GAIA - A New Approach To Decision Making on Climate Disruption Issues
NASA Astrophysics Data System (ADS)
Paxton, L. J.; Weiss, M.; Schaefer, R. K.; Swartz, W. H.; Nix, M.; Strong, S. B.; Fountain, G. H.; Babin, S. M.; Pikas, C. K.; Parker, C. L.; Global Assimilation of InformationAction
2011-12-01
GAIA - the Global Assimilation of Information for Action program - provides a broadly extensible framework for enabling the development of a deeper understanding of the issues associated with climate disruption. The key notion of GAIA is that the global climate problem is so complex that a "system engineering" approach is needed in order to make it understandable. The key tenet of system engineering is to focus on requirements and to develop a cost-effective process for satisfying those requirements. To demonstrate this approach we focused first on the impact of climate disruption on public health. GAIA is described in some detail on our website (http://gaia.jhuapl.edu). Climate disruption is not just a scientific problem; one of the key issues that our community has is that of translating scientific results into knowledge that can be used to make informed decisions. In order to support decision makers we have to understand their issues and how to communicate with them. In this talk, we describe how we have built a community of interest that combines subject matter experts from diverse communities (public health, climate change, government, public policy, industry, etc) with policy makers and representatives from industry to develop, on a "level playing field", an understanding of each other's points of view and issues. The first application of this technology was the development of a workshop on Climate, Climate Change and Public Health held April 12-14, 2011. This paper describes our approach to going beyond the workshop environment to continue to engage the decision maker's community in a variety of ways that translate abstract scientific data into actionable information. Key ideas we will discuss include the development of social media, simulations of global/national/local environments affected by climate disruption, and visualizations of the monetary and health impacts of choosing not to address mitigation or adaptation to climate disruption.
ERIC Educational Resources Information Center
Brown, Robert D.; Gortmaker, Valerie J.
2009-01-01
Methodological and political issues arise during the designing, conducting, and reporting of campus-climate studies for LGBT students. These issues interact; making a decision about a methodological issue (e.g., sample size) has an impact on a political issue (e.g., how well the findings will be received). Ten key questions that must be addressed…
ERIC Educational Resources Information Center
Lambert, Julie L.; Bleicher, Robert E.
2017-01-01
Findings of this study suggest that scientific argumentation can play an effective role in addressing complex socioscientific issues (i.e. global climate change). This research examined changes in preservice teachers' knowledge and perceptions about climate change in an innovative undergraduate-level elementary science methods course. The…
Arctic Freshwater Synthesis: Summary of key emerging issues
NASA Astrophysics Data System (ADS)
Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.
2015-10-01
In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.
Answering the Oregon challenge : climate change
DOT National Transportation Integrated Search
2009-01-13
This paper outlines Gov. Kulongoski's agenda concerning the issue of climate change. It addresses several key topics: greenhouse gas reduction, energy efficiency, renewable energy, and sustainable transportation.
Water access, water scarcity, and climate change.
Mukheibir, Pierre
2010-05-01
This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-31
... Understanding of Climate Change Impacts on Freshwater Resources of the United States AGENCY: U.S. Geological... Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States''. The report reviews key issues related to freshwater resource data and climate change and identifies next steps to...
Global Climate Change: What Has Science Education Got to Do with It?
ERIC Educational Resources Information Center
Sharma, Ajay
2012-01-01
Despite a near universal consensus among scientists regarding the perils of climate change for human civilizations, climate change has not emerged as a key issue among science educators. This position paper advocates for the centrality of climate change in science education. Using Polanyi's critique of market in capitalist societies, it positions…
El Zoghbi, Mona Betour; El Ansari, Walid
2014-06-01
This study aimed to enhance the in-depth understanding of the contextual dimensions that shape the relationships between climate change communication approach and youth well-being. The study focused on university students who constitute the key stakeholders and future decision-makers and leaders for managing the long-term climate risks. A total of 10 focus group interviews were conducted with 117 undergraduate and graduate South African university students from over 12 universities located in different provinces of South Africa. In addition, another 16 interviews were also undertaken with university students, 10 interviews with key experts, and 3 youth national events were attended as participant-observation. As recipients of information on climate change, students' well-being was negatively affected by the media's pessimism of communicating risks and the inadequate or restricted networking of communicating solutions and strategies. As contributors to information on climate change, students faced key barriers to their efficacy and agency that entailed socio-cultural inequalities (e.g. race and language) and a lack of formal forums for community recognition, policy consultation and collaboration. In addition, for some students (e.g. journalism students), the lack of sufficient knowledge and skills on climate change and sustainability issues limited their ability to effectively communicate these issues to their audience. Platforms for interactive and reflective discussions, access to innovative technologies and social media, and opportunities for multi-stakeholder partnerships are keys to the success of youth-targeted and youth-initiated communication on climate change.
Exploring Elementary Students' Understanding of Energy and Climate Change
ERIC Educational Resources Information Center
Boylan, Colin
2008-01-01
As environmental changes become a significant societal issue, elementary science curricula need to develop students' understanding about the key concepts of energy and climate change. For teachers, developing quality learning experiences involves establishing what their students' prior understanding about energy and climate change are. A survey…
ASR Application in Climate Change Adaptation: The Need, Issues and Research Focus
This presentation will focus on four key points: (a) Aquifer storage and recovery: a long-held practice offering a potential tool for climate change adaptation, (b) The drivers: 1) hydrological perturbations related to climate change, 2) water imbalance in both Qand Vbetween wat...
Dalton, Meghan M.; Bethel, Jeffrey; Capalbo, Susan M.; Cuhaciyan, J.E.; Eigenbrode, Sanford D.; Glick, Patty; Houston, Laurie L.; Littell, Jeremy S.; Lynn, Kathy; Mote, Philip W.; Raymondi, Rick R.; Reeder, W. Spencer; Shafer, Sarah L.; Snover, Amy K.
2013-01-01
Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities is aimed at assessing the state of knowledge about key climate impacts and consequences to various sectors and communities in the northwest United States. It draws on a wealth of peer-reviewed literature, earlier state-level assessment reports conducted for Washington (2009) and Oregon (2010), as well as a risk-framing workshop. As an assessment, it aims to be representative (though not exhaustive) of the key climate change issues as reflected in the growing body of Northwest climate change science, impacts, and adaptation literature now available. This report will serve as an updated resource for scientists, stakeholders, decision makers, students, and community members interested in understanding and preparing for climate change impacts on Oregon, Washington, and Idaho. This more detailed, foundational report is intended to support the key findings presented in the Northwest chapter of the Third National Climate Assessment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... responsibilities is seeking public review and comment on a draft report to Congress titled ``Strengthening the... report reviews key issues related to freshwater resource data and climate change and identifies next... Sustainability (CENRS) and the Interagency Climate Change Adaptation Task Force and its Water Resources Workgroup...
ERIC Educational Resources Information Center
di Bartolo, Adriana N.
2013-01-01
Key scholars have studied campus climate, and often these climate studies are done through the lens of race and racial issues on campus. A few studies have explored the interaction between campus climate and sexual and gender minority students. However, those studies, like the climate studies through a racial lens, found that lesbian, gay,…
Communicating climate change and health in the media.
Depoux, Anneliese; Hémono, Mathieu; Puig-Malet, Sophie; Pédron, Romain; Flahault, Antoine
2017-01-01
The translation of science from research to real-world change is a central goal of public health. Communication has an essential role to play in provoking a response to climate change. It must first raise awareness, make people feel involved and ultimately motivate them to take action. The goal of this research is to understand how the information related to this issue is being addressed and disseminated to different audiences-public citizens, politicians and key climate change stakeholders. Initial results show that the scientific voice struggles to globally highlight this issue to a general audience and that messages that address the topic do not meet the challenges, going from a dramatic framing to a basic adaptation framing. Communication experts can help inform scientists and policy makers on how to best share information about climate change in an engaging and motivating way. This study gives an insight about the key role of the media and communications in addressing themes relating to climate change and transmitting information to the public in order to take action.
ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change
NASA Astrophysics Data System (ADS)
Weiss, N.; Wood, J. H.
2016-12-01
The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.
NASA Astrophysics Data System (ADS)
Weiss, N. K.; Wood, J. H.
2017-12-01
TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.
Climate Change, Public Health, and Policy: A California Case Study.
Ganesh, Chandrakala; Smith, Jason A
2018-04-01
Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California's progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions.
USDA-ARS?s Scientific Manuscript database
Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent c...
The role of the states in a federal climate program : issues and options
DOT National Transportation Integrated Search
2009-11-01
This paper provides an overview of some of the key isuses regarding statefederal roles in a federal climate program and identifies four possible mechanisms that have been suggested for allowing states to set more stringent reduction targets. *Cont...
Avoiding dangerous climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic
2006-02-15
In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41more » papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.« less
Climate Change, Public Health, and Policy: A California Case Study
Smith, Jason A.
2018-01-01
Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California’s progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions. PMID:29072936
Proceedings of the Fourth International Conference on Mars Polar Science and Exploration
NASA Technical Reports Server (NTRS)
2006-01-01
Sessions in this conference include: Mars polar geology and glaciology; Mars and terrestrial radar investigations; Observations, nature, and evolution of the Martian seasonal polar caps; Mars' residual south polar cap; Climate change, ice core analysis, and the redistribution of volatiles on Mars; errestrial Mars analog environments; The Phoenix Scout mission and the nature of the near-polar environment; Moderated Discussion: Key Issues Regarding Phoenix Scout Mission and the nature of the near-polar environment; Panel Discussion: Key Issues in Mars Polar Science and Exploration; Mars Reconnaissance Orbiter investigations of the Martian polar regions and climate; Mars Polar Scout Mission concepts; and Panel Discussion: New perspectives on Mars polar science and exploration
Decision Making Under Uncertainty - Bridging the Gap Between End User Needs and Science Capability
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A.; Austin, E. K.
2012-12-01
Successful adaptation outcomes depend on decision making based on the best available climate science information. However, a fundamental barrier exists, namely the 'gap' between information that climate science can currently provide and the information that is practically useful for end users and decision makers. This study identifies the major contributing factors to the 'gap' from an Australian perspective and provides recommendations as to ways in which the 'gap' may be narrowed. This was achieved via a literature review, online survey (targeted to providers of climate information and end users of that information), workshop (where both climate scientists and end users came together to discuss key issues) and focus group. The study confirmed that uncertainty in climate science is a key barrier to adaptation. The issue of uncertainty was found to be multi-faceted, with issues identified in terms of communication of uncertainty, misunderstanding of uncertainty and the lack of tools/methods to deal with uncertainty. There were also key differences in terms of expectations for the future - most end users were of the belief that uncertainty associated with future climate projections would reduce within the next five to 10 years, however producers of climate science information were well aware that this would most likely not be the case. This is a concerning finding as end users may delay taking action on adaptation and risk planning until the uncertainties are reduced - a situation which may never eventuate or may occur after the optimal time for action. Improved communication and packaging of climate information was another key theme that was highlighted in this study. Importantly, it was made clear that improved communication is not just about more glossy brochures and presentations by climate scientists, rather there is a role for a program or group to fill this role (coined a 'knowledge broker' during the workshop and focus group). The role of the 'knowledge broker' would be to package, translate (both from end user to scientist and scientist to end user) and transform climate information. Importantly communication of uncertainty needs to be improved so that end users are aware of all the caveats and what can realistically be expected from climate science now and in the near future. Overall this study confirmed that there is indeed a 'gap' between end user's needs and science capability, particularly with respect to uncertainty, communication and packaging of climate information. This 'gap' has been a barrier to successful climate change adaptation in the past. While it is unrealistic to think we could ever close the 'gap' completely, based on the recommendations provided in this paper, it may be possible to bridge the 'gap' (or at least improve people's awareness of the 'gap'). Furthermore, the insights gained and recommendations provided from this study, while based on an Australian context, are likely to be applicable to many other regions of the world, grappling with similar issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolin, B.
2007-11-15
In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less
Local Communities and Schools Tackling Sustainability and Climate Change
ERIC Educational Resources Information Center
Flowers, Rick; Chodkiewicz, Andrew
2009-01-01
Local communities and their schools remain key sites for actions tackling issues of sustainability and climate change. A government-funded environmental education initiative, the Australian Sustainable Schools Initiative (AuSSI), working together with state based Sustainable Schools Programs (SSP), has the ability to support the development of…
DOT National Transportation Integrated Search
2010-03-18
Key scientific assessments have underscored the urgency of reducing emissions of carbon dioxide to help mitigate potentially negative effects of climate change; however, many countries with significant greenhouse gas emissions, including the United S...
The public's belief in climate change and its human cause are increasing over time.
Milfont, Taciano L; Wilson, Marc S; Sibley, Chris G
2017-01-01
Polls examining public opinion on the subject of climate change are now commonplace, and one-off public opinion polls provide a snapshot of citizen's opinions that can inform policy and communication strategies. However, cross-sectional polls do not track opinions over time, thus making it impossible to ascertain whether key climate change beliefs held by the same group of individuals are changing or not. Here we examine the extent to which individual's level of agreement with two key beliefs ("climate change is real" and "climate change is caused by humans") remain stable or increase/decrease over a six-year period in New Zealand using latent growth curve modelling (n = 10,436). Data were drawn from the New Zealand Attitudes and Values Study, a probabilistic national panel study, and indicated that levels of agreement to both beliefs have steadily increased over the 2009-2015 period. Given that climate change beliefs and concerns are key predictors of climate change action, our findings suggest that a combination of targeted endeavors, as well as serendipitous events, may successfully convey the emergency of the issue.
Overview of the Special Issue: A Multi-Model Framework to ...
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impacts and damages in the United States are avoided or reduced due to global greenhouse gas (GHG) emissions mitigation scenarios. Scenarios are designed to explore key uncertainties around the measurement of these changes. The modeling exercise presented in this Special Issue includes two integrated assessment models and 15 sectoral models encompassing six broad impacts sectors - water resources, electric power, infrastructure, human health, ecosystems, and forests. Three consistent emissions scenarios are used to analyze the benefits of global GHG mitigation targets: a reference and two policy scenarios, with total radiative forcing in 2100 of 10.0W/m2, 4.5W/m2, and 3.7W/m2. A range of climate sensitivities, climate models, natural variability measures, and structural uncertainties of sectoral models are examined to explore the implications of key uncertainties. This overview paper describes the motivations, goals, design, and academic contribution of the CIRA modeling exercise and briefly summarizes the subsequent papers in this Special Issue. A summary of results across impact sectors is provided showing that: GHG mitigation provides benefits to the United States that increase over
James M. Vose; David L. Peterson; Toral Patel-Weynand
2012-01-01
This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework...
NASA Astrophysics Data System (ADS)
Zizinga, A.
2017-12-01
Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management
NASA Astrophysics Data System (ADS)
Johnson, E. A.; Ball, T. C.
2014-12-01
An important objective in general education geoscience courses is to help students evaluate social and ethical issues based upon scientific knowledge. It can be difficult for instructors trained in the physical sciences to design effective ways of including ethical issues in large lecture courses where whole-class discussions are not practical. The Quality Enhancement Plan for James Madison University, "The Madison Collaborative: Ethical Reasoning in Action," (http://www.jmu.edu/mc/index.shtml) has identified eight key questions to be used as a framework for developing ethical reasoning exercises and evaluating student learning. These eight questions are represented by the acronym FOR CLEAR and are represented by the concepts of Fairness, Outcomes, Responsibilities, Character, Liberty, Empathy, Authority, and Rights. In this study, we use the eight key questions as an inquiry-based framework for addressing ethical issues in a 100-student general education Earth systems and climate change course. Ethical reasoning exercises are presented throughout the course and range from questions of personal behavior to issues regarding potential future generations and global natural resources. In the first few exercises, key questions are identified for the students and calibrated responses are provided as examples. By the end of the semester, students are expected to identify key questions themselves and justify their own ethical and scientific reasoning. Evaluation rubrics are customized to this scaffolding approach to the exercises. Student feedback and course data will be presented to encourage discussion of this and other approaches to explicitly incorporating ethical reasoning in general education geoscience courses.
Ray B. Bryant; Haiming Lu; Kyle R. Elkin; Anthony R. Buda; Amy S. Collick; Gordon J. Folmar; Peter J. Kleinman
2016-01-01
Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent climate change. Annual mean temperatures increased 0.38°C per decade,...
Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program
NASA Technical Reports Server (NTRS)
Moore, Berrien, III; Sahagian, Dork
1997-01-01
The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.
Infusing Sustainability Across Disciplines to Build Student Engagement
NASA Astrophysics Data System (ADS)
Bruckner, M. Z.; O'Connell, K.; McDaris, J. R.; Kirk, K. B.; Larsen, K.; Kent, M.; Manduca, C. A.; Egger, A. E.; Blockstein, D.; Mogk, D. W.; Taber, J.
2014-12-01
Establishing relevance and effective communication are key mechanisms for building student and community engagement in a topic and can be used to promote the importance of working across disciplines to solve problems. Sustainability, including the impacts of and responses to climate change, is an inherently interdisciplinary issue and can be infused across courses and curricula in a variety of ways. Key topics such as climate change, hazards, and food, water, and energy production and sustainability are relevant to a wide audience and can be used to build student engagement. Using real-world examples, service learning, and focusing on the local environment may further boost engagement by establishing relevance between sustainability issues and students' lives. Communication plays a key role in the exchange of information across disciplines and allows for a more holistic approach to tackling the complex climate and sustainability issues our society faces. It has the power to bridge gaps, break down disciplinary silos, and build connections among diverse audiences with a wide range of expertise, including scientists, policy-makers, stakeholders, and the general public. It also aids in planning and preparation for, response to, and mitigation of issues related to sustainability, including the impacts of climate change, to lessen the detrimental effects of unavoidable events such as sea level rise and extreme weather events. Several workshops from the InTeGrate and On the Cutting Edge projects brought together educators and practitioners from a range of disciplines including geoscience, engineering, social science, and more to encourage communication and collaboration across disciplines. They supported networking, community-building, and sharing of best practices for preparing our students for a sustainable future, both in and out of the workplace, and across disciplines. Interdisciplinary teams are also working together to author curricular materials that highlight societal issues. The InTeGrate Teaching Materials web pages highlight major outcomes from the workshops and feature community-contributed resources and pedagogic guidance designed to enhance teaching about sustainability across disciplines. Explore these materials at: serc.carleton.edu/integrate/teaching_materials/
Put a Frame on It: Contextualizing Climate Change for Museum Visitors
NASA Astrophysics Data System (ADS)
Canning, Katharine
Public opinion polls continue to show that Americans are divided---particularly along political and ideological lines---on whether climate change is real and warrants immediate action. Those in the natural and social sciences have recognized that effective communication is key to closing the gap that exists between scientific and public understanding on this issue. A body of social science research on climate change communication has emerged within the last decade. This field has identified strategies for climate change communicators and educators, emphasizing the importance of framing climate change issues in ways that help it resonate with a wider range of public concerns and values in order to develop a shared belief regarding the necessity of action. Museum exhibits and programs on climate change that were developed within the last five years are likely to have benefitted from this body of work. This qualitative research seeks to examine and analyze the various ways museums in the United States are communicating about climate change related issues to the public. Three case studies of museum exhibits on climate change issues were examined. The scope and purpose of climate change communication in museums, the specific messages that museums are choosing to communicate, and how those messages are being framed for public audiences were explored through these case studies. The findings suggest that museums are considering their audience when framing messages about climate change and have used work from the climate change communication field to inform message development. In particular, museums are making climate change issues more relevant by emphasizing social, economic, and human health concerns, and are considering strategies to counteract fear-fatigue and empower visitors to take action.
NASA Scientific Forum on Climate Variability and Global Change: UNISPACE 3
NASA Technical Reports Server (NTRS)
Schiffer, Robert A.; Unninayar, Sushel
1999-01-01
The Forum on Climate Variability and Global Change is intended to provide a glimpse into some of the advances made in our understanding of key scientific and environmental issues resulting primarily from improved observations and modeling on a global basis. This publication contains the papers presented at the forum.
Hospital safety climate surveys: measurement issues.
Jackson, Jeanette; Sarac, Cakil; Flin, Rhona
2010-12-01
Organizational safety culture relates to behavioural norms in the workplace and is usually assessed by safety climate surveys. These can be a diagnostic indicator on the state of safety in a hospital. This review examines recent studies using staff surveys of hospital safety climate, focussing on measurement issues. Four questionnaires (hospital survey on patient safety culture, safety attitudes questionnaire, patient safety climate in healthcare organizations, hospital safety climate scale), with acceptable psychometric properties, are now applied across countries and clinical settings. Comparisons for benchmarking must be made with caution in case of questionnaire modifications. Increasing attention is being paid to the unit and hospital level wherein distinct cultures may be located, as well as to associated measurement and study design issues. Predictive validity of safety climate is tested against safety behaviours/outcomes, with some relationships reported, although effects may be specific to professional groups/units. Few studies test the role of intervening variables that could influence the effect of climate on outcomes. Hospital climate studies are becoming a key component of healthcare safety management systems. Large datasets have established more reliable instruments that allow a more focussed investigation of the role of culture in the improvement and maintenance of staff's safety perceptions within units, as well as within hospitals.
Revised U.S. Climate Science Plan Still Lacking in Key Areas
NASA Astrophysics Data System (ADS)
Showstack, Randy
2004-03-01
A U.S. National Research Council committee has found that a revised strategic plan for the U.S. Climate Change Science Program (CCSP) includes elements ``that could permit it to effectively guide research on climate and associated global changes over the next decades.'' However, the committee noted that the revision, issued by the CCSP, faces major hurdles related to funding, program priorities, management structure, and maintaining political independence.
An Official American Thoracic Society Workshop Report: Climate Change and Human Health
Pinkerton, Kent E.; Rom, William N.; Akpinar-Elci, Muge; Balmes, John R.; Bayram, Hasan; Brandli, Otto; Hollingsworth, John W.; Kinney, Patrick L.; Margolis, Helene G.; Martin, William J.; Sasser, Erika N.; Smith, Kirk R.; Takaro, Tim K.
2012-01-01
This document presents the proceedings from the American Thoracic Society Climate Change and Respiratory Health Workshop that was held on May 15, 2010, in New Orleans, Louisiana. The purpose of the one-day meeting was to address the threat to global respiratory health posed by climate change. Domestic and international experts as well as representatives of international respiratory societies and key U.S. federal agencies convened to identify necessary research questions concerning climate change and respiratory health and appropriate mechanisms and infrastructure needs for answering these questions. After much discussion, a breakout group compiled 27 recommendations for physicians, researchers, and policy makers. These recommendations are listed under main issues that the workshop participants deemed of key importance to respiratory health. Issues include the following: (1) the health impacts of climate change, with specific focus on the effect of heat waves, air pollution, and natural cycles; (2) mitigation and adaptation measures to be taken, with special emphasis on recommendations for the clinical and research community; (3) recognition of challenges specific to low-resource countries when coping with respiratory health and climate change; and (4) priority research infrastructure needs, with special discussion of international needs for cooperating with present and future environmental monitoring and alert systems. PMID:22421581
Climate variability and change in high elevation regions: Past, present & future
Diaz, Henry F.; Grosjean, Martin; Graumlich, Lisa J.
2003-01-01
This special issue of Climatic Change contains a series of research and review articles, arising from papers that were presented and discussed at a workshop held in Davos, Switzerland on 25–28 June 2001. The workshop was titled ‘Climate Change at High Elevation Sites: Emerging Impacts’, and was convened to reprise an earlier conference on the same subject that was held in Wengen, Switzerland in 1995 (Diaz et al., 1997). The Davos meeting had as its main goals, a discussion of the following key issues: (1) reviewing recent climatic trends in high elevation regions of the world, (2) assessing the reliability of various biological indicators as indicators of climatic change, and (3) assessing whether physical impacts of climatic change in high elevation areas are becoming evident, and to discuss a range of monitoring strategies needed to observe and to understand the nature of any changes.
Wibeck, Victoria
2014-02-01
This paper explores social representations of climate change, investigating how climate change is discussed by Swedish laypeople interacting in focus group interviews. The analysis focuses on prototypical examples and metaphors, which were key devices for objectifying climate change representations. The paper analyzes how the interaction of focus group participants with other speakers, ideas, arguments, and broader social representations shaped their representations of climate change. Climate change was understood as a global but distant issue with severe consequences. There was a dynamic tension between representations of climate change as a gradual vs. unpredictable process. Implications for climate change communication are discussed.
NASA Astrophysics Data System (ADS)
Carroll, F. J.; McNeal, K. S.; Hammerman, J.; Christiansen, J.
2013-05-01
The Climate Literacy Partnership in the Southeast (CLiPSE, http://CLiPSE-project.org), funded through the National Science Foundation Climate Change Education Partnership program, is dedicated to improving climate literacy in the Southeastern United States (SE US). By promoting science-based formal and informal educational resources, CLiPSE works through a diverse network of key partner organizations in the SE US to conduct effective public dialogues that address diverse audiences and support learning about climate, climate change, and its impact on human and environmental systems. The CLiPSE project successfully created partnerships with more than fifty key stakeholders, including agriculture, education, leisure, and religious organizations, along with culturally diverse communities. This presentation will explain the CLiPSE model for reaching key publics who hold traditional ideologies typically perceived as incompatible with climate change science. We will discuss the results of our interactions with the leaders of our partnering organizations, their knowledge, perceptions, needs, and input in crafting effective messages for their audiences, through addressing both learners' affective and cognitive domains. For the informal education sector, CLiPSE utilized several open discussion and learning forums aimed to promote critical thinking and civil conversation about climate change. Focusing on Faith-based audiences, a key demographic, in the Southeast US, CLiPSE also conducted an online, moderated, author-attended book study, discussing the thoughts and ideas contained in the work, "Green Like God," by Jonathan Merritt. We will share the questions we faced as we focused on and learned about faith-based audiences, such as: What are the barriers and opportunities?; How do we break out of the assumptions that we have to find the common ground?; How do the audiences understand the issues?; How do we understand the issues?; What common language can we find?; What happens when we bringing the multiple the multiple identities of faith and science together within ourselves and those we are trying to build relationships with? We will also share the lessons we learned while attempting to answer these questions, such as the role of trust and key influentials/leaders in talking with target audiences, the importance of face-to-face dialog and relationships in trust building.
Impact of Spatial Scales on the Intercomparison of Climate Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wei; Steptoe, Michael; Chang, Zheng
2017-01-01
Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less
Trawöger, Lisa
2014-02-01
Its focus on snow-dependent activities makes Alpine winter tourism especially sensitive to climate change. Stakeholder risk perceptions are a key factor in adaptation to climate change because they fundamentally drive or constrain stakeholder action. This paper examines climate change perceptions of winter tourism stakeholders in Tyrol (Austria). Using a qualitative approach, expert interviews were conducted. Four opinion categories reflecting different attitudes toward climate change issues were identified: convinced planners , annoyed deniers , ambivalent optimists , convinced wait-and-seers . Although the findings generally indicate a growing awareness of climate change, this awareness is mainly limited to perceiving the issue as a global phenomenon. Awareness of regional and branch-specific consequences of climate change that lead to a demand for action could not be identified. Current technical strategies, like snowmaking, are not primarily climate-induced. At present, coping with climate change is not a priority for risk management. The findings point out the importance of gaining and transferring knowledge of regional and branch-specific consequences of climate change in order to induce action at the destination level.
