Odoux C., Ruiz L., Gruau G., 2008. Role of water table dynamics on stream nitrate export and concentration in agricultural headwater. Journal of Hydrology 348, 363- 378.

  3. Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients

    NASA Astrophysics Data System (ADS)

    Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio

    2017-04-01

    Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.

  4. Testing the Reconstruction Potential for North Pacific Circulation Anomalies inside the TraCE-21ka Paleoclimate Simulation

    NASA Astrophysics Data System (ADS)

    Elison Timm, O.; Flamholtz, W. M.; Li, S.; Massa, C.; Beilman, D. W.

    2016-12-01

    The motivation for this study was sparked by the idea that paleoclimate temperature and precipitation proxies provide sufficient information to make inferences about extratropical atmospheric circulation changes over the North Pacific during the Holocene. Typical targets for the circulation reconstruction problem include the strength and position of the Aleutian Low and the storm tracks. The reconstruction problem was investigated under idealized conditions using model simulation results from the TraCE-21ka transient climate simulation (http://www.cgd.ucar.edu/ccr/TraCE/), which covers the Last Glacial Maximum to present. It is demonstrated that modes of variability found on interannual to multidecadal timescales during the preindustrial era provide inadequate pattern for reconstructing long-term mean changes during the past 22,000 years. Our circulation reconstruction target was the geopotential height field at 500hPa (Z500) over the North Pacific Ocean during winter. We applied a field reconstruction method using Maximum Covariance Analysis (MCA). The MCA was applied to Z500 and surface temperatures as predictor information. The MCA was given model data containing interannual to multidecadal variability from the pre-industrial climate (1000BP-900BP). We worked with ten leading MCA modes in the reconstruction, which can reproduce about 90% of the covariability during the preindustrial period. Within the model simulation, we validated the field reconstructions against the model's circulation states over the last 22,000 years. Spatial skill scores show that the reconstruction skill drops significantly prior to the late Holocene. Reasons for the loss of reconstruction skill are due to the fact that externally forced climate changes do not resemble the internal modes of variability and that covariance between circulation and temperatures on interannual-multidecadal time scales changes with the background climate state. However, the reconstruction can be improved by including data from the early Holocene and the LGM era in the MCA. Based on these results, we advocate that paleoclimate model simulation results should be used define a set of first-guess pattern for the reconstruction of circulation anomalies from sparse and noisy proxy data.

  5. Combined role of heat and water stresses on wheat, maize and rice inter-annual variability and trend from 1980 to 2010.

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Ceglar, A., , Dr; Dentener, F., , Dr; van den Berg, M., , Dr; Toreti, A., , Dr

    2017-12-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat and maize. In this study, based on data derived from observations, we characterize and attribute the effects of these climate extremes on wheat and maize yield anomalies (at global and national scales) with respect to the mean trend from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (i.e. the Heat Magnitude Day, HMD, and the Standardized Precipitation Evapotranspiration Index, SPEI), we have developed a composite indicator (i.e. the Combined Stress Index, CSI) that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains the 42% and the 50% of the inter-annual wheat and maize production variabilities, respectively. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Compared to maize, and in contrast to common perception, water excess affects wheat production more than drought in several countries. The index definition can be modified in order to quantify the role of combined heat and water stress events occurrence in determining the recorded yield trends as well. Climate change is increasingly limiting maize yields in several countries, especially in Europe and China. A comparable opposite signal, albeit less statistically significant, is found for the USA, which is the main world producer. As for rice, we provide a statistical evidence pointing out to the importance of considering the interactions with the horizontal surface waters fluxes carried out by the rivers. In fact, compared to wheat and maize, the CSI statistical skills in explaining rice production variability are quite reduced. This issue is particularly relevant in paddy fields and flooded lowlands where rice is mainly grown. Therefore, we have modified the procedure including a proxy for the surface freshwater availability i.e. the Standardized River Discharge Index (SRDI), defined in this study. The modified CSI explains the 35% of the global rice production inter-annual anomalies.

  6. 300 Years of East African Climate Variability from Oxygen Isotopes in a Kenya Coral

    NASA Astrophysics Data System (ADS)

    Dunbar, R.

    2003-04-01

    Instrumental records of climate variability from the western Indian Ocean are relatively scarce and short. Here I present a monthly resolution stable isotopic record acquired from a large living coral head (Porites) from the Malindi Marine Reserve, Kenya (3^oS, 40^oE). The annual chronology is precise and is based on exceptionally clear high and low density growth band couplets. The record extends from 1696 to 1996 A.D., making it the longest coral climate record from the Indian Ocean and one of the longest available worldwide. We have analyzed the uppermost portion of the coral colony in triplicate, using 3 separate cores. This upper section, used for calibration purposes, also provides estimates of signal fidelity and noise in the climate recording system internal to the colony. Coral δ18O at this site primarily records SST; linear regression of monthly coral δ18O vs. SST yields a slope of -0.26 ppm δ18O per ^oC, and δ18O explains ˜57% of the SST variance. Additional isotopic variability may result from changes in seawater δ18O due to local runoff or regional evaporation/precipitation balance, but these changes are likely to be small because local rainfall δ18O is not strongly depleted relative to seawater and salinity gradients are small. The coral record indicates a clear warming trend of about 1.5^oC that accelerates in the latest 20th century, superimposed on strong decadal variability that persists throughout the record. In fact, δ18O values in the 1990's exceed the 300 year envelope (they are lower) and correspond with apparently unprecedented coral bleaching in coastal East Africa. The decadal component of the Malindi coral record reflects a regional climate signal spanning much of the western equatorial Indian Ocean. In general, East African SST and rainfall are better correlated with Pacific ENSO indicators than with the Indian Monsoon at all periods (inter-annual through multi-decadal) but the correlation weakens after 1975. One dramatic new result we report here is a strong indication of a major cool and dry period from 1750--1820 A.D. This is the single largest multi-decadal anomaly of the past 300 years and correlates perfectly in time with the historically and anecdotally defined Lapanarat Drought. Our results indicate a strong link between multi-decadal tropical cold SST anomalies And far-reaching continental droughts in East Africa. Causes and links to other climate recording systems will be explored. Interannual-decadal SST variations are strongly coherent with ENSO indices and other ENSO-sensitive coral records on decadal and interannual time scales. The decadal component of the Malindi coral record reflects a regional climate signal spanning much of the western equatorial Indian Ocean. Previous work has argued that this component likely reflects a monsoonal influence. However, decadal variance in both Malindi and Seychelles (Charles et al. 1997) coral records is more strongly coherent with ENSO indices than with the India or East Africa rain indices. The coherency of both coral records with Pacific indicators suggests instead that Indian Ocean variability reflects decadal ENSO-like variability originating in the Pacific. These records don't correlate significantly with the Pacific Decadal Oscillation implying a dominant role for the tropical Pacific (as opposed to extra-tropical regions) as a source of regional decadal variability in the western Indian Ocean. This work confirms that the tropical Pacific can act as an agent of decadal climate variability over a very large spatial scale.

  7. The PAGES 2k Network, Phase 3: Introduction, Goals and Call for Participation

    NASA Astrophysics Data System (ADS)

    McGregor, Helen; Phipps, Steven; von Gunten, Lucien; Martrat, Belen; Linderholm, Lars; Abram, Nerilie; Bothe, Oliver; Neukom, Raphael; St. George, Scott; Evans, Michael; Kaufman, Darrell; Goosse, Hugues; Turney, Chris

    2017-04-01

    The past 2000 years (the "2k" interval) provides critical context for recent anthropogenic forcing of the climate, baseline information about Earth's natural climate variability, opportunities to improve the interpretation of proxy observations, and evaluation of climate models. The PAGES 2k Network (2008-2013 Phase 1; 2014-2016 Phase 2) built regional and global surface temperature reconstructions for terrestrial regions and the oceans, and used comparison with realistically forced simulations to identify mechanisms of climate variation on interannual to bicentennial time scales. The goals of Phase 3 (2017-2019), which launches in May 2017 at the PAGES Open Science Meeting, are to: 1) Further understand the mechanisms driving regional climate variability and change on interannual to centennial time scales (Theme: "Climate Variability, Modes and Mechanisms"); 2) Reduce uncertainties in the interpretation of observations imprinted in paleoclimatic archives by environmental sensors (Theme: "Methods and Uncertainties"); and 3) Identify and analyse the extent of agreement between reconstructions and climate model simulations (Theme: "Proxy and Model Understanding") Research will be organized as a linked network of well-defined projects and targeted manuscripts, identified and led by 2k members. The 2k projects will focus on specific scientific questions aligned with Phase 3 goals, rather than being defined along regional boundaries. An enduring element from earlier phases of PAGES 2k will be a culture of collegiality, transparency, and reciprocity. Phase 3 seeks to stimulate community based projects and facilitate collaboration of researchers from different regions and career stages, drawing on breadth and depth of the global PAGES 2k community; support end-to-end workflow transparency and open data and knowledge access; and develop collaborations with other research communities and engage with stakeholders. If you would like to participate in PAGES 2k Phase 3 or receive updates, please join our mailing list, or speak to a coordinating committee member.

  8. Analysis of the climate variability on Lake Nasser evaporation based on the Bowen ratio energy budget method.

    PubMed

    Elsawwaf, Mohamed; Willems, Patrick

    2012-04-01

    Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity.

  9. Final Technical Report for DOE Award SC0006616

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew

    2015-08-01

    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less

  10. Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño

    NASA Astrophysics Data System (ADS)

    Ma, Jinfeng; Zhan, Haigang; Du, Yan

    2011-04-01

    Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.

  11. Preface and brief synthesis for the FOODBANCS volume

    NASA Astrophysics Data System (ADS)

    Smith, Craig R.; DeMaster, David J.

    2008-11-01

    In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.

  12. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    PubMed Central

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  13. Covariability of Climate and Streamflow in the Upper Rio Grande from Interannual to Interdecadal Timescales

    NASA Technical Reports Server (NTRS)

    Pascolini-Campbell, M.; Seager, Richard; Pinson, Ariane; Cook, Benjamin I.

    2017-01-01

    Study region: The Upper Rio Grande (URG) flows from its headwaters in Colorado, U.S., and provides an important source of water to millions of people in the U.S. states of Colorado, New Mexico, Texas, and also Mexico. Study focus: We reassess the explanatory power of the relationship of sea surface temperatures (SST) on URG streamflow variability on interannual to interdecadal timescales. We find a significant amount of the variance of spring-summer URG streamflow cannot be fully explained by SST. New hydrological insights: We find that the interdecadal teleconnection between SST and streamflow is more clear than on interannual timescales. The highest ranked years tend to be clustered during positive phases of the Pacific Decadal Oscillation (PDO). During the periods of decadal high flow (1900-1920, and 1979-1995), Pacific SST resembles a positive PDO pattern and the Atlantic a negative Atlantic Multidecadal Oscillation (AMO) pattern; an interbasin pattern shown in prior studies to be conducive to high precipitation and streamflow. To account for the part of streamflow variance not explained by SST, we analyze atmospheric Reanalysis data for the months preceding the highest spring-summer streamflow events. A variety of atmospheric configurations are found to precede the highest flow years through anomalous moisture convergence. This lack of consistency suggests that, on interannual timescales, weather and not climate can dominate the generation of high streamflow events.

  14. Interannual Variability of the Atlantic Water in the Arctic Basin

    DTIC Science & Technology

    1996-01-01

    3778-3784, 1987. 4. Anderson L.G., Bjork G., Holby 0., Jones E.P., Kattner G., Kolterman K.P., Liljebad B ., Lindegren R., Rudels B ., Swift J. Water...Res., part A, 36, pp. 475 - 482 , 1989. 6. Antonov J. Recent climatic changes of the vertical thermal structure of the North Atlantic Ocean and the...North Pacific Ocean. - J. of Climate, v.6, pp.1928-1942, 1993. 7. Blinov N.I. and Popkov S.N. About the heat exchange of Atlantic Waters in the Arctic

  15. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry-over effects from wintering grounds.

    PubMed

    Ockendon, Nancy; Leech, Dave; Pearce-Higgins, James W

    2013-01-01

    Long-distance migrants may be particularly vulnerable to climate change on both wintering and breeding grounds. However, the relative importance of climatic variables at different stages of the annual cycle is poorly understood, even in well-studied Palaearctic migrant species. Using a national dataset spanning 46 years, we investigate the impact of wintering ground precipitation and breeding ground temperature on breeding phenology and clutch size of 19 UK migrants. Although both spring temperature and arid zone precipitation were significantly correlated with laying date, the former accounted for 3.5 times more inter-annual variation. Neither climate variable strongly affected clutch size. Thus, although carry-over effects had some impact, they were weaker drivers of reproductive traits than conditions on the breeding grounds.

  16. Time-Variable Gravity from Satellite Laser-Ranging: The Low-Degree Components and Their Connections with Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Satellite laser-ranging (SLR) has been observing the tiny variations in Earth s global gravity for over 2 decades. The oblateness of the Earth's gravity field, J2, has been observed to undergo a secular decrease of J2 due mainly to the post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again towards normal. This anomaly signifies a large interannual change in global mass distribution. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. In fact, a strong correlation has been found between the J2 variability and the Pacific decadal oscillation. It is relatively more difficult to solve for corresponding signals in the shorter wavelength harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal harmonic components have significant interannual signal that appears to be related to mass transport related to climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a monthly time sequence of low-degree component map of the time-variable gravity complete through degree 4, and examine possible geophysical/climatic causes.

  17. Multidecadal Changes and Interannual Variation in Springtime Phenology of North American Temperate and Boreal Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Melaas, Eli K.; Sulla-Menashe, Damien; Friedl, Mark A.

    2018-03-01

    The timing of leaf emergence is an important diagnostic of climate change impacts on ecosystems. Here we present the first continental-scale analysis of multidecadal changes in the timing of spring onset across North American temperate and boreal forests based on Landsat imagery. Our results show that leaf emergence in Eastern Temperate Forests has consistently trended earlier, with a median change of about 1 week over the 30 year study period. Changes in leaf emergence dates in boreal forests were more heterogeneous, with some sites showing trends toward later dates. Interannual variability in leaf emergence dates was strongly sensitive to springtime accumulated growing degree days across all sites, and geographic patterns of changes in onset dates were highly correlated with changes in regional springtime temperatures. These results provide a refined characterization of recent changes in springtime forest phenology and improve understanding regarding the sensitivity of North American forests to climate change.

  18. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,

    2010-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.

  19. Mechanisms of Interannual Variations of the Meridional Overturning Circulation of the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng

    2008-01-01

    The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).

  20. Global Water Resources Under Future Changes: Toward an Improved Estimation

    NASA Astrophysics Data System (ADS)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From the estimation of present stress level (withdrawal to resource ratio), the months between January to May was found to have the highest number of population above water stress level, while the months between June to August having lower population in stress. The regions suffering from high seasonal variability are those of Asian monsoon zone, south-central Africa and central-east part of South America. Inter-annual variability, on the other hand, is dominant mostly along the Middle-east or Sahara regions and the western part of South America and Latin America. Virtual water trading among countries was estimated on per capita basis. It shows that many Middle east countries are able to compensate their water stress significantly through virtual water trading. The overall effect of climate change on lowering of river runoff mostly affected Europe, southern part of China and Latin America. India or Central Africa have better runoff availability under changing climate, but still subject to a higher water stress because of socio-economic factors like high population growth and expected increase in rate of water uses. Decrease in population as well as saturation level of maximum water uses along most European countries, on the contrary, relaxed the pressure of lowering river runoff, causing no significant change in future stress.

  1. High-resolution multi-model projections of onshore wind resources over Portugal under a changing climate

    NASA Astrophysics Data System (ADS)

    Nogueira, Miguel; Soares, Pedro M. M.; Tomé, Ricardo; Cardoso, Rita M.

    2018-05-01

    We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to - 10% (- 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to - 25% (- 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.

  2. Compound extremes of summer temperature and precipitation leading to intensified departures from natural variability.

    NASA Astrophysics Data System (ADS)

    Mahony, C. R.; Cannon, A. J.

    2017-12-01

    Climate change can drive local climates outside the range of their historical year-to-year variability, straining the adaptive capacity of ecological and human communities. We demonstrate that interactions between climate variables can produce larger and earlier departures from natural variability than is detectable in individual variables. For example, summer temperature (Tx) and precipitation (Pr) are negatively correlated in most terrestrial regions, such that interannual variability lies along an axis from warm-and-dry to cool-and-wet conditions. A climate change trend perpendicular to this axis, towards warmer-wetter conditions, can depart more quickly from the range of natural variability than a warmer-drier trend. This multivariate "departure intensification" effect is evident in all six CMIP5 models that we examined: 23% (9-34%) of the land area of each model exhibits a pronounced increase in 2σ extremesin the Tx-Pr regime relative to Tx or Pr alone. Observational data suggest that Tx-Pr correlations are sufficient to produce departure intensification in distinct regions on all continents. Departures from the historical Tx-Pr regime may produce ecological disruptions, such as in plant-pathogen interactions and human diseases, that could offset the drought mitigation benefits of increased precipitation. Our study alerts researchers and adaptation practitioners to the presence of multivariate climate change signals and compound extremes that are not detectable in individual climate variables.

  3. The Interplay of Internal and Forced Modes of Hadley Cell Expansion: Lessons from the Global Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Amaya, D. J.; Siler, N.; Xie, S. P.; Miller, A. J.

    2017-12-01

    The poleward branches of the Hadley Cells show a robust shift poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we us a joint EOF method to identify two distinct modes of Hadley Cell variability: (i) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (ii) an internal mode, which identify using a 1000-year pre-industrial control simulation with a global climate model. The forced mode is found to be closely related to the TOA radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is found to be essentially indistinguishable from the El Niño Southern Oscillation (ENSO). Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere (SH), but not in the Northern Hemisphere (NH), with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of Hadley Cell width change and improve our understanding of the interannual variability and long-term trend seen in observations.

  4. Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM)

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Wang, Bin; Xiang, Baoqiang; Li, Juan; Wu, Tianjie; Fu, Xiouhua; Wu, Liguang; Min, Jinzhong

    2015-05-01

    A coupled earth system model (ESM) has been developed at the Nanjing University of Information Science and Technology (NUIST) by using version 5.3 of the European Centre Hamburg Model (ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean (NEMO), and version 4.1 of the Los Alamos sea ice model (CICE). The model is referred to as NUIST ESM1 (NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring-fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific (CP)-ENSO and eastern Pacific (EP)-ENSO; however, the equatorial SST variability, biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden-Julian Oscillation (MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version (T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon-ENSO lead-lag correlation, spatial structures of the leading mode of the Asian-Australian monsoon rainfall variability, and the eastward propagation of the MJO.

  5. Long-term fluctuations in circalunar Beach aggregations of the box jellyfish Alatina moseri in Hawaii, with links to environmental variability.

    PubMed

    Chiaverano, Luciano M; Holland, Brenden S; Crow, Gerald L; Blair, Landy; Yanagihara, Angel A

    2013-01-01

    The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8-12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998- Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8-12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998-2001; 2006-2011) and decrease (2001-2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach.

  6. Comparison of CH4 Emission and CO2 Exchange Between 2013 and 2014 in a Subarctic Peatland

    NASA Astrophysics Data System (ADS)

    Clarizia, P. E.; Verbeke, B. A.; McCalley, C. K.; Werner, S. L.; Malhotra, A.; Burke, S. A.; Crill, P. M.; Varner, R. K.

    2014-12-01

    One of the major concerns with climate change is the potential feedback from the emission of greenhouse gases, carbon dioxide (CO2) and methane (CH4), from high latitude thawing organic soils. With increasing temperatures in Arctic regions, thawing permafrost palsas transition to wetter sedge-dominated wetlands, which account for 20-39% of global atmospheric CH4 burden. This rapid change in habitat raises the following question: how do CO2 exchange rates and CH4 emissions change along a gradient of permafrost thaw and what is the interannual variability in these fluxes? To address this question, we measured CO2 exchange, CH4 flux, vegetative type and vascular green area (VGA) along a thaw gradient during July of 2013 and 2014 in Stordalen Mire, Sweden. Environmental variables showed that 2013 and 2014 were climatically different; higher photosynthetically active radiation (PAR) and measurements of water table level and temperature showed that 2014 was warmer and drier than 2013. Warmer conditions led to higher rates of respiration and gross primary productivity (GPP), with the largest increases observed in the palsa sites, likely due to an increase in mean temperature. Methane fluxes showed a less consistent response to climate differences between years, fluxes were higher in 2014 in the mostly inundated Eriophorum angustifolium dominated site and lower in the drier Sphagnum and Eriophorum vaginatum dominated sites. Results of this study highlight the need for accounting for interannual variability when predicting greenhouse gas emissions during permafrost thaw.

  7. Long-Term Fluctuations in Circalunar Beach Aggregations of the Box Jellyfish Alatina moseri in Hawaii, with Links to Environmental Variability

    PubMed Central

    Chiaverano, Luciano M.; Holland, Brenden S.; Crow, Gerald L.; Blair, Landy; Yanagihara, Angel A.

    2013-01-01

    The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8–12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998– Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8–12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998–2001; 2006–2011) and decrease (2001–2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach. PMID:24194856

  8. Interannual variability of the global net radiation balance and its consequence on global energy transport

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Sohn, B. J.

    1990-01-01

    Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.

  9. Indicators of climate change for the African continent derived from radiosondes

    NASA Astrophysics Data System (ADS)

    Añel, J. A.; Gimeno, L.; Tesouro, M.; de La Torre, L.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    Here we study the interannual variability of different parameters calculated from radiosonde data in the African continent. Data used in the analysis were a subset of the National Climatic Data Center Upper Air Digital Files of the National Oceanic and Atmospheric Administration (USA) (CARDS). This work show the climatic trends in the studied region during the period and from 1973 to 1998). Results show that radiosonde stations were useful for this analysis in the African continent. Main oscillations and the relationship with the Northern Annular Mode and El Niño-Southern Oscillation were also studied.

  10. The Role of Lightning in Controlling Interannual Variability of Tropical Tropospheric Ozone and OH and its Implications for Climate

    NASA Technical Reports Server (NTRS)

    Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.; Hudman, Rynda C.; Koshak, William J.

    2012-01-01

    Nitrogen oxides (NO(x) = NO + NO2) produced by lightning make a major contribution to the production of the dominant tropospheric oxidants (OH and ozone). These oxidants control the lifetime of many trace gases including long-lived greenhouse gases, and control the source-receptor relationship of inter-hemispheric pollutant transport. Lightning is affected by meteorological variability, and therefore represents a potentially important tropospheric chemistry-climate feedback. Understanding how interannual variability (IAV) in lightning affects IAV in ozone and OH in the recent past is important if we are to predict how oxidant levels may change in a future warmer climate. However, lightning parameterizations for chemical transport models (CTMs) show low skill in reproducing even climatological distributions of flash rates from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) satellite instruments. We present an optimized regional scaling algorithm for CTMs that enables sufficient sampling of spatiotemporally sparse satellite lightning data from LIS to constrain the spatial, seasonal, and interannual variability of tropical lightning. We construct a monthly time series of lightning flash rates for 1998-2010 and 35degS-35degN, and find a correlation of IAV in total tropical lightning with El Nino. We use the IAV-constraint to drive a 9-year hindcast (1998-2006) of the GEOS-Chem 3D chemical transport model, and find the increased IAV in LNO(x) drives increased IAV in ozone and OH, improving the model fs ability to simulate both. Although lightning contributes more than any other emission source to IAV in ozone, we find ozone more sensitive to meteorology, particularly convective transport. However, we find IAV in OH to be highly sensitive to lightning NO(x), and the constraint improves the ability of the model to capture the temporal behavior of OH anomalies inferred from observations of methyl chloroform and other gases. The sensitivity of OH is explained using photochemical reaction rates which show a "magnification" effect of the initial lightning NO perturbation on OH primary production, HO(x) recycling, and OH loss frequencies. This influence on OH may represent a negative feedback, if lightning increases in a warming world..

  11. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain)

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.

    2015-04-01

    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of VE to annual NEE reached its highest value. There were also positive correlations with annual evapotranspiration (R = 0.71 for Reco and 0.64 for GPP), which explained 51% and 42% of the variance in Reco and GPP, respectively. Despite the variability in CO2 fluxes depending on the year, we can conclude that this ecosystem is approximately carbon neutral over a decade. Our results highlight the importance of considering interannual variability in CO2 fluxes, and also the need to account for abiotic contributions to the C balance in semiarid ecosystems, especially during dry years, to better predict the roles of these ecosystems in the global C balance.

  12. Impacts of wildfires on interannual trends in land surface phenology: an investigation of the Hayman Fire

    NASA Astrophysics Data System (ADS)

    Wang, Jianmin; Zhang, Xiaoyang

    2017-05-01

    Land surface phenology (LSP) derived from satellite data has been widely associated with recent global climate change. However, LSP is frequently influenced by land disturbances, which significantly limits our understanding of the phenological trends driven by climate change. Because wildfire is one of the most significant disturbance agents, we investigated the influences of wildfire on the start of growing season (SOS) and the interannual trends of SOS in the Hayman Fire area that occurred in 2002 in Colorado using time series of daily MODIS data (2001-2014). Results show that the Hayman Fire advanced the area-integrated SOS by 15.2 d and converted SOS from a delaying trend of 3.9 d/decade to an advancing trend of -1.9 d/decade during 2001-2014. The fire impacts on SOS increased from low burn severity to high burn severity. Moreover, the rate of increase of annual maximum and minimum EVI2 from 2003-2014 reflects that vegetation greenness could recover to pre-fire status in 2022 and 2053, respectively, which suggests that the fire impacts on the satellite-derived SOS variability and the interannual trends should continue in the next few decades.

  13. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan

    2018-02-01

    Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.

  14. Regional and climate forcing on forage fish and apex predators in the California Current: new insights from a fully coupled ecosystem model.

    NASA Astrophysics Data System (ADS)

    Fiechter, J.; Rose, K.; Curchitser, E. N.; Huckstadt, L. A.; Costa, D. P.; Hedstrom, K.

    2016-12-01

    A fully coupled ecosystem model is used to describe the impact of regional and climate variability on changes in abundance and distribution of forage fish and apex predators in the California Current Large Marine Ecosystem. The ecosystem model consists of a biogeochemical submodel (NEMURO) embedded in a regional ocean circulation submodel (ROMS), and both coupled with a multi-species individual-based submodel for two forage fish species (sardine and anchovy) and one apex predator (California sea lion). Sardine and anchovy are specifically included in the model as they exhibit significant interannual and decadal variability in population abundances, and are commonly found in the diet of California sea lions. Output from the model demonstrates how regional-scale (i.e., upwelling intensity) and basin-scale (i.e., PDO and ENSO signals) physical processes control species distributions and predator-prey interactions on interannual time scales. The results also illustrate how variability in environmental conditions leads to the formation of seasonal hotspots where prey and predator spatially overlap. While specifically focused on sardine, anchovy and sea lions, the modeling framework presented here can provide new insights into the physical and biological mechanisms controlling trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.

  15. The CH2O column as a possible constraint on methane oxidation

    NASA Astrophysics Data System (ADS)

    Valin, L. C.; Fiore, A. M.; Lin, M.

    2013-12-01

    We explore the potential for space-based measurements of the CH2O column to quantify variations of methane oxidation in the remote atmosphere due to changes in climate (e.g., T, H2O, stratospheric O3) and atmospheric composition (e.g., NOxO, O3, CO, CH4). We investigate the variability of methane oxidation and the formaldehyde column using available global simulations (MOZART-2 chemistry-transport model, GFDL AM3 climate-chemistry model). Over a large region (135° - 175° W; 0° - 16° S), the rate of methane oxidation simulated in the models varies intraseasonally (×10%), seasonally (×20%) and interannually (×5%), and is well correlated with the simulated variability of the CH2O column (R2 = 0.75; ~1x1015 molecules cm-2). The precision of a single space-based measurement is approximately 1×1016 molecules cm-2, an order of magnitude larger than the simulated variability of the CH2O column. However, in a large region such as the tropical Pacific, UV/Vis spectrometers are capable of making thousands of measurements daily, enough sampling to theoretically increase the precision by √N, such that variations on the order of 1×1015 molecules cm-2 should be observable on intraseasonal and interannual timescales.