Trawöger, Lisa
2014-01-01
Its focus on snow-dependent activities makes Alpine winter tourism especially sensitive to climate change. Stakeholder risk perceptions are a key factor in adaptation to climate change because they fundamentally drive or constrain stakeholder action. This paper examines climate change perceptions of winter tourism stakeholders in Tyrol (Austria). Using a qualitative approach, expert interviews were conducted. Four opinion categories reflecting different attitudes toward climate change issues were identified: convinced planners, annoyed deniers, ambivalent optimists, convinced wait-and-seers. Although the findings generally indicate a growing awareness of climate change, this awareness is mainly limited to perceiving the issue as a global phenomenon. Awareness of regional and branch-specific consequences of climate change that lead to a demand for action could not be identified. Current technical strategies, like snowmaking, are not primarily climate-induced. At present, coping with climate change is not a priority for risk management. The findings point out the importance of gaining and transferring knowledge of regional and branch-specific consequences of climate change in order to induce action at the destination level. PMID:27064520
The Role of Health in Climate Litigation
Simmens, Samuel J.; Glicksman, Robert; Paddock, LeRoy; Kim, Daniel; Whited, Brittany
2018-01-01
Objectives. To examine how the courts, which play a critical role in shaping public policy, consider public health in climate change and coal-fired power plant lawsuits. Methods. We coded US local, state, and federal court decisions relating to climate change and coal-fired power plants from 1990 to 2016 (n = 873) and qualitatively investigated 139 cases in which litigants raised issues concerning the health impacts of climate change. We also conducted 78 interviews with key litigants, advocates, industry representatives, advising scientists, and legal experts. Results. Health has been a critical consideration in key climate lawsuits, but in a minority of cases. Litigants have presented health arguments most frequently and effectively in terms of airborne exposures. Health impacts have typically been used to gain standing and argue that the evidence for government actions is insufficient. Conclusions. The courts represent a pivotal branch of government in shaping climate policy. Increasing inclusion of health concerns in emergent areas of litigation could help drive more effective climate policymaking. PMID:29698089
Dryland ecohydrology and climate change: critical issues and technical advances
NASA Astrophysics Data System (ADS)
Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.
2012-04-01
Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change
Global Change Education Resource Guide.
ERIC Educational Resources Information Center
Mortensen, Lynn L., Ed.
This guide is intended as an aid to educators who conduct programs and activities on climate and global change issues for a variety of audiences. The selected set of currently available materials are appropriate for both formal and informal programs in environmental education and can help frame and clarify some of the key issues associated with…
Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia
2016-01-01
Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.
Regional-Scale Climate Change: Observations and Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Raymond S; Diaz, Henry F
2010-12-14
This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less
Taking the Pulse of Campus Climate: Key Findings of the AGB Survey on Diversity and Inclusion
ERIC Educational Resources Information Center
Association of Governing Boards of Universities and Colleges, 2017
2017-01-01
Campus climate issues continue to pervade many institutions, with related news stories commanding headlines across the country. Through oversight and leadership, college and university governing boards play an important role in helping to create inclusive campuses. AGB conducted a survey of nearly 1,000 board members to take the pulse of campus…
SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL
NASA Astrophysics Data System (ADS)
Tsutsui, Junichi
A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.
ERIC Educational Resources Information Center
Zangori, Laura; Peel, Amanda; Kinslow, Andrew; Friedrichsen, Patricia; Sadler, Troy D.
2017-01-01
Carbon cycling is a key natural system that requires robust science literacy to understand how and why climate change is occurring. Studies show that students tend to compartmentalize carbon movement within plants and animals and are challenged to make sense of how carbon cycles on a global scale. Studies also show that students hold faulty models…
Improving the use of crop models for risk assessment and climate change adaptation.
Challinor, Andrew J; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin
2018-01-01
Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1.Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk?2.Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output.3.Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
Schools as Vehicles to Assess Experiences, Improve Outcomes, and Effect Social Change.
McMahon, Susan Dvorak
2018-06-01
Schools are important settings that can be utilized to yield a positive impact on youth and the many issues our society faces. In this Presidential Address, I identify key issues and directions for the field, advocating that we need to expand our ecological focus, improve school climate, and collaborate with schools to effect change. To illustrate these key themes, findings from four projects with k-12 youth and educators in the United States are described, and these projects have the following foci: protective factors for youth exposed to violence, teacher-directed violence as part of an APA Task Force, school climate and neighborhood factors in relation to academic outcomes, and school transitions for students with disabilities. Challenges and future directions to build upon community psychology theory, research, practice, and policy are discussed. © Society for Community Research and Action 2018.
ERIC Educational Resources Information Center
Buchert, Lene
1995-01-01
Issues in the provision of educational assistance in the 1990s by Denmark, Sweden, and the Netherlands are discussed in light of the change of the international climate toward developing countries. The changing approaches of these countries reflect new thinking that developing countries need to adapt to the Western industrial world. (SLD)
Health impacts of climate change and health and social inequalities in the UK.
Paavola, Jouni
2017-12-05
This article examines how social and health inequalities shape the health impacts of climate change in the UK, and what the implications are for climate change adaptation and health care provision. The evidence generated by the other articles of the special issue were interpreted using social justice reasoning in light of additional literature, to draw out the key implications of health and social inequalities for health outcomes of climate change. Exposure to heat and cold, air pollution, pollen, food safety risks, disruptions to access to and functioning of health services and facilities, emerging infections and flooding are examined as the key impacts of climate change influencing health outcomes. Age, pre-existing medical conditions and social deprivation are found to be the key (but not only) factors that make people vulnerable and to experience more adverse health outcomes related to climate change impacts. In the future, climate change, aging population and decreasing public spending on health and social care may aggravate inequality of health outcomes related to climate change. Health education and public preparedness measures that take into account differential exposure, sensitivity and adaptive capacity of different groups help address health and social inequalities to do with climate change. Adaptation strategies based on individual preparedness, action and behaviour change may aggravate health and social inequalities due to their selective uptake, unless they are coupled with broad public information campaigns and financial support for undertaking adaptive measures.
Key Issues for Seamless Integrated Chemistry–Meteorology Modeling
Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can con...
Nhamo, Godwell
2016-01-01
The Rio+20 outcomes document, the Future We Want, enshrines green economy as one of the platforms to attain sustainable development and calls for measures that seek to address climate change and biodiversity management. This paper audits climate change policies from selected east and southern African countries to determine the extent to which climate change legislation mainstreams biodiversity and wildlife management. A scan of international, continental, regional and national climate change policies was conducted to assess whether they include biodiversity and/or wildlife management issues. The key finding is that many climate change policy–related documents, particularly the National Adaptation Programme of Actions (NAPAs), address threats to biodiversity and wildlife resources. However, international policies like the United Nations Framework Convention on Climate Change and Kyoto Protocol do not address the matter under deliberation. Regional climate change policies such as the East African Community, Common Market for Eastern and Southern Africa and African Union address biodiversity and/or wildlife issues whilst the Southern African Development Community region does not have a stand-alone policy for climate change. Progressive countries like Rwanda, Uganda, Tanzania and Zambia have recently put in place detailed NAPAs which are mainstream responsive strategies intended to address climate change adaptation in the wildlife sector.
Managing Innovation in Academic Libraries.
ERIC Educational Resources Information Center
Drake, Miriam A.
1979-01-01
Explores key issues related to innovation in academic libraries--performance gaps, incentives to innovate, nature of innovation, barriers and constraints, impact of innovation, and implementation of innovative strategies--and concludes that innovation requires a conducive climate, capital investment, and a leadership that is enthusiastic and…
NASA Astrophysics Data System (ADS)
McEntee, C.; Cairns, A.; Buhrman, J.
2012-12-01
Public acceptance of the scientific consensus regarding climate change has eroded and misinformation designed to confuse the public is rapidly proliferating. Those issues, combined with an increase of politically motivated attacks on climate scientists and their research, have led to a place where ideology can trump scientific consensus as the foundation for developing policy solutions. The scientific community has been, thus far, unprepared to respond effectively to these developments. However, as a scientific society whose members engage in climate science research, and one whose organizational mission and vision are centered on the concepts of science for the benefit of humanity and ensuring a sustainable future, the American Geophysical Union can, and should, play an important role in reversing this trend. To that end, in 2011, AGU convened a Leadership Summit on Climate Science Communication, in which presidents, executive directors, and senior public policy staff from 17 scientific organizations engaged with experts in the social sciences regarding effective communication of climate science and with practitioners from agriculture, energy, and the military. The discussions focused on three key issues: the environment of climate science communication; public understanding of climate change; and the perspectives of consumers of climate science-based information who work with specific audiences. Participants diagnosed previous challenges and failings, enumerated the key constituencies that need to be effectively engaged, and identified the critical role played by cultural cognition—the influence of group values, particularly around equality and authority, individualism, and community; and the perceptions of risk. Since that meeting, AGU has consistently worked to identify and explore ways that it, and its members, and improve the effectiveness of their communication with the public about climate change. This presentation will focus on the insights AGU has gathered, as well as make the case for why this is an important role for scientific societies, such as AGU, to play.
Past, present, and future design of urban drainage systems with focus on Danish experiences.
Arnbjerg-Nielsen, K
2011-01-01
Climate change will influence the water cycle substantially, and extreme precipitation will become more frequent in many regions in the years to come. How should this fact be incorporated into design of urban drainage systems, if at all? And how important is climate change compared to other changes over time? Based on an analysis of the underlying key drivers of changes that are expected to affect urban drainage systems the current problems and their predicted development over time are presented. One key issue is management of risk and uncertainties and therefore a framework for design and analysis of urban structures in light of present and future uncertainties is presented.
Parham, Paul E.; Waldock, Joanna; Christophides, George K.; ...
2015-02-16
Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is due not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but, perhaps most crucially, the multitude of epidemiological, ecological, and socioeconomic factors that drive VBD transmission, and this complexity has generated considerable debate over the last 10-15 years. Inmore » this article, and Theme Issue, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions, and, crucially, offer some solutions for the field moving forwards. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems. This Theme Issue seeks to cover both, reflected in the breadth and depth of the topics and VBD-systems considered, itself strongly indicative of the challenging, but necessary, multidisciplinary nature of this research field.« less
More frequent moments in the climate change debate as emissions continue
NASA Astrophysics Data System (ADS)
Huntingford, Chris; Friedlingstein, Pierre
2015-12-01
Recent years have witnessed unprecedented interest in how the burning of fossil fuels may impact on the global climate system. Such visibility of this issue is in part due to the increasing frequency of key international summits to debate emissions levels, including the 2015 21st Conference of Parties meeting in Paris. In this perspective we plot a timeline of significant climate meetings and reports, and against metrics of atmospheric greenhouse gas changes and global temperature. One powerful metric is cumulative CO2 emissions that can be related to past and future warming levels. That quantity is analysed in detail through a set of papers in this ERL focus issue. We suggest it is an open question as to whether our timeline implies a lack of progress in constraining climate change despite multiple recent keynote meetings—or alternatively—that the increasing level of debate is encouragement that solutions will be found to prevent any dangerous warming levels?
Developing Health-Related Indicators of Climate Change: Australian Stakeholder Perspectives.
Navi, Maryam; Hansen, Alana; Nitschke, Monika; Hanson-Easey, Scott; Pisaniello, Dino
2017-05-22
Climate-related health indicators are potentially useful for tracking and predicting the adverse public health effects of climate change, identifying vulnerable populations, and monitoring interventions. However, there is a need to understand stakeholders' perspectives on the identification, development, and utility of such indicators. A qualitative approach was used, comprising semi-structured interviews with key informants and service providers from government and non-government stakeholder organizations in South Australia. Stakeholders saw a need for indicators that could enable the monitoring of health impacts and time trends, vulnerability to climate change, and those which could also be used as communication tools. Four key criteria for utility were identified, namely robust and credible indicators, specificity, data availability, and being able to be spatially represented. The variability of risk factors in different regions, lack of resources, and data and methodological issues were identified as the main barriers to indicator development. This study demonstrates a high level of stakeholder awareness of the health impacts of climate change, and the need for indicators that can inform policy makers regarding interventions.
Economic development, climate and values: making policy.
Stern, Nicholas
2015-08-07
The two defining challenges of this century are overcoming poverty and managing the risks of climate change. Over the past 10 years, we have learned much about how to tackle them together from ideas on economic development and public policy. My own work in these areas over four decades as an academic and as a policy adviser in universities and international financial institutions has focused on how the investment environment and the empowerment of people can change lives and livelihoods. The application of insights from economic development and public policy to climate change requires rigorous analysis of issues such as discounting, modelling the risks of unmanaged climate change, climate policy targets and estimates of the costs of mitigation. The latest research and results show that the case for avoiding the risks of dangerous climate change through the transition to low-carbon economic development and growth is still stronger than when the Stern Review was published. This is partly because of evidence that some of the impacts of climate change are happening more quickly than originally expected, and because of remarkable advances in technologies, such as solar power. Nevertheless, significant hurdles remain in securing the international cooperation required to avoid dangerous climate change, not least because of disagreements and misunderstandings about key issues, such as ethics and equity. © 2015 The Author(s).
Economic development, climate and values: making policy
Stern, Nicholas
2015-01-01
The two defining challenges of this century are overcoming poverty and managing the risks of climate change. Over the past 10 years, we have learned much about how to tackle them together from ideas on economic development and public policy. My own work in these areas over four decades as an academic and as a policy adviser in universities and international financial institutions has focused on how the investment environment and the empowerment of people can change lives and livelihoods. The application of insights from economic development and public policy to climate change requires rigorous analysis of issues such as discounting, modelling the risks of unmanaged climate change, climate policy targets and estimates of the costs of mitigation. The latest research and results show that the case for avoiding the risks of dangerous climate change through the transition to low-carbon economic development and growth is still stronger than when the Stern Review was published. This is partly because of evidence that some of the impacts of climate change are happening more quickly than originally expected, and because of remarkable advances in technologies, such as solar power. Nevertheless, significant hurdles remain in securing the international cooperation required to avoid dangerous climate change, not least because of disagreements and misunderstandings about key issues, such as ethics and equity. PMID:26203007
An alternate approach to assessing climate risks
NASA Astrophysics Data System (ADS)
Brown, Casey; Wilby, Robert L.
2012-10-01
U.S. federal agencies are now required to review the potential impacts of climate change on their assets and missions. Similar arrangements are also in place in the United Kingdom under reporting powers for key infrastructure providers (http://www.defra.gov.uk/environment/climate/sectors/reporting-authorities/reporting-authorities-reports/). These requirements reflect growing concern about climate resilience and the management of long-lived assets. At one level, analyzing climate risks is a matter of due diligence, given mounting scientific evidence. However, there is no consensus about the means for doing so nor about whether climate models are even ft for the purpose; in addition, several important issues are often overlooked when incorporating climate information into adaptation decisions. An alternative to the scenarioled strategy, such as an approach based on a vulnerability analysis ("stress test"), may identify practical options for resource managers.
NASA Astrophysics Data System (ADS)
Froyd, C. A.; Willis, K. J.
2008-09-01
The study of Quaternary environmental change is directly applicable to on-going issues of global conservation. Palaeoecological research techniques provide the tools to address some of the key questions presently being asked by conservation ecologists and land management organizations. But is this type of analysis currently being utilized to its full potential? Are the results of palaeoenvironmental analyses routinely applied to practical issues of natural resource management, and if not what can be done to expand the application of this research within the conservation community? This paper reviews recent developments in the application of the analysis of late Quaternary environmental change to key environmental issues of biodiversity and conservation management and examines areas which could be strengthened in the future including: (i) determination of baselines and natural ecosystem variability; (ii) understanding ecological thresholds and resilience; (iii) climate change conservation strategies; (iv) biological invasions; and (v) conservation and culture.
Sustainability and Teacher Education
ERIC Educational Resources Information Center
Martin, Ken; Summers, Denise; Sjerps-Jones, Harriet
2007-01-01
Sustainability is now a key concept in both government policy and wider global concerns. Issues of climate change and global warming can no longer be ignored in teacher education programs in the post-compulsory education and training sector. Government policy-makers, notably the Department for Education and Skills (DfES), Learning Skills Council…
Climate Change Now Apparent and Unequivocal, New Report Warns
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-06-01
Climate change is happening now in the United States and globally, and its impacts are expected to become increasingly severe for more people and places unless the rate of emissions of heat-trapping gases is substantially reduced, according to a new report, “Global Climate Change Impacts in the United States,” issued at a 16 June White House briefing. The 190-page report, a product of the interagency U.S. Global Change Research Program (USGCRP), states that “global warming is unequivocal and primarily human-induced.” Among other key findings of the report—which drew on USGCRP results and other studies including Intergovernmental Panel on Climate Change reports and the Arctic Climate Impact Assessment—is that climate change will have numerous impacts on water resources, ecosystems, agriculture, coastal areas, human health, and other sectors.
Global Warming: Discussion for EOS Science Writers Workshop
NASA Technical Reports Server (NTRS)
Hansen, James E
1999-01-01
The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.
A new perspective on global mean sea level (GMSL) acceleration
NASA Astrophysics Data System (ADS)
Watson, Phil J.
2016-06-01
The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.
Environmental assessment overview
NASA Technical Reports Server (NTRS)
Valentino, A. R.
1980-01-01
The assessment program has as its objectives: to identify the environmental issues associated with the SPS Reference System; to prepare a preliminary assessment based on existing data; to suggest mitigating strategies and provide environmental data and guidance to other components of the program as required; and to plan long-range research to reduce the uncertainty in the preliminary assessment. The key environmental issues associated with the satellite power system are discussed and include human health and safety, ecosystems, climate, and interaction with electromagnetic systems.
The I.A.G. / A.I.G. SEDIBUD Book Project: Source-to-Sink Fluxes in Undisturbed Cold Environments
NASA Astrophysics Data System (ADS)
Beylich, Achim A.; Dixon, John C.; Zwolinski, Zbigniew
2015-04-01
The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). Amplified climate change and ecological sensitivity of largely undisturbed polar and high-altitude cold climate environments have been highlighted as key global environmental issues. The effects of projected climate change will change surface environments in cold regions and will alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment in these largely undisturbed environments is acute. Our book addresses this existing key knowledge gap. The applied approach of integrating comparable and longer-term field datasets on contemporary solute and sedimentary fluxes from a number of different defined cold climate catchment geosystems for better understanding (i) the environmental drivers and rates of contemporary denudational surface processes and (ii) possible effects of projected climate change in cold regions is unique in the field of geomorphology. Largely undisturbed cold climate environments can provide baseline data for modeling the effects of environmental change. The book synthesizes work carried out by numerous SEDIBUD Members over the last decade in numerous cold climate catchment geosystems worldwide. For reaching a global cover of different cold climate environments the book is - after providing an introduction part and a basic part on climate change in cold environments and general implications for solute and sedimentary fluxes - dealing in different defined parts with Sub-Arctic and Arctic Environments, Sub-Antarctic and Antarctic Environments, and Alpine / Mountain Environments. The book includes a synthesis key chapter where comparable datasets on contemporary solute and sedimentary fluxes generated during the conducted coordinated research efforts in different cold climate catchment geosystems are integrated with the key goals to (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments. The SEDIBUD Book provides new key findings on environmental drivers and rates of contemporary solute and sedimentary fluxes, and on spatial variability within global cold climate environments. The book will go in production in July 2015.
Climate services to improve public health.
Jancloes, Michel; Thomson, Madeleine; Costa, María Mánez; Hewitt, Chris; Corvalan, Carlos; Dinku, Tufa; Lowe, Rachel; Hayden, Mary
2014-04-25
A high level expert panel discussed how climate and health services could best collaborate to improve public health. This was on the agenda of the recent Third International Climate Services Conference, held in Montego Bay, Jamaica, 4-6 December 2013. Issues and challenges concerning a demand led approach to serve the health sector needs, were identified and analysed. Important recommendations emerged to ensure that innovative collaboration between climate and health services assist decision-making processes and the management of climate-sensitive health risk. Key recommendations included: a move from risk assessment towards risk management; the engagement of the public health community with both the climate sector and development sectors, whose decisions impact on health, particularly the most vulnerable; to increase operational research on the use of policy-relevant climate information to manage climate- sensitive health risks; and to develop in-country capacities to improve local knowledge (including collection of epidemiological, climate and socio-economic data), along with institutional interaction with policy makers.
Applying Agnotology-Based Learning in a Mooc to Counter Climate Misconceptions
NASA Astrophysics Data System (ADS)
Cook, J.
2014-12-01
A key challenge facing educators and climate communicators is the wide array of misconceptions about climate science, often fostered by misinformation. A number of myths interfere with a sound understanding of the science, with key myths moderating public support for mitigation policies. An effective way to reduce the influence of misinformation is through agnotology-based learning. Agnotology is the study of ignorance while agnotology-based learning teaches students through the direct addressing of myths and misconceptions. This approach of "refutational teaching" is being applied in a MOOC (Massive Online Open Course) currently being developed by Skeptical Science and The University of Queensland, in collaboration with universities in Canada, USA and the UK. The MOOC will examine the science of climate change denial. Why is the issue so controversial given there is an overwhelming consensus on human-caused global warming? How do climate myths distort the science? What can scientists and laypeople do in response to misinformation? The MOOC will be released on the EdX platform in early 2015. I will summarise the research underpinning agnotology-based learning and present the approach taken in the MOOC to be released in early 2015
Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2014-01-01
Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.
Use and interpretation of climate envelope models: a practical guide
Watling, James I.; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.
2013-01-01
This guidebook is intended to provide a practical overview of climate envelope modeling for conservation professionals and natural resource managers. The material is intended for people with little background or experience in climate envelope modeling who want to better understand and interpret models developed by others and the results generated by such models, or want to do some modeling themselves. This is not an exhaustive review of climate envelope modeling, but rather a brief introduction to some key concepts in the discipline. Readers interested in a more in-depth treatment of much of the material presented here are referred to an excellent book, Mapping Species Distributions: Spatial Inference and Prediction by Janet Franklin. Also, a recent review (Araújo & Peterson 2012) provides an excellent, though more technical, discussion of many of the issues dealt with here. Here we treat selected topics from a practical perspective, using minimal jargon to explain and illustrate some of the many issues that one has to be aware of when using climate envelope models. When we do introduce specialized terminology in the guidebook, we bold the term when it is first used; a glossary of these terms is included at the back of the guidebook.
Soil-profile distribution of organic C and N at the end of 6 years of tillage and grazing management
USDA-ARS?s Scientific Manuscript database
Stocks of soil organic carbon (SOC) and total soil nitrogen (TSN) are key determinants for evaluating agricultural management practices to address climate change, environmental quality, and soil productivity issues. We determined SOC, TSN, and particulate organic C and N depth distributions and cum...
Meetings: Issues and recent advances in soil respiration
K.A. Hibbard; B.E. Law
2004-01-01
The terrestrial carbon cycle is intriniscally tied to climate, hydrology, nutrient cycles, and the production of biomass through photosynthesis. Over two-thirds of terrestrial carbon is stored below ground in soils, and a significant amount of atmospheric CO2 is processed by soils every year. Thus, soil respiration is a key process that underlies...
ERIC Educational Resources Information Center
Schmidt, Patrick; Robbins, Janet
2011-01-01
The article analyzes professional development in music education considering the ways in which policy change depends on conditions where renewed practice can become self supporting. The authors situate professional development amid the current politico-educational climate while offering an interpretive framework based on key issues and actions…
Science accomplishments report.
Valerie Rapp
2003-01-01
Today, as in the past, complex forces of nature intersect with communities and society. Fire, climate change, invasive species, and large-scale shifts in forest cover and use are some of the key issues society currently faces. This accomplishment report encapsulates a yearâs work from our scientists. This work is often interdisciplinary, long term, geographically broad...
From a United Nations Study: The Climatic and Other Global Effects of Nuclear War.
ERIC Educational Resources Information Center
Environment, 1988
1988-01-01
Presents excerpts from the first chapter of a report presented to the General Assembly of the United Nations during the Special Session on Disarmament. Discussed are key scientific issues regarding the global effects of nuclear war, and the findings and conclusions presented in the report. (CW)
Advancing the framework for considering the effects of climate change on worker safety and health.
Schulte, P A; Bhattacharya, A; Butler, C R; Chun, H K; Jacklitsch, B; Jacobs, T; Kiefer, M; Lincoln, J; Pendergrass, S; Shire, J; Watson, J; Wagner, G R
2016-11-01
In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988-2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008-2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers.
Advancing the framework for considering the effects of climate change on worker safety and health
Schulte, P.A.; Bhattacharya, A.; Butler, C.R.; Chun, H.K.; Jacklitsch, B.; Jacobs, T.; Kiefer, M.; Lincoln, J.; Pendergrass, S.; Shire, J.; Watson, J.; Wagner, G.R.
2016-01-01
ABSTRACT In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988–2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008–2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers. PMID:27115294
The United Nations and Climate Change: Legal and Policy Developments
NASA Astrophysics Data System (ADS)
Bunn, Isabella D.
2009-07-01
The Secretary-General of the United Nations, Ban Ki-moon, has declared that climate change is "the defining challenge of our times." Climate change trends indicate increasingly severe negative impacts on the majority of countries, with disproportionate effects on poor and vulnerable populations. The scientific reports of the Intergovernmental Panel on Climate Change (IPCC), as well as the negotiations under the UN Framework Convention on Climate Change (UNFCCC), have placed the issue on the forefront of the international agenda. This article examines how climate change is shaping legal and policy developments in five key areas of UN responsibility: international law, humanitarian affairs, human rights, development, and peace and security. It concludes with some observations about high-level efforts to coordinate the response of multilateral institutions, the changing stance of the US government, and the role of environmental protection in addressing the current global economic crisis.
Threshold concepts as barriers to understanding climate science
NASA Astrophysics Data System (ADS)
Walton, P.
2013-12-01
Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider scientific engagement with the public to develop climate literacy. The analysis of 3 successive cohorts of students' journals who followed the same degree module identified that threshold concepts do exist within the field, such as those related to: role of ocean circulation, use of proxy indicators, forcing factors and feedback mechanisms. Once identified, the study looked at possible strategies to overcome these barriers to support student climate literacy. It concluded that the use of threshold concepts could be problematic when trying to improve climate literacy, as each individual has their own concepts they find ';troublesome' that do not necessarily relate to others. For scientists this presents the difficulty of how to develop a strategy that supports the individual that is cost and time effective. However, the study identifies that eLearning can be used effectively to help people understand troublesome knowledge.
Monitoring Users' Satisfactions of the NOAA NWS Climate Products and Services
NASA Astrophysics Data System (ADS)
Horsfall, F. M.; Timofeyeva, M. M.; Dixon, S.; Meyers, J. C.
2011-12-01
The NOAA's National Weather Service (NWS) Climate Services Division (CSD) ensures the relevance of NWS climate products and services. There are several ongoing efforts to identify the level of user satisfaction. One of these efforts includes periodical surveys conducted by Claes Fornell International (CFI) Group using the American Customer Satisfaction Index (ACSI), which is "the only uniform, national, cross-industry measure of satisfaction with the quality of goods and services available in the United States" (http://www.cfigroup.com/acsi/overview.asp). The CFI Group conducted NWS Climate Products and Services surveys in 2004 and 2009. In 2010, a prominent routine was established for a periodical assessment of the customer satisfaction. From 2010 onward, yearly surveys will cover major climate services products and services. An expanded suite of climate products will be surveyed every other year. Each survey evaluated customer satisfaction with a range of NWS climate services, data, and products, including Climate Prediction Center (CPC) outlooks, drought monitoring, and ENSO monitoring and forecasts, as well as NWS local climate data and forecast products and services. The survey results provide insight into the NWS climate customer base and their requirements for climate services. They also evaluate whether we are meeting the needs of customers and the ease of their understanding for routine climate services, forecasts, and outlooks. In addition, the evaluation of specific topics, such as NWS forecast product category names, probabilistic nature of climate products, interpretation issues, etc., were addressed to assess how our users interpret prediction terminology. This paper provides an analysis of the following products: hazards, extended-range, long-lead and drought outlooks, El Nino Southern Oscillation monitoring and predictions as well as local climate data products. Two key issues make comparing the different surveys challenging, including the inconsistent suite of characteristics measured and the different number of respondent collected for each survey. Regardless of these two factors contributing to uncertainty of the results, CSD observed general improvement in customer satisfaction. Although, all NWS climate products have competitive scores, the leading ACSIs are for NWS Drought products and climate surface observation products. Overall, the survey results identify requirements for improving existing NWS climate services and introducing new ones. To date, the 2011 survey results have not been evaluated, but will be included in the conference presentation. A key point out of the initial 2011 survey results was that the climate section captured the greatest interest (as measured by number of respondents) of the customers of NWS products and services.
Interior Secretary Highlights Key Trends, Including Climate Change and Fiscal Constraint
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-06-01
Climate change is "the defining issue of our time," Department of the Interior (DOI) Secretary Sally Jewell said during her 18 June keynote addess at the AGU Science Policy Conference in Washington, D. C. The United States has to "lead by example. We can't be the largest economy in the world and the second largest producer of carbon in the world"—after China—"and not take care of our own problems first to demonstrate to the world what needs to be done," she said.
Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Baumert, Niklas; Kloos, Julia; Renaud, Fabrice G; La Jeunesse, Isabelle; Mabrouk, Badr; Savić, Dragan A; Kapelan, Zoran; Ludwig, Ralf; Fischer, Georg; Roson, Roberto; Zografos, Christos
2015-01-15
CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7 projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB - CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed - Water Availability and Security in Southern EuRope and the Mediterranean) and human security connected with possible hydro-climatic conflicts (CLICO - CLImate change hydro-COnflicts and human security). The Nile delta case study was common between the projects. CLIWASEC created an integrated forum for modelling and monitoring to understand potential impacts across sectors. This paper summarises key results from an integrated assessment of potential challenges to water-related security issues, focusing on expected sea-level rise impacts by the middle of the century. We use this common focus to illustrate the added value of project clustering. CLIWASEC pursued multidisciplinary research by adopting a single research objective: sea-level rise related water security threats, resulting in a more holistic view of problems and potential solutions. In fragmenting research, policy-makers can fail to understand how multiple issues can materialize from one driver. By combining efforts, an integrated assessment of water security threats in the lower Nile is formulated, offering policy-makers a clearer picture of inter-related issues to society and environment. The main issues identified by each project (land subsidence, saline intrusion - CLIMB; water supply overexploitation, land loss - WASSERMed; employment and housing security - CLICO), are in fact related. Water overexploitation is exacerbating land subsidence and saline intrusion, impacting on employment and placing additional pressure on remaining agricultural land and the underdeveloped housing market. All these have wider implications for regional development. This richer understanding could be critical in making better policy decisions when attempting to mitigate climate and social change impacts. The CLIWASEC clustering offers an encouraging path for the new European Commission Horizon 2020 programme to follow. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Millar, C. I.; Fagre, D. B.
2004-12-01
Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate research symposium (MTNCLIM), the first to be held in spring 2005; developing a strategy for climate-monitoring in WNA; installing and networking high-elevation (>3000m) climate-monitoring stations; and completing three target regions (Glacier National Park, MT; Sierra Nevada and White Mountains, CA) of the international GLORIA (Global Observation Research Initiative in Alpine Environments) plant-monitoring project, the first in WNA. CIRMOUNT emphasizes integration at the regional scale in WNA, collaborating with and complementing projects such as the Western Mountain Initiative, whose mandate is more targeted than CIRMOUNT's, and global programs such as GLORIA and the international Mountain Research Initiative. Achievement of continuing success in WNA hinges on the capacity to secure long-term funding and institutional investment. (1) See associated URL for paper and poster pdfs (2) Discussing the future of western U.S. mountains, climate change, and ecosystems. EOS 31 August 2004, 85(35), p. 329
Munslow, Barry; O'Dempsey, Tim
2010-01-01
This special issue of Third World Quarterly makes a case for redirecting attention and resources away from the 'war on terror' and focussing as a matter of urgency on the causes and consequences of global climate change. Global climate change must be recognised as an issue of national and international security. Increased competition for scarce resources and migration are key factors in the propagation of many of today's chronic complex humanitarian emergencies. The relentless growth of megacities in natural disaster hotspots places unprecedented numbers of vulnerable people at risk of disease and death. The Earth's fragile ecosystem has reached a critical tipping point. Today's most urgent need is for a collective endeavour on the part of the international community to redirect resources, enterprise and creativity away from the war on terror and to earnestly redeploy these in seeking solutions to the far greater and increasingly imminent threats that confront us as a consequence of global climate change.
NASA Astrophysics Data System (ADS)
Weeks, S. M.; Pope, A.
2011-12-01
Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider scientific engagement with the public to develop climate literacy. The analysis of 3 successive cohorts of students' journals who followed the same degree module identified that threshold concepts do exist within the field, such as those related to: role of ocean circulation, use of proxy indicators, forcing factors and feedback mechanisms. Once identified, the study looked at possible strategies to overcome these barriers to support student climate literacy. It concluded that the use of threshold concepts could be problematic when trying to improve climate literacy, as each individual has their own concepts they find ';troublesome' that do not necessarily relate to others. For scientists this presents the difficulty of how to develop a strategy that supports the individual that is cost and time effective. However, the study identifies that eLearning can be used effectively to help people understand troublesome knowledge.
Arctic freshwater synthesis: Introduction
NASA Astrophysics Data System (ADS)
Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.
2015-11-01
In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.
Mapping Trends and Framing Issues in Higher Music Education: Changing Minds/Changing Practices
ERIC Educational Resources Information Center
Minors, Helen Julia; Burnard, Pamela; Wiffen, Charles; Shihabi, Zaina; van der Walt, J. Simon
2017-01-01
This article presents five case studies from within music in higher education programmes that collectively explore key questions concerning how we look at the challenges and trends, and the need for change to react to the recent higher education (HE) climate, through reference to teaching musicians the skills, knowledge and diverse career…
Fire Science Strategy: Resource Conservation and Climate Change
2014-09-01
SMOKE MANAGEMENT ISSUES: CONCLUSIONS—KEY RESEARCH/DEMONSTRATION GAPS COVER PHOTO: CHONG, JOEY 2011. USDA FOREST SERVICE. FORT JACKSON...Fire Science Program LiDAR Light Detection and Ranging LANL Los Alamos National Lab NASA National Aeronautics and Space Administration NCAR...entities include the National Aeronautics and Space Administration ( NASA ), EPA, National Center for Atmospheric Research (NCAR), National Institute of
Carbon sequestration potential of poplar energy crops in the Midwest, USA
R.S. Jr. Zalesny; W.L. Headlee; R.B. Hall; D.R. Coyle
2010-01-01
Energy use and climate change mitigation are closely linked via ecological, social, and economic factors, including carbon management. Energy supply is a key 21st century National security issue for the United States; identifying and developing woody feedstocks for transportation fuels and combined heat and power operations are a crucial component of the future...
Rising CO2, Climate Change, and Public Health: Exploring the Links to Plant Biology
Ziska, Lewis H.; Epstein, Paul R.; Schlesinger, William H.
2009-01-01
Background Although the issue of anthropogenic climate forcing and public health is widely recognized, one fundamental aspect has remained underappreciated: the impact of climatic change on plant biology and the well-being of human systems. Objectives We aimed to critically evaluate the extant and probable links between plant function and human health, drawing on the pertinent literature. Discussion Here we provide a number of critical examples that range over various health concerns related to plant biology and climate change, including aerobiology, contact dermatitis, pharmacology, toxicology, and pesticide use. Conclusions There are a number of clear links among climate change, plant biology, and public health that remain underappreciated by both plant scientists and health care providers. We demonstrate the importance of such links in our understanding of climate change impacts and provide a list of key questions that will help to integrate plant biology into the current paradigm regarding climate change and human health. PMID:19270781
NASA Astrophysics Data System (ADS)
Marlon, J. R.; Howe, P. D.; Leiserowitz, A.
2013-12-01
For climate change communication to be most effective, messages should be targeted to the characteristics of local audiences. In the U.S., 'Six Americas' have been identified among the public based on their response to the climate change issue. The distribution of these different 'publics' varies between states and communities, yet data about public opinion at the sub-national scale remains scarce. In this presentation, we describe a methodology to statistically downscale results from national-level surveys about the Six Americas, climate literacy, and other aspects of public opinion to smaller areas, including states, metropolitan areas, and counties. The method utilizes multilevel regression with poststratification (MRP) to model public opinion at various scales using a large national-level survey dataset. We present state and county-level estimates of two key beliefs about climate change: belief that climate change is happening, and belief in the scientific consensus about climate change. We further present estimates of how the Six Americas vary across the U.S.
Hamdan, Leila J.; Wickland, Kimberly P.
2016-01-01
Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanography gathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue.
NASA Astrophysics Data System (ADS)
Ogra, M. V.; Badola, R.
2015-08-01
Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, livestock rearing, seasonal or long-term migration, and localized natural resource extraction. While warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios in general, we find that climate change is also undermining local communities' livelihood assets in gender-specific ways. In this paper, we present a case study from the Nanda Devi Biosphere Reserve (Uttarakhand, India) that both outlines the implications of climate change for women farmers in the area and highlights the potential for ecotourism (as a form of livelihood diversification) to strengthen both key livelihood assets of women and local communities' adaptive capacity more broadly. The paper intentionally employs a categorical focus on women but also addresses issues of inter-group and gender diversity. With this special issue in mind, suggestions for related research are proposed for consideration by climate scientists and social systems and/or policy modelers seeking to support gender justice through socially transformative perspectives and frameworks.
[Climatic suitability of citrus in subtropical China].
Duan, Hai-Lai; Qian, Huai-Sui; Li, Ming-Xia; Du, Yao-Dong
2010-08-01
By applying the theories of ecological suitability and the methods of fuzzy mathematics, this paper established a climatic suitability model for citrus, calculated and evaluated the climatic suitability and its spatiotemporal differences for citrus production in subtropical China, and analyzed the climatic suitability of citrus at its different growth stages and the mean climatic suitability of citrus in different regions of subtropical China. The results showed that the citrus in subtropical China had a lower climatic suitability and a higher risk at its flower bud differentiation stage, budding stage, and fruit maturity stage, but a higher climatic suitability and a lower risk at other growth stages. Cold damage and summer drought were the key issues affecting the citrus production in subtropical China. The citrus temperature suitability represented a latitudinal zonal pattern, i. e., decreased with increasing latitude; its precipitation suitability was high in the line of "Sheyang-Napo", medium in the southeast of the line, low in the northwest of the line, and non in high mountainous area; while the sunlight suitability was in line with the actual duration of sunshine, namely, higher in high-latitude areas than in low-latitude areas, and higher in high-altitude areas than in plain areas. Limited by temperature factor, the climatic suitability was in accordance with temperature suitability, i. e., south parts had a higher suitability than north parts, basically representing latitudinal zonal pattern. From the analysis of the inter-annual changes of citrus climatic suitability, it could be seen that the citrus climatic suitability in subtropical China was decreasing, and had obvious regional differences, suggesting that climate change could bring about the changes in the regions suitable for citrus production and in the key stages of citrus growth.
How much should we know about energy to better implement climate change education?
NASA Astrophysics Data System (ADS)
Silva-Send, N.; Anders, S.
2011-12-01
Anthropogenic climate change requires us to understand complex and multidisciplinary aspects of climate science. But without also grasping the connection between our lifestyles, behavior, and energy use, it will be difficult for many of us to make changes to contribute to climate change mitigation and energy conservation. A deeper understanding of the energy-climate relationship related to our behavior is thus warranted because, as the internet-based EnergyLiteracy.org points out, albeit within a different but related context of national security and development, "The vast majority of Americans simply don't adequately understand the magnitude and urgency of our national energy crisis ..." and "That lack of understanding deprives our democracy of the political will that must be generated in order to adequately address...." these issues. Our NSF Climate Change Education Program Project, the San Diego Regional Climate Education Partnership (SDRCEP), has as its overarching aim to inform citizens to make balanced decisions based on climate change and energy literacy. The project targets a selected group of 30 key influential persons in the region, and their audiences, representing, for example, the banking sector, the construction industry, the health sector, and commercial real estate. Interviews carried out so far suggest that the connection between climate change and energy use is not easily made. On the other hand, the interviews indicate that a connection is easily made, in this region, between climate change and water availability. Therefore, the purpose of this presentation is to discuss what specific knowledge about personal and societal energy use might be useful to (a) inform and empower key decision-makers responsible for energy-use decisions that significantly affect our lives in the next decades, and (b) empower people to contribute to reducing the impacts of climate change through behavioral or even life-style changes.
Critical issues in trace gas biogeochemistry and global change.
Beerling, David J; Nicholas Hewitt, C; Pyle, John A; Raven, John A
2007-07-15
The atmospheric composition of trace gases and aerosols is determined by the emission of compounds from the marine and terrestrial biospheres, anthropogenic sources and their chemistry and deposition processes. Biogenic emissions depend upon physiological processes and climate, and the atmospheric chemistry is governed by climate and feedbacks involving greenhouse gases themselves. Understanding and predicting the biogeochemistry of trace gases in past, present and future climates therefore demands an interdisciplinary approach integrating across physiology, atmospheric chemistry, physics and meteorology. Here, we highlight critical issues raised by recent findings in all of these key areas to provide a framework for better understanding the past and possible future evolution of the atmosphere. Incorporating recent experimental and observational findings, especially the influence of CO2 on trace gas emissions from marine algae and terrestrial plants, into earth system models remains a major research priority. As we move towards this goal, archives of the concentration and isotopes of N2O and CH4 from polar ice cores extending back over 650,000 years will provide a valuable benchmark for evaluating such models. In the Pre-Quaternary, synthesis of theoretical modelling with geochemical and palaeontological evidence is also uncovering the roles played by trace gases in episodes of abrupt climatic warming and ozone depletion. Finally, observations and palaeorecords across a range of timescales allow assessment of the Earth's climate sensitivity, a metric influencing our ability to decide what constitutes 'dangerous' climate change.
NASA Astrophysics Data System (ADS)
Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.
2017-12-01
Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe their implications for future evaluations of climate science communications products and other boundary management tools in the field of natural resources management.
GEWEX Cloud Systems Study (GCSS)
NASA Technical Reports Server (NTRS)
Moncrieff, Mitch
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus
2015-07-01
The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less
Engaging Indigenous Communities and Research Scientists to Manage Climate Risk
NASA Astrophysics Data System (ADS)
Jasko, S. A.; Pandya, R.; Wildcat, D.; Moench, M.; Leshin, L. A.; Jasko, S. A.; Pulwarty, R. S.; Kluck, D. R.; Collins, G.; Lazrus, H.
2014-12-01
For the past five years a strategy has been employed to reach out to tribes and tribal colleges to build awareness and potentially transfer information that would strengthen tribal resilience to climate variability and changes. Finding an effective approach to first engaging tribal communities and risk management issues from their perspective has been the key. Climate information that is place based and temporally relevant provides the greatest value. By engaging in a social process of risk communication instead of traditional sender- receiver model are taking place and continuing across the U.S. 4-Corners, Pacific Northwest and Missouri Basin. For this presentation we will focus primarily on the lessons from those engagements on water resources in the Missouri Basin where twenty-eight tribes reside.
Merly, Corinne; Chapman, Antony; Mouvet, Christophe
2012-01-01
Research results in environmental and socio-economic sciences are often under-used by stakeholders involved in the management of natural resources. To minimise this gap, the FP6 EU interdisciplinary project AquaTerra (AT) developed an end-users' integration methodology in order to ensure that the data, knowledge and tools related to the soil-water-sediment system that were generated by the project were delivered in a meaningful way for end-users, thus improving their uptake. The methodology and examples of its application are presented in this paper. From the 408 project deliverables, 96 key findings were identified, 53 related to data and knowledge, and 43 describing advanced tools. River Basin Management (RBM) stakeholders workshops identified 8 main RBM issues and 25 specific stakeholders' questions related to RBM which were classified into seven groups of cross-cutting issues, namely scale, climate change, non-climatic change, the need for systemic approaches, communication and participation, international and inter-basin coordination and collaboration, and the implementation of the Water Framework Directive. The integration methodology enabled an assessment of how AT key findings meet stakeholders' demands, and for each main RBM issue and for each specific question, described the added-value of the AT project in terms of knowledge and tools generated, key parameters to consider, and recommendations that can be made to stakeholders and the wider scientific community. Added value and limitations of the integration methodology and its outcomes are discussed and recommendations are provided to further improve integration methodology and bridge the gaps between scientific research data and their potential uptake by end-users.
NASA Astrophysics Data System (ADS)
Dessens, O.
2017-12-01
Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this level of decarbonisation. In extreme condition (positive correlation between the 3 issues discussed) the integrated assessment model TIAM-UCL creates pathways requiring additional negative emission technologies at the end of this century to keep temperature change well below 2°C.
Communicating Urban Climate Change
NASA Astrophysics Data System (ADS)
Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership
2011-12-01
While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of models for community programming and this session will present early results of these efforts while engaging participants in exploring approaches to connecting urban communities and their local concerns to the issues of global climate change.
Ulhøi, John P.; Ulhøi, Benedicte P.
2009-01-01
This paper calls for the need to address climate change within the concept of sustainable development, in recognition of the interrelationships between environmental, economic and social systems. So far, health- providing organizations such as hospitals have paid surprisingly little attention to the relationships between environmental change (e.g. climate change) and human health, or between hospitals (as professional organizations) and their impact on sustainable development. Although it is usually such industries as the chemical, extractive and metal industries, etc., that are associated with environmentally harmful activities, there is also an urgent need to emphasize the roles and responsibilities of hospitals and their embeddedness in a wider ecological, economic and social context. The key objective here is to discuss the relevance of sustainability and environmental management issues in a sector that until now has conveniently ignored its roles and responsibilities in relation to sustainability issues. The paper concludes that arguments based on systems theory, environment, medicine, economics and innovation strongly urge hospitals to reconsider their present roles and environmental responsibilities. PMID:19440441
Ulhøi, John P; Ulhøi, Benedicte P
2009-03-01
This paper calls for the need to address climate change within the concept of sustainable development, in recognition of the interrelationships between environmental, economic and social systems. So far, health- providing organizations such as hospitals have paid surprisingly little attention to the relationships between environmental change (e.g. climate change) and human health, or between hospitals (as professional organizations) and their impact on sustainable development. Although it is usually such industries as the chemical, extractive and metal industries, etc., that are associated with environmentally harmful activities, there is also an urgent need to emphasize the roles and responsibilities of hospitals and their embeddedness in a wider ecological, economic and social context. The key objective here is to discuss the relevance of sustainability and environmental management issues in a sector that until now has conveniently ignored its roles and responsibilities in relation to sustainability issues. The paper concludes that arguments based on systems theory, environment, medicine, economics and innovation strongly urge hospitals to reconsider their present roles and environmental responsibilities.
NASA Astrophysics Data System (ADS)
Brigham, L. W.; Nelson, F. E.
2003-12-01
During 2002 the U.S. Arctic Research Commission chartered a task force on climate change, permafrost and infrastructure impacts. The task force was asked to identify key issues and research needs to foster a greater understanding of global change impacts on permafrost in the Arctic and their importance to natural and human systems. Permafrost was found to play three key roles in the context of climatic change: as a record keeper by functioning as a temperature archive; as a translator of climate change through subsidence and related impacts; and, as a facilitator of further change through its impacts on the global carbon cycle. Evidence of widespread warming of permafrost and observations of thawing have serious implications for Alaska's transportation network, for the trans-Alaska pipeline, and for nearly 100,000 Alaskans living in areas of permafrost. These impacts resulting from changing permafrost must be met by a timely, well-informed, and coordinated response by a host of federal and state organizations. Key task force findings include: requirements for a dedicated U.S. federal permafrost research program; data management needs; baseline permafrost mapping in Alaska; basic permafrost research focusing on process studies and modeling; and, applied permafrost research on design criteria and contaminants in permafrost environments. This report to the Commissioners makes specific recommendations to seven federal agencies, the State of Alaska, and the National Research Council. These recommendations will be incorporated in future Arctic research planning documents of the U.S. Arctic Research Commission.
NASA Astrophysics Data System (ADS)
Muller-Karger, F. E.; Ryan, J. G.; Feldman, A.; Gilbes, F.; Trotz, M.; McKayle, C.; Stone, D.; Plank, L.; Meisels, G.; Peterson, M.; Reynolds, C. J.
2012-12-01
The Coastal Areas Climate Change Education (CACCE) Partnership focused on defining a plan for effective education on climate change and its salient issues in coastal communities Florida and the US Caribbean territories. The approach included assessing perceptions and needs of stakeholders, evaluating the nature of available educational and information resources, and establishing a partnership that includes the public and professional organizations most relevant in planning and in addressing the resiliency of coastal communities. Information gathering activities included surveys among K-12 educators and students on climate change perceptions and current classroom activities in both Florida and the Caribbean territories; surveys of professional urban and land-use planners across Florida regarding their understanding of related in their professional practice; and conducting an inventory of relevant educational materials and information resources. Survey results showed a range of misperceptions about climate change, its causes and its likely impacts. At present, students and teachers in high and middle schools show poor understanding of climate science, and minimal time is spent in instruction on climate change in science courses in Florida and Puerto Rico schools. Also, there has to be professional development efforts and access to rich instructional content in a continuum spanning schools and professional communities including planners (which we surveyed). Architects and engineers are communities that also need to be surveyed and included in future efforts. A major obstacle to efforts at providing continuing education for planners and municipal officials is the lack of consensus on and access to regionally-specific scientific data regarding climate impacts and the relevant instructional content. It is difficult for professionals to prepare for climate change if they cannot define impacts in the Florida-Caribbean region and its coastal urban areas. Across over 1000 websites and online information resources on climate change reviewed for this project, less than a dozen items were identified that address climate change issues and impacts relevant to Florida and the US Caribbean Territories. This represents a serious issue for planners, who need to make effective arguments for climate adaptation strategies to the public and to public officials. These disconnects between stakeholder information and education needs, and available educational content and informational resources, is a significant obstacle to any future public education efforts on climate change in the US most vulnerable regions of the US.
Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.
2011-01-01
The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, Willy R.
2002-09-20
What constitutes 'dangerous anthropogenic interference' is a value judgment arrived at through a socio-political process, taking issues like equity and sustainability into account. Science provides key information needed to arrive at an informed judgment. However, that judgment is primarily a political one, and not a purely scientific decision. Such judgments are based on risk assessment, and lead to risk management choices by decision makers, about actions and policies.
New chairman takes helm at Climate Change Panel
NASA Astrophysics Data System (ADS)
Showstack, Randy
An Indian industrial engineer and economist who supports the Kyoto Protocol, and who has sharply criticized the administration of George W. Bush on the climate change issue for not doing enough to curb greenhouse gas emissions, won the first-ever contested election for chairman of the Intergovernmental Panel on Climate Change (IPCC) during a meeting on 19 April.Rajendra Pachauri is the first representative from a developing country to chair the IPCC, a panel of about 2,500 experts on a wide range of areas related to climate change. The IPCC was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme. In total, the IPCC currently includes 192 member states. Although the bulk of the IPCC's work is conducted by three technical working groups, the chairman plays a key role in facilitating the overall process of the IPCC, organizing the scientific debate within the IPCC, and serving as chief spokesman.
Effective Climate Communication with Difficult Audiences
NASA Astrophysics Data System (ADS)
Denning, S.
2015-12-01
Climate communication is often fraught with ideological baggage ("noise") that makes it very difficult to connect to audiences. In these cases, it is helpful to use "best practices" known from other fields of communication. Engaging audiences with authenticity, using plain language, respecting cultural and political differences, and a sprinkling of humor can go a long way toward establishing a connection. It's important to avoid common but polarizing tropes from popular media, and often quite helpful to frame climate issues in novel or unexpected ways that cut across entrenched political discourse. Emerging social science research Beyond ideology, climate change is Simple, Serious, and Solvable. Effective communication of these three key ideas can succeed when the science argument is carefully framed to avoid attack of the audience's ethical identity. Simple arguments from common sense and everyday experience are more successful than data. Serious consequences to values that resonate with the audience can be avoided by solutions that don't threaten those values.
Arctic summer school onboard an icebreaker
NASA Astrophysics Data System (ADS)
Alexeev, Vladimir A.; Repina, Irina A.
2014-05-01
The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to Kirkenes on September 23, 2013. In our presentation we will try to convey the spirit of learning and excitement of the students during the expedition and the summer school.
Review of Climate Change and Health in Ethiopia: Status and Gap Analysis.
Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan
2016-01-01
This review assessed Ethiopia's existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health activities are not strong enough to address the climate change and health issues in the country.
Review of Climate Change and Health in Ethiopia: Status and Gap Analysis
Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan
2017-01-01
Background This review assessed Ethiopia’s existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. Methods The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Results Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Conclusion Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health activities are not strong enough to address the climate change and health issues in the country. PMID:28867919
The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda.
Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J; Karoly, David J; Wiseman, John
2018-04-04
A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda.
Climate change and indigenous peoples: A synthesis of current impacts and experiences
Norton-Smith, Kathryn; Lynn, Kathy; Chief, Karletta; Cozetto, Karen; Donatuto, Jamie; Hiza, Margaret; Kruger, Linda; Maldonado, Julie; Viles, Carson; Whyte, Kyle P.
2016-01-01
A growing body of literature examines the vulnerability, risk, resilience, and adaptation of indigenous peoples to climate change. This synthesis of literature brings together research pertaining to the impacts of climate change on sovereignty, culture, health, and economies that are currently being experienced by Alaska Native and American Indian tribes and other indigenous communities in the United States. The knowledge and science of how climate change impacts are affecting indigenous peoples contributes to the development of policies, plans, and programs for adapting to climate change and reducing greenhouse gas emissions. This report defines and describes the key frameworks that inform indigenous understandings of climate change impacts and pathways for adaptation and mitigation, namely, tribal sovereignty and self-determination, culture and cultural identity, and indigenous community health indicators. It also provides a comprehensive synthesis of climate knowledge, science, and strategies that indigenous communities are exploring, as well as an understanding of the gaps in research on these issues. This literature synthesis is intended to make a contribution to future efforts such as the 4th National Climate Assessment, while serving as a resource for future research, tribal and agency climate initiatives, and policy development.
The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda
Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J.; Karoly, David J.; Wiseman, John
2018-01-01
A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda. PMID:29617317
NASA Astrophysics Data System (ADS)
Emmer, Adam; Krkoška Lorencová, Eliška; Vačkář, David
2017-04-01
The municipalities of the Czech Republic have been facing negative impacts of changing climate in the past decades - especially floods (1997, 2002, 2010, 2013), droughts and heat waves (2013, 2015), claiming lives, material damages and economic losses up to several % of GDP. Reflecting these events, climate change adaptation should represent major issue in strategical planning on all administrative levels, which is actually not fully met nowadays. Sectoral National Adaptation Strategy (NAS) was approved by the Government of the Czech Republic in autumn 2015 and the implementation action plan is currently being approved. Adaptation strategies on lower administrative level (adaptation strategies of individual municipalities) are, however, still quite rare. In this contribution, we analyse barriers and challenges for: (i) the development of climate change adaptation strategies on administrative level of individual municipalities in the Northwest region, Czech Republic; and (ii) implementation of adaptation measures into the decision-making processes. Based on participatory seminars with key stakeholders organised in pilot municipalities, it was shown that municipalities are (at least partly) able to cope with existing risks such as floods, but are not well-prepared for expected regionally "new" risks such as long lasting heat waves, insufficient water retention and flash floods. Linking the goals of adaptation strategy with urban planning seems to be challenging task but also potentially powerfull tool to implement specific adaptation measures. It emerged, that complicated ownership relations often cause obstacles for implementation of adaptation measures, highlighting the potential of stimulation and motivation tools from the side of the municipality. On the other hand, it was also shown that despite experiencing its negative impacts, climate change is often neglected or percepted as a marginal issue by some municipalities and developing adaptation strategy is considered needless, referring to another burning issues such as socioeconomic situation. The role of information campaigns and education of stakeholders as well as public regarding climate change and possible future climate change impacts is, therefore, considered highly important task.