  16. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity.

    PubMed

    Musavi, Talie; Migliavacca, Mirco; Reichstein, Markus; Kattge, Jens; Wirth, Christian; Black, T Andrew; Janssens, Ivan; Knohl, Alexander; Loustau, Denis; Roupsard, Olivier; Varlagin, Andrej; Rambal, Serge; Cescatti, Alessandro; Gianelle, Damiano; Kondo, Hiroaki; Tamrakar, Rijan; Mahecha, Miguel D

    2017-01-23

    The total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPP sat ), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO 2 . Given the importance of understanding the IAV in CO 2 fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPP sat in forest ecosystems. Our results show that while the IAV in GPP sat within sites is closely related to air temperature and soil water availability fluctuations, the magnitude of IAV in GPP sat is related to stand age and biodiversity (R 2 = 0.55, P < 0.0001). We find that the IAV of GPP sat is greatly reduced in older and more diverse forests, and is higher in younger forests with few dominant species. Older and more diverse forests seem to dampen the effect of climate variability on the carbon cycle irrespective of forest type. Preserving old forests and their diversity would therefore be beneficial in reducing the effect of climate variability on Earth's forest ecosystems.

  17. Climatic and ecological controls on variability of fire activity in the tropics and subtropics derived from satellite data

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Gobron, N.; Dolman, H. J.

    2006-12-01

    El Nino-Southern Oscillation-linked variations in biomass burning emissions substantially contribute to interannual variability in the growth rate of many trace gases, yet ecological and climatic controls on fire activity are not well known. We used satellite-derived datasets of biomass burning, precipitation rates, and net primary production (NPP) in the tropics and subtropics during 1998 through 2005 to investigate the factors that regulate interannual variability in fire emissions. In many xeric regions that have low levels of NPP, we found a positive relationship between precipitation, NPP, and fire activity, implying that fire in these regions is limited to years when precipitation allows for the build-up of sufficient biomass or fuel loads to allow fire spread. This was most evident in regions where mean annual precipitation was below approximately 600 mm / year, including xeric regions of Africa and Northern Australia. In contrast, in areas of the tropics undergoing active deforestation, including, Indonesia, Central America, and parts of South America we found a significant negative correlation between precipitation and fire activity during the dry season. This implies that human use of fire in these regions in the deforestation process is at least partly limited by periods when high moisture levels limit ignition and fire activity.

  18. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  19. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ben; Zhang, Yaocun; Qian, Yun

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increasedmore » precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.« less

  20. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  1. Global land-atmosphere coupling associated with cold climate processes

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  2. Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature

    NASA Technical Reports Server (NTRS)

    Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning; hide

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  3. Interannual to Decadal SST Variability in the Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wang, G.; Newman, M.; Han, W.

    2017-12-01

    The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.

  4. Small-scale variations of climate change in mountainous forested terrain - a regional study from H.J. Andrews Long Term Ecological Research site in Oregon, USA

    NASA Astrophysics Data System (ADS)

    Honzakova, Katerina; Hoffmann, Peter; Jones, Julia; Thomas, Christoph

    2017-04-01

    There has been conflicting evidence as to whether high elevations are experiencing more pronounced climate warming than lower elevations in mountainous regions. In this study we analyze temperature records from H.J. Andrews Long Term Ecological Research, Oregon, USA and several nearby areas, comprising together 28 stations located in Cascade Mountains. The data, starting in 1958, are first checked for quality and homogenized using the Standard Normal Homogeneity Test. As a reference, composite climate time series based on the Global Historic Climate Network is created and together with cross-referencing against station records used to correct breaks and shifts in the data. In the next step, we investigate temperature patterns of the study site from 1958 to 2016 and compare them for valley and hill stations. In particular, we explore seasonality and inter-annual variability of the records and trends of the last day of frost. Additionally, 'cold' sums (positive and negative) are calculated to obtain a link between temperature and ecosystems' responses (such as budbreaks). So far, valley stations seem to be more prone to climate change than ridge or summit stations, contrary to current thinking. Building on previous knowledge, we attempt to provide physical explanations for the temperature records, focusing on wind patterns and associated phenomena such as cold air drainage and pooling. To aid this we analyze wind speed and direction data available for some of the stations since 1996, including seasonality and inter-annual variability of the observed flows.

  5. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  6. Precipitation dynamics and chemical properties in tropical mountain forests of Ecuador

    NASA Astrophysics Data System (ADS)

    Rollenbeck, R.; Fabian, P.; Bendix, J.

    2006-01-01

    Terrestrial ecosystems in southern Ecuador are strongly affected by interannual climate variations. This holds especially true for the episodic El Niño events, which cause above-normal precipitation in the coastal region of Ecuador and below normal values in the eastern provinces of the Amazon basin (Bendix, 1999). For the transitional zone between these two extremes, which consists mainly of the andean slopes and larger interandean basins the effect on interannual climate variability is not well known. The PREDICT project monitors regional climate in the provinces of Loja and Zamora-Chinchipe (4° S/79° W), where a strong gradients of precipitation are observed. Between the eastern slopes of the Cordillera Real and the dry valley of Catamayo, which are only 70km apart, rain totals drop from over 4000 mm to only 300 mm per year. These two extremes represent the both sides of the Andean mountain chain and are completely covered by the study area, which is 120 km in diameter. Methods used are a combination of point measurements (climate stations) and remote sensing devices (weather radar, satellite imagery), which enable a high-resolution real-time observation of rain distribution and underlying processes. By this, ideal conditions are given to monitor a potential shift of the transition zone between below-average and above-average rainfall situated in this region, if another ENSO-anomaly occurs. Furthermore variability of atmospheric nutrient inputs is analysed within the scope of the project, to assess further impacts on this ecosystem.

  7. Climate, Water, and Human Health: Large Scale Hydroclimatic Controls in Forecasting Cholera Epidemics

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2009-12-01

    Despite ravaging the continents through seven global pandemics in past centuries, the seasonal and interannual variability of cholera outbreaks remain a mystery. Previous studies have focused on the role of various environmental and climatic factors, but provided little or no predictive capability. Recent findings suggest a more prominent role of large scale hydroclimatic extremes - droughts and floods - and attempt to explain the seasonality and the unique dual cholera peaks in the Bengal Delta region of South Asia. We investigate the seasonal and interannual nature of cholera epidemiology in three geographically distinct locations within the region to identify the larger scale hydroclimatic controls that can set the ecological and environmental ‘stage’ for outbreaks and have significant memory on a seasonal scale. Here we show that two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large scale climatic controls prevail in the region. An implication of our findings is that extreme climatic events such as prolonged droughts, record floods, and major cyclones may cause major disruption in the ecosystem and trigger large epidemics. We postulate that a quantitative understanding of the large-scale hydroclimatic controls and dominant processes with significant system memory will form the basis for forecasting such epidemic outbreaks. A multivariate regression method using these predictor variables to develop probabilistic forecasts of cholera outbreaks will be explored. Forecasts from such a system with a seasonal lead-time are likely to have measurable impact on early cholera detection and prevention efforts in endemic regions.

  8. Building Climate Resilience in the Blue Nile/Abay Highlands: A Role for Earth System Sciences

    PubMed Central

    Zaitchik, Benjamin F.; Simane, Belay; Habib, Shahid; Anderson, Martha C.; Ozdogan, Mutlu; Foltz, Jeremy D.

    2012-01-01

    The Blue Nile (Abay) Highlands of Ethiopia are characterized by significant interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available Earth System Science (ESS) information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible uncertainties. A critical challenge for ESS, then, is to generate and to communicate meaningful information for climate resilient development in the context of a highly uncertain climate forecast. Here we report on a framework for applying ESS to climate resilient development in the Abay Highlands, with a focus on the challenge of reducing land degradation. PMID:22470302

  9. Quantifying the Interannual Variability in Global Carbon Fluxes from Heterotrophic Respiration using a Testbed and Pulse Response Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Basile, S.; Wieder, W. R.; Hartman, M. D.; Keppel-Aleks, G.

    2017-12-01

    The atmospheric growth rate of carbon dioxide (CO2) varies interannually and is strongly correlated with climate factors, including temperature and drought. These climate drivers affect vegetation productivity and the rate of respiration of organic matter to CO2 (heterotrophic respiration). Here we quantified the interannual variability in global carbon fluxes from heterotrophic respiration and their relationship to climate drivers. We used a novel testbed approach to simulate respiration, then simulated the imprint that these modeled heterotrophic fluxes have on atmospheric CO2 using an idealized pulse response model. Two of the testbed formulations (MIMICS and CORPSE) are microbially explicit by incorporation of microbial physiological tradeoffs and microbial activity in soil near fine roots (rhizosphere soils), respectively, while the third model (CASA) uses a CENTURY-like microbially implicit framework. Modeled respiration exhibited subtle differences, with MIMICS showing the largest seasonal amplitude in the Northern Hemisphere and the strongest correlation with global temperature variations. At Mauna Loa (MLO) the simulated seasonal CO2 amplitude in response to global heterotrophic respiration ranged by a factor of 1.5 across the models with the MIMICS and CASA models producing the higher amplitude responses between 1987 and 2006. The seasonal CO2 amplitude at MLO varied by about 5% interannually, with the largest variation in the MIMICS model. In the Northern Hemisphere there was a similar response range in average peak-to-trough seasonal CO2 but all models showed slightly higher amplitude values. Comparatively in the Northern Hemisphere, the average seasonal CO2 amplitude in response to respiration ranged between 30%-41% of the seasonal CO2 amplitude in response to net primary productivity. We expect that exploring the imprint of heterotrophic respiration on atmospheric CO2 from these three different models will improve our understanding of the imprint that heterotrophic respiration imparts on atmospheric data. The aim of this work is to ultimately yield an approach for combining CO2 observations with remote sensing-based observations of terrestrial productivity to produce regional constraints on heterotrophic respiration.

  10. Interannual Modulation of Subtropical Atlantic Boreal Summer Dust Variability by ENSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFlorio, Mike; Goodwin, Ian D.; Cayan, Dan

    2016-01-01

    Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available observations and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Niño- Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, onemore » of the few sites having a multi-decadal observed record. During strong La Niña summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the crossbasin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and may be modulated by the North Atlantic Oscillation (NAO). Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records.« less

  11. Surfing wave climate variability

    NASA Astrophysics Data System (ADS)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  12. Use of a Principal Components Analysis for the Generation of Daily Time Series.

    NASA Astrophysics Data System (ADS)

    Dreveton, Christine; Guillou, Yann

    2004-07-01

    A new approach for generating daily time series is considered in response to the weather-derivatives market. This approach consists of performing a principal components analysis to create independent variables, the values of which are then generated separately with a random process. Weather derivatives are financial or insurance products that give companies the opportunity to cover themselves against adverse climate conditions. The aim of a generator is to provide a wider range of feasible situations to be used in an assessment of risk. Generation of a temperature time series is required by insurers or bankers for pricing weather options. The provision of conditional probabilities and a good representation of the interannual variance are the main challenges of a generator when used for weather derivatives. The generator was developed according to this new approach using a principal components analysis and was applied to the daily average temperature time series of the Paris-Montsouris station in France. The observed dataset was homogenized and the trend was removed to represent correctly the present climate. The results obtained with the generator show that it represents correctly the interannual variance of the observed climate; this is the main result of the work, because one of the main discrepancies of other generators is their inability to represent accurately the observed interannual climate variance—this discrepancy is not acceptable for an application to weather derivatives. The generator was also tested to calculate conditional probabilities: for example, the knowledge of the aggregated value of heating degree-days in the middle of the heating season allows one to estimate the probability if reaching a threshold at the end of the heating season. This represents the main application of a climate generator for use with weather derivatives.


  13. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America.

    PubMed

    Biederman, Joel A; Scott, Russell L; Goulden, Michael L; Vargas, Rodrigo; Litvak, Marcy E; Kolb, Thomas E; Yepez, Enrico A; Oechel, Walter C; Blanken, Peter D; Bell, Tom W; Garatuza-Payan, Jaime; Maurer, Gregory E; Dore, Sabina; Burns, Sean P

    2016-05-01

    Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis-ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm(-2) yr(-1). Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change. © 2016 John Wiley & Sons Ltd.

  14. Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: global estimation and covariation with climate.

    PubMed

    Liang, Wei; Lü, Yihe; Zhang, Weibin; Li, Shuai; Jin, Zhao; Ciais, Philippe; Fu, Bojie; Wang, Shuai; Yan, Jianwu; Li, Junyi; Su, Huimin

    2017-07-01

    Grassland ecosystems act as a crucial role in the global carbon cycle and provide vital ecosystem services for many species. However, these low-productivity and water-limited ecosystems are sensitive and vulnerable to climate perturbations and human intervention, the latter of which is often not considered due to lack of spatial information regarding the grassland management. Here by the application of a model tree ensemble (MTE-GRASS) trained on local eddy covariance data and using as predictors gridded climate and management intensity field (grazing and cutting), we first provide an estimate of global grassland gross primary production (GPP). GPP from our study compares well (modeling efficiency NSE = 0.85 spatial; NSE between 0.69 and 0.94 interannual) with that from flux measurement. Global grassland GPP was on average 11 ± 0.31 Pg C yr -1 and exhibited significantly increasing trend at both annual and seasonal scales, with an annual increase of 0.023 Pg C (0.2%) from 1982 to 2011. Meanwhile, we found that at both annual and seasonal scale, the trend (except for northern summer) and interannual variability of the GPP are primarily driven by arid/semiarid ecosystems, the latter of which is due to the larger variation in precipitation. Grasslands in arid/semiarid regions have a stronger (33 g C m -2  yr -1 /100 mm) and faster (0- to 1-month time lag) response to precipitation than those in other regions. Although globally spatial gradients (71%) and interannual changes (51%) in GPP were mainly driven by precipitation, where most regions with arid/semiarid climate zone, temperature and radiation together shared half of GPP variability, which is mainly distributed in the high-latitude or cold regions. Our findings and the results of other studies suggest the overwhelming importance of arid/semiarid regions as a control on grassland ecosystems carbon cycle. Similarly, under the projected future climate change, grassland ecosystems in these regions will be potentially greatly influenced. © 2017 John Wiley & Sons Ltd.