Native Peoples-Native Homelands Climate Change Workshop: Lessons Learned
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
The Native Peoples-Native Homelands Climate Change Workshop was held on October 28 through November 01,1998, as part of a series of workshops being held around the U.S. to improve the understanding of the potential consequences of climate variability and change for the Nation. This workshop was specifically designed by Native Peoples to examine the impacts of climate change and extreme weather variability on Native Peoples and Native Homelands from an indigenous cultural and spiritual perspective and to develop recommendations as well as identify potential response actions. The workshop brought together interested Native Peoples, representatives of Tribal governments, traditional elders, Tribal leaders, natural resource managers, Tribal College faculty and students, and climate scientists fiom government agencies and universities. It is clear that Tribal colleges and universities play a unique and critical role in the success of these emerging partnerships for decision-making in addition to the important education function for both Native and non-Native communities such as serving as a culturally-appropriate vehicle for access, analysis, control, and protection of indigenous cultural and intellectual property. During the discussions between scientists and policy-makers from both Native and non-Native communities, a number of important lessons emerged which are key to building more effective partnerships between Native and non-Native communities for collaboration and decision-making for a more sustainable future. This talk summarizes the key issues, recommendations, and lessons learned during this workshop.
NASA Astrophysics Data System (ADS)
Beylich, Achim A.
2017-04-01
Amplified climate change and ecological sensitivity of high-latitude and high-altitude cold climate environments has been highlighted as a key global environmental issue. Projected climate change in largely undisturbed cold regions is expected to alter melt-season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active-layer depths. These combined effects will undoubtedly change Earth surface environments in cold regions and will alter the fluxes of sediments, solutes and nutrients. However, the absence of quantitative data and coordinated analysis to understand the sensitivity of the Earth surface environment are acute in cold regions. Contemporary cold climate environments generally provide the opportunity to identify solute and sedimentary systems where anthropogenic impacts are still less important than the effects of climate change. Accordingly, it is still possible to develop a library of baseline fluvial yields and sedimentary budgets before the natural environment is completely transformed. The SEDIBUD (Sediment Budgets in Cold Environments) Program, building on the European Science Foundation (ESF) Network SEDIFLUX (Sedimentary Source-to-Sink Fluxes in Cold Environments, since 2004) was formed in 2005 as a new Program (Working Group) of the International Association of Geomorphologists (I.A.G./A.I.G.) to address this still existing key knowledge gap. SEDIBUD (2005-2017) has currently about 400 members worldwide and the Steering Committee of this international program is composed of eleven scientists from ten different countries. The central research question of this global program is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at 56 defined SEDIBUD key test sites (selected catchment systems) varies by scientific program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists with different levels of detail. SEDIBUD has developed a key set of primary research data requirements intended to incorporate results from these varied projects and allow quantitative analysis across the program. Defined SEDIBUD key test sites provide field data on annual climatic conditions, total discharge and particulate and dissolved fluxes and yields as well as information on other relevant denudational Earth surface processes. A number of selected key test sites are providing high-resolution data on climatic conditions, runoff and solute and sedimentary fluxes and yields, which - in addition to the annual data - contribute to the SEDIBUD metadata database. To support these coordinated efforts, the SEDIFLUX manual and a set of framework papers and book chapters have been produced to establish the integrative approach and common methods and data standards. Comparable field-datasets from different SEDIBUD key test sites are analyzed and integrated to address key research questions of the SEDIBUD program as defined in the SEDIBUD working group objective. A key SEDIBUD synthesis book was published in 2016 by the group and a synthesis key paper is currently in preparation. Detailed information on all SEDIBUD activities, outcomes and published products is found at http://www.geomorph.org/sedibud-working-group/.
Science and Technology Review December 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blobaum, K M
This month's issue has the following articles: (1) More Insight to Better Understand Climate Change - Commentary by Tomas Diaz de la Rubia; (2) Strengthening Our Understanding of Climate Change - Researchers at the Center for Accelerator Mass Spectrometry are working to better understand climate variation and sharpen the accuracy of predictive models; (3) Precision Diagnostics Tell All - The National Ignition Facility relies on sophisticated diagnostic instruments for measuring the key physical processes that occur in high-energy-density experiments; (4) Quick Detection of Pathogens by the Thousands - Livermore scientists have developed a device that can simultaneously identify thousands ofmore » viruses and bacteria within 24 hours; and (5) Carbon Dioxide into the Briny Deep - A proposed technique for burying carbon dioxide underground could help mitigate the effects of this greenhouse gas while producing freshwater.« less
Foreman, Brady Z; Straub, Kyle M
2017-09-01
Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 10 4 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation.
Do bioclimate variables improve performance of climate envelope models?
Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.
2012-01-01
Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.
Foreman, Brady Z.; Straub, Kyle M.
2017-01-01
Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 104 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation. PMID:28924607
Exposure science in an age of rapidly changing climate: challenges and opportunities
LaKind, Judy S; Overpeck, Jonathan; Breysse, Patrick N; Backer, Lorrie; Richardson, Susan D; Sobus, Jon; Sapkota, Amir; Upperman, Crystal R; Jiang, Chengsheng; Beard, C Ben; Brunkard, J M; Bell, Jesse E; Harris, Ryan; Chretien, Jean-Paul; Peltier, Richard E; Chew, Ginger L; Blount, Benjamin C
2016-01-01
Climate change is anticipated to alter the production, use, release, and fate of environmental chemicals, likely leading to increased uncertainty in exposure and human health risk predictions. Exposure science provides a key connection between changes in climate and associated health outcomes. The theme of the 2015 Annual Meeting of the International Society of Exposure Science—Exposures in an Evolving Environment—brought this issue to the fore. By directing attention to questions that may affect society in profound ways, exposure scientists have an opportunity to conduct “consequential science”—doing science that matters, using our tools for the greater good and to answer key policy questions, and identifying causes leading to implementation of solutions. Understanding the implications of changing exposures on public health may be one of the most consequential areas of study in which exposure scientists could currently be engaged. In this paper, we use a series of case studies to identify exposure data gaps and research paths that will enable us to capture the information necessary for understanding climate change-related human exposures and consequent health impacts. We hope that paper will focus attention on under-developed areas of exposure science that will likely have broad implications for public health. PMID:27485992
Milfont, Taciano L
2012-06-01
If the long-term goal of limiting warming to less than 2°C is to be achieved, rapid and sustained reductions of greenhouse gas emissions are required. These reductions will demand political leadership and widespread public support for action on global warming and climate change. Public knowledge, level of concern, and perceived personal efficacy, in positively affecting these issues are key variables in understanding public support for mitigation action. Previous research has documented some contradictory associations between knowledge, personal efficacy, and concern about global warming and climate change, but these cross-sectional findings limit inferences about temporal stability and direction of influence. This study examines the relationships between these three variables over a one-year period and three waves with national data from New Zealand. Results showed a positive association between the variables, and the pattern of findings was stable and consistent across the three data points. More importantly, results indicate that concern mediates the influence of knowledge on personal efficacy. Knowing more about global warming and climate change increases overall concern about the risks of these issues, and this increased concern leads to greater perceived efficacy and responsibility to help solving them. Implications for risk communication are discussed. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Martinez-Rey, J.; Brockmann, P.; Cadule, P.; Nangini, C.
2016-12-01
Earth System Models allow us to understand the interactions between climate and biogeological processes. These models generate a very large amount of data. These data are usually reduced to a few number of static figures shown in highly specialized scientific publications. However, the potential impacts of climate change demand a broader perspective regarding the ways in which climate model results of this kind are disseminated, particularly in the amount and variety of data, and the target audience. This issue is of great importance particularly for scientific projects that seek a large broadcast with different audiences on their key results. The MGClimDeX project, which assesses the climate change impact on La Martinique island in the Lesser Antilles, will provide tools and means to help the key stakeholders -responsible for addressing the critical social, economic, and environmental issues- to take the appropriate adaptation and mitigation measures in order to prevent future risks associated with climate variability and change, and its role on human activities. The MGClimDeX project will do so by using model output and data visualization techniques within the next year, showing the cross-connected impacts of climate change on various sectors (agriculture, forestry, ecosystems, water resources and fisheries). To address this challenge of representing large sets of data from model output, we use back-end data processing and front-end web-based visualization techniques, going from the conventional netCDF model output stored on hub servers to highly interactive web-based data-powered visualizations on browsers. We use the well-known javascript library D3.js extended with DC.js -a dimensional charting library for all the front-end interactive filtering-, in combination with Bokeh, a Python library to synthesize the data, all framed in the essential HTML+CSS scripts. The resulting websites exist as standalone information units or embedded into journals or scientific-related information hubs. These visualizations encompass all the relevant findings, allowing individual model intercomparisons in the context of observations and socioeconomic references. In this way, the full spectrum of results of the MGClimDeX project is available to the public in general and policymakers in particular.
NASA Astrophysics Data System (ADS)
Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.
2016-02-01
As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.
Is nuance possible in climate change communication?
NASA Astrophysics Data System (ADS)
Donner, S. D.
2015-12-01
One of the core challenges of climate communication is finding the balance between honestly portraying the science, with all its complexity, and effectively engaging the audience. At a time when all politics are partisan and the media measures value in clicks, complicated stories can become black-and-white. This loss of nuance is acute in tales told of climate change impacts in the developing world, particularly in the low-lying island states of the Pacific. Atoll countries like Kiribati, Tuvalu, the Marshall Islands and the Maldives are certainly existentially threatened by climate change and sea-level rise. Yet the islands and their residents are also more resilient than the dramatic headlines about sinking islands would have you think. Casting the people as helpless victims, however well-intentioned, can actually hurt their ability to respond to climate change. This presentation examines the risks and benefits of providing such nuance on a climate issue that the public and policy-makers generally view as black-and-white. Drawing on efforts a decade of research in Kiribati and other small island developing states in the Pacific, I describe how a mix of cultural differences, geopolitics, and the legacy of colonialism has made the Pacific Islands a narrative device in a western discussion about climate change. I then describe in detail the challenging process of writing a popular magazine story which questions that narrative - but not the long-term threat of sea-level rise - and the personal and political aftermath of its publication. Building upon this humbling experience and findings from psychology, communications and science and technology studies, I outline the key benefits and risks of engaging publicly with the nuances of a climate change issue, and provide a template for effectively communicating nuance in a politically charged atmosphere.
NASA Astrophysics Data System (ADS)
Alcoforado, M. J.; Campos, V.; Oliveira, S.; Andrade, H.; Festas, M. J.
2009-09-01
Following the IPCC predictions of climate change, even considering one of the "best” scenarios (B1), temperature will rise circa 2°C by 2100. In southern Europe, predictions also indicate a greater precipitation variability, that is the increase in drought frequency, together with an increment of flood risk, with detrimental impacts on water availability and quality, summer tourism and crop productivity, among others. Urban areas create their own local climate, resulting in higher temperatures (UHI), modified wind patterns and lower air quality, among several other consequences. Therefore, as a result of both global and urban induced changes, the climate of cities has suffered several modifications over time, particularly in sprawling urban areas. In November 2007, the ministers responsible for spatial planning and territorial cohesion of the European Union, gathered at the Azores Informal Ministerial on Territorial Cohesion during the Portuguese Presidency, considered climate change to be one of the most important territorial challenges Europe is facing and stated that "our cities and regions need to become more resilient in the context of climate change”. They also agreed that spatial and urban planning is a suitable tool to define cost-effective adaptation measures. Furthermore, the Ministers committed themselves to put mitigation and adaptation issues of climate change into the mainstream of spatial and urban development policy at national, regional and local level. These decisions have lead to different actions in the Member States. In Portugal, the new Policy for the Cities POLIS XXI has selected the relationship between climate change and urban development as one of the key issues to be addressed by projects initiated by local authorities and submitted for co-financing through the OP "Territorial Enhancement” of the NSRF. This paper presents one of the actions taken by the Portuguese Directorate General for Spatial Planning and Urban Development (DGOTDU), the national authority responsible for the technical implementation of the Policy for the Cities, in order to raise awareness on this issue and stimulate local authorities to carry out projects aimed at enabling urban communities to increase their resilience to climate change. A booklet on climate change in urban areas, prepared in collaboration with the University of Lisbon, will soon be edited by DGOTDU. This booklet, addressed to local decision makers, both politicians and technicians, starts by giving an overall view of the state of the art science-based knowledge on climate change, both on global and regional scale. It moves on to explain the challenges raised by climate change in Portugal, focusing on urban areas and urban development issues. The content makes use of the results of previous research, such as the results obtained from the SIAM project and other studies on urban climate, carried out by the University of Lisbon. These results were complemented with a focused approach on specific urban development issues, through collaboration with DGOTDU. The booklet ends by presenting selected examples of "good practices”, aimed at either tackling the negative impacts or enhancing the potential positive consequences of climate change. An extensive reference bibliography for further consultation is also included.
The Saskatchewan River Basin - a large scale observatory for water security research (Invited)
NASA Astrophysics Data System (ADS)
Wheater, H. S.
2013-12-01
The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.
Climate change and health: global to local influences on disease risk.
Patz, J A; Olson, S H
2006-01-01
The World Health Organization has concluded that the climatic changes that have occurred since the mid 1970s could already be causing annually over 150,000 deaths and five million disability-adjusted life-years (DALY), mainly in developing countries. The less developed countries are, ironically, those least responsible for causing global warming. Many health outcomes and diseases are sensitive to climate, including: heat-related mortality or morbidity; air pollution-related illnesses; infectious diseases, particularly those transmitted, indirectly, via water or by insect or rodent vectors; and refugee health issues linked to forced population migration. Yet, changing landscapes can significantly affect local weather more acutely than long-term climate change. Land-cover change can influence micro-climatic conditions, including temperature, evapo-transpiration and surface run-off, that are key determinants in the emergence of many infectious diseases. To improve risk assessment and risk management of these synergistic processes (climate and land-use change), more collaborative efforts in research, training and policy-decision support, across the fields of health, environment, sociology and economics, are required.
African Science Leaders Focus on Key Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-08-01
While dozens of African presidents were in Washington, D. C., in early August to meet with U.S. president Barack Obama during the first U.S.-Africa Leaders Summit, African science ministers and science academy officials held their own gathering at the U.S. National Academy of Sciences (NAS) to focus on challenges and opportunities related to environmental protection, climate change, development, health, poverty, technology, and other issues.
High-End Climate Science: Development of Modeling and Related Computing Capabilities
2000-12-01
toward strengthening research on key scientific issues. The Program has supported research that has led to substantial increases in knowledge , improved...provides overall direction and executive oversight of the USGCRP. Within this framework, agencies manage and coordinate Federally supported scientific...critical for the U.S. Global Change Research Program. Such models can be used to look backward to test the consistency of our knowledge of Earth system
Climate change and dengue: a critical and systematic review of quantitative modelling approaches
2014-01-01
Background Many studies have found associations between climatic conditions and dengue transmission. However, there is a debate about the future impacts of climate change on dengue transmission. This paper reviewed epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission. Methods A literature search was conducted in October 2012, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search focused on peer-reviewed journal articles published in English from January 1991 through October 2012. Results Sixteen studies met the inclusion criteria and most studies showed that the transmission of dengue is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. Studies on the potential impacts of climate change on dengue indicate increased climatic suitability for transmission and an expansion of the geographic regions at risk during this century. A variety of quantitative modelling approaches were used in the studies. Several key methodological issues and current knowledge gaps were identified through this review. Conclusions It is important to assemble spatio-temporal patterns of dengue transmission compatible with long-term data on climate and other socio-ecological changes and this would advance projections of dengue risks associated with climate change. PMID:24669859
What causes similarity in catchments?
NASA Astrophysics Data System (ADS)
Savenije, Hubert
2014-05-01
One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.
Public Perception of Climate Risk: The Case of Greece
NASA Astrophysics Data System (ADS)
Voskaki, Asimina; Tsermenidis, Konstantinos
2015-04-01
Climate change is generally considered as one of the greatest challenges our world is facing. In the case of Greece climatic change seems to be associated with sea level rise, increase in temperature, variation in precipitation patterns, and extreme weather events. As a result of climate pattern changes a series of consequences are expected in areas involving build environment, infrastructures, health and various sectors of the economy. Even though climate change is probably going to affect Greece in terms of human welfare and economic growth, public perception and attitude do not always identify it as the most important, amongst others, environmental area of concern, or compared to various socio-economic issues. Considering that topics related to climate change involve a certain degree of uncertainty public perception seems to be important when dealing with adaptation strategies to manage or prevent risks from climate change impact and therefore people's reaction to risks seem to be an issue of great importance in future policy planning and implementation. The key issue of this paper is to investigate and analyse public perception in Greece as regards to climate change risk. Through a questionnaire survey this research investigates people's understanding, specific knowledge, opinion, awareness, emotions, behavior with regards to climate change risks and their willingness to pay in order to minimize or prevent risk. In addition, it examines people's willingness to alter current lifestyle and adapt to a changing climate. The information derived from survey data concern the topics and the perceived importance of the causes of the climate change between certain groups of people; the analysis of the data is focused on the correlation between perceived risk and knowledge about the issues involved. Rather than applying a specific technique extensively, we choose to deploy a number of methodologies with which we are able to draw different aspects from the data. To this end, we apply descriptive statistics, cluster analysis techniques and logistic regression. Descriptive statistics result in some general conclusions from the data concerning sex, age, location, residential characteristics, level of education and level of actual knowledge. Cluster analysis gives us an intuitive on how the subjects are grouped in certain profiles, according to their attitude towards climate change and the associated risk. Logistic regression provides a probabilistic approach in order to interpret the way the subjects respond to our questions in relation to their specific background. Based on analysis results, this paper, amongst others, points out the vulnerability of Greek society to climate risk and highlights factors that influence individual perception; in addition it identifies drivers of behavior change that can facilitate efficient adaptation plans for future use. The results of this research could be used as a basis for understanding public responses to climate change risk and for facilitating communication between experts, policy makers and communities.
Estimating daily climatologies for climate indices derived from climate model data and observations
Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof
2015-01-01
Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192
NASA Astrophysics Data System (ADS)
Keith, David W.; Irvine, Peter J.
2016-11-01
We offer a hypothesis that if solar geoengineering (SG) were deployed to offset half of the increase in global-mean temperature from the date of deployment using a technology and deployment method chosen to approximate a reduction in the solar constant then, over the 21st century, it would (a) substantially reduce the global aggregate risks of climate change, (b) without making any country worse off, and (c) with the aggregate risks from side-effects being small in comparison to the reduction in climate risks. We do not set out to demonstrate this hypothesis; rather we propose it with the goal of stimulating a strategic engagement of the SG research community with policy-relevant questions. We elaborate seven sub-hypotheses on the effects of our scenario for key risks of climate change that could be assessed in future modeling work. As an example, we provide a defence of one of our sub-hypotheses, that our scenario of SG would reduce the risk of drought in dry regions, but also identify issues that may undermine this sub-hypothesis and how future work could resolve this question. SG cannot substitute for emissions mitigation but it may be a useful supplement. It is our hope that scientific and technical research over the next decade focuses more closely on well-articulated variants of the key policy-relevant question: could SG be designed and deployed in such a way that it could substantially and equitably reduce climate risks?
Climate Benchmark Missions: CLARREO
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Young, David F.
2010-01-01
CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in observing the small but critical climate change signals. CLARREO is the recommended attack on this challenge, and builds on the last decade of climate observation advances in the Earth Observing System as well as metrological advances at NIST (National Institute of Standards and Technology) and other standards laboratories.
Is EIA part of the wind power planning problem?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, Duncan Ewan; Stojanovic, Timothy A., E-mail: tas21@st-andrews.ac.uk; Warren, Charles R.
2014-11-15
This research evaluates the importance and effectiveness of Environmental Impact Assessment (EIA) within wind farm planning debates, drawing on insights from case studies in Scotland. Despite general public support for renewable energy on the grounds that it is needed to tackle climate change and implement sustainable development, many proposed wind farms encounter significant resistance. The importance of planning issues and (EIA) processes has arguably been overlooked within recent wind farm social acceptability discourse. Through semi-structured interviews with key stakeholders and textual analysis of EIA documents, the characteristics of EIA are assessed in terms of its perceived purpose and performance. Themore » data show that whilst respondents perceive EIA to be important, they express concerns about bias and about the inability of EIA to address climate change and wind farm decommissioning issues adequately. Furthermore, the research identifies key issues which impede the effectiveness of EIA, and reveals differences between theoretical and practical framings of EIA. The paper questions the assumption that EIA is a universally applicable tool, and argues that its effectiveness should be analysed in the context of specific development sectors. The article concludes by reviewing whether the recently amended EIA Directive (2014/52/EU) could resolve identified problems within national EIA practice. - Highlights: • Evaluation of EIA for onshore wind farm planning in Scotland. • EIA is important for multiple aspects of onshore wind farm planning. • Multiple substantive deficiencies of relevance to wind farm planning exist in EIA. • Further research into EIA effectiveness for specific development types is required. • Directive 2014/52/EU may improve EIA effectiveness within wind farm planning.« less
Introduction. Pliocene climate, processes and problems
Haywood, A.M.; Dowsett, H.J.; Valdes, P.J.; Lunt, D.J.; Francis, J.E.; Sellwood, B.W.
2009-01-01
Climate predictions produced by numerical climate models, often referred to as general circulation models (GCMs), suggest that by the end of the twenty-first century global mean annual surface air temperatures will increase by 1.1-6.4??C. Trace gas records from ice cores indicate that atmospheric concentrations of CO2 are already higher than at any time during the last 650000 years. In the next 50 years, atmospheric CO2 concentrations are expected to reach a level not encountered since an epoch of time known as the Pliocene. Uniformitarianism is a key principle of geological science, but can the past also be a guide to the future? To what extent does an examination of the Pliocene geological record enable us to successfully understand and interpret this guide? How reliable are the 'retrodictions' of Pliocene climates produced by GCMs and what does this tell us about the accuracy of model predictions for the future? These questions provide the scientific rationale for this Theme Issue. ?? 2008 The Royal Society.
Parham, Paul E.; Waldock, Joanna; Christophides, George K.; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J.; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E.; Naumova, Elena N.; Ostfeld, Richard S.; Ready, Paul D.; Thomas, Matthew B.; Velasco-Hernandez, Jorge; Michael, Edwin
2015-01-01
Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems. PMID:25688012
The Impact of Climate Change on the United States Economy
NASA Astrophysics Data System (ADS)
Mendelsohn, Robert; Neumann, James E.
2004-08-01
Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.
Mainstreaming Climate Change Into Geosciences Curriculum of Tertiary Educational Systems in Ghana
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2015-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana and also juxtapose with the WASCAL graduate school curriculum. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognize that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to make Climate Change education practical.
The GCOS Reference Upper-Air Network (GRUAN)
NASA Astrophysics Data System (ADS)
Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.
2009-04-01
While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.
Key challenges and priorities for modelling European grasslands under climate change.
Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni
2016-10-01
Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research directions and collaborative opportunities, and 2) for policy-makers involved in shaping the research agenda for European grassland modelling under climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
Raimi, Kaitlin T; Stern, Paul C; Maki, Alexander
2017-01-01
To make informed choices about how to address climate change, members of the public must develop ways to consider established facts of climate science and the uncertainties about its future trajectories, in addition to the risks attendant to various responses, including non-response, to climate change. One method suggested for educating the public about these issues is the use of simple mental models, or analogies comparing climate change to familiar domains such as medical decision making, disaster preparedness, or courtroom trials. Two studies were conducted using online participants in the U.S.A. to test the use of analogies to highlight seven key decision-relevant elements of climate change, including uncertainties about when and where serious damage may occur, its unprecedented and progressive nature, and tradeoffs in limiting climate change. An internal meta-analysis was then conducted to estimate overall effect sizes across the two studies. Analogies were not found to inform knowledge about climate literacy facts. However, results suggested that people found the medical analogy helpful and that it led people-especially political conservatives-to better recognize several decision-relevant attributes of climate change. These effects were weak, perhaps reflecting a well-documented and overwhelming effect of political ideology on climate change communication and education efforts in the U.S.A. The potential of analogies and similar education tools to improve understanding and communication in a polarized political environment are discussed.
Quantitative approaches in climate change ecology
Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J
2011-01-01
Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.
2017-01-01
We use an experiment to examine whether the way in which climate change is framed affects individuals’ beliefs about its importance as a policy issue. We employ frames that emphasize national security, human rights, and environmental importance about the consequences of climate change. We find no evidence that issue frames have an overall effect on opinions about the importance of climate change policy. We do find some evidence that the effect of issue frames varies across ideological and partisan groups. Most notably, issue frames can lead Republicans and those on the political right to view climate change policy as less important. We conclude by discussing our findings relative to extant literature and considering the implications of our findings for those who seek to address the issue of climate change. PMID:28727842
Singh, Shane P; Swanson, Meili
2017-01-01
We use an experiment to examine whether the way in which climate change is framed affects individuals' beliefs about its importance as a policy issue. We employ frames that emphasize national security, human rights, and environmental importance about the consequences of climate change. We find no evidence that issue frames have an overall effect on opinions about the importance of climate change policy. We do find some evidence that the effect of issue frames varies across ideological and partisan groups. Most notably, issue frames can lead Republicans and those on the political right to view climate change policy as less important. We conclude by discussing our findings relative to extant literature and considering the implications of our findings for those who seek to address the issue of climate change.
Climate scenarios for the Truckee-Carson River system
Dettinger, Michael; Sterle, Kelley; Simpson, Karen; Singletary, Loretta; Fitzgerald, Kelsey; McCarthy, Maureen
2017-01-01
In this study, the scenarios ultimately take the form of gridded, daily (maximum and minimum) temperatures and precipitation totals spanning the entire Truckee-Carson River System, from which meteorological inputs to various hydrologic, water-balance and watermanagement models can be extracted by other parts of the Water for the Seasons project and by other studies and stakeholders. Climate scenarios are constructed using: 1) survey data from interviews with 66 Truckee-Carson River System water-management and water-interest organizations to identify plausible drought and high-flow events that could stress the system irreparably; 2) input from the Stakeholder Affiliate Group and other modelers on the Water for the Seasons team to gain additional key stakeholder input with regard to organizational survey results and to identify the most pressing water-management issues being faced in the system; and 3) historical climate datasets used to simulate possible future conditions.
Wen, Xinyu; Liu, Zhengyu; Wang, Shaowu; Cheng, Jun; Zhu, Jiang
2016-06-22
Understanding the past significant changes of the East Asia Summer Monsoon (EASM) and Winter Monsoon (EAWM) is critical for improving the projections of future climate over East Asia. One key issue that has remained outstanding from the paleo-climatic records is whether the evolution of the EASM and EAWM are correlated. Here, using a set of long-term transient simulations of the climate evolution of the last 21,000 years, we show that the EASM and EAWM are positively correlated on the orbital timescale in response to the precessional forcing, but are anti-correlated on millennial timescales in response to North Atlantic melt water forcing. The relation between EASM and EAWM can differ dramatically for different timescales because of the different response mechanisms, highlighting the complex dynamics of the East Asian monsoon system and the challenges for future projection.
Wen, Xinyu; Liu, Zhengyu; Wang, Shaowu; Cheng, Jun; Zhu, Jiang
2016-01-01
Understanding the past significant changes of the East Asia Summer Monsoon (EASM) and Winter Monsoon (EAWM) is critical for improving the projections of future climate over East Asia. One key issue that has remained outstanding from the paleo-climatic records is whether the evolution of the EASM and EAWM are correlated. Here, using a set of long-term transient simulations of the climate evolution of the last 21,000 years, we show that the EASM and EAWM are positively correlated on the orbital timescale in response to the precessional forcing, but are anti-correlated on millennial timescales in response to North Atlantic melt water forcing. The relation between EASM and EAWM can differ dramatically for different timescales because of the different response mechanisms, highlighting the complex dynamics of the East Asian monsoon system and the challenges for future projection. PMID:27328616
Shi, X M
2017-03-10
Air pollution and climate change have become key environmental and public health problems around the world, which poses serious threat to human health. How to assess and mitigate the health risks and increase the adaptation of the public have become an urgent topic of research in this area. The six papers in this issue will provide important and rich information on design, analysis method, indicator selection and setting about acute health risk assessment and adaptation study of air pollution and climate change in China, reflecting the advanced conceptions of multi-center and area-specific study and multi-pollutant causing acute effect study. However, the number and type of the cities included in these studies were still limited. In future, researchers should further expand detailed multi-center and multi-area study coverage, conduct area specific predicting and early warning study and strengthen adaptation study.
Towards a Local-Scale Climate Service for Colombian Agriculture: Findings and Future Perspectives
NASA Astrophysics Data System (ADS)
Ramirez-Villegas, J.; Prager, S.; Llanos, L.; Agudelo, D.; Esquivel, A.; Sotelo, S.; Guevara, E.; Howland, F. C.; Munoz, A.; Rodriguez, J.; Ordonez, L.; Fernandes, K.
2017-12-01
Globally, interannual climate variability explains roughly a third of the yield variation for major crops. In Colombia, interannual climate variations and specially those driven by ENSO can disrupt production, lower farmers' incomes and increase market prices for both urban and rural consumers alike. Farmers in Colombia, however, often plan for the cropping season based on the immediately prior year's experience, which is unlikely to result in successful crops under high climate variability events. Critical decisions for avoiding total investment loss or to ensure successful harvests, including issues related to planting date, what variety to plant, or whether to plant, are made, at best, intuitively. Here, we demonstrate that the combination of better data, skillful seasonal climate forecasts, calibrated crop models, and a web-based climate services platform tailored to users' needs can prove successful in establishing a sustained climate service for agriculture. Rainfall predictability analyses indicate that statistical seasonal climate forecasts are skillful enough for issuing forecasts reliably in virtually all areas, with dry periods generally showing greater predictability than wet periods. Importantly, we find that a better specification of predictor regions significantly enhances seasonal forecast skill. Rice and maize crop models capture well the growth and development of rice and maize crops in experimental settings, and ably simulate historical (1980-2014) variations in productivity. With skillful climate and crop models, we developed a climate services platform that produces seasonal climate forecasts, and connects these with crop models. A usability study of the forecast platform revealed that, from a population of ca. 200 farmers and professionals, roughly two thirds correctly interpreted information and felt both confident and encouraged to use the platform. Nevertheless, capacity strengthening on key agro-climatology concepts was highlighted by farmers as a crucial need. Challenges also arose in certain zones due to limited access to electricity, computers or Internet. Based on our results, we conclude that for a climate service to be truly sustainable, well-calibrated and skillful models are as critical as the co-creation of the service itself with the stakeholder community.
Water management to cope with and adapt to climate variability and change.
NASA Astrophysics Data System (ADS)
Hamdy, A.; Trisorio-Liuzzi, G.
2009-04-01
In many parts of the world, variability in climatic conditions is already resulting in major impacts. These impacts are wide ranging and the link to water management problems is obvious and profound. The know-how and the available information undoubtedly indicate that climate change will lead to an intensification of the global hydrological cycle and can have major impacts on regional water resources, affecting both ground and surface water supply for sectorial water uses and, in particular, the irrigation field imposing notable negative effects on food security and poverty alleviation programs in most arid and semi-arid developing countries. At the United Nations Millennium Summit, in September 2000, world leaders adopted the Millennium Development Declaration. From this declaration, the IWRM was recognised as the key concept the water sector should be using for water related development and measures and, hence, for achieving the water related MDG's. However, the potential impacts of climate change and increasing climate variability are not sufficiently addressed in the IWRM plans. Indeed, only a very limited IWRM national plans have been prepared, coping with climate variability and changes. This is mainly due to the lack of operational instruments to deal with climate change and climate variability issues. This is particularly true in developing countries where the financial, human and ecological impacts are potentially greatest and where water resources may be already highly stressed, but the capacity to cope and adapt is weakest. Climate change has now brought realities including mainly rising temperatures and increasing frequency of floods and droughts that present new challenges to be addressed by the IWRM practice. There are already several regional and international initiatives underway that focus on various aspects of water resources management those to be linked with climate changes and vulnerability issues. This is the way where the water resources management and climate scientist communities are engaged in a process for building confidence and understanding, identifying options and defining the water resources management strategies which to cope with impacts of climate variability and change.
Brown, Helen; Spickett, Jeffery; Katscherian, Dianne
2014-01-01
This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146
Brown, Helen; Spickett, Jeffery; Katscherian, Dianne
2014-12-01
This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.
Kamenos, Nicholas A
2010-12-28
Modeling and measurements show that Atlantic marine temperatures are rising; however, the low temporal resolution of models and restricted spatial resolution of measurements (i) mask regional details critical for determining the rate and extent of climate variability, and (ii) prevent robust determination of climatic impacts on marine ecosystems. To address both issues for the North East Atlantic, a fortnightly resolution marine climate record from 1353-2006 was constructed for shallow inshore waters and compared to changes in marine zooplankton abundance. For the first time summer marine temperatures are shown to have increased nearly twice as much as winter temperatures since 1353. Additional climatic instability began in 1700 characterized by ∼5-65 year climate oscillations that appear to be a recent phenomenon. Enhanced summer-specific warming reduced the abundance of the copepod Calanus finmarchicus, a key food item of cod, and led to significantly lower projected abundances by 2040 than at present. The faster increase of summer marine temperatures has implications for climate projections and affects abundance, and thus biomass, near the base of the marine food web with potentially significant feedback effects for marine food security.
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Downard, J.; Nielsen, E.
2015-12-01
The environmental sciences are at the forefront of critical issues facing society in the coming decades. As a result, many graduates in the environmental sciences find themselves working with the public to help inform the democratic process of making reasonable public policies. In order to be successful, students need to be confronted with the same kinds of questions and problems that practicing scientists face when they are working at the intersection of science and public policy. Otherwise, they lack the skills and confidence needed to work effectively with the public—especially on hotly contested environmental issues when the skills are needed the most. As part of a new Professional Science Master's (PSM) Program in Climate Science and Solutions at Northern Arizona University we have developed a three-semester course series focused on framing discussions on climate change mitigation and adaptation. Each semester, students use a deliberative model to design, frame, and facilitate a public discussion on a targeted issue of regional and local interest. The deliberative model is built around an approach to practical dilemmas that enables students to isolate and clarify the various sources of conflict around the issue. Working in an iterative manner, students learn to identify and untangling some of the sources of disagreement (e.g., policy, ethics and ideals, difference in scientific understanding) around and issue. As a result, students are in a much better position to clarify the key questions and sort through the competing solutions. The course series helps to improve the communication skills of students and promote productive public discourse with individuals from diverse backgrounds within the community. This type of experiential learning provides unique training to our students that not only broadens there understanding of complex issues surrounding climate change, but also provides them with professional skills that are transferrable to their careers.
GET FiT Plus: De-risking clean energy business models in a developing country context
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
GET Fit was first conceived in January 2010 when the United Nations Secretary General's Advisory Group on Energy and Climate Change (AGECC) invited Deutsche Bank Climate Change Advisors (DBCCA) to present new concepts to drive renewable energy investment in developing regions. DBCCA responded with the Global Energy Transfer Feed-in Tariffs Program (GET FiT), a proposal to support both renewable energy scale up and energy access through the creation of new international public-private partnerships. The concept was inspired by the theory that feed-in tariffs could serve as an effective policy structure for both public and private investment and knowledge transfer frommore » the developed world. The original GET FiT concept was designed with input from over 160 individuals from the renewable energy, financial and international development communities. The original GET FiT report was issued in April 2010. This report reflects continued engagement of stakeholders around the world. GET FiT plus is an effort to capture the key outcomes of the GET FiT consultation process and use them to catalyze ongoing dialogue and debate about the future of international support for renewable energy in developing regions. These outcomes have been translated into key research priorities. These priorities, as well as some short issue briefs are part of this report.« less
The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?
NASA Astrophysics Data System (ADS)
Tooth, Stephen
2018-03-01
Over the last decade, much attention has focused on wetland resilience to disturbances such as extreme weather events, longer climate change, and human activities. In geomorphology and cognate disciplines, resilience is defined in various ways and has physical and socioeconomic dimensions but commonly is taken to mean the ability of a system to (A) withstand disturbance, (B) recover from disturbance, or (C) adapt and evolve in response to disturbance to a more desirable (e.g., stable) configuration. Most studies of wetland resilience have tended to focus on the more-or-less permanently saturated humid region wetlands, but whether the findings can be readily transferred to wetlands in drylands remains unclear. Given the natural climatic variability and overall strong moisture deficit characteristic of drylands, are such wetlands likely to be more resilient or less resilient? Focusing on wetlands in the South African drylands, this paper uses existing geomorphological, sedimentological, and geochronological data sets to provide the spatial (up to 50 km2) and temporal (late Quaternary) framework for an assessment of geomorphological resilience. Some wetlands have been highly resilient to environmental (especially climate) change, but others have been nonresilient with marked transformations in channel-floodplain structure and process connectivity having been driven by natural factors (e.g., local base-level fall, drought) or human activities (e.g., channel excavation, floodplain drainage). Key issues related to the assessment of wetland resilience include channel-floodplain dynamics in relation to geomorphological thresholds, wetland geomorphological 'life cycles', and the relative roles of natural and human activities. These issues raise challenges for the involvement of geomorphologists in the practical application of the resilience concept in wetland management. A key consideration is how geomorphological resilience interfaces with other dimensions of resilience, especially ecological resilience and socioeconomic resilience, the latter commonly being defined in terms of ecosystem service delivery.
EDITORIAL: Tropical deforestation and greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Gibbs, Holly K.; Herold, Martin
2007-10-01
Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world's tropical forests that can provide key consistency and prioritization for national-level efforts. Gibbs et al calculate a range of national-level forest carbon stock estimates that can be used immediately, and also review ground-based and remote sensing approaches to estimate national-level tropical carbon stocks with increased accuracy. These papers help illustrate that methodologies and tools are indeed available to estimate emissions from deforestation. Clearly, important technical challenges remain (e.g. quantifying degradation, assessing uncertainty, verification procedures, capacity building, and Landsat data continuity) but we now have a sufficient technical base to support REDD early actions and readiness mechanisms for building national monitoring systems. Thus, we enter the COP 13 in Bali, Indonesia with great hope for a more inclusive climate policy encompassing all countries and emissions sources from both land-use and energy sectors. Our understanding of tropical deforestation and carbon emissions is improving and with that, opportunities to conserve tropical forests and the host of ecosystem services they provide while also increasing revenue streams in developing countries through economic incentives to avoid deforestation and degradation. References Gullison R E et al 2007 Tropical forests and climate policy Science 316 985 6 Intergovernmental Panel on Climate Change (IPCC) 2007 Climate Change 2007: The Physical Science Basis: Summary for Policymakers http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf Santilli M et al 2005 Tropical deforestation and the Kyoto Protocol: an editorial essay Clim. Change 71 267 76 Focus on Tropical Deforestation and Greenhouse Gas Emissions Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Pan-tropical monitoring of deforestation F Achard, R DeFries, H Eva, M Hansen, P Mayaux and H-J Stibig Monitoring and estimating tropical forest carbon stocks: making REDD a reality Holly K Gibbs, Sandra Brown, John O Niles and Jonathan A Foley Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC D Mollicone, A Freibauer, E D Schulze, S Braatz, G Grassi and S Federici
The development and psychometric evaluation of a safety climate measure for primary care.
de Wet, C; Spence, W; Mash, R; Johnson, P; Bowie, P
2010-12-01
Building a safety culture is an important part of improving patient care. Measuring perceptions of safety climate among healthcare teams and organisations is a key element of this process. Existing measurement instruments are largely developed for secondary care settings in North America and many lack adequate psychometric testing. Our aim was to develop and test an instrument to measure perceptions of safety climate among primary care teams in National Health Service for Scotland. Questionnaire development was facilitated through a steering group, literature review, semistructured interviews with primary care team members, a modified Delphi and completion of a content validity index by experts. A cross-sectional postal survey utilising the questionnaire was undertaken in a random sample of west of Scotland general practices to facilitate psychometric evaluation. Statistical methods, including exploratory and confirmatory factor analysis, and Cronbach and Raykov reliability coefficients were conducted. Of the 667 primary care team members based in 49 general practices surveyed, 563 returned completed questionnaires (84.4%). Psychometric evaluation resulted in the development of a 30-item questionnaire with five safety climate factors: leadership, teamwork, communication, workload and safety systems. Retained items have strong factor loadings to only one factor. Reliability coefficients was satisfactory (α = 0.94 and ρ = 0.93). This study is the first stage in the development of an appropriately valid and reliable safety climate measure for primary care. Measuring safety climate perceptions has the potential to help primary care organisations and teams focus attention on safety-related issues and target improvement through educational interventions. Further research is required to explore acceptability and feasibility issues for primary care teams and the potential for organisational benchmarking.
Oil shortages, climate change and collective action.
Newbery, David
2011-05-13
Concerns over future oil scarcity might not be so worrying but for the high carbon content of substitutes, and the limited capacity of the atmosphere to absorb additional CO(2) from burning fuel. The paper argues that the tools of economics are helpful in understanding some of the key issues in pricing fossil fuels, the extent to which pricing can be left to markets, the need for, and design of, international agreements on corrective carbon pricing, and the potential Prisoners' Dilemma in reaching such agreements, partly mitigated in the case of oil by current taxes and the probable incidence of carbon taxes on the oil price. The 'Green Paradox', in which carbon pricing exacerbates climate change, is theoretically possible, but empirically unlikely. © 2011 Royal Society
Assessment of Coastal Governance for Climate Change Adaptation in Kenya
NASA Astrophysics Data System (ADS)
Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina
2017-11-01
The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.
A National Climate Change Adaptation Network for Protecting Water Security
NASA Astrophysics Data System (ADS)
Weaver, A.; Sauchyn, D.; Byrne, J. M.
2009-12-01
Water security and resource-dependent community-survival are being increasingly challenged as a consequence of climate change, and it is urgent that we plan now for the security of our water supplies which support our lives and livelihoods. However, the range of impacts of climate change on water availability, and the consequent environmental and human adaptations that are required, is so complex and serious that it will take the combined work of natural, health and social scientists working with industries and communities to solve them. Networks are needed that will identify crucial water issues under climate change at a range of scales in order to provide regionally-sensitive, solutions-oriented research and adaptation. We suggest national and supra-national water availability and community sustainability issues must be addressed by multidisciplinary research and adaptation networks. The work must be driven by a bottom-up research paradigm — science in the service of community and governance. We suggest that interdisciplinary teams of researchers, in partnership with community decision makers and local industries, are the best means to develop solutions as communities attempt to address future water demands, protect their homes from infrastructure damage, and meet their food, drinking water, and other essential resource requirements. The intention is to cover: the impact of climate change on Canadian natural resources, both marine and terrestrial; issues of long-term sustainability and resilience in human communities and the environments in which they are embedded; the making and moving of knowledge, be that between members of Indigenous and non-Indigenous communities, researchers of different disciplines, communities, industry, policymakers and the academy and the crucial involvement of the various orders of government in the response to water problems, under conditions of heightened uncertainty. Such an adaptation network must include a national communications strategy that will ensure widespread visibility of the network’s activities and findings and general public awareness-raising regarding water challenges and opportunities, including accessible web infrastructure and printed materials and communication with key organizations.
The 2008 California climate change assessment
NASA Astrophysics Data System (ADS)
Franco, G.
2008-12-01
In 2005, Governor Arnold Schwarzenegger signed Executive Order S-03-05, which laid the foundation for California's ambitious greenhouse gas mitigation reduction efforts. The 2020 goal is now codified in state law requiring bringing 2020 emissions to the 1990 levels. The Executive Order also mandates the preparation of biennial updates on the latest climate change science, potential impacts, and assessment of the state's efforts to manage its climate change risks through various adaptation options. In 2006, the first of these mandated scientific assessments (The Governor's Scenarios Report) was released. Based on new scientific studies conducted in the interim, the next assessment, the '2008 Governor's Scenarios Report' is currently in preparation. It has three principal goals: (1) to improve the assessment of climate changes for California and associated impacts on key physical and biological indicators; (2) to begin to translate these physical and biological impacts into sectoral economic impacts; and (3) to begin to develop and evaluate strategies for key sectors or regions for adapting to climate changes already underway. Contributors to this session will present some of this new research to the scientific community. Among the most exciting new insights are impacts assessments for the all-important water and agricultural sectors, coastal areas, public health and related air quality and environmental justice issues, the forestry and energy sectors. This presentation will give an overview of the overall effort which will result in about 35 scientific papers from different research institutions in California. All of the studies are interlinked in such a way as to produce a consistent overall assessment.
ERIC Educational Resources Information Center
Choi, Soyoung
2011-01-01
The present study explored how seventh graders develop their understanding of climate change issues. Particularly, I focused on identifying students' ways of reasoning in evaluating and generating arguments. I also investigated whether students reason differently about climate change issues depending on the relevance of the issues to their daily…
SAGES climate survey: results and strategic planning for our future.
Telem, Dana A; Qureshi, Alia; Edwards, Michael; Jones, Daniel B
2018-03-30
While SAGES prides itself on diversity and inclusivity, we also recognize that as an organization we are not impervious to blind spots impacting equity within the membership. To address this, the We R Sages task force was formed to identify the barriers and facilitators to creating a diverse organization and develop a strategic plan for the implementation of programing and opportunities that promote diversity and inclusivity within our membership. As the first step in the process, a survey was administered to gauge the current organizational climate. In September of 2017, a validated climate survey was administered to 704 SAGES committee members via SurveyMonkey®. Climate was assessed on: overall SAGES experience, consideration of leaving the organization, mentorship within the organization, resources and opportunities within the organization, and attitudes and experiences within the organization. Additional free text responses were encouraged to generate qualitative themes. The survey response rate was 52.1% (n = 367). Respondent self-identified demographics were: male (73%), white (63%), heterosexual (95.5%), and non-disabled (98%). Average overall satisfaction was 8.1/10. 12.5% of respondents had considered leaving the organization and 74.4% had not identified a formal mentor within the organization. Average agreement with equitable distribution of resources and opportunities was 5.8/10. 93.6% of respondents had not experienced bias within the organization. Overall SAGES has a very positive climate; however, several key issues were identified from the quantitative survey as well as the free text responses. Strategic planning to address issues of membership recruitment, committee engagement, advancement transparency, diversity awareness, leadership development, and formal mentorship are being implemented.
Pleune
1997-09-01
/ The purpose of the study was to investigate the extent to which strategies of environmental organizations depend on contexts. I examined this dependence by analyzing the strategies of five environmental organizations in the Netherlands with regard to climate change. These strategies were investigated over time and compared with the strategies these organizations had used in relation to ozone depletion and acidification. The results indicate that several of the organizations changed their strategies with respect to climate change over time. Furthermore, different strategies were used simultaneously in relation to the three problems. The findings suggest that strategies concerning climate change were to a considerable extent determined by the dominant framing of the problem in society. This framing was defined mainly by actors other than environmental organizations. The initial framing of climate change as a CO2 problem, which brought the issue into the energy debate, as well as the more general definition of the problem in the late 1980s as a greenhouse problem, were very important for determining the strategies of the organizations. It can be concluded that strategies of Dutch environmental organizations with regard to climate change were strongly dependent on the context.KEY WORDS: Environmental organization; Strategy; Climate change; Man-nature relationship; Problem definition; Context
Experimental effects of climate messages vary geographically
NASA Astrophysics Data System (ADS)
Zhang, Baobao; van der Linden, Sander; Mildenberger, Matto; Marlon, Jennifer R.; Howe, Peter D.; Leiserowitz, Anthony
2018-05-01
Social science scholars routinely evaluate the efficacy of diverse climate frames using local convenience or nationally representative samples1-5. For example, previous research has focused on communicating the scientific consensus on climate change, which has been identified as a `gateway' cognition to other key beliefs about the issue6-9. Importantly, although these efforts reveal average public responsiveness to particular climate frames, they do not describe variation in message effectiveness at the spatial and political scales relevant for climate policymaking. Here we use a small-area estimation method to map geographical variation in public responsiveness to information about the scientific consensus as part of a large-scale randomized national experiment (n = 6,301). Our survey experiment finds that, on average, public perception of the consensus increases by 16 percentage points after message exposure. However, substantial spatial variation exists across the United States at state and local scales. Crucially, responsiveness is highest in more conservative parts of the country, leading to national convergence in perceptions of the climate science consensus across diverse political geographies. These findings not only advance a geographical understanding of how the public engages with information about scientific agreement, but will also prove useful for policymakers, practitioners and scientists engaged in climate change mitigation and adaptation.
NASA Astrophysics Data System (ADS)
Kuster, E.; Fox, G.
2016-12-01
Climate change is happening; scientists have already observed changes in sea level, increases in atmospheric carbon dioxide, and declining polar ice. The students of today are the leaders of tomorrow, and it is our duty to make sure they are well equipped and they understand the implications of climate change as part of their research and professional careers. Graduate students, in particular, are gaining valuable and necessary research, leadership, and critical thinking skills, but we need to ensure that they are receiving the appropriate climate education in their graduate training. Previous studies have primarily focused on capturing the K-12, college level, and general publics' knowledge of the climate system, concluding with recommendations on how to improve climate literacy in the classroom. While this is extremely important to study, very few studies have captured the current perception that graduate students hold regarding the amount of climate education being offered to them. This information is important to capture, as it can inform future curriculum development. We developed and distributed a nationwide survey (495 respondents) for graduate students to capture their perception on the level of climate system education being offered and their view on the importance of having climate education. We also investigated differences in the responses based on either geographic area or discipline. We compared how important graduate students felt it was to include climate education in their own discipline versus outside disciplines. The authors will discuss key findings from this ongoing research.
How to Reach Decision Makers: Build a network of educators and practitioners with common goals
NASA Astrophysics Data System (ADS)
Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Gershunov, A.
2013-12-01
In San Diego County, the Climate Education Partners (CEP) includes climate scientists, science educators, behavioral scientists, environmental practitioners and community organizations that are dedicated to providing local decision makers (elected officials, business leaders, community leaders) with sound climate science learning opportunities and resources that promote informed decision making. Their work over the past three years has found that effective climate education programs are designed for specific audiences with tailored information that is relevant to them, while simultaneously building community efficacy, identity and values. An integrated approach that blends rigorous scientific facts, local climate change impact, and social science education theory is contributing towards the development of a cadre of engaged leaders and communities. To track project progress and to inform the project strategy, local Key Influentials are being interviewed to gauge their current understanding of climate change and their interest in either becoming messengers to their community or becoming the portal to their constituency. Innovation comes from productive collaboration. For this reason, CEP has been working with leading scientists (climatologists, hydrologists, meteorologists, ecologists), environmental groups, museums and zoos, media experts and government agencies (Water Authority, CalFire) to develop and refine a program of learning activities and resources geared specifically for Key Influentials. For example, a water tour has been designed to bring 25 key influential leaders in San Diego County to a dam, a pumping station and a reservoir and provide climate change facts, impacts and potential solutions to the critical issue of water supply for the San Diego Region. While learning local facts about the causes and impacts of climate change, participants also learn about what they can do (increasing efficacy), that they can be a part of a solution centered community (building identity), and that everything - the education and the use of this knowledge to promote informed decisions - is connected to doing what is best for the next generation (tying learning to values). In addition, CEP developed locally focused videos, one on heat waves and one on water resources, which are being experimentally tested for their impact on informed decision-making and utilized with various KI audiences. Climate Education Partners is finding that linking excellent science with healthy community partnerships is resulting in San Diego leaders and their communities making more informed decisions on how to adapt to climate change and preserve the quality of life enjoyed in San Diego for all future generations.
Structuring decisions for managing threatened and endangered species in a changing climate.
Gregory, Robin; Arvai, Joseph; Gerber, Leah R
2013-12-01
The management of endangered species under climate change is a challenging and often controversial task that incorporates input from a variety of different environmental, economic, social, and political interests. Yet many listing and recovery decisions for endangered species unfold on an ad hoc basis without reference to decision-aiding approaches that can improve the quality of management choices. Unlike many treatments of this issue, which consider endangered species management a science-based problem, we suggest that a clear decision-making process is equally necessary. In the face of new threats due to climate change, managers' choices about endangered species require closely linked analyses and deliberations that identify key objectives and develop measurable attributes, generate and compare management alternatives, estimate expected consequences and key sources of uncertainty, and clarify trade-offs across different dimensions of value. Several recent cases of endangered species conservation decisions illustrate our proposed decision-focused approach, including Gulf of Maine Atlantic salmon (Salmo salar) recovery framework development, Cultus Lake sockeye salmon (Oncorhynchus nerka) management, and Upper Columbia River white sturgeon (Acipenser transmontanus) recovery planning. Estructuración de Decisiones para Manejar Especies Amenazadas y en Peligro en un Clima Cambiante. © 2013 Society for Conservation Biology No claim to original US government works.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy Act of 2008 (Pub. L. 110-246). (12) Related to climate change. (i) Coordinate policy analysis, long-range planning, research, and response strategies relating to climate change issues. (ii) Provide... climate change issues. (iii) Inform the Department of scientific developments and policy issues relating...
1993-03-11
balls). (b). from - to. (c). Year. (151). Duripshi. (151a). General. (151b). Lower. (152). Pitsunda, beacon. (153). Zemo -Azhara. (154). Kvemo-Azhara...58 27 9 64 28 14 58 DOC = 92083707 PAGE .4e Key: (a). Month. (b). hours. (c). Cloudiness (balls). (d). from- to. (149). Gagra. (153). Zemo -Azhara. (155...Cloudiness (balls). (d). from - to. (149). Gagra. (153). Zemo -Azhara. (155). Gudauta. O DOC = 92083708 PAGE Or Page 130. Continuation of Table 3
NASA Astrophysics Data System (ADS)
Ludwig, Ralf
2010-05-01
Adapting to the impacts of climate change is certainly one of the major challenges in water resources management over the next decades. Adaptation to climate change risks is most crucial in this domain, since projected increase in mean air temperature in combination with an expected increase in the temporal variability of precipitation patterns will contribute to pressure on current water availability, allocation and management practices. The latter often involve the utilization of valuable infrastructure, such as dams, reservoirs and water intakes, for which adaptation options must by developed over long-term and often dynamic planning horizons. Research to establish novel methodologies for improved adaptation to climate change is thus very important and only beginning to emerge in regional watershed management. The presented project Q-BIC³, funded by the Bavarian Minstry for the Environment and the Québec Ministère du Développement économique, de l'Innovation et de l'Exportation, aims to develop and apply a newly designed spectrum of tools to support the improved assessment of adaptation options to climate change in regional watershed management. It addresses in particular selected study sites in Québec and Bavaria. The following key issues have been prioritized within Q-BIC³: i) The definition of potential adaptation options in the context of climate change for pre-targeted water management key issues using a subsequent and logical chain of modelling tools (climate, hydrological and water management modeling tools) ii) The definition of an approach that accounts for hydrological projection uncertainties in the search for potential adaptation options in the context of climate change iii) The investigation of the required complexity in hydrological models to estimate climate change impacts and to develop specific adaptation options for Québec and Bavaria watersheds. iv) The development and prototyping of a regionally transferable and modular modelling system for integrated watershed management under climate change conditions. The study sites under investigation, namely the Haut-Saint Francois and Gatineau watersheds in Québec and the Isar and Regnitz catchments in Bavaria, are under heavy anthropogenic use. Intense dam and reservoir operations and even water transfer systems are in place to satisfy multi-purpose demands on available water resources. These are imposing extreme modifications to the natural flow regimes. In the first phase of the project, climatic forcing, stemming from an ensemble of selected GCM and RCM runs, is applied to a variety of hydrological models with different complexity. The derived projections of future hydrological conditions serve to investigate, whether current operation rules and/or existing infrastructure needs to be adapted to a changing environment. First findings demonstrate the large uncertainties associated to the model chain outputs, but also indicate that related adaptation is indispensable to meet the challenges of the rapidly changing man-environment systems.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Galu, G.; Funk, C. C.; Verdin, J. P.; Rowland, J.