  15. Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Towards the development of a seasonal prediction tool

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.

    2013-12-01

    Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern tropical Pacific SST as the high-frequency predictor and antecedent accumulated precipitation over the Arabian Peninsula and North Africa as low-frequency predictors, the predicted seasonal dust activity over Saudi Arabia is well correlated with the original time series (correlation above 0.6).

  16. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  17. Factorial inferential grid grouping and representativeness analysis for a systematic selection of representative grids

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao

    2017-08-01

    A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.

  18. Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Stewart, R.; Wang, H.; Barlow, M.; Berbery, H.; Cai, W.; Hoerling, M.; Kanikicharla, K.; Koster, R.; Lyon, B.; hide

    2016-01-01

    Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST anomalies), land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally-focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, as well as central and eastern Canada stand out as regions with little SST-forced impacts on precipitation interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s 'climate shifts' in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land/atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

  19. Sensitivity of the Tropical Atmosphere Energy Balance to ENSO-Related SST Changes: How Well Can We Quantify Hydrologic and Radiative Responses?

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system-- changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). Our analysis makes use a number of data bases, principally those derived from space-based measurements, to explore systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes, A reexamination of the Langley 8-Year Surface Radiation Budget data set reveals errors in the surface longwave emission due to use of biased SSTs. Subsequent correction allows subsequent use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative beating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from the da Silva, Young, Levitus COADS analysis. The overall results from our analysis suggest an increase (decrease) of the hydrologic cycle during ENSO warm (cold) events at the rate of about 5 Wm-2 per K of SST change. This rate is slightly less than that which would be expected for constant relative humidity over the tropical oceans. Corresponding radiative fluxes seem systematically smaller resulting in a enhanced (suppressed) export of energy from the tropical ocean regions during warm (cold) SST events. Discussion of likely errors due to sampling and measurement strategies are discussed along with their impacts on our conclusions.

  20. Impact of external forcing on simulated hydroclimate from interannual to multicentennial timescales

    NASA Astrophysics Data System (ADS)

    Roldán, Pedro; Fidel González-Rouco, Jesús; Melo-Aguilar, Camilo

    2017-04-01

    During the last millennium, external forcing experienced important changes in different timescales. It has been demostrated that these changes had an impact on climate. In particular, changes in solar activity, volcanic eruptions and emissions of greenhouse gases are related to short-term and long-term changes in global temperatures, with situations of higher total external forcing generally related with higher global and hemispherical temperatures, and conversely with situations of lower forcing. This connection is clearly observed in climate simulations from different models and in proxy-based reconstructions. The changes in external forcing can also explain certain changes in atmospheric dynamics and hydroclimate, although in this case it is in general more difficult to trace causality arguments. Analyses based on simulations from two different models (ECHO-G and CESM-LME) have been performed, to assess the impact of external forcing on climate in timescales ranging from interannual to multicentennial. Various climatic variables have been analysed, including temperature, sea level pressure, surface wind, precipitation and soil moisture. For interannual timescales, composites have been defined with the years before and after the main volcanic eruptions of the last millennium as well as the minima of solar activity during this period. For longer timescales, a Principal Component analysis has been performed, to try to separate the signal of external forcing from that of internal variability. This has been done for the whole millennium and for the pre-industrial period, to assess the difference between natural and anthropogenic forcing. For multicentennial timescales, composites for the Medieval Climate Anomaly (MCA; ca. 950-1250), the Little Ice Age (LIA; ca. 1450-1850) and the 20th Century have been compared. These three periods were respectively characterised by higher, lower and higher forcing. This allows to assess the contribution of external forcing to the evolution of climate over longer time intervals. These analyses have shown that external forcing is an important factor in the evolution of the simulated hydroclimate of the last millennium. In the short-term, it has been observed that volcanic eruptions and other situations of extreme forcing significantly alter the global precipitation in the subsequent years. In the long-term, variations of external forcing can be related to changes in atmospheric dynamics and in hydroclimate. However, this impact is not homogeneously distributed. There are areas where hydroclimate is mainly influenced by the external forcing and other areas more influenced by internal variability, with spatial decorrelation being higher in precipitation or drought related variables than in temperature. The regional sensitivity to external forcing of hydroclimate is model and, to a lesser degree, simulation dependent.

  1. Climate simulations and projections with a super-parameterized climate model

    DOE PAGES

    Stan, Cristiana; Xu, Li

    2014-07-01

    The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less

  2. Assessment of Satellite Radiometry in the Visible Domain

    NASA Technical Reports Server (NTRS)

    Melin, Frederick; Franz, Bryan A.

    2014-01-01

    Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.

  3. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  4. Intensified Indian Ocean climate variability during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.

    2017-12-01

    Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.

  5. Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink

    NASA Astrophysics Data System (ADS)

    McKinley, Galen A.; Fay, Amanda R.; Lovenduski, Nicole S.; Pilcher, Darren J.

    2017-01-01

    Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO2 concentrations. The El Niño-Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete. Regional sink variability, combined with sparse sampling, means that the growing oceanic sink cannot yet be directly detected from available surface data. Accurate and precise shipboard observations need to be continued and increasingly complemented with autonomous observations. These data, together with a variety of mechanistic and diagnostic models, are needed for better understanding, long-term monitoring, and future projections of this critical climate regulation service.

  6. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  7. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...

    2016-07-14

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  8. Impacts of 2000-2050 Climate Change on Fine Particulate Matter (PM2.5) Air Quality in China Based on Statistical Projections Using an Ensemble of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.

    2017-12-01

    Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on human health under the RCP8.5 future.

  9. Inter Annual Variability of the Acoustic Propagation in the Yellow Sea Identified from a Synoptic Monthly Gridded Database as Compared with GDEM

    DTIC Science & Technology

    2016-09-01

    the world climate is in fact warming due to anthropogenic causes (Anderegg et al. 2010; Solomon et al. 2009). To put this in terms for this research ...2006). The present research uses a 0.5’ resolution. B. SEDIMENTS DATABASE There are four openly available sediment databases: Enhanced, Standard...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This research investigates the inter-annual acoustic variability in the Yellow Sea identified from

  10. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    NASA Astrophysics Data System (ADS)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the observed orbit-related errors are further investigated. The main contributors on all timescales are uncertainties in Earth's time-variable gravity field models and on annual to interannual timescales discrepancies of the tracking station subnetworks, i.e. satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).

  11. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Treesearch

    Jingfeng Xiaoa; Qianlai Zhuang; Beverly E. Law; Dennis D. Baldocchi; Jiquan Chen; al. et.

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a...

  12. Dynamics of change in Alaska's boreal forests: resilience and vulnerability in response to climate warming

    Treesearch

    A. David McGuire; F.S. Chapin; R.W. Ruess

    2010-01-01

    Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying...

  13. Influence of climate variability on acute myocardial infarction mortality in Havana, 2001-2012.

    PubMed

    Rivero, Alina; Bolufé, Javier; Ortiz, Paulo L; Rodríguez, Yunisleydi; Reyes, María C

    2015-04-01

    Death from acute myocardial infarction is due to many factors; influences on risk to the individual include habits, lifestyle and behavior, as well as weather, climate and other environmental components. Changing climate patterns make it especially important to understand how climatic variability may influence acute myocardial infarction mortality. Describe the relationship between climate variability and acute myocardial infarction mortality during the period 2001-2012 in Havana. An ecological time-series study was conducted. The universe comprised 23,744 deaths from acute myocardial infarction (ICD-10: I21-I22) in Havana residents from 2001 to 2012. Climate variability and seasonal anomalies were described using the Bultó-1 bioclimatic index (comprising variables of temperature, humidity, precipitation, and atmospheric pressure), along with series analysis to determine different seasonal-to-interannual climate variation signals. The role played by climate variables in acute myocardial infarction mortality was determined using factor analysis. The Mann-Kendall and Pettitt statistical tests were used for trend analysis with a significance level of 5%. The strong association between climate variability conditions described using the Bultó-1 bioclimatic index and acute myocardial infarctions accounts for the marked seasonal pattern in AMI mortality. The highest mortality rate occurred during the dry season, i.e., the winter months in Cuba (November-April), with peak numbers in January, December and March. The lowest mortality coincided with the rainy season, i.e., the summer months (May-October). A downward trend in total number of deaths can be seen starting with the change point in April 2009. Climate variability is inversely associated with an increase in acute myocardial infarction mortality as is shown by the Bultó-1 index. This inverse relationship accounts for acute myocardial infarction mortality's seasonal pattern.

  14. The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.

  15. Inter-annual variability of urolithiasis epidemic from semi-arid part of Deccan Volcanic Province, India: climatic and hydrogeochemical perspectives.

    PubMed

    Kale, Sanjay S; Ghole, Vikram Shantaram; Pawar, N J; Jagtap, Deepak V

    2014-01-01

    Semi-arid Karha basin from Deccan Volcanic Province, India was investigated for inter-annual variability of urolithiasis epidemic. The number of reported urolith patient, weather station data and groundwater quality results was used to assess impact of geoenvironment on urolithiasis. Data of 7081 urolith patient were processed for epidemiological study. Gender class, age group, year-wise cases and urolith type were studied in epidemiology. Rainfall, temperature, pan evaporation and sunshine hours were used to correlate urolithiasis. Further, average values of groundwater parameters were correlated with the number of urolith episodes. A total of 52 urolith samples were collected from hospitals and analysed using FTIR technique to identify dominant urolith type in study area. Result shows that male population is more prone, age group of 20-40 is more susceptible and calcium oxalate uroliths are dominant in study area. Year-wise distribution revealed that there is steady increase in urolithiasis with inflation in drought years. In climatic parameters, hot days are significantly correlated with urolithiasis. In groundwater quality, EC, Na and F are convincingly correlated with urolith patients, which concludes the strong relation between geo-environment and urolithiasis.

  16. Investigating the biophysical controls on mass and energy cycling in Southwestern US ecosystems using the New Mexico Elevation Gradient of flux towers.

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Morillas, L.; Litvak, M. E.

    2014-12-01

    Drylands and semi-arid ecosystems cover over 45% of the global landmass. These biomes have been shown to be extremely sensitive to changes in climate, specifically decreases in precipitation and increases in air temperature. Therefore, inter-annual variability in climate has the potential to dramatically impact the carbon budget at regional and global scales. In the Southwestern US, we are in a unique position to investigate these relationships by leveraging eight years of data from the New Mexico Elevation Gradient (NMEG), eight flux towers that span six representative biomes across the semi-arid Southwest. From C4 desert grasslands to subalpine mixed conifer forests, the NMEG flux towers use identical instrumentsand processing, and afford a unique opportunity to explore patterns in biome-specific ecosystem processes and climate sensitivity. Over the last eight years the gradient has experienced climatic variability that span from wet years to an episodic megadrought. Here we report the effects of this extreme inter-annual variability in climate on the ability of semi-arid ecosystems to cycle and store energy and carbon. We also investigated biome-specific patterns of ecosystem light and water use efficiency during a series of wet and dry years, and how these vary in response to air temperature, vapor pressure deficit, evaporative fraction, and precipitation. Our initial results suggest that significant drought reduced the maximum ecosystem assimilation of carbon most at the C4 grasslands, creosote shrublands, juniper savannas, and ponderosa pine forests, with 60%, 50%, 35%, and 50% reduction respectively, relative to a wet year. Ecosystem light use efficiency tends to show the highest maximum values at the low elevation sites as a function of water availability, with the highest annual values consistently at the middle elevation and ponderosa pine sites. Water use efficiency was strongly biome dependent with the middle elevation sites showing the highest efficiencies, and the greatest within year variability at the lower elevation sites, with strong sensitivities to vapor pressure deficit. By quantifying the biome-specific ecosystem processes and functional responses, this network provides valuable insight about how vulnerable this range of semi-arid ecosystems is to future climate scenarios.

  17. Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui

    2014-01-01

    Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.

  18. The role of the oceans in changes of the Earth's climate system

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.

    2016-12-01

    Any changes to the Earth's climate system affect an imbalance of the Earth's energy budget due to natural or human made climate forcing. The current positive Earth's energy imbalance is mostly caused by human activity, and is driving global warming. Variations in the world's ocean heat storage and its associated volume changes are a key factor to gauge global warming, to assess changes in the Earth's energy budget and to estimate contributions to the global sea level budget. Present-day sea-level rise is one of the major symptoms of the current positive Earth Energy Imbalance. Sea level also responds to natural climate variability that is superimposing and altering the global warming signal. The most prominent signature in the global mean sea level interannual variability is caused by El Niño-Southern Oscillation. It has been also shown that sea level variability in other regions of the Indo-Pacific area significantly alters estimates of the rate of sea level rise, i.e. in the Indonesian archipelago. In summary, improving the accuracy of our estimates of global Earth's climate state and variability is critical for advancing the understanding and prediction of the evolution of our climate, and an overview on recent findings on the role of the global ocean in changes of the Earth's climate system with particular focus on sea level variability in the Indo-Pacific region will be given in this contribution.

  19. Montane ecosystem productivity responds more to global circulation patterns than climatic trends.

    PubMed

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  20. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  1. The PAGES 2k Network, Phase 3: Themes and Call for Participation

    NASA Astrophysics Data System (ADS)

    von Gunten, L.; Mcgregor, H. V.; Martrat, B.; St George, S.; Neukom, R.; Bothe, O.; Linderholm, H. W.; Phipps, S. J.; Abram, N.