2014-12-01
The Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) is a multi-organizational project aimed at mainstreaming climate-resilient development planning and program implementation into the East African Community (EAC). The Famine Early Warning Systems Network (FEWS NET) has partnered with the PREPARED project to address three key development challenges for the EAC; 1) increasing resiliency to climate change, 2) managing trans-boundary freshwater biodiversity and conservation and 3) improving access to drinking water supply and sanitation services. USGS FEWS NET has been instrumental in the development of gridded climate data sets that are the fundamental building blocks for climate change adaptation studies in the region. Tools such as the Geospatial Climate Tool (GeoCLIM) have been developed to interpolate time-series grids of precipitation and temperature values from station observations and associated satellite imagery, elevation data, and other spatially continuous fields. The GeoCLIM tool also allows the identification of anomalies and assessments of both their frequency of occurrence and directional trends. A major effort has been put forth to build the capacities of local and regional institutions to use GeoCLIM to integrate their station data (which is not typically available to the public) into improved national and regional gridded climate data sets. In addition to the improvements and capacity building activities related to geospatial analysis tools, FEWS NET will assist in two other areas; 1) downscaling of climate change scenarios and 2) vulnerability impact assessments. FEWS NET will provide expertise in statistical downscaling of Global Climate Model output fields and work with regional institutions to assess results of other downscaling methods. Completion of a vulnerability impact assessment (VIA) involves the examination of sectoral consequences in identified climate "hot spots". FEWS NET will lead the VIA for the agriculture and food security sector, but will also provide key geospatial layers needed by multiple sectors in the areas of exposure, sensitivity, and adaptive capacity. Project implementation will strengthen regional coordination in policy-making, planning, and response to climate change issues.
Modeling and assessing international climate financing
NASA Astrophysics Data System (ADS)
Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng
2016-06-01
Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.
Why sustainable population growth is a key to climate change and public health equity.
Howat, Peter; Stoneham, Melissa
2011-12-01
Australia's population could reach 42 million by 2050. This rapid population growth, if unabated, will have significant social, public health and environmental implications. On the one hand, it is a major driver of climate change and environmental degradation; on the other it is likely to be a major contributor to growing social and health issues including a decline in quality of life for many residents. Disadvantaged and vulnerable groups will be most affected. The environmental, social and health-related issues include: pressure on the limited arable land in Australia; increased volumes of industrial and domestic waste; inadequate essential services; traffic congestion; lack of affordable housing; declining mental health; increased obesity problems; and inadequate aged care services. Many of these factors are related to the aggravation of climate change and health inequities. It is critical that the Australian Government develops a sustainable population plan with stabilisation of population growth as an option. The plan needs to ensure adequate hospitals and healthcare services, education facilities, road infrastructure, sustainable transport options, water quality and quantity, utilities and other amenities that are already severely overburdened in Australian cities. There is a need for a guarantee that affordable housing will be available and priority be given to training young people and Indigenous people for employment. This paper presents evidence to support the need for the stabilisation of population growth as one of the most significant measures to control climate change as well as to improve public health equity.
Modeling human-climate interaction
NASA Astrophysics Data System (ADS)
Jacoby, Henry D.
If policymakers and the public are to be adequately informed about the climate change threat, climate modeling needs to include components far outside its conventional boundaries. An integration of climate chemistry and meteorology, oceanography, and terrestrial biology has been achieved over the past few decades. More recently the scope of these studies has been expanded to include the human systems that influence the planet, the social and ecological consequences of potential change, and the political processes that lead to attempts at mitigation and adaptation. For example, key issues—like the relative seriousness of climate change risk, the choice of long-term goals for policy, and the analysis of today's decisions when uncertainty may be reduced tomorrow—cannot be correctly understood without joint application of the natural science of the climate system and social and behavioral science aspects of human response. Though integration efforts have made significant contributions to understanding of the climate issue, daunting intellectual and institutional barriers stand in the way of needed progress. Deciding appropriate policies will be a continuing task over the long term, however, so efforts to extend the boundaries of climate modeling and assessment merit long-term attention as well. Components of the effort include development of a variety of approaches to analysis, the maintenance of a clear a division between close-in decision support and science/policy research, and the development of funding institutions that can sustain integrated research over the long haul.
Climate Change Science, Impacts, Solutions - A Senior Science Course for Post-Secondary Students
NASA Astrophysics Data System (ADS)
Byrne, J. M.; Little, L. J.; Barnes, C. C.; Mirmasoudi, S.; Mansouri Kouhestani, F.; Reiger, C.; Rodriguez Bueno, R. A.
2015-12-01
The role of humanity in warming the global climate is well defined. The research community has predicted and documented many of the early impacts of climate change. The research literature has extensive assessments of future impacts on environment, cities, agriculture, human health, infrastructure, social and political changes, and the risks of military conflict. Society is facing massive infrastructure redevelopment, protection and possible abandonment due to increasing weather extremes. We have reached the point where science consensus is obvious and the population over much of the developed and developing world understands the urgency - humanity is changing the climate. The challenge is helping people help themselves. People understand there are consequences - they want to know how to minimize those consequences, and how to adapt to minimize the impacts. There is a dire need for a senior level course that addresses the key issues across disciplines. This course should cover a range of topics across many disciplinary boundaries, including: an introduction to the science, politics, health and well-being challenges of climate change; likely changes to personal and community lifestyles; consumption of energy and other resources. Population migration due to climate change impacts is a critical topic. Most important, the course must address the solutions to climate change. The population is demanding the power to address this massive challenge. This course will provide a multimedia curriculum on the impacts and solutions to our climate change dilemma.
Stern, Paul C.; Maki, Alexander
2017-01-01
To make informed choices about how to address climate change, members of the public must develop ways to consider established facts of climate science and the uncertainties about its future trajectories, in addition to the risks attendant to various responses, including non-response, to climate change. One method suggested for educating the public about these issues is the use of simple mental models, or analogies comparing climate change to familiar domains such as medical decision making, disaster preparedness, or courtroom trials. Two studies were conducted using online participants in the U.S.A. to test the use of analogies to highlight seven key decision-relevant elements of climate change, including uncertainties about when and where serious damage may occur, its unprecedented and progressive nature, and tradeoffs in limiting climate change. An internal meta-analysis was then conducted to estimate overall effect sizes across the two studies. Analogies were not found to inform knowledge about climate literacy facts. However, results suggested that people found the medical analogy helpful and that it led people—especially political conservatives—to better recognize several decision-relevant attributes of climate change. These effects were weak, perhaps reflecting a well-documented and overwhelming effect of political ideology on climate change communication and education efforts in the U.S.A. The potential of analogies and similar education tools to improve understanding and communication in a polarized political environment are discussed. PMID:28135337
Climate patriots? Concern over climate change and other environmental issues in Australia.
Tranter, Bruce; Lester, Libby
2017-08-01
Echoing the anti-pollution and resource conservation campaigns in the United States in the early-to-mid-twentieth century, some scholars advocate mobilising support for environmental issues by harnessing the notion of environmental patriotism. Taking action to reduce the impact of global warming has also been cast as a patriotic cause. Drawing upon quantitative data from a recent national survey, we examine the link between patriotism and environmental attitudes in Australia, focussing upon climate change. We find that patriotism has a largely neutral association with concern over environmental issues, with the exception of climate change and, to a lesser extent, wildlife preservation. Expressing concern over climate change appears to be unpatriotic for some Australians. Even after controlling for political party identification and other important correlates of environmental issue concerns, patriots are less likely than others to prioritise climate change as their most urgent environmental issue and less likely to believe that climate change is actually occurring.
Introduction to the Special Issue on Climate Ethics: Uncertainty, Values and Policy.
Roeser, Sabine
2017-10-01
Climate change is a pressing phenomenon with huge potential ethical, legal and social policy implications. Climate change gives rise to intricate moral and policy issues as it involves contested science, uncertainty and risk. In order to come to scientifically and morally justified, as well as feasible, policies, targeting climate change requires an interdisciplinary approach. This special issue will identify the main challenges that climate change poses from social, economic, methodological and ethical perspectives by focusing on the complex interrelations between uncertainty, values and policy in this context. This special issue brings together scholars from economics, social sciences and philosophy in order to address these challenges.
Climate Impacts Already Affect Every Region of the United States, Report Warns
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-05-01
"Climate change, once considered an issue for a distant future, has moved firmly into the present," according to the third iteration of the U.S. National Climate Assessment (NCA), issued by the White House on 6 May. "The observed warming and other climatic changes are triggering wide-ranging impacts in every region of our country and throughout our economy," states the report, titled Climate Change Impacts in the United States, issued through the federal interagency U.S. Global Change Research Program.
Public division about climate change rooted in conflicting socio-political identities
NASA Astrophysics Data System (ADS)
Bliuc, Ana-Maria; McGarty, Craig; Thomas, Emma F.; Lala, Girish; Berndsen, Mariette; Misajon, Roseanne
2015-03-01
Of the climate science papers that take a position on the issue, 97% agree that climate change is caused by humans, but less than half of the US population shares this belief. This misalignment between scientific and public views has been attributed to a range of factors, including political attitudes, socio-economic status, moral values, levels of scientific understanding, and failure of scientific communication. The public is divided between climate change 'believers' (whose views align with those of the scientific community) and 'sceptics' (whose views are in disagreement with those of the scientific community). We propose that this division is best explained as a socio-political conflict between these opposing groups. Here we demonstrate that US believers and sceptics have distinct social identities, beliefs and emotional reactions that systematically predict their support for action to advance their respective positions. The key implication is that the divisions between sceptics and believers are unlikely to be overcome solely through communication and education strategies, and that interventions that increase angry opposition to action on climate change are especially problematic. Thus, strategies for building support for mitigation policies should go beyond attempts to improve the public’s understanding of science, to include approaches that transform intergroup relations.
Did the Arctic Ice Recover? Demographics of True and False Climate Facts
NASA Astrophysics Data System (ADS)
Hamilton, L.
2012-12-01
Beliefs about climate change divide the U.S. public along party lines more distinctly than hot social issues. Research finds that better educated or informed respondents are more likely to align with their parties on climate change. This information-elite polarization resembles a process of biased assimilation first described in psychological experiments. In nonexperimental settings, college graduates could be prone to biased assimilation if they more effectively acquire information that supports their beliefs. Recent national and statewide survey data show response patterns consistent with biased assimilation (and biased guessing) contributing to the correlation observed between climate beliefs and knowledge. The survey knowledge questions involve key, uncontroversial observations such as whether the area of late-summer Arctic sea ice has declined, increased, or declined and then recovered to what it was 30 years ago. Correct answers are predicted by education, and some wrong answers (e.g., more ice) have predictors that suggest lack of knowledge. Other wrong answers (e.g., ice recovered) are predicted by political and belief factors instead. Responses show indications of causality in both directions: science information affecting climate beliefs, but also beliefs affecting the assimilation of science information.; ;
The New APS Topical Group on the Physics of Climate: History, Objectives and Panel Discussion
NASA Astrophysics Data System (ADS)
Brasseur, James; Behringer, Robert
2013-03-01
The GPC Chair will introduce the new APS Topical Group on the Physics of Climate (GPC), describe its history and objectives, and introduce the current GPC leadership before opening the floor to a panel discussion. The GPC resulted from two petitions that emerged from the controversy that followed the APS Statement on Climate Change (see APS website). The two proposals were merged and an organization committee formed by the APS leadership. After a long organizational period in 2011, the GPC bylaws were finalized with the following key objective: The objective of the GPC shall be to promote the advancement and diffusion of knowledge concerning the physics, measurement, and modeling of climate processes, within the domain of natural science and outside the domains of societal impact and policy, legislation and broader societal issues. The objective includes the integration of scientific knowledge and analysis methods across disciplines to address the dynamical complexities and uncertainties of climate physics. The GPC Invited and Focus Sessions at this March meeting are the inaugural GPC events. The Program Committee Chair will moderate a panel between the attending GPC leadership and audience to solicit suggestions for potential future GPC events that advance the GPC objectives.
Parham, Paul E; Waldock, Joanna; Christophides, George K; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E; Naumova, Elena N; Ostfeld, Richard S; Ready, Paul D; Thomas, Matthew B; Velasco-Hernandez, Jorge; Michael, Edwin
2015-04-05
Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Turney, C. S. M.; Haberle, S.; Fink, D.; Kershaw, A. P.; Barbetti, M.; Barrows, T. T.; Black, M.; Cohen, T. J.; Corrège, T.; Hesse, P. P.; Hua, Q.; Johnston, R.; Morgan, V.; Moss, P.; Nanson, G.; van Ommen, T.; Rule, S.; Williams, N. J.; Zhao, J.-X.; D'Costa, D.; Feng, Y.-X.; Gagan, M.; Mooney, S.; Xia, Q.
2006-10-01
The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric teleconnection and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright
NASA Astrophysics Data System (ADS)
Ryan, J. G.; Feldman, A.; Muller-Karger, F. E.; Gilbes, F.; Stone, D.; Plank, L.; Reynolds, C. J.
2011-12-01
Many past educational initiatives focused on global climate change have foundered on public skepticism and disbelief. Some key reasons for these past failures can be drawn directly from recognized best practices in STEM education - specifically, the necessity to help learners connect new knowledge with their own experiences and perspectives, and the need to create linkages with issues or concerns that are both important for and relevant to the audiences to be educated. The Coastal Areas Climate Change Education (CACCE) partnership has sought to follow these tenets as guiding principles in identifying critical audiences and developing new strategies for educating the public living in the low-lying coastal areas of Florida and the Caribbean on the realities, risks, and adaptation and mitigation strategies for dealing with the regional impacts of global climate change. CACCE is currently focused on three key learner audiences: a) The formal education spectrum, targeting K-12 curricula through middle school marine science courses, and student and educator audiences through coursework and participatory research strategies engaging participants in a range of climate-related investigations. b) Informal science educators and outlets, in particular aquaria and nature centers, as an avenue toward K-12 teacher professional development as well as for public education. c) Regional planning, regulatory and business professionals focused on the built environment along the coasts, many of whom require continuing education to maintain licensing and/or other professional certifications. Our current activities are focused on bringing together an effective set of educational, public- and private-sector partners to target the varied needs of these audiences in Florida and the U.S. Caribbean, and tailoring an educational plan aimed at these stakeholder audiences that starts with the regionally and topically relevant impacts of climate change, and strategies for effective adaptation and mitigation.
Technology transfer for adaptation
NASA Astrophysics Data System (ADS)
Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia
2014-09-01
Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines key action steps to engage students in the school climate improvement process. Key action steps are provided for the following strategies: (1) Participate in planning for school climate improvements; (2) Engage stakeholders in…
Holland, Peter J; Tham, Tse Leng; Gill, Fenella J
2018-06-01
A discussion of the findings from a nationwide study of workplace and well-being issues of Australian nurses and midwives. Current discourse only provides a fragmented understanding of a multifaceted nature of working conditions and well-being, necessitating a more holistic investigation to identify critical workplace issues within these professions. Discussion paper. A national survey conducted in July 2016 involving Australian Nursing and Midwifery Federation members. The literature supporting this paper focuses on the nursing and midwifery workforce and studies on attraction and retention issues. Workplace policies and practices in place in health care organizations that are within the control of management are key factors in the negative issues associated with the profession from the survey. Proactive and targeted interventions particularly aimed at salient issues of work intensification, declining engagement, and effective voice mechanisms are needed to address these crucial issues if the attrition of individuals from nursing and midwifery occupations is going to be ameliorated. To alleviate workforce issues pushing nurses and midwives to the tipping point of exiting the professions, health care organizations need to take a proactive stance in addressing issues under the control of management. © 2018 John Wiley & Sons Australia, Ltd.
Borland, Ron; Coghill, Ken
2010-01-01
Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems. PMID:20466949
The Dawning of the Ethics of Environmental Robots.
van Wynsberghe, Aimee; Donhauser, Justin
2017-10-23
Environmental scientists and engineers have been exploring research and monitoring applications of robotics, as well as exploring ways of integrating robotics into ecosystems to aid in responses to accelerating environmental, climatic, and biodiversity changes. These emerging applications of robots and other autonomous technologies present novel ethical and practical challenges. Yet, the critical applications of robots for environmental research, engineering, protection and remediation have received next to no attention in the ethics of robotics literature to date. This paper seeks to fill that void, and promote the study of environmental robotics. It provides key resources for further critical examination of the issues environmental robots present by explaining and differentiating the sorts of environmental robotics that exist to date and identifying unique conceptual, ethical, and practical issues they present.
Young, David; Borland, Ron; Coghill, Ken
2010-07-01
Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems.
NASA Astrophysics Data System (ADS)
Chen, R. S.; de Sherbinin, A. M.; Yetman, G.; Downs, R. R.
2017-12-01
A central issue in international efforts to address climate change, large-scale disaster risk, and overall sustainable development is the exposure of human settlements and population to changing climate patterns and a range of geological, climatological, technological, and other hazards. The present and future location of human activities is also important in mitigation and adaptation to climate change, and to ensuring that we "leave no one behind" in achieving the Sustainable Development Goals adopted by the international community in September 2015. The extent and quality of built infrastructure are key factors in the mortality, morbidity, and economic impacts of disasters, and are simultaneously essential to sustainable development. Earth observations have great potential to improve the coverage, consistency, timeliness, and richness of data on settlements, infrastructure, and population, in ways that complement existing and emerging forms of socioeconomic data collection such as censuses, surveys, and cell phone and Internet traffic. Night-time lights from the Suomi-NPP satellite may be able to provide near real-time data on occupance and economic activity. New "big data" capabilities make it possible to rapidly process high-resolution (50-cm) imagery to detect structures and changes in structures, especially in rural areas where other data are limited. A key challenge is to ensure that these types of data can be translated into forms useful in a range of applications and for diverse user communities, including national statistical offices, local government planners, development and humanitarian organizations, community groups, and the private sector. We report here on efforts, in coordination with the GEO Human Planet Initiative, to develop new data on settlements, infrastructure, and population, together with open data services and tools, to support disaster risk assessment, climate vulnerability analysis, and sustainable development decision making.
NASA Astrophysics Data System (ADS)
Granshaw, F. D.
2016-12-01
One of the key challenges of sustainability and climate education is one of accessibility. For example many of the sites where significant climate research is taking place in National Parks are largely inaccessible to the average park visitor. Likewise, taking students to visit exemplary efforts in environmentally sustainable design or habitat restoration projects may be logistically difficult or impossible for the average class. Yet despite these difficulties, finding ways to give students, park visitors, and the general public a chance to explore these areas is critical to their developing sustainability and climate literacy. To address this issue, the author has been working with National Park staff and community groups to develop desktop virtual reality environments that showcase glacier-climate research sites, developments designed with environmental sustainability in mind, and urban watersheds being rehabilitated by volunteer groups and public agencies. These environments provide the user with a chance to take a virtual walk through a site of interest, access data collected at the site, and even listen to researchers and site stewards talk about key activities taking place there. Though they are used as proxies for actual visits via independent on-line exploration, media for public talks, or the framework for student lab exercises, they these virtual environments have also been used to encourage and guide actual sites visits. A focus of this talk will be a recently launched project involving the construction of a library showcasing environmental sustainability projects in the Portland Metropolitan area. In addition to being a resource for local sustainability educators, the library will be a contribution to international sustainability education efforts as it is being developed under the umbrella of a UN affiliate (Greater Portland Sustainability Education Network).
Global climate change: A strategic issue facing Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womeldorff, P.J.
1995-12-31
This paper discusses global climate change, summarizes activities related to climate change, and identifies possible outcomes of the current debate on the subject. Aspects of climate change related to economic issues are very briefly summarized; it is suggested that the end result will be a change in lifestyle in developed countries. International activities, with an emphasis on the Framework Convention on Climate Change, and U.S. activities are outlined. It is recommended that the minimum action required is to work to understand the issue and prepare for possible action.
NASA Astrophysics Data System (ADS)
Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark
2018-04-01
This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.
ERIC Educational Resources Information Center
Barwell, Richard
2013-01-01
Climate change is one of the most pressing issues of the 21st Century. Mathematics is involved at every level of understanding climate change, including the description, prediction and communication of climate change. As a highly complex issue, climate change is an example of "post-normal" science -- it is urgent, complex and involves a…
Climate Education at the University of Hamburg
NASA Astrophysics Data System (ADS)
Dilly, Oliver; Stammer, Detlef; Pfeiffer, Eva-Maria
2010-05-01
The new graduate School of Integrated Climate Sciences (www.sicss.de) at the KlimaCampus of the University of Hamburg was opened at October 20, 2009 and includes a 2-yr MSc (120 ECTS, 30 compulsory, 90 eligible) and 3-yr doctoral program (12 ECTS). About 40 students were enrolled in early 2010. The interdisciplinary MSc program is based on a number of disciplines such as meteorology, geophysics, oceanography, geosciences and also economics and social sciences. These disciplines are required to address the faced key issues related to climate change effectively. The graduate school is guiding pupils and BSc students with competence in maths and physics on how to become a climate expert. Acquisition is done internationally at fairs, uni days and dircectly at schools and intuitions for higher education. BSc degree in the disciplines listed above is set for positive application. Climate experts are needed for both research and the professional world outside the university and research institutions. In accordance, connection within and outside the university are continuously explored and soft skills for the communication to politics and the public's are included in the MSc and PhD curricula. Since the graduate school was established within the cluster of excellence ‘Integrated Climate Analysis and Predication' (www.clisap.de), this school represents a prototype for graduate programs at the University of Hamburg. Advantages and limitations of this Climate System School concept will be discussed.
NASA Astrophysics Data System (ADS)
MacLeod, Dave A.; Jones, Anne; Di Giuseppe, Francesca; Caminade, Cyril; Morse, Andrew P.
2015-04-01
The severity and timing of seasonal malaria epidemics is strongly linked with temperature and rainfall. Advance warning of meteorological conditions from seasonal climate models can therefore potentially anticipate unusually strong epidemic events, building resilience and adapting to possible changes in the frequency of such events. Here we present validation of a process-based, dynamic malaria model driven by hindcasts from a state-of-the-art seasonal climate model from the European Centre for Medium-Range Weather Forecasts. We validate the climate and malaria models against observed meteorological and incidence data for Botswana over the period 1982-2006 the longest record of observed incidence data which has been used to validate a modeling system of this kind. We consider the impact of climate model biases, the relationship between climate and epidemiological predictability and the potential for skillful malaria forecasts. Forecast skill is demonstrated for upper tercile malaria incidence for the Botswana malaria season (January-May), using forecasts issued at the start of November; the forecast system anticipates six out of the seven upper tercile malaria seasons in the observational period. The length of the validation time series gives confidence in the conclusion that it is possible to make reliable forecasts of seasonal malaria risk, forming a key part of a health early warning system for Botswana and contributing to efforts to adapt to climate change.
Mutunga, Clive; Hardee, Karen
2010-12-01
This paper reviews 44 National Adaptation Programmes of Action (NAPAs) to assess the NAPA process and identify the range of interventions included in countries' priority adaptation actions and highlight how population issues and reproductive health/family planning (RH/FP) are addressed as part of the adaptation agenda. A majority of the 44 NAPAs identify rapid population growth as a key component of vulnerability to climate change impacts. However, few chose to prioritise NAPA funds for family planning/reproductive health programmes. The paper emphasizes the need to translate the recognition of population pressure as a factor related to countries' ability to adapt to climate change into relevant project activities. Such projects should include access to RH/FP, in addition to other strategies such as girls' education and women's empowerment that lead to lower fertility. Attention to population and integrated strategies should be central and aligned to longer-term national adaptation plans and strategies.
Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications
NASA Astrophysics Data System (ADS)
Beres, Nicholas D.
The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.
Crowding-in: how Indian civil society organizations began mobilizing around climate change.
Ylä-Anttila, Tuomas; Swarnakar, Pradip
2017-06-01
This paper argues that periodic waves of crowding-in to 'hot' issue fields are a recurring feature of how globally networked civil society organizations operate, especially in countries of the Global South. We elaborate on this argument through a study of Indian civil society mobilization around climate change. Five key mechanisms contribute to crowding-in processes: (1) the expansion of discursive opportunities; (2) the event effects of global climate change conferences; (3) the network effects created by expanding global civil society networks; (4) the adoption and innovation of action repertoires; and (5) global pressure effects creating new opportunities for civil society. Our findings contribute to the world society literature, with an account of the social mechanisms through which global institutions and political events affect national civil societies, and to the social movements literature by showing that developments in world society are essential contributors to national mobilization processes. © London School of Economics and Political Science 2017.
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
Introducing Argumentation About Climate Change Socioscientific Issues in a Disadvantaged School
NASA Astrophysics Data System (ADS)
Dawson, Vaille; Carson, Katherine
2018-03-01
Improving the ability of young people to construct arguments about controversial science topics is a desired outcome of science education. The purpose of this research was to evaluate the impact of an argumentation intervention on the socioscientific issue of climate change with Year 10 students in a disadvantaged Australian school. After participation in a professional development workshop on climate change science, socioscientific issues and argumentation, an early career teacher explicitly taught argumentation over four non-consecutive lessons as part of a 4 week (16 lesson) topic on Earth science. Thirty students completed a pre- and post-test questionnaire to determine their understanding of climate change science and their ability to construct an argument about a climate change socioscientific issue. Students' understanding of climate change improved significantly (p < .001) with a large effect size. There was also a significant increase (p < .05) in the number of categories provided in written arguments about a climate change issue. Qualitative data, comprising classroom observation field notes, lesson transcripts, work samples, and teacher and student interviews, were analysed for the extent to which the students' argumentation skills improved. At the end of the intervention, students became aware of the need to justify their decisions with scientific evidence. It is concluded that introducing argumentation about climate change socioscientific issues to students in a disadvantaged school can improve their argumentation skills.
Scaling and contextualizing climate-conflict nexus in historical agrarian China
NASA Astrophysics Data System (ADS)
Lee, Harry F.
2017-04-01
This study examines climate-conflict nexus in historical agrarian China in multi-scalar and contextualized approach, illustrating what and how socio-political factors could significantly mediate the climate-violent link in pre-industrial society. Previous empirical large-N studies show that violent conflict in historical agrarian society was triggered by climate-induced food scarcity. The relationship was valid in China, Europe, and various geographic regions in the Northern Hemisphere in pre-industrial era. Nevertheless, the observed relationship has only been verified at a macro level (long-term variability of the nexus is emphasized and data over large area are aggregated), and somewhat generalized in nature (only physical environmental factors are controlled). Three inter-related issues remain unresolved: First, the key explanatory variable of violent conflicts may change substantially at different spatio-temporal scales. It is necessary to check whether the climate-conflict nexus is valid at a micro level (about short-term variability of the nexus and data in finer spatial resolution), and explore how the nexus changes along various spatio-temporal dimensions. Second, as the climate-conflict nexus has only been demonstrated in a broad sense, it is necessary to check whether and how the nexus is mediated by local socio-political context. More non-climatic factors pertinent to the cause and distribution of conflicts (e.g., governance, adaptive mechanisms, etc.) should be considered. Third, the methodology applied in the previous studies assumes spatially-independent observations and linear relationship, which may simplify the climate-conflict link. Moreover, the solitary reliance on quantitative methods may neglect those non-quantifiable socio-political dynamics which mediates the climate-conflict nexus. I plan to address the above issues by using disaggregated spatial analysis and in-depth case studies, with close attention to local and temporal differences and non-linear nature of the climate-conflict link. China will be chosen as study area. Study period will be delimited to AD1-1911. This study represents pioneering research which systematically examines the climate-conflict nexus in pre-industrial society over extended period in multi-scalar and contextualized perspective. By comparing and evaluating the climate-conflict link along various spatio-temporal dimensions and in different socio-political context, it may help to deepen the theoretical understanding of, and also resolve the current debate over, the climate-conflict relationship. Given the large potential changes in climatic regimes projected in coming decades, the findings in this study may have important implications for the social impact of climate change in tropical countries that are in some ways similar to pre-industrial society.
Teaching Climate Change Science in Senior Secondary School: Issues, Barriers and Opportunities
ERIC Educational Resources Information Center
Bunten, Rod; Dawson, Vaille
2014-01-01
This paper argues that, despite its difficulties, climate change can (and perhaps needs to) be taught rigorously to students by enquiry rather than through transmission and that such a method will enable students to make judgments on other issues of scientific controversy. It examines the issues and barriers to the teaching of climate change,…
Simulating Global Climate Summits
ERIC Educational Resources Information Center
Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane
2014-01-01
One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…
Perceptions of and Attitudes Toward Climate Change in the Southeastern United States
David Himmelfarb; John Schelhas; Sarah Hitchner; Cassandra Johnson Gaither; KathErine Dunbar; J. Peter Brosius
2014-01-01
Despite a global scientific consensus on the anthropogenic nature of climate change, the issue remains highly contentious in the United States, stifling public debate and action on the issue. Local perceptions of and attitudes toward climate change-how different groups of people outside of the professional climate science community make sense of changes in climate in...
NASA Astrophysics Data System (ADS)
Buizer, J.; Chhetri, N.; Roy, M.
2010-12-01
Extreme weather events in urban areas such as torrential rainfall in Chicago and London, floods in Boston and Elbe and heat waves in Europe have shed stark light on cities’ vulnerability to the effects of climate change. At the same time, cities themselves are significant net contributors to GHG’s attributable to climatic changes through the built environment (e.g. housing, roads, and parking lots), transport, consumption and recreation. In the arid region of southwestern United States, issues associated with the adequacy of water resources, urban heat island, and air quality best exemplify these contributions. This duality - cities as impacted by, and contributors to extreme climatic patterns induced by climate change, and the specific climate information needed for decision-making by city planners - provided the impetus for a two-day workshop in January 2009. Organized by Arizona State University, the workshop included city managers, planners, private sector stakeholders, water managers, researchers, and Federal program managers. The aim was to identify information needs, and data and research gaps, as well as to design strategies to address climate uncertainty. Two key approaches discussed were: a) building multiple, flexible scenarios and modeling efforts that enable decision-makers to plan for a number of possible futures, and b) matching Federal climate assets to local, regional and sectoral needs through continuous collaboration that supports decision-making within the social, economic, and political context of the place. Federal leadership in facilitating, coordinating and informing efforts that nurture the creative intellectual capacity of cities to produce integrated solutions to mitigate the effects of and adapt to climate change will go a long way in addressing urban climate adaptation in the United States. Participants outlined a number of concerns and suggestions for Federal government leaders and services associated with a national climate network. Concerns included a broad range of issues, including flood protection, sea level rise, extreme events, infrastructure investment decisions, water supply, storm-water and wastewater management, public education and outreach. Suggestions included an in-depth exploration of new roles for federal agencies, as well as new partnerships with state and local entities, the private sector, and non-governmental entities; developing specialized communicators and trusted information brokers who can connect federal science agencies to local decision makers; and integrating federal decision making with local implementation.
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines key action steps that district leaders--including superintendents, assistant superintendents, directors of student support services, or others--can take to support school climate improvements. Key action steps are provided for…
Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate.
Marchi, Enrico; Chung, Woodam; Visser, Rien; Abbas, Dalia; Nordfjell, Tomas; Mederski, Piotr S; McEwan, Andrew; Brink, Michal; Laschi, Andrea
2018-09-01
The effective implementation of sustainable forest management depends largely on carrying out forest operations in a sustainable manner. Climate change, as well as the increasing demand for forest products, requires a re-thinking of forest operations in terms of sustainability. In this context, it is important to understand the major driving factors for the future development of forest operations that promote economic, environmental and social well-being. The main objective of this paper is to identify important issues concerning forest operations and to propose a new paradigm towards sustainability in a changing climate, work and environmental conditions. Previously developed concepts of forest operations are reviewed, and a newly developed concept - Sustainable Forest Operations (SFO), is presented. Five key performance areas to ensure the sustainability of forest operations include: (i) environment; (ii) ergonomics; (iii) economics; (iv) quality optimization of products and production; and (v) people and society. Practical field examples are presented to demonstrate how these five interconnected principles are relevant to achieving sustainability, namely profit and wood quality maximization, ecological benefits, climate change mitigation, carbon sequestration, and forest workers' health and safety. The new concept of SFO provides integrated perspectives and approaches to effectively address ongoing and foreseeable challenges the global forest communities face, while balancing forest operations performance across economic, environmental and social sustainability. In this new concept, we emphasize the role of wood as a renewable and environmentally friendly material, and forest workers' safety and utilization efficiency and waste management as additional key elements of sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
Kolbe, Jason J; VanMiddlesworth, Paul S; Losin, Neil; Dappen, Nathan; Losos, Jonathan B
2012-01-01
Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid. PMID:22957158
"Nuestra Tierra Dinamica" Global Climate Change STEM Education Fostering Environmental Stewardship
NASA Astrophysics Data System (ADS)
La Grave, M.; de Valenzuela, M.; Russell, R.
2012-12-01
CLUB ECO LÓGICO is a democratic and participatory program that provides active citizenship in schools and community, placing climate change into context for the Latino Community. The program's objectives focus on: 1. The Environment. Reducing the school and community impact on the environment through environmental footprint through stewardship actions. 2. Empowerment. Engaging participants through project and service learning and make decisions about how to improve their schools, their homes and their community's environment. 3. Community and Research Partnerships. Fostering collaborations with local community, stakeholders, government, universities, research organizations, and businesses that have expertise in environmental research, management, education and climate change. 4. Awareness. Increasing environmental and climate science knowledge of participants through STEM activities and hands-on access to technology. 5. Research and evaluation. Assessing the relevance of program activities through the engagement of the Latino community in planning and the effectiveness and impact of STEM activities through formative and summative evaluation. To address these objectives, the program has several inter related components in an after school setting: SUN EARTH Connections: Elementary (grades K to 2) students learn the basic climate change concepts through inquiry and hands on STEM activities. Bilingual 8 facilitators adapt relevant NASA educational resources for use in inquiry based, hands on activities. Drama and the arts provide unique experiences as well as play a key role in learning, participation and facilitation. GREEN LABS: Elementary students (grades 3 to 5) participate in stations where each Lab is staffed by at least two professionals: a College level fully bilingual Latin American Professional and a stakeholder representing either a research organization or other relevant environmental organization. Our current Green Lab themes include: Air, Soils, Water, Energy, Health, Waste and Communicating Science. Parental and Community Engagement: Family or Community Nights and community events showcasing student products, videos, and service learning projects in a bilingual format; and presentations by research scientists on climate and environmental science topics of interest to the Latino community. Our events have been highlighted on Univision television evening news, reaching Latinos across the state. Digital Story Telling: Our Video Lab involves Latino high school students who are trained as mentors, encouraged to research climate change topics, meet scientists and learn about video technology. By fall 2013, our HS Video Lab will mentor local middle school students. Throughout the year students take field trips to film and interview key scientists and educators. The project will share lessons learned concerning several issues: 1. What environmental and climate science issues are most relevant for Latinos; 2. What strategies are effective in engaging the Latino community in program planning and in engaging participation; 3. What approaches are effective in developing or adapting environmental and climate science education activities for Latino students and families; 4. How to develop effective partnerships with research and other environmental organizations; 5. How to develop culturally sensitive evaluation strategies.
A Grid Metadata Service for Earth and Environmental Sciences
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Negro, Alessandro; Aloisio, Giovanni
2010-05-01
Critical challenges for climate modeling researchers are strongly connected with the increasingly complex simulation models and the huge quantities of produced datasets. Future trends in climate modeling will only increase computational and storage requirements. For this reason the ability to transparently access to both computational and data resources for large-scale complex climate simulations must be considered as a key requirement for Earth Science and Environmental distributed systems. From the data management perspective (i) the quantity of data will continuously increases, (ii) data will become more and more distributed and widespread, (iii) data sharing/federation will represent a key challenging issue among different sites distributed worldwide, (iv) the potential community of users (large and heterogeneous) will be interested in discovery experimental results, searching of metadata, browsing collections of files, compare different results, display output, etc.; A key element to carry out data search and discovery, manage and access huge and distributed amount of data is the metadata handling framework. What we propose for the management of distributed datasets is the GRelC service (a data grid solution focusing on metadata management). Despite the classical approaches, the proposed data-grid solution is able to address scalability, transparency, security and efficiency and interoperability. The GRelC service we propose is able to provide access to metadata stored in different and widespread data sources (relational databases running on top of MySQL, Oracle, DB2, etc. leveraging SQL as query language, as well as XML databases - XIndice, eXist, and libxml2 based documents, adopting either XPath or XQuery) providing a strong data virtualization layer in a grid environment. Such a technological solution for distributed metadata management leverages on well known adopted standards (W3C, OASIS, etc.); (ii) supports role-based management (based on VOMS), which increases flexibility and scalability; (iii) provides full support for Grid Security Infrastructure, which means (authorization, mutual authentication, data integrity, data confidentiality and delegation); (iv) is compatible with existing grid middleware such as gLite and Globus and finally (v) is currently adopted at the Euro-Mediterranean Centre for Climate Change (CMCC - Italy) to manage the entire CMCC data production activity as well as in the international Climate-G testbed.
La Jeunesse, I; Cirelli, C; Aubin, D; Larrue, C; Sellami, H; Afifi, S; Bellin, A; Benabdallah, S; Bird, D N; Deidda, R; Dettori, M; Engin, G; Herrmann, F; Ludwig, R; Mabrouk, B; Majone, B; Paniconi, C; Soddu, A
2016-02-01
Water scarcity and water security are linked, not only through the direct effects of water shortages on each water users' access to water, but also because of water conflicts generated. Climate change is predicted to raise temperatures in the Mediterranean region and reduce rainfall, leading to a reduction in water yield and possibly worsening the situation of water resource shortages that Mediterranean regions are already experiencing. In its dissemination strategy, the EU FP7 CLIMB project addressed water security threats through an analysis of water uses and water use rivalries within a few target catchments distributed over the Mediterranean region. The present work explores whether climate change is locally perceived by stakeholders (water users and managers) as a key issue for their water uses and water security. Individual interviews, meetings, and compilation of questionnaires were conducted at five sites located in the Mediterranean region. The methodology permitted an analysis of water use and its evolution in the water management context, an identification of the state of awareness of local stakeholders and of the pressures on water use and water use rivalries, and a prioritization of water uses. Currently, the main response to increasing water demand in the Mediterranean region, while not yet considering climate change as a driving force, is a progressive externalization of water resources, with limits represented by national borders and technological possibilities. Overall, 'climate change' was not mentioned by stakeholders during both interviews and in answers to the questionnaires. Even the prospect of decreasing precipitation was not considered a relevant or threatening issue in the coming 20years. This confirms the need to continue all efforts to disseminate the state of knowledge on climate change impacts in the Mediterranean region, such as water scarcity, especially to local water managers, as initiated by various research programs of the European Commission. Copyright © 2015 Elsevier B.V. All rights reserved.
Data-Driven Synthesis for Investigating Food Systems Resilience to Climate Change
NASA Astrophysics Data System (ADS)
Magliocca, N. R.; Hart, D.; Hondula, K. L.; Munoz, I.; Shelley, M.; Smorul, M.
2014-12-01
The production, supply, and distribution of our food involves a complex set of interactions between farmers, rural communities, governments, and global commodity markets that link important issues such as environmental quality, agricultural science and technology, health and nutrition, rural livelihoods, and social institutions and equality - all of which will be affected by climate change. The production of actionable science is thus urgently needed to inform and prepare the public for the consequences of climate change for local and global food systems. Access to data that spans multiple sectors/domains and spatial and temporal scales is key to beginning to tackle such complex issues. As part of the White House's Climate Data Initiative, the USDA and the National Socio-Environmental Synthesis Center (SESYNC) are launching a new collaboration to catalyze data-driven research to enhance food systems resilience to climate change. To support this collaboration, SESYNC is developing a new "Data to Motivate Synthesis" program designed to engage early career scholars in a highly interactive and dynamic process of real-time data discovery, analysis, and visualization to catalyze new research questions and analyses that would not have otherwise been possible and/or apparent. This program will be supported by an integrated, spatially-enabled cyberinfrastructure that enables the management, intersection, and analysis of large heterogeneous datasets relevant to food systems resilience to climate change. Our approach is to create a series of geospatial abstraction data structures and visualization services that can be used to accelerate analysis and visualization across various socio-economic and environmental datasets (e.g., reconcile census data with remote sensing raster datasets). We describe the application of this approach with a pilot workshop of socio-environmental scholars that will lay the groundwork for the larger SESYNC-USDA collaboration. We discuss the particular challenges of supporting an integrated, repeatable workflow for socio-environmental data synthesis, and the advantages and limitations to using data as a launching point for interdisciplinary research projects.
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines key action steps that instructional staff--including teachers, paraprofessionals, and others in the classroom who provide instruction or assistance--can take to support school climate improvements. Key action steps are provided…
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines key action steps that school leaders--including principals, assistant/vice principals, and building leaders--can take to support school climate improvements. Key action steps are provided for the following strategies: (1)…
Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds
NASA Technical Reports Server (NTRS)
Wood, Robert; Jensen, Michael P.; Wang, Jian; Bretherton, Christopher S.; Burrows, Susannah M.; Del Genio, Anthony; Fridlind, Ann M.; Ghan, Steven J.; Ghate, Virendra P.; Kollias, Pavlos;
2016-01-01
Marine low clouds have a large impact on the Earths energy and hydrologic cycle. They strongly reflect incoming solar radiation, with little compensating impact on outgoing long wave radiation resulting in a net cooling of the climate. The representation of marine low clouds in climate models is one of the largest uncertainties in the estimation of climate sensitivity(e.g. Bony and Dufresne 2005), and marine low clouds are critical mediators of global aerosol radiative forcing (Zelinka et al. 2014). Despite the importance of these cloud systems to the Earth's climate, their parameterization continues to be challenging, due to an incomplete understanding of key processes that regulate them and insufficient resolution of these processes in models. To help define research pathways to address outstanding issues related to our understanding of marine low clouds, a workshop was held January 27-29, 2016 at Brookhaven National Laboratory. The overarching goal was to identify current gaps in knowledge or simulation capabilities and promising strategies for addressing them, with a particular emphasis on improving the representation of marine low clouds in climate models and contributions that could be made with U.S. Department of Energy Atmospheric System Research support using Atmospheric Radiation Measurement facility measurements.
Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Robert; Jensen, Michael P.; Wang, Jian
Marine low clouds have a large impact on the Earth’s energy and hydrologic cycle. They strongly reflect incoming solar radiation, with little compensating impact on outgoing longwave radiation resulting in a net cooling of the climate. The representation of marine low clouds in climate models is one of the largest uncertainties in the estimation of climate sensitivity (e.g. Bony and Dufresne 2005), and marine low clouds are critical mediators of global aerosol radiative forcing (Zelinka et al. 2014). Despite the importance of these cloud systems to the Earth’s climate, their parameterization continues to be challenging, due to an incomplete understandingmore » of key processes that regulate them and insufficient resolution of these processes in models. To help define research pathways to address outstanding issues related to our understanding of marine low clouds, a workshop was held January 27-29, 2016 at Brookhaven National Laboratory. The overarching goal was to identify current gaps in knowledge or simulation capabilities and promising strategies for addressing them, with a particular emphasis on improving the representation of marine low clouds in climate models and contributions that could be made with U.S. Department of Energy Atmospheric System Research support using Atmospheric Radiation Measurement facility measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Richard H.; Engle, Nathan L.; Hall, John
This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for releasemore » in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes), changes in climate and related environmental conditions (e.g., sea level), and evolution of societal capability to respond to climate change. This wide range of scenarios is needed because the implications of climate change for the environment and society depend not only on changes in climate themselves, but also on human responses. This degree of breadth introduces and number of challenges for communication and research.« less
The Organizational Decision Making Climate of Issues Management Programs: A Case Study.
ERIC Educational Resources Information Center
Wills, Sandra
A study examined the decision making climate of organizations that are using issues management and what type of model of issues management is followed--theorists have been attempting to define issues management since it began appearing 20 year ago. Subjects, 112 males and 30 females who were professionals working in the area of issues management…
NASA Astrophysics Data System (ADS)
Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.
2014-12-01
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.
NASA Astrophysics Data System (ADS)
Goodess, Clare; Ruti, Paolo; Rousset, Nathalie
2014-05-01
During the closing stages of the CLIM-RUN EU FP7 project on Climate Local Information in the Mediterranean region Responding to User Needs, the real-world experiences encountered by the case-study teams are being assessed and synthesised to identify examples of good practice and, in particular, to produce the CLIM-RUN protocol for the development of Mediterranean climate services. The specific case studies have focused on renewable energy (Morocco, Spain, Croatia, Cyprus), tourism (Savoie, Tunisia, Croatia, Cyprus) and wild fires (Greece) as well as one cross-cutting case study (Veneto region). They have been implemented following a common programme of local workshops, questionnaires and interviews, with Climate Expert Team and Stakeholder Expert Team members collaborating to identify and translate user needs and subsequently develop climate products and information. Feedback from stakeholders has been essential in assessing and refining these products. The protocol covers the following issues: the overall process and methodological key stages; identification and selection of stakeholders; communication with stakeholders; identification of user needs; translation of needs; producing products; assessing and refining products; methodologies for evaluating the economic value of climate services; and beyond CLIM-RUN - the lessons learnt. Particular emphasis is given to stakeholder analysis in the context of the participatory, bottom-up approach promoted by CLIM-RUN and to the iterative approach taken in the development of climate products. Recommendations are also made for an envisioned three-tier business model for the development of climate services involving climate, intermediary and stakeholder tiers.
The potential of air-sea interactions for improving summertime North Atlantic seasonal forecasts
NASA Astrophysics Data System (ADS)
Ossó, Albert; Shaffrey, Len; Dong, Buwen; Sutton, Rowan
2017-04-01
Delivering skillful summertime seasonal forecasts of the Northern Hemisphere (NH) mid-latitude climate is a key unresolved issue for the climate science community. Current climate models have some skill in forecasting the wintertime NH mid-latitude circulation but very limited skill during summertime. To explore the potential predictability of the summertime climate we analyze lagged correlation patterns between the SSTs and summer atmospheric circulation in the North Atlantic both in observations and climate model outputs. We find observational evidence in the ERA-Interim (1979-2015) reanalysis and the HadSLP2 and HadISST data of an SST pattern forced by late winter atmospheric circulation persisting from winter to early summer that excites an anticyclonic summer SLP anomaly west of the British Isles. We show that the atmospheric response is driven through the action of turbulent heat fluxes and changes on the background baroclinicity. The lagged atmospheric response to the SSTs could be exploited for summertime predictability over Western Europe. We find a statistical significant correlation of over 0.6 between April-May North Atlantic SSTs and the June-August North Atlantic SLP anomaly. The previous findings are further explored using 120 years of coupled ocean-atmosphere HadGEM3-GC2 model simulation. The climate model qualitatively reproduces the observed spatial relationship between the late winter and spring SSTs and summertime circulation, although the correlations are substantially weaker than observed.
Teaching Science IBL, a shared experience between schools
NASA Astrophysics Data System (ADS)
Ruas, Fatima; Carneiro, Paula
2015-04-01
Key words: Problem based learning, Inquiry-based learning, digital resources, climate changes The inquiry-based learning approach is applied by watching a video about the last rigorous winter and its effects. The teacher starts by posing some questions related with the video news: Why only after a 20 or 30 years from now, how will it be possible to explain the occurrence of two storms in just a month's time? Is our climate effectively changing? What is the difference between weather and climate? The teacher helps students to think about where and how they can find information about the subject, providing/teaching them suitable tools to access and use information. The teacher plays the role of mentor/facilitator. Students should proceed to their research, presenting the results to their colleagues, discussing in groups, doing brainstorming and collaborate in the learning process. After the discussion the students must present their conclusions. The main goals are: explain the difference between weather and climate; understand whether or not climate change exists; identify the causes of climate change and extreme weather events; raising awareness among young people about environmental issues of preservation and sustainability of our planet. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.
Collective violence caused by climate change and how it threatens health and human rights.
Levy, Barry S; Sidel, Victor W
2014-06-14
The weight of scientific evidence indicates that climate change is causally associated with collective violence. This evidence arises from individual studies over wide ranges of time and geographic location, and from two extensive meta-analyses. Complex pathways that underlie this association are not fully understood; however, increased ambient temperatures and extremes of rainfall, with their resultant adverse impacts on the environment and risk factors for violence, appear to play key roles. Collective violence due to climate change poses serious threats to health and human rights, including by causing morbidity and mortality directly and also indirectly by damage to the health-supporting infrastructure of society, forcing people to migrate from their homes and communities, damaging the environment, and diverting human and financial resources. This paper also briefly addresses issues for future research on the relationship between climate change and collective violence, the prevention of collective violence due to climate change, and States' obligations to protect human rights, to prevent collective violence, and to promote and support measures to mitigate and adapt to climate change. Copyright © 2014 Levy and Sidel. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
'Back to the future': how archaeological remains can describe salmon adaptation to climate change.
Blanchet, Simon; Dubut, Vincent
2012-05-01
A strategy for species to survive climate change will be to change adaptively their way of life. Understanding rapid adaptation to climate change is therefore a priority for current research. In this issue, Turrero et al. (2012) use an original approach to unravel life history trait responses to climate change in two fish species (Salmo trutta and S. salar). Going against the flow, the authors adopt the strategy of going back to the future by investigating the responses of fish to the warming periods that followed the Last Glacial Period (approximately 30-20,000 years BP). To do this, they analysed Salmo vertebrae from well-dated archaeological sites in northern Spain in order to uncover key life history traits, which they then compared to those of contemporary specimens. They found that, as the climate got warmer, Salmo species tended to reduce the time spent in growing areas and reached spawning areas at a younger age; this tendency began approximately 15,000 years BP and accelerated in contemporary periods. The implication is a lower age at maturity and a lower reproductive success, which they tentatively related to recent declines in population growth rate. This innovative study demonstrates how changes in life history traits are linked both to the population growth rate and to the evolutionary rate under climatic constraints, which may serve as a basis for future conservation research. © 2012 Blackwell Publishing Ltd.
Lancaster, Lesley T; Morrison, Gavin; Fitt, Robert N
2017-01-19
The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
Morrison, Gavin; Fitt, Robert N.
2017-01-01
The consequences of climate change for local biodiversity are little understood in process or mechanism, but these changes are likely to reflect both changing regional species pools and changing competitive interactions. Previous empirical work largely supports the idea that competition will intensify under climate change, promoting competitive exclusions and local extinctions, while theory and conceptual work indicate that relaxed competition may in fact buffer communities from biodiversity losses that are typically witnessed at broader spatial scales. In this review, we apply life history theory to understand the conditions under which these alternative scenarios may play out in the context of a range-shifting biota undergoing rapid evolutionary and environmental change, and at both leading-edge and trailing-edge communities. We conclude that, in general, warming temperatures are likely to reduce life history variation among competitors, intensifying competition in both established and novel communities. However, longer growing seasons, severe environmental stress and increased climatic variability associated with climate change may buffer these communities against intensified competition. The role of life history plasticity and evolution has been previously underappreciated in community ecology, but may hold the key to understanding changing species interactions and local biodiversity under changing climates. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920390
ERIC Educational Resources Information Center
Dawson, Vaille
2015-01-01
Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to…
Climate change and the possible health effects on older Australians.
Saniotis, Arthur; Irvine, Rod
2010-01-01
Climate change is an important issue for Australia. Climate change research forecasts that Australia will experience accelerated warming due to anthrogenic activities. Australia's aging society will face special challenges that demand current attention. This paper discusses two issues in relation to climate change and older Australians: first, pharmacology and autoregulation; and second, mental health among older Australians.
Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America.
Vörösmarty, Charles J; Bravo de Guenni, Lelys; Wollheim, Wilfred M; Pellerin, Brian; Bjerklie, David; Cardoso, Manoel; D'Almeida, Cassiano; Green, Pamela; Colon, Lilybeth
2013-11-13
Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960-2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.
Linkages between the Urban Environment and Earth's Climate System
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Jin, Menglin
2003-01-01
Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.
Plant health and global change--some implications for landscape management.
Pautasso, Marco; Dehnen-Schmutz, Katharina; Holdenrieder, Ottmar; Pietravalle, Stéphane; Salama, Nabeil; Jeger, Mike J; Lange, Eckart; Hehl-Lange, Sigrid
2010-11-01
Global change (climate change together with other worldwide anthropogenic processes such as increasing trade, air pollution and urbanization) will affect plant health at the genetic, individual, population and landscape level. Direct effects include ecosystem stress due to natural resources shortage or imbalance. Indirect effects include (i) an increased frequency of natural detrimental phenomena, (ii) an increased pressure due to already present pests and diseases, (iii) the introduction of new invasive species either as a result of an improved suitability of the climatic conditions or as a result of increased trade, and (iv) the human response to global change. In this review, we provide an overview of recent studies on terrestrial plant health in the presence of global change factors. We summarize the links between climate change and some key issues in plant health, including tree mortality, changes in wildfire regimes, biological invasions and the role of genetic diversity for ecosystem resilience. Prediction and management of global change effects are complicated by interactions between globalization, climate and invasive plants and/or pathogens. We summarize practical guidelines for landscape management and draw general conclusions from an expanding body of literature. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Local Government Capacity to Respond to Environmental Change: Insights from Towns in New York State.
Larson, Lincoln R; Lauber, T Bruce; Kay, David L; Cutts, Bethany B
2017-07-01
Local governments attempting to respond to environmental change face an array of challenges. To better understand policy responses and factors influencing local government capacity to respond to environmental change, we studied three environmental issues affecting rural or peri-urban towns in different regions of New York State: climate change in the Adirondacks (n = 63 towns), loss of open space due to residential/commercial development in the Hudson Valley (n = 50), and natural gas development in the Southern Tier (n = 62). Our analysis focused on towns' progression through three key stages of the environmental policy process (issue awareness and salience, common goals and agenda setting, policy development and implementation) and the factors that affect this progression and overall capacity for environmental governance. We found that-when compared to towns addressing open space development and natural gas development-towns confronted with climate change were at a much earlier stage in the policy process and were generally less likely to display the essential resources, social support, and political legitimacy needed for an effective policy response. Social capital cultivated through collaboration and networking was strongly associated with towns' policy response across all regions and could help municipalities overcome omnipresent resource constraints. By comparing and contrasting municipal responses to each issue, this study highlights the processes and factors influencing local government capacity to address a range of environmental changes across diverse management contexts.
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Chang, Hyunsook; Choi, Kyunghee; Kim, Sung-Won; Zeidler, Dana L.
2012-04-01
Character and values are the essential driving forces that serve as general guides or points of reference for individuals to support decision-making and to act responsibly about global socioscientific issues (SSIs). Based on this assumption, we investigated to what extent pre-service science teachers (PSTs) of South Korea possess character and values as global citizens; these values include ecological worldview, socioscientific accountability, and social and moral compassion. Eighteen PSTs participated in the SSI programs focusing on developing character and values through dialogical and reflective processes. SSIs were centered on the use of nuclear power generation, climate change, and embryonic stem cell research. The results indicated that PSTs showed three key elements of character and values, but failed to apply consistent moral principles on the issues and demonstrated limited global perspectives. While they tended to approach the issues with emotion and sympathy, they nonetheless failed to perceive themselves as major moral agents who are able to actively resolve large-scale societal issues. This study also suggests that the SSI programs can facilitate socioscientific reasoning to include abilities such as recognition of the complexity of SSIs, examine issues from multiple perspectives, and exhibit skepticism about information.
Warm climates of the past—a lesson for the future?
Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.
2013-01-01
This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873
Warm climates of the past--a lesson for the future?
Lunt, D J; Elderfield, H; Pancost, R; Ridgwell, A; Foster, G L; Haywood, A; Kiehl, J; Sagoo, N; Shields, C; Stone, E J; Valdes, P
2013-10-28
This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.
Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2013-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to practicalize Climate Change education.
NASA Astrophysics Data System (ADS)
Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.