    2017-12-01

    The past 2000 years (the "2k" interval) provides critical context for understanding recent anthropogenic forcing of the climate and provides baseline information about the characteristics of natural climate variability. It also presents opportunities to improve the interpretation of proxy observations and to evaluate the climate models used to make future projections. Phases 1 and 2 of the PAGES 2k Network focussed on building regional and global surface temperature reconstructions for terrestrial regions and the oceans, and comparing these with model simulations to identify mechanisms of climate variation on interannual to bicentennial time scales. Phase 3 was launched in May 2017 and aims to address major questions around past hydroclimate, climate processes and proxy uncertainties. Its scientific themes are: Theme 1: "Climate Variability, Modes and Mechanisms"Further understand the mechanisms driving regional climate variability and change on interannual to centennial time scales; Theme 2: "Methods and Uncertainties"Reduce uncertainties in the interpretation of observations imprinted in paleoclimatic archives by environmental sensors; Theme 3: "Proxy and Model Understanding"Identify and analyse the extent of agreement between reconstructions and climate model simulations. Research is organized as a linked network of well-defined projects, identified and led by 2k community members. The 2k projects focus on specific scientific questions aligned with Phase 3 themes, rather than being defined along regional boundaries. New 2k projects can be proposed at any time at http://www.pastglobalchanges.org/ini/wg/2k-network/projects An enduring element of PAGES 2k is a culture of collegiality, transparency, and reciprocity. Phase 3 seeks to stimulate community based projects and facilitate collaboration between researchers from different regions and career stages, drawing on the breadth and depth of the global PAGES 2k community. All PAGES 2k projects also promote best practises in data stewardship for the research community. The network is open to anyone who is interested. If you would like to participate in PAGES 2k or receive updates, please join our mailing list or speak to a coordinating committee member.

  2. Precipitation drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest

    Treesearch

    M. Concilio; J. Chen; S. Ma; M. North

    2009-01-01

    Predictions of future climate change rely on models of how both environmental conditions and disturbance impact carbon cycling at various temporal and spatial scales. Few multi-year studies, however, have examined how carbon efflux is affected by the interaction of disturbance and interannual climate variation. We measured daytime soil respiration (R...

  3. Potential Predictability of the Monsoon Subclimate Systems

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Chang, Y.; Schubert, S.

    1999-01-01

    While El Nino/Southern Oscillation (ENSO) phenomenon can be predicted with some success using coupled oceanic-atmospheric models, the skill of predicting the tropical monsoons is low regardless of the methods applied. The low skill of monsoon prediction may be either because the monsoons are not defined appropriately or because they are not influenced significantly by boundary forcing. The latter characterizes the importance of internal dynamics in monsoon variability and leads to many eminent chaotic features of the monsoons. In this study, we analyze results from nine AMIP-type ensemble experiments with the NASA/GEOS-2 general circulation model to assess the potential predictability of the tropical climate system. We will focus on the variability and predictability of tropical monsoon rainfall on seasonal-to-interannual time scales. It is known that the tropical climate is more predictable than its extratropical counterpart. However, predictability is different from one climate subsystem to another within the tropics. It is important to understand the differences among these subsystems in order to increase our skill of seasonal-to-interannual prediction. We assess potential predictability by comparing the magnitude of internal and forced variances as defined by Harzallah and Sadourny (1995). The internal variance measures the spread among the various ensemble members. The forced part of rainfall variance is determined by the magnitude of the ensemble mean rainfall anomaly and by the degree of consistency of the results from the various experiments.

  4. Modes of interannual variability in northern hemisphere winter atmospheric circulation in CMIP5 models: evaluation, projection and role of external forcing

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu

    2018-04-01

    Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.

  5. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    NASA Astrophysics Data System (ADS)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  6. Robust multiscale prediction of Po River discharge using a twofold AR-NN approach

    NASA Astrophysics Data System (ADS)

    Alessio, Silvia; Taricco, Carla; Rubinetti, Sara; Zanchettin, Davide; Rubino, Angelo; Mancuso, Salvatore

    2017-04-01

    The Mediterranean area is among the regions most exposed to hydroclimatic changes, with a likely increase of frequency and duration of droughts in the last decades and potentially substantial future drying according to climate projections. However, significant decadal variability is often superposed or even dominates these long-term hydrological trend as observed, for instance, in North Italian precipitation and river discharge records. The capability to accurately predict such decadal changes is, therefore, of utmost environmental and social importance. In order to forecast short and noisy hydroclimatic time series, we apply a twofold statistical approach that we improved with respect to previous works [1]. Our prediction strategy consists in the application of two independent methods that use autoregressive models and feed-forward neural networks. Since all prediction methods work better on clean signals, the predictions are not performed directly on the series, but rather on each significant variability components extracted with Singular Spectrum Analysis (SSA). In this contribution, we will illustrate the multiscale prediction approach and its application to the case of decadal prediction of annual-average Po River discharges (Italy). The discharge record is available for the last 209 years and allows to work with both interannual and decadal time-scale components. Fifteen-year forecasts obtained with both methods robustly indicate a prominent dry period in the second half of the 2020s. We will discuss advantages and limitations of the proposed statistical approach in the light of the current capabilities of decadal climate prediction systems based on numerical climate models, toward an integrated dynamical and statistical approach for the interannual-to-decadal prediction of hydroclimate variability in medium-size river basins. [1] Alessio et. al., Natural variability and anthropogenic effects in a Central Mediterranean core, Clim. of the Past, 8, 831-839, 2012.

  7. Climate mode links to atmospheric carbon monoxide over fire regions

    NASA Astrophysics Data System (ADS)

    Buchholz, R. R.; Hammerling, D.; Worden, H. M.; Monks, S. A.; Edwards, D. P.; Deeter, M. N.; Emmons, L. K.

    2017-12-01

    Fire is a strong contributor to variability in atmospheric carbon monoxide (CO), particularly for the Southern Hemisphere and tropics. The magnitude of emissions, such as CO, from biomass burning are related to climate through both the availability and dryness of fuel. We investigate this link between CO and climate using satellite measured CO and climate indices. Interannual variability in satellite-measured CO is determined for the time period covering 2001-2016. We use MOPITT total column retrievals and focus on biomass burning regions of the Southern Hemisphere and tropics. In each of the regions, data driven relationships are determined between CO and climate indices for the climate modes: El Niño Southern Oscillation (ENSO); the Indian Ocean Dipole (IOD); the Tropical Southern Atlantic (TSA); and the Antarctic Oscillation (AAO). Step-wise forward and backward regression combined with the Bayesian Information Criterion is used to select the best predictive model from combinations of lagged indices. We find evidence for the importance of first-order interaction terms of the climate modes when explaining CO variability. Generally, over 50% of the variability can be explained, with over 70% for the Maritime Southeast Asia and North Australasia regions. To help interpret variability, we draw on the chemistry-climate model CAM-chem, which provides information on source contributions and the relative influence of emissions and meteorology. Our results have implications for applications such as air quality forecasting and verifying climate-chemistry models.

  8. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming may notably modulate the ISM rainfall in future climate. Both extreme wet and dry episodes are likely to intensify and regionally extend in future climate with enhanced propensity of short active and long break spells. The SM (WM) could also be more wet (dry) in future due to the increment in longer active (break) spells. However, future changes in the spatial pattern during active/break phase of SM and WM are geographically inconsistent among the models. The results point out the growing climate-related vulnerability over Indian subcontinent, and further suggest the requisite of profound adaptation measures and better policy making in future.

  9. High interannual variability of sea ice thickness in the Arctic region.

    PubMed

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  10. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris

    2009-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.

  11. Workshop on Satellite and In situ Observations for Climate Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acker, J.G.; Busalacchi, A.

    1995-02-01

    Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.

  12. Workshop on Satellite and In situ Observations for Climate Prediction

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Busalacchi, Antonio

    1995-01-01

    Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.

  13. Reconstructing the leading mode of multi-decadal North Atlantic variability over the last two millenia using functional paleoclimate networks

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Werner, Johannes; Donner, Reik V.

    2017-04-01

    The increasing availability of high-resolution North Atlantic paleoclimate proxies allows to not only study local climate variations in time, but also temporal changes in spatial variability patterns across the entire region possibly controlled by large-scale coherent variability modes such as the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. In this study, we use functional paleoclimate network analysis [1,2] to investigate changes in the statistical similarity patterns among an ensemble of high-resolution terrestrial paleoclimate records from Northern Europe included in the Arctic 2k data base. Specifically, we construct complex networks capturing the mutual statistical similarity of inter-annual temperature variability recorded in tree ring records, ice cores and lake sediments for multidecadal time windows covering the last two millenia. The observed patterns of co-variability are ultimately connected to the North Atlantic atmospheric circulation and most prominently to multidecadal variations of the NAO. Based on the inferred networks, we study the dynamical similarity between regional clusters of archives defined according to present-day inter-annual temperature variations across the study region. This analysis identifies those time-dependent inter-regional linkages that are most informative about the leading-order North Atlantic climate variability according to a recent NAO reconstruction for the last millenium [3]. Based on these linkages, we extend the existing reconstruction to obtain qualitative information on multidecadal to centennial scale North Atlantic climate variability over the last two millenia. In general, we find a tendency towards a dominating positive NAO phase interrupted by pronounced and extended intervals of negative NAO. Relatively rapid transitions between both types of behaviour are present during distinct periods including the Little Ice Age, the Medieval Climate Anomaly and for the Dark Ages Little Ice Age. [1] K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths: Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Climate Dynamics 41, 3-19, 2013 [2] J.L. Oster, N.P. Kelley: Tracking regional and global teleconnections recorded by western North American speleothem records. Quaternary Science Reviews 149, 18-33, 2016 [3] P. Ortega, F. Lehner, D. Swingedouw, V. Masson-Delmotte, C.C. Raible, M. Casado, P. Yiou: A model-tested North Atlantic Oscillation reconstruction for the past millenium. Nature 523, 71-74, 2015

  14. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change.

    PubMed

    Housset, Johann M; Nadeau, Simon; Isabel, Nathalie; Depardieu, Claire; Duchesne, Isabelle; Lenz, Patrick; Girardin, Martin P

    2018-04-01

    Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor.

    PubMed

    Ribeiro, Igor Oliveira; Andreoli, Rita Valéria; Kayano, Mary Toshie; de Sousa, Thaiane Rodrigues; Medeiros, Adan Sady; Guimarães, Patrícia Costa; Barbosa, Cybelli G G; Godoi, Ricardo H M; Martin, Scot T; de Souza, Rodrigo Augusto Ferreira

    2018-05-15

    The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH 4 ), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season. In line with CO variability and BB outbreaks, the results show strong correspondence with the spatiotemporal variability of CH 4 in the southern Amazon during years of intense drought. Indeed, the areas with the largest positive CH 4 anomalies in southern Amazon overlap the areas with high BB outbreaks and positive CO anomalies. The analyses also showed that high (low) BB outbreaks in the southern Amazon occur during dry (wet) years. In consequence, the interannual climate variability modulates the BB outbreaks in the southern Amazon, which in turn have considerable impacts on CO and CH 4 interannual variability in the region. Therefore, the BB outbreaks might play a major role in modulating the CH 4 and CO variations, at least in the southern Amazon. This study also provides a comparison between the estimate of satellite and aircraft measurements for the CH 4 over the southern Amazon, which indicates relatively small differences from the aircraft measurements in the lower troposphere, with errors ranging from 0.18% to 1.76%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Foreword: The dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming

    USGS Publications Warehouse

    McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.

    2016-01-01

    Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”

  17. MECA Symposium on Mars: Evolution of its Climate and Atmosphere

    NASA Technical Reports Server (NTRS)

    Baker, Victor (Editor); Carr, Michael (Editor); Fanale, Fraser (Editor); Greeley, Ronald (Editor); Haberle, Robert (Editor); Leovy, Conway (Editor); Maxwell, Ted (Editor)

    1987-01-01

    The geological, atmospheric, and climatic history of Mars is explored in reviews and reports of recent observational and interpretive investigations. Topics addressed include evidence for a warm wet climate on early Mars, volatiles on Earth and on Mars, CO2 adsorption on palagonite and its implications for Martian regolith partitioning, and the effect of spatial resolution on interpretations of Martian subsurface volatiles. Consideration is given to high resolution observations of rampart craters, ring furrows in highland terrains, the interannual variability of the south polar cap, telescopic observations of the north polar cap and circumpolar clouds, and dynamical modeling of a planetary wave polar warming mechanism.

  18. Wave climate simulation for southern region of the South China Sea

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil

    2013-08-01

    This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.

  19. Drivers, mechanisms and long term variability of bottom seasonal hypoxia in the Black Sea north-western Shelf. Is there any recovery after eutrophication ?

    NASA Astrophysics Data System (ADS)

    Capet, Arthur; Beckers, Jean-Marie; Grégoire, Marilaure

    2013-04-01

    The Black Sea North-western shelf (NWS) is a shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationships that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T ), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N,C) and climate (T ,D) predictors explain a similar amount of variability (~ 35%) when considered separately. A typical timescale of 9.3 years is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses out the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.

  20. The Role of Climate Covariability on Crop Yields in the Conterminous United States

    DOE PAGES

    Leng, Guoyong; Zhang, Xuesong; Huang, Maoyi; ...

    2016-09-12

    The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in understanding the climate influence on crop yields. Here in this paper, we analyze county-level corn and soybean yields and observed climate for the period 1983–2012 to understand how growing-season (June, July and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T and P, respectively. By including R,more » an additional of 5% in variability can be explained for both crops. Using partial regression analyses, we find that studies that ignore the covariability among T, P, and R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county scale. Further analyses indicate large spatial variation in the relative contributions of different climate variables to the variability of historical corn and soybean yields. Finally, the structure of the dominant climate factors did not change substantially over 1983–2012, confirming the robustness of the findings, which have important implications for crop yield prediction and crop model validations.« less

  1. An eco-hydrologic model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-03-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission and their consideration alongside climatic datasets. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear eco-hydrologic model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  2. An ecohydrological model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-08-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  3. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2016-02-01

    The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.

  4. Climate variability from the Florida Bay sedimentary record: Possible teleconnections to ENSO, PNA and CNP

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, Gary S.; Schwede, S.B.; Vann, C.D.; Dowsett, H.

    2002-01-01

    We analyzed decadal and interannual climate variability in South Florida since 1880 using geochemical and faunal paleosalinity indicators from isotopically dated sediment cores at Russell Bank in Florida Bay (FB). Using the relative abundance of 2 ostracode species and the Mg/Ca ratios in Loxoconcha matagordensis shells to reconstruct paleosalinity, we found evidence for cyclic oscillations in the salinity of central FB. During this time salinity fluctuated from as low as ~18 parts per thousand (ppt) to as high as ~57 ppt. Time series analyses suggest, in addition to a 5.6 yr Mg/Ca based salinity periodicity, there are 3 other modes of variability in paleosalinity indicators: 6-7, 8-9, and 13-14 yr periods which occur in all paleo-proxies. To search for factors that might cause salinity to vary in FB, we compared the Russell Bank paleosalinity record to South Florida winter rainfall, the Southern Oscillation Index (SOI), winter North Atlantic Oscillation (NAO), and the winter Pacific North American (PNA) index, and a surrogate for the PNA in the winter season, the Central North Pacific (CNP) index. SOI and PNA/CNP appear to be associated with South Florida winter precipitation. Time series analyses of SOI and winter rainfall for the period 1910-1999 suggest ~5, 6-7, 8-9 and 13-14 yr cycles. The 6-7 yr and 13-14 yr cycles correspond to those observed in the faunal and geochemical time series from Russell Bank. The main periods of the CNP index are 5-6 and 13-15 yr, which are similar to those observed in FB paleosalinity. Cross-spectral analyses show that winter rainfall and salinity are coherent at 5.6 yr with a salinity lag of ~1.6 mo. These results suggest that regional rainfall variability influences FB salinity over interannual and decadal timescales and that much of this variability may have its origin in climate variability in the Pacific Ocean/atmosphere system.

  5. On the brink of change: plant responses to climate on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Schelz, Charles D.; Moran, Mary; Carolin, Tara W.

    2011-01-01

    The intensification of aridity due to anthropogenic climate change in the southwestern U.S. is likely to have a large impact on the growth and survival of plant species that may already be vulnerable to water stress. To make accurate predictions of plant responses to climate change, it is essential to determine the long-term dynamics of plant species associated with past climate conditions. Here we show how the plant species and functional types across a wide range of environmental conditions in Colorado Plateau national parks have changed with climate variability over the last twenty years. During this time, regional mean annual temperature increased by 0.18°C per year from 1989–1995, 0.06°C per year from 1995–2003, declined by 0.14°C from 2003–2008, and there was high interannual variability in precipitation. Non-metric multidimensional scaling of plant species at long-term monitoring sites indicated five distinct plant communities. In many of the communities, canopy cover of perennial plants was sensitive to mean annual temperature occurring in the previous year, whereas canopy cover of annual plants responded to cool season precipitation. In the perennial grasslands, there was an overall decline of C3 perennial grasses, no change of C4 perennial grasses, and an increase of shrubs with increasing temperature. In the shrublands, shrubs generally showed no change or slightly increased with increasing temperature. However, certain shrub species declined where soil and physical characteristics of a site limited water availability. In the higher elevation woodlands, Juniperus osteosperma and shrub canopy cover increased with increasing temperature, while Pinus edulis at the highest elevation sites was unresponsive to interannual temperature variability. These results from well-protected national parks highlight the importance of temperature to plant responses in a water-limited region and suggest that projected increases in aridity are likely to promote grass loss and shrub expansion on the Colorado Plateau.

  6. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system

    NASA Astrophysics Data System (ADS)

    Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.

    2016-02-01

    This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.

  7. Remote Sensing Approach to Drought Monitoring to Inform Range Management at the Hopi Tribe and Navajo Nation

    NASA Astrophysics Data System (ADS)

    El Vilaly, M. M.; Van Leeuwen, W. J.; Didan, K.; Marsh, S. E.; Crimmins, , M. A.

    2012-12-01

    The Hopi Tribe and Navajo Nation are situated in the Northeastern corner of Arizona in the Colorado River Plateau. For more than a decade, the area has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. Moreover, these persistent droughts threaten ecosystem services, agriculture, and livestock production activities, and make this region sensitive to inter-annual climate variability and change. The limited hydroclimatic observations, bolstered by numerous anecdotal drought impact reports, indicate that the region has been suffering through an almost 15-year long drought which is threatening its socio-economic development. The objective of this research is to employ remote sensing data to monitor the ongoing drought and inform management and decision-making. The overall goals of this study are to develop a common understanding of the current status of drought across the area in order to understand the existing seasonal and inter-annual relationships between climate variability and vegetation dynamics. To analyze and investigate vegetation responses to climate variability, land use practices, and environmental factors in Hopi and Navajo nation during the last 22 years, a drought assessment framework was developed that integrates climate and topographical data with land surface remote sensing time series data. Multi-sensor Normalized Difference Vegetation Index time series data were acquired from the vegetation index and phenology project (vip.arizona.edu) from 1989 to 2010 at 5.6 km, were analyzed to characterize the intra-annual changes of vegetation, seasonal phenology and inter-annual vegetation response to climate variability and environmental factors. Due to the low number of retrieval obtained from TIMESAT software, we developed a new framework that can maximize the number of retrieval. Four vegetation development stages, annual integrated NDVI (Net Primary Production (NPP)), minimum annual NDVI, maximum annual NDVI, and annual amplitude, were extracted using that new framework. A multi-linear regression has been applied to these vegetation phenology metrics as well as to the relationship between pheno-metrics and environmental variables, to detect potential vegetation changes and to examine the existing relationship between vegetation dynamics and rainfall and elevation gradients. The results suggest that vegetation behavior is foremost governed by rainfall gradients (R-square =0.74). Trend analyses confirmed that around 80 percent of pixels showed a general decline of greenness with confidence level of 95% (p< 0.05), while 4 percent showed a general greening up. Vegetation in the area showed a significant and strong relationship with elevation and precipitation gradients. This correlation was more prominent at mid-elevations, which could be explained by the snowmelt dynamics and hydrological redistribution of water at that elevation. These tools, methods and results can be used to aid in monitoring and understanding climate change and variability impacts on vegetation productivity, ecosystem services, and water resources of the region, and to inform decision-makers and range managers at Hopi Tribe and Navajo nation. Keywords: drought, remote sensing, time series, vegetation dynamics, Hopi Tribe and Navajo Nations

  8. On the Past, Present, and Future of Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Bograd, S. J.; Black, B.; Garcia-Reyes, M.; Rykaczewski, R. R.; Thompson, S. A.; Turley, B. D.; van der Sleen, P.; Sydeman, W. J.

    2016-12-01

    Coastal upwelling in Eastern Boundary Upwelling Systems (EBUS) drives high productivity and marine biodiversity and supports lucrative commercial fishing operations. Thus there is significant interest in understanding the mechanisms underlying variations in the upwelling process, its drivers, and potential changes relative to global warming. Here we review recent results from a combination of regional and global observations, reanalysis products, and climate model projections that describe variability in coastal upwelling in EBUS. Key findings include: (1) interannual variability in California Current upwelling occurs in two orthogonal seasonal modes: a winter/early spring mode dominated by interannual variability and a summer mode dominated by long-term increasing trend; (2) there is substantial coherence in year-to-year variability between this winter/spring upwelling mode and upper trophic level demographic processes, including fish growth rates (rockfish and salmon) and seabird phenology, breeding success and survival; (3) a meta-analysis of existing literature suggests consistency with the Bakun (1990) hypothesis that rising global greenhouse-gas concentrations would result in upwelling-favorable wind intensification; however, (4) an ensemble of coupled, global ocean-atmosphere models finds limited evidence for intensification of upwelling-favorable winds over the 21st century, although summertime winds near the poleward boundaries of climatalogical upwelling zones are projected to intensify. We will also review a new comparative research program between the California and Benguela Upwelling Systems, including efforts to understand patterns of change and variation between climate, upwelling, fish, and seabirds.

  9. The relationship between interannual and long-term cloud feedbacks

    DOE PAGES

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; ...

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less

  10. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei

    2017-08-01

    Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.

  11. China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands

    NASA Astrophysics Data System (ADS)

    Chen, X.; Naresh, D.; Upmanu, L.; Hao, Z.; Dong, L.; Ju, Q.; Wang, J.; Wang, S.

    2014-05-01

    China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the spatial distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within-year and across-year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. As expected, the risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress have high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.

  12. How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers

    NASA Astrophysics Data System (ADS)

    Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick

    2017-04-01

    Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures and could potentially improve our ability to reconstruct the climate of the past and predict future growth under changing climate.

  13. European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.

    2011-12-01

    Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.

  14. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2002-01-01

    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  15. Effects of Land Use and Land Cover, Stream Discharge, and Interannual Climate on the Magnitude and Timing of Nitrogen, Phosphorus, and Organic Carbon Concentrations in Three Coastal Plain Watersheds

    EPA Science Inventory

    In-stream nitrogen, phosphorus, organic carbon, and suspended sediment concentrations were measured in 18 sub-basins over two annual cycles to assess how land-use/land-cover (LULC) and stream discharge regulate water quality variables. LULC was a primary driver of in-stream const...

  16. The Rangeland Vegetation Simulator: A user-driven system for quantifying production, succession, disturbance and fuels in non-forest environments

    Treesearch

    Matt Reeves; Leonardo Frid

    2016-01-01

    Rangeland landscapes occupy roughly 662 million acres in the coterminous U.S. (Reeves and Mitchell 2011) and their vegetation responds quickly to climate and management, with high relative growth rates and inter-annual variability. Current national decision support systems in the U.S. such as the Interagency Fuels Treatment Decision Support System (IFT-DSS) require...

  17. DCERP Annual Technical Report III: March 2009-February 2010. Executive Summary

    DTIC Science & Technology

    2010-04-01

    groundwater passing though marshes to the estuary. Loading estimates may vary considerably depending on inter-annual hydrologic (storm versus drought ...climatic events (i.e., hurricanes and droughts ); and integrate results with the other DCERP modules. The benefits of the Aquatic/Estuarine Module...inter-annual hydrologic (storm versus drought years) variability. ▪ Several large phytoplankton blooms in mid-estuary to upper estuary locations

  18. Long-term (in)stability of the climate-streamflow relationship

    NASA Astrophysics Data System (ADS)

    Saft, Margarita; Peel, Murray; Coxon, Gemma; Freer, Jim; Parajka, Juraj; Woods, Ross

    2017-04-01

    Land use changes have long been known to alter streamflow production for a given climatic input. Recently, extended shifts in climate were also shown to be capable of altering catchment internal functioning and streamflow production for a given climatic input. This study investigates the stability of climate-streamflow relationships in natural catchments in different regions of the world for the first time, using datasets of natural/reference catchments from Europe, US, and Australia. Changes in climate-streamflow relationships are investigated statistically on the interannual to interdecadal timescale and related to interdecadal climate variability. We compare the frequency and magnitude of shifts in climate-streamflow relationship between different regions, and discuss what any differences in shift frequency and magnitude might be related to. This study draws attention to the issues of catchment vulnerability to changes in external factors, catchment-climate co-evolution, and long-term catchment memory.

  19. Interannual and Decadal Variability of Ocean Surface Latent Heat Flux as Seen from Passive Microwave Satellite Algorithms

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Jackson, Darren L.; Wick, Gary A.; Roberts, Brent; Miller, Tim L.

    2007-01-01

    Ocean surface turbulent fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Deriving physically-based latent and sensible heat fluxes from satellite is dependent on inferences of near surface moisture and temperature from coarser layer retrievals or satellite radiances. Uncertainties in these "retrievals" propagate through bulk aerodynamic algorithms, interacting as well with error properties of surface wind speed, also provided by satellite. By systematically evaluating an array of passive microwave satellite algorithms, the SEAFLUX project is providing improved understanding of these errors and finding pathways for reducing or eliminating them. In this study we focus on evaluating the interannual variability of several passive microwave-based estimates of latent heat flux starting from monthly mean gridded data. The algorithms considered range from those based essentially on SSM/I (e.g. HOAPS) to newer approaches that consider additional moisture information from SSM/T-2 or AMSU-B and lower tropospheric temperature data from AMSU-A. On interannual scales, variability arising from ENSO events and time-lagged responses of ocean turbulent and radiative fluxes in other ocean basins (as well as the extratropical Pacific) is widely recognized, but still not well quantified. Locally, these flux anomalies are of order 10-20 W/sq m and present a relevant "target" with which to verify algorithm performance in a climate context. On decadal time scales there is some evidence from reanalyses and remotely-sensed fluxes alike that tropical ocean-averaged latent heat fluxes have increased 5-10 W/sq m since the early 1990s. However, significant uncertainty surrounds this estimate. Our work addresses the origin of these uncertainties and provides statistics on time series of tropical ocean averages, regional space / time correlation analysis, and separation of contributions by variations in wind and near surface humidity deficit. Comparison to variations in reanalysis data sets is also provided for reference.

  20. [Effect of climate change on the fisheries conununity pattern in the overwintering ground of open waters of northern East China Sea].

    PubMed

    Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Tian, Yong-jun; Chen, Jia-hua

    2015-03-01

    Data sets of 26 fisheries target species from the fishery-depen-dent and fishery-independent surveys in the overwintering ground of open waters of northern East China Sea (OW-NECS), combined sea surface temperature (SST), were used to examine the links between diversity index, pattern of common variability and climate changes based on the principal component analysis (PCA) and generalized additive model (GAM). The results showed that the shift from a cold regime to a warm regime was detected in SST during the 1970s-2011 with step changes around 1982/ 1983. SST increased during the cold regime and the warm regime before 1998 (warming trend period, 1972-1998), and decreased during the warm regime after 1998 (cooling trend period, 1999-2011). Shannon diversity index was largely dependent on the filefish, which contributed up to 50% of the total production as a single species, with low diversity in the waters of the OW-NECS, during the late 1980s and early 1990s. Excluding the filefish, the diversity index linearly increased and decreased during 1972-1998 and 1999-2011, respectively. The variation pattern generally corresponds with the trend in water temperature, strongly suggesting the effect of the SST on the diversity. The first two components (PC1 and PC2) of PCA for target species, which accounted for 32.43% of the total variance, showed evident decadal variation patterns with a step change during 1992-1999 and inter-annual variability with short-period fluctuation, respectively. It seems that PC1 was associated with large scale climatic change, while PC2 was related to inter-annual oceanographic variability such as ENSO events. Linear fitting results showed winEOF1 had significant effect on PC1, and GAM analysis for PC1 showed that winter EOF1 (winEOF1) and summer EOF2 (sumEOF2) can explain 88.9% of the total variance. Nonlinear effect was also found between PC2 and win EOF1, indicating that the fish community structure, which had predominantly decadal/inter-annual variation patterns, was influenced by inter-annual variations in oceanographic conditions.

  1. East Asia winter climate changes under RCP scenarios in terms of East Asian winter monsoon indices

    NASA Astrophysics Data System (ADS)

    Ahn, J. B.; Hong, J. Y.

    2016-12-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1°C to 5°C under RCP4.5 and from 3°C to 7°C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal that the interannual variability of the indices will be maintained with intensity similar to that of the present. AcknowledgmentsThis work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ012293)" Rural Development Administration, Republic of Korea.

  2. Towards a Local-Scale Climate Service for Colombian Agriculture: Findings and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Ramirez-Villegas, J.; Prager, S.; Llanos, L.; Agudelo, D.; Esquivel, A.; Sotelo, S.; Guevara, E.; Howland, F. C.; Munoz, A.; Rodriguez, J.; Ordonez, L.; Fernandes, K.

    2017-12-01

    Globally, interannual climate variability explains roughly a third of the yield variation for major crops. In Colombia, interannual climate variations and specially those driven by ENSO can disrupt production, lower farmers' incomes and increase market prices for both urban and rural consumers alike. Farmers in Colombia, however, often plan for the cropping season based on the immediately prior year's experience, which is unlikely to result in successful crops under high climate variability events. Critical decisions for avoiding total investment loss or to ensure successful harvests, including issues related to planting date, what variety to plant, or whether to plant, are made, at best, intuitively. Here, we demonstrate that the combination of better data, skillful seasonal climate forecasts, calibrated crop models, and a web-based climate services platform tailored to users' needs can prove successful in establishing a sustained climate service for agriculture. Rainfall predictability analyses indicate that statistical seasonal climate forecasts are skillful enough for issuing forecasts reliably in virtually all areas, with dry periods generally showing greater predictability than wet periods. Importantly, we find that a better specification of predictor regions significantly enhances seasonal forecast skill. Rice and maize crop models capture well the growth and development of rice and maize crops in experimental settings, and ably simulate historical (1980-2014) variations in productivity. With skillful climate and crop models, we developed a climate services platform that produces seasonal climate forecasts, and connects these with crop models. A usability study of the forecast platform revealed that, from a population of ca. 200 farmers and professionals, roughly two thirds correctly interpreted information and felt both confident and encouraged to use the platform. Nevertheless, capacity strengthening on key agro-climatology concepts was highlighted by farmers as a crucial need. Challenges also arose in certain zones due to limited access to electricity, computers or Internet. Based on our results, we conclude that for a climate service to be truly sustainable, well-calibrated and skillful models are as critical as the co-creation of the service itself with the stakeholder community.

  3. Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    PubMed Central

    Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.

    2017-01-01

    Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288

  4. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  5. SMOS reveals the signature of Indian Ocean Dipole events

    NASA Astrophysics Data System (ADS)

    Durand, Fabien; Alory, Gaël; Dussin, Raphaël; Reul, Nicolas

    2013-12-01

    The tropical Indian Ocean experiences an interannual mode of climatic variability, known as the Indian Ocean Dipole (IOD). The signature of this variability in ocean salinity is hypothesized based on modeling and assimilation studies, on account of scanty observations. Soil Moisture and Ocean Salinity (SMOS) satellite has been designed to take up the challenge of sea surface salinity remote sensing. We show that SMOS data can be used to infer the pattern of salinity variability linked with the IOD events. The core of maximum variability is located in the central tropical basin, south of the equator. This region is anomalously salty during the 2010 negative IOD event, and anomalously fresh during the 2011 positive IOD event. The peak-to-peak anomaly exceeds one salinity unit, between late 2010 and late 2011. In conjunction with other observational datasets, SMOS data allow us to draw the salt budget of the area. It turns out that the horizontal advection is the main driver of salinity anomalies. This finding is confirmed by the analysis of the outputs of a numerical model. This study shows that the advent of SMOS makes it feasible the quantitative assessment of the mechanisms of ocean surface salinity variability in the tropical basins, at interannual timescales.

  6. Interannual variability of temperature in the UTLS region over Ganges-Brahmaputra-Meghna river basin based on COSMIC GNSS RO data

    NASA Astrophysics Data System (ADS)

    Khandu; Awange, Joseph L.; Forootan, Ehsan

    2016-04-01

    Poor reliability of radiosonde records across South Asia imposes serious challenges in understanding the structure of upper-tropospheric and lower-stratospheric (UTLS) region. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission launched in April 2006 has overcome many observational limitations inherent in conventional atmospheric sounding instruments. This study examines the interannual variability of UTLS temperature over the Ganges-Brahmaputra-Meghna (GBM) river basin in South Asia using monthly averaged COSMIC radio occultation (RO) data, together with two global reanalyses. Comparisons between August 2006 and December 2013 indicate that MERRA (Modern-Era Retrospective Analysis for Research Application) and ERA-Interim (European Centre for Medium-Range Weather Forecasts reanalysis) are warmer than COSMIC RO data by 2 °C between 200 and 50 hPa levels. These warm biases with respect to COSMIC RO data are found to be consistent over time. The UTLS temperature show considerable interannual variability from 2006 to 2013 in addition to warming (cooling) trends in the troposphere (stratosphere). The cold (warm) anomalies in the upper troposphere (tropopause region) are found to be associated with warm ENSO (El Niño-Southern Oscillation) phase, while quasi-biennial oscillation (QBO) is negatively (positively) correlated with temperature anomalies at 70 hPa (50 hPa) level. PCA (principal component analysis) decomposition of tropopause temperatures and heights over the basin indicate that ENSO accounts for 73 % of the interannual (non-seasonal) variability with a correlation of 0.77 with Niño3.4 index whereas the QBO explains about 10 % of the variability. The largest tropopause anomaly associated with ENSO occurs during the winter, when ENSO reaches its peak. The tropopause temperature (height) increased (decreased) by about 1.5 °C (300 m) during the last major El Niño event of 2009/2010. In general, we find decreasing (increasing) trend in tropopause temperature (height) between 2006 and 2013.

  7. Changes of the transitional climate zone in East Asia: past and future

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chen, Wen; Huang, Gang; Zeng, Gang

    2017-08-01

    The transitional climate zone (TCZ) between humid and arid regions in East Asia is characterized by sharp climate and biome gradients, interaction between the East Asian summer monsoon and the mid-latitude westerly winds and mixed agriculture-pasture activities. Consequently, it is highly vulnerable to natural disturbances and particularly human-driven global change. This study aims to illuminate the spatial and temporal variation of TCZ across both the retrospective and the prospective periods. In the historical period, both the front and rear edges of TCZ exhibit wide year-to-year excursions and have experienced coastward migration with increasing aridity throughout TCZ. Furthermore, precipitation fluctuation mainly contributes to interannual variability of TCZ whereas potential evaporation behavior dominates the long-term trends of TCZ. Models are capable of largely reproducing the shape and orientation of TCZ, although northwestward bias is apparent. In global warming scenario period, there will be continuing southeastward displacement for the front edge but the opposite northwestward movement is projected for the rear one, as a consequence of significant drying trends in the humid zone together with regime shifts towards humid conditions in the arid zone. Despite expanded TCZ sector, however, the available water resources inside it suffer little magnitude changes without preferential tendency towards either drier or wetter conditions, implying neither deleterious nor beneficial effects on the TCZ environment. Moreover, interannual variability of TCZ is expected to become stronger, resulting in more frequent occurrences of extreme swings. Finally, it is noted that uncertainty arising from climate models dominates in the TCZ than dispersed emission scenarios, in contrast to the situation in humid and arid zones.

  8. Nitrous oxide emissions are enhanced in a warmer and wetter world

    NASA Astrophysics Data System (ADS)

    Griffis, Timothy J.; Chen, Zichong; Baker, John M.; Wood, Jeffrey D.; Millet, Dylan B.; Lee, Xuhui; Venterea, Rodney T.; Turner, Peter A.

    2017-11-01

    Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt—one of the most intensive agricultural regions of the world—combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-Nṡy‑1 to 585 Gg N2O-Nṡy‑1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-Nṡy‑1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals.

  9. Assessing the climate-scale variability of atmospheric rivers affecting western North America

    NASA Astrophysics Data System (ADS)

    Gershunov, Alexander; Shulgina, Tamara; Ralph, F. Martin; Lavers, David A.; Rutz, Jonathan J.

    2017-08-01

    A new method for automatic detection of atmospheric rivers (ARs) is developed and applied to an atmospheric reanalysis, yielding an extensive catalog of ARs land-falling along the west coast of North America during 1948-2017. This catalog provides a large array of variables that can be used to examine AR cases and their climate-scale variability in exceptional detail. The new record of AR activity, as presented, validated and examined here, provides a perspective on the seasonal cycle and the interannual-interdecadal variability of AR activity affecting the hydroclimate of western North America. Importantly, AR intensity does not exactly follow the climatological pattern of AR frequency. Strong links to hydroclimate are demonstrated using a high-resolution precipitation data set. We describe the seasonal progression of AR activity and diagnose linkages with climate variability expressed in Pacific sea surface temperatures, revealing links to Pacific decadal variability, recent regional anomalies, as well as a generally rising trend in land-falling AR activity. The latter trend is consistent with a long-term increase in vapor transport from the warming North Pacific onto the North American continent. The new catalog provides unprecedented opportunities to study the climate-scale behavior and predictability of ARs affecting western North America.

  10. Climate-mediated spatiotemporal variability in the terrestrial productivity across Europe

    NASA Astrophysics Data System (ADS)

    Wu, X.; Mahecha, M. D.; Reichstein, M.; Ciais, P.; Wattenbach, M.; Babst, F.; Frank, D.; Zang, C.

    2013-11-01

    Quantifying the interannual variability (IAV) of the terrestrial productivity and its sensitivity to climate is crucial for improving carbon budget predictions. However, the influence of climate and other mechanisms underlying the spatiotemporal patterns of IAV of productivity are not well understood. In this study we investigated the spatiotemporal patterns of IAV of historical observations of crop yields, tree ring width, remote sensing retrievals of FAPAR and NDVI, and other variables relevant to the terrestrial productivity in Europe in tandem with a set of climate variables. Our results reveal distinct spatial patterns in the IAV of most variables linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions. Our results further indicate that variations in the water balance during active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity related variables in temperate Europe. We also observe a~temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe, which is likely attributable to the recently increased IAV of water availability in these regions. These findings suggest nonlinear responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become more sensitive and more vulnerable to changes in water availability in the dry regions in Europe. The changing climate sensitivity of terrestrial productivity accompanied by the changing IAV of climate could impact carbon stocks and the net carbon balance of European ecosystems.

  11. Universal Inverse Power-Law Distribution for Fractal Fluctuations in Dynamical Systems: Applications for Predictability of Inter-Annual Variability of Indian and USA Region Rainfall

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2017-01-01

    Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate (O'Gorman in Curr Clim Change Rep 1:49-59, 2015).

  12. Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N.

    PubMed

    Cunningham, Stuart A; Kanzow, Torsten; Rayner, Darren; Baringer, Molly O; Johns, William E; Marotzke, Jochem; Longworth, Hannah R; Grant, Elizabeth M; Hirschi, Joël J-M; Beal, Lisa M; Meinen, Christopher S; Bryden, Harry L

    2007-08-17

    The vigor of Atlantic meridional overturning circulation (MOC) is thought to be vulnerable to global warming, but its short-term temporal variability is unknown so changes inferred from sparse observations on the decadal time scale of recent climate change are uncertain. We combine continuous measurements of the MOC (beginning in 2004) using the purposefully designed transatlantic Rapid Climate Change array of moored instruments deployed along 26.5 degrees N, with time series of Gulf Stream transport and surface-layer Ekman transport to quantify its intra-annual variability. The year-long average overturning is 18.7 +/- 5.6 sverdrups (Sv) (range: 4.0 to 34.9 Sv, where 1 Sv = a flow of ocean water of 10(6) cubic meters per second). Interannual changes in the overturning can be monitored with a resolution of 1.5 Sv.

  13. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ford, Heather L.; Ravelo, A. Christina; Polissar, Pratigya J.

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.

  14. Vulnerability of island tropical montane cloud forests to climate change, with special reference to East Maui, Hawaii

    USGS Publications Warehouse

    Loope, Lloyd L.; Giambelluca, Thomas W.

    1998-01-01

    Island tropical montane cloud forests may be among the most sensitive of the world's ecosystems to global climate change. Measurements in and above a montane cloud forest on East Maui, Hawaii, document steep microclimatic gradients. Relatively small climate-driven shifts in patterns of atmospheric circulation are likely to trigger major local changes in rainfall, cloud cover, and humidity. Increased interannual variability in precipitation and hurricane incidence would provide additional stresses on island biota that are highly vulnerable to disturbance-related invasion of non-native species. Because of the exceptional sensitivity of these microclimates and forests to change, they may provide valuable ‘listening posts’ for detecting the onset of human-induced global climate change.

  15. Dynamic Risk Quantification and Management: Core needs and strategies for adapting water resources systems to a changing environment (Invited)

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2009-12-01

    The concern with anthropogenic climate change has spurred significant interest in strategies for climate change adaptation in water resource systems planning and management. The thesis of this talk is that this is a subset of strategies that need to sustainably design and operate structural and non-structural systems for managing resources in a changing environment. Even with respect to a changing climate, the largest opportunity for immediate adaptation to a changing climate may be provided by an improved understanding and prediction capability for seasonal to interannual and decadal climate variability. I shall lay out some ideas as to how this can be done and provide an example for reservoir water allocation and management, and one for flood risk management.

  16. Can GRACE Explain Some of the Main Interannual Polar Motion Signatures?

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2016-12-01

    GRACE has provided a series of monthly solutions for water mass transport that now span a 14-year period. A natural question to ask is how much of this mass transport information might be used to reconstruct, theoretically, the non-tidal and non-Chandlerian polar motion at interannual time scales. Reconstruction of the pole position at interannual time scales since 2002 has been performed by Chen et al. (2013, GRL) and Adhikari and Ivins (2016, Science Advances). (The main feature of polar motion that has been evolving since the mid 1990's is the increasing dominance of Greenland ice mass loss.) Here we discuss this reconstruction and the level of error that occurs because of missing information about the spherical harmonic degree 1 and 2 terms and the lack of terms associated with angular momentum transfer in the Louiville equations. Using GRACE observations and complementary solutions of self-attraction/loading problem on an elastically compressible rotating earth, we show that ice mass losses from polar ice sheets, and when combined with changes in continental hydrology, explain nearly the entire amplitude (83±23%) and mean directional shift (within 5.9±7.6°) of recently observed eastward polar motion. We also show that decadal scale pole variations are directly linked to global changes in continental hydrology. The energy sources for such motions are likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th century continental wet-dry variability. Interannual variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability. Figure caption: Observed and reconstructed mean annual pole positions with respect to the 2003-2015 mean position. Blue error band is associated with the reconstructed solution; red signifies additional errors that are related to uncertainty in the long-term linear trend. Notice the interannual variability during the GRACE period.

  17. Characterizing Climate Controls on Vegetation Seasonality in the North American Southwest

    NASA Astrophysics Data System (ADS)

    Fish, M. A.; Cook, B.; Smerdon, J. E.; Seager, R.; Williams, P.

    2014-12-01

    The North American Southwest, which extends from Colorado to southern Mexico and California to eastern Texas, encompasses a diversity of climates, elevations, and ecosystems. This region is expected to experience significant climatic change, and associated impacts, in the coming decades. To better understand the spatiotemporal variability of vegetation in the Southwest and the expected climatic controls on timing and spatial extend of vegetation growth, we compared GIMMS normalized difference vegetation index (NDVI, 1981-2011) against temperature and precipitation data. Spatial variations in vegetation seasonality and the timing of peak NDVI are linked to spatial variability in the precipitation regimes across the Southwest. Regions with spring NDVI peaks are dominated by winter precipitation, while late summer and fall peaks are in regions with significant summer precipitation driven by the North American Monsoon. Inter-annual variability in peak NDVI is positively correlated with precipitation and negatively correlated with temperature, with the largest correlation coefficients at one-month lags. The only significant long-term trends in NDVI are for northern Mexico, where agricultural productivity has been increasing over the last 30 years.

  18. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    USGS Publications Warehouse

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  19. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    PubMed Central

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke A.; Korhonen, Johanna; Aono, Yasuyuki

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality. PMID:27113125

  20. Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá

    PubMed Central

    Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael

    2014-01-01

    Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503

  1. The 2015-2016 El Nino and the Response of the Carbon Cycle: Findings from NASA's OCO-2 Mission

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Schimel, D.; Stephens, B.; Crisp, D.; Eldering, A.; Feely, R.; Gierach, M.; Gunson, M.; Keeling, R.; Landschuetzer, P.; hide

    2017-01-01

    The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of ÎpCO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales.

  2. Modeling precipitation δ 18O variability in East Asia since the Last Glacial Maximum: temperature and amount effects across different timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xinyu; Liu, Zhengyu; Chen, Zhongxiao

    Water isotopes in precipitation have played a key role in the reconstruction of past climate on millennial timescales and longer. But, for midlatitude regions like East Asia with complex terrain, the reliability behind the basic assumptions of the temperature effect and amount effect is based on modern observational data and still remains unclear for past climate. In the present work, we reexamine the two basic effects on seasonal, interannual, and millennial timescales in a set of time slice experiments for the period 22–0 ka using an isotope-enabled atmospheric general circulation model (AGCM). Our study confirms the robustness of the temperaturemore » and amount effects on the seasonal cycle over China in the present climatic conditions, with the temperature effect dominating in northern China and the amount effect dominating in the far south of China but no distinct effect in the transition region of central China. However, our analysis shows that neither temperature nor amount effect is significantly dominant over China on millennial and interannual timescales, which is a challenge to those classic assumptions in past climate reconstruction. This work helps shed light on the interpretation of the proxy record of δ 18O from a modeling point of view.« less

  3. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.

    PubMed

    Zhang, Tianyi; Huang, Yao

    2012-06-01

    Negative climate impacts on crop yield increase pressures on food security in China. In this study, climatic impacts on cereal yields (rice, wheat and maize) were investigated by analyzing climate-yield relationships from 1980 to 2008. Results indicated that warming was significant, but trends in precipitation and solar radiation were not statistically significant in most of China. In general, maize is particularly sensitive to warming. However, increase in temperature was correlated with both lower and higher yield of rice and wheat, which is inconsistent with the current view that warming results in decline in yields. Of the three cereal crops, further analysis suggested that reduction in yields with higher temperature is accompanied by lower precipitation, which mainly occurred in northern parts of China, suggesting droughts reduced yield due to lack of water resources. Similarly, a positive correlation between temperature and yield can be alternatively explained by the effect of solar radiation, mainly in the southern part of China where water resources are abundant. Overall, our study suggests that it is inter-annual variations in precipitation and solar radiation that have driven change in cereal yields in China over the last three decades. Copyright © 2011 Society of Chemical Industry.

  4. Modeling precipitation δ 18O variability in East Asia since the Last Glacial Maximum: temperature and amount effects across different timescales

    DOE PAGES

    Wen, Xinyu; Liu, Zhengyu; Chen, Zhongxiao; ...

    2016-11-06

    Water isotopes in precipitation have played a key role in the reconstruction of past climate on millennial timescales and longer. But, for midlatitude regions like East Asia with complex terrain, the reliability behind the basic assumptions of the temperature effect and amount effect is based on modern observational data and still remains unclear for past climate. In the present work, we reexamine the two basic effects on seasonal, interannual, and millennial timescales in a set of time slice experiments for the period 22–0 ka using an isotope-enabled atmospheric general circulation model (AGCM). Our study confirms the robustness of the temperaturemore » and amount effects on the seasonal cycle over China in the present climatic conditions, with the temperature effect dominating in northern China and the amount effect dominating in the far south of China but no distinct effect in the transition region of central China. However, our analysis shows that neither temperature nor amount effect is significantly dominant over China on millennial and interannual timescales, which is a challenge to those classic assumptions in past climate reconstruction. This work helps shed light on the interpretation of the proxy record of δ 18O from a modeling point of view.« less

  5. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator

    PubMed Central

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-01-01

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791

  6. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.

    PubMed

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit

    2017-02-24

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.

  7. Effects of Changing Climate During the Snow Ablation Season on Seasonal Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Gutzler, D. S.; Chavarria, S. B.

    2017-12-01

    Seasonal forecasts of total surface runoff (Q) in snowmelt-dominated watersheds derive most of their prediction skill from the historical relationship between late winter snowpack (SWE) and subsequent snowmelt runoff. Across the western US, however, the relationship between SWE and Q is weakening as temperatures rise. We describe the effects of climate variability and change during the springtime snow ablation season on water supply outlooks (forecasts of Q) for southwestern rivers. As snow melts earlier, the importance of post-snow rainfall increases: interannual variability of spring season precipitation accounts for an increasing fraction of the variability of Q in recent decades. The results indicate that improvements to the skill of S2S forecasts of spring season temperature and precipitation would contribute very significantly to water supply outlooks that are now based largely on observed SWE. We assess this hypothesis using historical data from several snowpack-dominated basins in the American Southwest (Rio Grande, Pecos, and Gila Rivers) which are undergoing rapid climate change.

  8. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  9. On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Nino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperber, K.R., LLNL

    The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The aim of this paper is to investigate whether the interannual behavior of the MJO is related to tropical sea surface temperature (SST) anomalies, particularly El Nino, and hence whether it is predictable. The interannual behavior of the MJO has been diagnosed initially in the 40-year NCEP/ NCAR Reanalysis. The results suggest that prior to the mid-1970s themore » activity of the MJO was consistently lower than during the latter part of the record. This may be related to either inadequacies in the data coverage, particularly over the tropical Indian Ocean prior to the introduction of satellite observations, or to the real effects of a decadal timescale warming in the tropical SSTs. The teleconnection patterns between interannual variations in MJO activity and SST show only a weak, barely significant, influence of El Nino in which the MJO is more active during the cold phase. As well as the NCEP/NCAR Reanalysis, a 4-member ensemble of 45 year integrations with the Hadley Centre climate model (HadAM2a), forced by observed SSTs for 1949-93, has been used to investigate the relationship between MJO activity and SST. HadAM2a is known to give a reasonable simulation of the MJO and the extended record provided by this ensemble of integrations allows a more robust investigation of the predictability of MJO activity than was possible with the 40-year NCEP/NCAR Reanalysis. The results have shown that, for the uncoupled system, with the atmosphere being driven by imposed SSTS, there is no reproducibility for the activity of the MJO from year to year. The interannual behavior of the MJO is not controlled by the phase of El Nino and would appear to be chaotic in character. However, the model results have confirmed the low frequency, decadal timescale variability of MJO activity seen in the NCEP/NCAR Reanalysis. The activity of the MJO is consistently lower in all realizations prior to the mid 1970s, suggesting that the MJO may become more active as tropical SSTs become warmer. This result may have implications for the effects of global warming on the coupled tropical atmosphere-ocean system.« less

  10. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration.

    PubMed

    Uriarte, María; Muscarella, Robert; Zimmerman, Jess K

    2018-02-01

    Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors-soil moisture, understory light, and conspecific neighborhood density-modulate these responses. Community-wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community-wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long-term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long-term stand dynamics. © 2017 John Wiley & Sons Ltd.

  11. Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.

    NASA Astrophysics Data System (ADS)

    Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.

    2017-12-01

    Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency of the results and how the likely drivers differ between regions, and between water-limited and energy limited environments. We argue that when considering the impact of climatic change on hydrological systems we need to consider potential cumulative impacts of climatic shifts.

  12. Skill of ENSEMBLES seasonal re-forecasts for malaria prediction in West Africa

    NASA Astrophysics Data System (ADS)

    Jones, A. E.; Morse, A. P.

    2012-12-01

    This study examines the performance of malaria-relevant climate variables from the ENSEMBLES seasonal ensemble re-forecasts for sub-Saharan West Africa, using a dynamic malaria model to transform temperature and rainfall forecasts into simulated malaria incidence and verifying these forecasts against simulations obtained by driving the malaria model with General Circulation Model-derived reanalysis. Two subregions of forecast skill are identified: the highlands of Cameroon, where low temperatures limit simulated malaria during the forecast period and interannual variability in simulated malaria is closely linked to variability in temperature, and northern Nigeria/southern Niger, where simulated malaria variability is strongly associated with rainfall variability during the peak rain months.

  13. Snow-atmosphere coupling and its impact on temperature variability and extremes over North America

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2018-04-01

    The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.

  14. ENSO activity during the last climate cycle using IFA

    NASA Astrophysics Data System (ADS)

    Leduc, Guillaume; Vidal, Laurence; Thirumalai, Kaustubh

    2017-04-01

    The El Niño / Southern Oscillation (ENSO) is the principal mode of interannual climate variability and affects key climate parameters such as low-latitude rainfall variability. Anticipating future ENSO variability under anthropogenic forcing is vital due to its profound socioeconomic impact. Fossil corals suggest that 20th century ENSO variance is particularly high as compared to other time periods of the Holocene (Cobb et al., 2013, Science), the Last Glacial Maximum (Ford et al., 2015, Science) and the last glacial period (Tudhope et al., 2001, Science). Yet, recent climate modeling experiments suggest an increase in the frequency of both El Niño (Cai et al., 2014, Nature Climate Change) and La Niña (Cai et al., 2015, Nature Climate Change) events. We have expanded an Individual Foraminifera Analysis (IFA) dataset using the thermocline-dwelling N. dutertrei on a marine core collected in the Panama Basin (Leduc et al., 2009, Paleoceanography), that has proven to be a skillful way to reconstruct the ENSO (Thirumalai et al., 2013, Paleoceanography). Our new IFA dataset comprehensively covers the Holocene, the last deglaciation and Termination II (MIS5/6) time windows. We will also use previously published data from the Marine Isotope Stage 3 (MIS3). Our dataset confirms variable ENSO intensity during the Holocene and weaker activity during LGM than during the Holocene. As a next step, ENSO activity will be discussed with respect to the contrasting climatic background of the analysed time windows (millenial-scale variability, Terminations).

  15. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    NASA Astrophysics Data System (ADS)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  16. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    PubMed

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  17. Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes

    Treesearch

    Jakob Zscheischler; Simone Fatichi; Sebastian Wolf; Peter D. Blanken; Gil Bohrer; Ken Clark; Ankur R. Desai; David Hollinger; Trevor Keenan; Kimberly A. Novick; Sonia I. Seneviratne

    2016-01-01

    Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their...

  18. Decadal variability on the Northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin

    2018-02-01

    Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.

  19. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    PubMed

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Seasonal to Interannual Surface Ocean Salinity Trends With Aquarius Data

    NASA Astrophysics Data System (ADS)

    Lagerloef, G. S. E.; Kao, H. Y.; Carey, D.

    2017-12-01

    An important scientific goal for satellite salinity observations is to document oceanic climate trends and their link to changes in the water cycle. This study is a re-examination of seasonal to interannual sea surface salinity (SSS) variations from more recent analyses of V5.0 reprocessing of the Aquarius satellite data, Sep 2011 to May 2015. Sensor calibration over these time scales has been a concern, and the V5.0 includes improved calibration reference data compared to previous versions, which will be explained. Orthogonal mode analyses show that the annual cycle dominates the variability, and is strongest in the tropics. Interannual trends indicate the principal salinity patterns during onset of the 2015-16 El Niño. Recognizing that the Aquarius data record is now finite (Sep 2011 through May 2015) due to the mission failure in early June 2015, we will conclude with a status summary of the disposition of the Aquarius data and the prospects for continuing satellite salinity measurements.

Top