2012-12-01
The San Diego Regional Climate Education Partnership has formed an innovative and collaborative team whose mission is to implement a research-based climate science education and communications program to increase knowledge about climate science among highly-influential leaders and their communities and foster informed decision making based on climate science and impacts. The team includes climate scientists, behavioral psychologists, formal and informal educators and communication specialists. The Partnership's strategic plan has three major goals: (1) raise public understanding of the causes and consequences of climate change; (2) identify the most effective educational methods to educate non-traditional audiences (Key Influentials) about the causes and consequences of climate change; and (3) develop and implement a replicable model for regional climate change education. To implement this strategic plan, we have anchored our project on three major pillars: (1) Local climate science (causes, impacts and long-term consequences); (2) theoretical, research-based evaluation framework (TIMSI); and (3) Key! Influentials (KI) as primary audience for messages (working w! ith and through them). During CCEP-I, the Partnership formed and convened an advisory board of Key Influentials, completed interviews with a sample of Key Influentials, conducted a public opinion survey, developed a website (www.sandiego.edu/climate) , compiled inventories on literature of climate science education resources and climate change community groups and local activities, hosted stakeholder forums, and completed the first phase of on an experiment to test the effects of different messengers delivering the same local climate change message via video. Results of 38 KI Interviews provided evidence of local climate knowledge, strong concern about climate change, and deeply held values related to climate change education and regional leadership. The most intriguing result was that while 90% of Key Influentials described themselves as concerned about climate change, they believed only 10% of their peers were equally concerned. Results from a public opinion survey of 1001 San Diego residents exhibited two clear trends: San Diegans were consistently more attuned and concerned about climate change and its impacts than nationwide average; and similar to the KI findings, they do not believe others are as concerned as they are. Further, mediation analysis of results supported TIMSI, showing that climate change education that promotes efficacy, identity and values endorsed by a concerned community are most likely to result in engagement in mitigation and adaptive behaviors. All CCEP-I activities informed and directed the design of our Phase II Strategic plan and will provide baseline data for assessing changes that occur as we implement the educational plan. Implementation strategies for the next Phase will emphasize (1) presenting local climate science and unique climate impacts, (2) working with Key Influentials in diverse ways, including educational both formal and informal dialogues for this non-traditional audience, developing climate education messages to be delivered by KIs to their peers and their communities, and engaging certain KIs to be the portal to their constituents; and (3) using social media to connect educators and their audiences.
State Roles in the Global Climate Change Issue.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1995-02-01
Events in 1988 helped focus the attention of several states on the global climate change issue. Consequently, the National Governors' Association conducted an assessment in 1989 and recommended various actions. By 1994, 22 states have enacted laws or regulations and/or established research programs addressing climate change. Most of these "no regrets" actions are set up to conserve energy or improve energy efficiency and also to reduce greenhouse gas emissions. Illinois has adopted an even broader program by 1) establishing a Global Climate Change Office to foster research and provide information and 2) forming a task force to address a wide array of issues including state input to federal policies such as the Clinton administration's 1993 Climate Change Action Plan and to the research dimensions of the U.S. Global Climate Change Research Program. The Illinois program calls for increased attention to studies of regional impacts, including integrated assessments, and to research addressing means to adapt to future climate change. These various state efforts to date help show the direction of policy development and should be useful to those grappling with these issues.
NEESPI focus issues in Environmental Research Letters
NASA Astrophysics Data System (ADS)
Norman, Julian; Groisman, Pavel; Soja, Amber J.
2010-05-01
In 2007 and 2009 Environmental Research Letters published focus issues (edited by Pavel Groisman and Amber J Soja) made up of work carried out by NEESPI participants. Here, we present the content of those focus issues as an invaluable resource for researchers working in the NEESPI study area. The first of the two issues, published in 2007 with title 'Northern Hemisphere High Latitude Climate and Environmental Change', presents a diverse collection of articles that are assembled into five groups devoted to studies of climate and hydrology, land cover and land use, the biogeochemical cycle and its feedbacks, the cryosphere, and human dimensions. The second issue, published in 2009, with title 'Climatic and Environmental Change in Northern Eurasia' presents diverse, assorted studies of different aspects of contemporary change, representing the diversity of climates and ecosystems across Northern Eurasia.
NASA Astrophysics Data System (ADS)
Niepold, F., III; Ledley, T. S.; Stanton, C.; Fraser, J.; Scowcroft, G. A.
2017-12-01
Understanding the causes, effects, risks, and developing the social will and skills for responses to global change is a major challenge of the 21st century that requires coordinated contributions from the sciences, social sciences, humanities, arts, and beyond. There have been many effective efforts to implement climate change education, civic engagement and related workforce development programs focused on a multitude of audiences, topics and in multiple regions. This talk will focus on how comprehensive educational efforts across our communities are needed to support cities and their primary industries as they prepare for, and embrace, a low-carbon economy and develop the related workforce.While challenges still exist in identifying and coordinating all stakeholders, managing and leveraging resources, and resourcing and scaling effective programs to increase impact and reach, climate and energy literacy leaders have developed initiatives with broad input to identify the understandings and structures for climate literacy collective impact and to develop regional/metropolitan strategy that focuses its collective impact efforts on local climate issues, impacts and opportunities. This Climate Literacy initiative envisions education as a central strategy for community's civic actions in the coming decades by key leaders who have the potential to foster the effective and innovative strategies that will enable their communities to seize opportunity and prosperity in a post-carbon and resilient future. This talk discusses the advances and collaborations in the Climate Change Education community over the last decade by U.S. federal and non-profit organization that have been made possible through the partnerships of the Climate Literacy & Energy Awareness Network (CLEAN), U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, and the Tri-Agency Climate Change Education Collaborative.
Polluting Canada's Public Square: The Harper Government's War on Science and the Environment?
NASA Astrophysics Data System (ADS)
Linnitt, C.; Hoggan, J. C.
2013-12-01
Conversations about key environmental issues like climate change are increasingly viewed as matters of politics rather than matters of science. As a result, competing -and often polarized - interests have made public debate on these issues vulnerable to aggressive politicization. This politicization, particularly when it comes to important policy decisions regarding industrial (and especially fossil fuel) development, obscures the facts on these issues, leaving democratic public debate prey to aggressive public relations tactics, misinformation campaigns, pseudo-science, modern-day propaganda and/or the deliberate ';pollution' of the public square. In Canada a coordinated effort is underway to mischaracterize environmental groups as radical ideologues, associating environmental views and pursuits with extremism. A Tea Party-style echo chamber has also emerged in Canada, coordinating anti-science messaging in an attempt to bolster industrial development while misaligning environmental non-profits with domestic terror threats. This attempt to undermine ecological agendas and to push environmental concerns to the margins is paired with government-sponsored censorship of federally-funded scientists and the elimination of vital public science programs in Canada. The result is a dearth of scientific information surrounding significant environmental concerns - such as the Alberta oil sands and industry contamination of waterways - and a dangerous and false association of these issues with an extremist agenda. Ultimately scientists and science communicators face a unique set of challenges in Canada when it comes to addressing environmental issues. Although the 'science' of science communication has evolved to address relevant cultural and socio-political barriers associated with change resistance (for example, adapting one's behavior to minimize greenhouse gas emissions), much work remains in both acknowledging and ameliorating the politicization of science and the intentional pollution of public conversations. Democracy depends on the public's access to information; however, in a climate in which that access is under threat, scientists and science communicators may need to address those fundamental concerns deliberately in order to participate effectively in the public policy and decision-making process. This paper provides a brief overview of environmental communications theory and practice, current misinformation techniques, and key instances in which either government policy and/or media and industry behavior have actively sought to contaminate or impede more constructive discourse on issues of science and environmental regulation. We conclude by offering a set of recommendations for improving the ability of scientists and experts to communicate effectively in an increasingly complex political and media environment, and for safeguarding the quality of democratic discourse on these and other issues.
Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change
NASA Astrophysics Data System (ADS)
Visintainer, Tammie; Linn, Marcia
2015-04-01
Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.
Ahmed, Adeel; Masud, Muhammad Mehedi; Al-Amin, Abul Quasem; Yahaya, Siti Rohani Binti; Rahman, Mahfuzur; Akhtar, Rulia
2015-06-01
This study empirically estimates farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in Pakistan's agricultural sectors. The contingent valuation method (CVM) was employed to determine a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues. The survey was conducted by distributing structured questionnaires among Pakistani farmers. The study found that 67 % of respondents were willing to pay for a planned adaptation programme. However, several socioeconomic and motivational factors exert greater influence on their willingness to pay (WTP). This paper specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support attempts by policy makers to design an efficient adaptation framework for mitigating and adapting to the adverse impacts of climate change.
Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng
2015-01-01
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017
NASA Astrophysics Data System (ADS)
Bakke, Jostein; Balascio, Nicholas; van der Bilt, Willem G. M.; Bradley, Raymond; D'Andrea, William J.; Gjerde, Marthe; Ólafsdóttir, Sædís; Røthe, Torgeir; De Wet, Greg
2018-03-01
This paper introduces a series of articles assembled in a special issue that explore Holocene climate evolution, as recorded in lakes on the Island of Amsterdamøya on the westernmost fringe of the Arctic Svalbard archipelago. Due to its location near the interface of oceanic and atmospheric systems sourced from Arctic and Atlantic regions, Amsterdamøya is a key site for recording the terrestrial response to marine and atmospheric changes. We employed multi-proxy approaches on lake sediments, integrating physical, biogeochemical, and isotopic analyses to infer past changes in temperature, precipitation, and glacier activity. The results comprise a series of quantitative Holocene-length paleoclimate reconstructions that reveal different aspects of past climate change. Each of the four papers addresses various facets of the Holocene climate history of north-western Svalbard, including a reconstruction of the Annabreen glacier based on the sedimentology of the distal glacier-fed lake Gjøavatnet, a reconstruction of changing hydrologic conditions based on sedimentology and stratigraphy in Lake Hakluytvatnet, reconstruction of summer temperature based on alkenone paleothermometry from lakes Hakluytvatnet and Hajeren, and a hydrogen isotope-based hydrological reconstruction from lake Hakluytvatnet. We also present high-resolution paleomagnetic secular variation data from the same lake, which document important regional magnetic field variations and demonstrate the potential for use in synchronizing Holocene sedimentary records in the Arctic. The paleoclimate picture that emerges is one of early Holocene warmth from ca. 10.5 ka BP interrupted by transient cooling ca. 10-8ka BP, and followed by cooling that mostly manifested as two stepwise events ca. 7 and 4 ka BP. The past 4ka were characterized by dynamic glaciers and summer temperature fluctuations decoupled from the declining summer insolation.
Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo
2015-01-01
Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production's effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species.
Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo
2015-01-01
Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species. PMID:25767477
78 FR 40935 - Amendments to Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... policy issues relating to the effects of climate change on agriculture and forestry, including broader... relating to the effects of climate change on agriculture and forestry, including broader issues that affect... responsibilities of the Climate Change Program Office (CCPO) within the Office of the Chief Economist. CCPO, known...
Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y
2010-06-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.
Lehmann, Anthony; Guigoz, Yaniss; Ray, Nicolas; Mancosu, Emanuele; Abbaspour, Karim C.; Rouholahnejad Freund, Elham; Allenbach, Karin; De Bono, Andrea; Fasel, Marc; Gago-Silva, Ana; Bär, Roger; Lacroix, Pierre; Giuliani, Gregory
2017-01-01
The Black Sea catchment (BSC) is facing important demographic, climatic and landuse changes that may increase pollution, vulnerability and scarcity of water resources, as well as beach erosion through sea level rise. Limited access to reliable time-series monitoring data from environmental, statistical, and socio-economical sources is a major barrier to policy development and decision-making. To address these issues, a web-based platform was developed to enable discovery and access to key environmental information for the region. This platform covers: landuse, climate, and demographic scenarios; hydrology and related water vulnerability and scarcity; as well as beach erosion. Each data set has been obtained with state-of-the-art modelling tools from available monitoring data using appropriate validation methods. These analyses were conducted using global and regional data sets. The data sets are intended for national to regional assessments, for instance for prioritizing environmental protection projects and investments. Together they form a unique set of information, which lay out future plausible change scenarios for the BSC, both for scientific and policy purposes. PMID:28675383
Lehmann, Anthony; Guigoz, Yaniss; Ray, Nicolas; Mancosu, Emanuele; Abbaspour, Karim C; Rouholahnejad Freund, Elham; Allenbach, Karin; De Bono, Andrea; Fasel, Marc; Gago-Silva, Ana; Bär, Roger; Lacroix, Pierre; Giuliani, Gregory
2017-07-04
The Black Sea catchment (BSC) is facing important demographic, climatic and landuse changes that may increase pollution, vulnerability and scarcity of water resources, as well as beach erosion through sea level rise. Limited access to reliable time-series monitoring data from environmental, statistical, and socio-economical sources is a major barrier to policy development and decision-making. To address these issues, a web-based platform was developed to enable discovery and access to key environmental information for the region. This platform covers: landuse, climate, and demographic scenarios; hydrology and related water vulnerability and scarcity; as well as beach erosion. Each data set has been obtained with state-of-the-art modelling tools from available monitoring data using appropriate validation methods. These analyses were conducted using global and regional data sets. The data sets are intended for national to regional assessments, for instance for prioritizing environmental protection projects and investments. Together they form a unique set of information, which lay out future plausible change scenarios for the BSC, both for scientific and policy purposes.
Yoho, Rachel A; Vanmali, Binaben H
2016-03-01
The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to "hot topics" of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education.
Bressac, Matthieu
2016-01-01
Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km2) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of ‘additionality’ (sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035263
Boyd, Philip W; Bressac, Matthieu
2016-11-28
Geoengineering to mitigate climate change has long been proposed, but remains nebulous. Exploration of the feasibility of geoengineering first requires the development of research governance to move beyond the conceptual towards scientifically designed pilot studies. Fortuitously, 12 mesoscale (approx. 1000 km 2 ) iron enrichments, funded to investigate how ocean iron biogeochemistry altered Earth's carbon cycle in the geological past, provide proxies to better understand the benefits and drawbacks of geoengineering. The utility of these iron enrichments in the geoengineering debate is enhanced by the GEOTRACES global survey. Here, we outline how GEOTRACES surveys and process studies can provide invaluable insights into geoengineering. Surveys inform key unknowns including the regional influence and magnitude of modes of iron supply, and stimulate iron biogeochemical modelling. These advances will enable quantification of interannual variability of iron supply to assess whether any future purposeful multi-year iron-fertilization meets the principle of 'additionality' ( sensu Kyoto protocol). Process studies address issues including upscaling of geoengineering, and how differing iron-enrichment strategies could stimulate wide-ranging biogeochemical outcomes. In summary, the availability of databases on both mesoscale iron-enrichment studies and the GEOTRACES survey, along with modelling, policy initiatives and legislation have positioned the iron-enrichment approach as a robust multifaceted test-bed to assess proposed research into climate intervention.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).
Andrew, C G
1996-08-01
Manufacturing managements and practitioners alike are at long last realizing that the heartbeat of competitive advantage springs from peopleware, not hardware and software. But despite this heightened awareness the problem persists even among manufacturing professionals--they may talk a good game about priortizing people and quality, but all too many have precious little idea of how to go about it with constancy of purpose. This article bridges the gap and addresses the key issues in adopting the powerful new peopleware paradigm that provides the positive motivational climate for the improvement-change journey toward world-class performance through teamwork, innovation, and continuous improvement.
Nursing management and organizational ethics in the intensive care unit.
Wlody, Ginger Schafer
2007-02-01
This article describes organizational ethics issues involved in nursing management of an intensive care unit. The intensive care team and medical center management have the dual responsibility to create an ethical environment in which to provide optimum patient care. Addressing organizational ethics is key to creating that ethical environment in the intensive care unit. During the past 15-20 yrs, increasing costs in health care, competitive markets, the effect of high technology, and global business changes have set the stage for business and healthcare organizational conflicts that affect the ethical environment. Studies show that critical care nurses experience moral distress and are affected by the ethical climate of both the intensive care unit and the larger organization. Thus, nursing moral distress may result in problems related to recruitment and retention of staff. Other issues with organizational ethics ramifications that may occur in the intensive care unit include patient safety issues (including those related to disruptive behavior), intensive care unit leadership style, research ethics, allocation of resources, triage, and other economic issues. Current organizational ethics conflicts are discussed, a professional practice model is described, and multidisciplinary recommendations are put forth.
The future of South East Asian rainforests in a changing landscape and climate.
Hector, Andy; Fowler, David; Nussbaum, Ruth; Weilenmann, Maja; Walsh, Rory P D
2011-11-27
With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.
Vulnerability and adaptation to water scarcity in the European Alps
NASA Astrophysics Data System (ADS)
Isoard, S.; McCallum, S.; Prutsch, A.; Benno Hain, B.; Schauser, I.
2009-04-01
The European Environment Agency (EEA) has recently undertaken a project addressing vulnerability and adaptation to water availability in the European Alps. Mountains are indeed one of the most vulnerable regions to climate change in Europe (EEA 2008, IPCC 2007).The Alps, in particular, can be presented as the ‘water towers' of Europe (the amount of water delivered by the Alps allocates 40% of EU consumption) where changes in water availability affect all socio-economical sectors. This therefore makes adaptation actions a regional topic with an outstanding European dimension. The specific objectives of the study were to highlight the importance of the Alps in their function as ‘water towers' for Europe and analyse the vulnerability of the Alpine Region with regard to impacts of climate change (but also to global change as a whole) focussing on water availability. Given the EU and regional policy background with regard to adaptation and water issues, the study assessed the possible needs, constraints and opportunities for adaptation to the adverse impacts for various sectors pending on water resources. Findings of this activity expanded the knowledge base, fed into the preparation of European Commission's 2009 White Paper and the Alpine Convention 2009 Report on the State of the Alps, and complemented other recent studies (e.g. OECD 2007, European Parliament Committee on Agriculture & Rural Development 2008). The method used for the study relied on the one hand on findings from recent key publications on climate change impacts (EEA 2008, IPCC 2007) and EU research projects (e.g. ClimChAlp, ProClim); on the other side it was based on selected case studies chosen within the four climatic regions of the eight Alpine countries for which an extensive series of interviews with local and regional stakeholders and decision makers has been undertaken. The interviewees had been directly involved in designing and implementing water availability-related adaptation measures relating to the respective case studies. The analysis of the case studies highlighted key drivers of adaptation measures, the multi-level governance surrounding this type of policy actions, success factors and barriers (e.g. lack of knowledge, governance shortcomings, coordination issues, spatial and temporal distribution, and competition for resources) that prevent more extensive adaptation actions. Examples of good practices were given as well as further adaptation needs in view of future climate change. Since the study relied mainly on stakeholders' interviews, the major focus lies on building local/regional adaptive capacity that effectively supports adaptation as a social and institutional process. It also provided a synthesis of key vulnerabilities and adaptation options across Europe/Alpine river catchments and recommendations on how to transfer experiences and knowledge in practical implementation of adaptation measures, in particular to other mountain regions (e.g. Carpathian). In this context the study supports regional and local administrations in making informed decisions to better develop and implement adaptation strategies. This EEA study was conducted by the European Topic Centre on Air and Climate Change (UBA Germany, UBA Austria, Potsdam Institute for Climate Impact Research) in cooperation with the Permanent Secretariat of the Alpine Convention (Innsbruck), the European Academy (Bolzano) and the Environment Protection Agency of Slovenia. The study will be published in the first half of 2009 as an EEA Technical Report and will be actively disseminated to stakeholders and decision-makers in the Alpine region through best suited events in collaboration with the Alpine Convention.
The Sahel Region of West Africa: Examples of Climate Analyses Motivated By Drought Management Needs
NASA Astrophysics Data System (ADS)
Ndiaye, O.; Ward, M. N.; Siebert, A. B.
2011-12-01
The Sahel is one of the most drought-prone regions in the world. This paper focuses on climate sources of drought, and some new analyses mostly driven by users needing climate information to help in drought management strategies. The Sahel region of West Africa is a transition zone between equatorial climate and vegetation to the south, and desert to the north. The climatology of the region is dominated by dry conditions for most of the year, with a single peak in rainfall during boreal summer. The seasonal rainfall total contains both interannual variability and substantial decadal to multidecadal variability (MDV). This brings climate analysis and drought management challenges across this range of timescales. The decline in rainfall from the wet decades of the 1950s and 60s to the dry decades of the 1970s and 80s has been well documented. In recent years, a moderate recovery has emerged, with seasonal totals in the period 1994-2010 significantly higher than the average rainfall 1970-1993. These MDV rainfall fluctuations have expression in large-scale sea-surface temperature fluctuations in all ocean basins, placing the changes in drought frequency within broader ocean-atmosphere climate fluctuation. We have evaluated the changing character of low seasonal rainfall total event frequencies in the Sahel region 1950-2010, highlighting the role of changes in the mean, variance and distribution shape of seasonal rainfall totals as the climate has shifted through the three observed phases. We also consider the extent to which updating climate normals in real-time can damp the bias in expected event frequency, an important issue for the feasibility of index insurance as a drought management tool in the presence of a changing climate. On the interannual timescale, a key factor long discussed for agriculture is the character of rainfall onset. An extended dry spell often occurs early in the rainy season before the crop is fully established, and this often leads to crop failure. This can be viewed as a special case of agricultural drought. Therefore, improving climate information around the time of planting can play a key role in agricultural risk management. Rainfall onset indices have been calculated for stations across Senegal. The problem is climatically challenging because the physical processes that impact rainfall onset appear to span aspects normally studied separately: weather system character, propagating intraseasonal features, and large-scale sea-surface temperature influence. We present aspects of all these, and ideas on how to combine them into seamless information to support agriculture.
Overview of Climate Confluence Security Issues
NASA Astrophysics Data System (ADS)
Reisman, J. P.
2011-12-01
Presentation will focus on an overview of the security perspectives based on the confluence considerations including energy, economics and climate change. This will include perspectives from reports generated by the Quadrennial Defense Review, Joint Forces Command, the Center for Strategic International Studies, MIT, the Inter-agency Climate Change Adaptation Task Force, the Central Intelligence Agency, the Center for Naval Analysis, and other relevant reports. The presentation will highlight the connections between resource issues and climate change which can be interpreted into security concerns. General discussion of global issues, contextual review of AR4 WGII may be included and any other report updates as applicable. The purpose of this presentation is to give a rounded view of the general qualitative and quantitative perspectives regarding climate related security considerations.
NASA Astrophysics Data System (ADS)
Suda, Eiko; Kubota, Hiromi; Baba, Kenshi; Hijioka, Yasuaki; Takahashi, Kiyoshi; Hanasaki, Naota
Impacts of climate change have become obvious in agriculture and food production in Japan these days, and researches to adapt to their risks have been conducted as a key effort to cope with the climate change. Numerous scientific findings on climate change impacts have been presented so far; however, prospective risks to be adapted to and their management in the context of individual on-site situations have not been investigated in detail. The structure of climate change risks and their management vary depending on geographical and social features in the regions where the adaptation options should be applied; therefore, a practical adaptation strategy should consider actual on-site situations. This study intended to clarify climate change risks to be adapted to in the Japanese agricultural sector, and factors to be considered in adaptation options, for encouragement of decision-making on adaptation implementation in the field. Semi-structured individual interviews have been conducted with 9 multidisciplinary experts engaging in climate change impacts research in agricultural production, economics, engineering, policy, and so on. Based on the results of the interviews, and the latest literatures available for risk assessment and adaptation, an expert mental model including their perceptions which cover the process from climate change impacts assessment to adaptation has been developed. The prospective risks, adaptation options, and issues to be examined to progress the development of practical and effective adaptation options and to support individual or social decision-making, have been shown on the developed expert mental model. It is the basic information for developing social communication and stakeholders cooperations in climate change adaptation strategies in agriculture and food production in Japan.
A study of nurses' ethical climate perceptions: Compromising in an uncompromising environment.
Humphries, Anne; Woods, Martin
2016-05-01
Acting ethically, in accordance with professional and personal moral values, lies at the heart of nursing practice. However, contextual factors, or obstacles within the work environment, can constrain nurses in their ethical practice - hence the importance of the workplace ethical climate. Interest in nurse workplace ethical climates has snowballed in recent years because the ethical climate has emerged as a key variable in the experience of nurse moral distress. Significantly, this study appears to be the first of its kind carried out in New Zealand. The purpose of this study was to explore and describe how registered nurses working on a medical ward in a New Zealand hospital perceive their workplace ethical climate. This was a small, qualitative descriptive study. Seven registered nurses were interviewed in two focus group meetings. An inductive method of thematic data analysis was used for this research. Ethics approval for this study was granted by the New Zealand Ministry of Health's Central Regional Health and Disability Ethics Committee on 14 June 2012. The themes identified in the data centred on three dominant elements that - together - shaped the prevailing ethical climate: staffing levels, patient throughput and the attitude of some managers towards nursing staff. While findings from this study regarding staffing levels and the power dynamics between nurses and managers support those from other ethical climate studies, of note is the impact of patient throughput on local nurses' ethical practice. This issue has not been singled out as having a detrimental influence on ethical climates elsewhere. Moral distress is inevitable in an ethical climate where the organisation's main priorities are perceived by nursing staff to be budget and patient throughput, rather than patient safety and care. © The Author(s) 2015.
Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States
NASA Astrophysics Data System (ADS)
Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.
2011-12-01
The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with practitioners and leaders of key stakeholder groups to formulate a shared climate change education plan in the SE US that is uniquely formatted for each target audience. We will also share what we have learned from interacting with the leaders of our partnering organizations in crafting effective messages for their audiences and addressing learners' affective and cognitive domains.
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.
2013-12-01
The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators based primarily in the US and Canada. The development team provided an exceptionally well integrated, multi-disciplinary expertise in climate science, climate education, education research, and psychometrics. The valuable integration of the team's expertise was driven by: 1) the prior interdisciplinary inclinations of key team members, which made it natural to openly inquire and learn across boundaries of expertise; and 2) the willingness of key team members to become respectful teachers of essential knowledge to other team members. These qualities, in combination with reviewer contributions, have brought the leading edges of natural and social science research together to produce the CICC. This work has been partially supported by a NASA award to the Georgia State University Research Foundation (NNX09AL69G).
Infectious diseases of animals and plants: an interdisciplinary approach.
Wilkinson, Katy; Grant, Wyn P; Green, Laura E; Hunter, Stephen; Jeger, Michael J; Lowe, Philip; Medley, Graham F; Mills, Peter; Phillipson, Jeremy; Poppy, Guy M; Waage, Jeff
2011-07-12
Animal and plant diseases pose a serious and continuing threat to food security, food safety, national economies, biodiversity and the rural environment. New challenges, including climate change, regulatory developments, changes in the geographical concentration and size of livestock holdings, and increasing trade make this an appropriate time to assess the state of knowledge about the impact that diseases have and the ways in which they are managed and controlled. In this paper, the case is explored for an interdisciplinary approach to studying the management of infectious animal and plant diseases. Reframing the key issues through incorporating both social and natural science research can provide a holistic understanding of disease and increase the policy relevance and impact of research. Finally, in setting out the papers in this Theme Issue, a picture of current and future animal and plant disease threats is presented.
NASA Astrophysics Data System (ADS)
Camp, E.; Manfrino, C.; Smith, D.; Suggett, D.
2013-05-01
There is growing evidence demonstrating that climate change, notably increased frequency and intensity of thermal anomalies combined with ocean acidification, will negatively impact the future growth and viability of many reef systems, including those in the Caribbean. One key question that remains unanswered is whether or not there are management options aimed at protecting coral species from these threats. Little Cayman (Cayman Islands) provides a rare opportunity to investigate global climate stressors without the confounding impact of local anthropogenic stressors. Our research has focused on two climate change issues: Firstly, we have identified species-specific coral bleaching susceptibility (and the influence of regulation upon this susceptibility) to thermal anomalies. Species level of vulnerability to thermal anomalies can decrease when grown under variable temperature. Environmental variability may be key in influencing the susceptibility of corals to stress. The second part of our research has therefore addressed the variability in inorganic carbon chemistry that naturally occurs where certain reef building corals exist. We have identified how the inorganic carbon chemistry varies naturally among habitats and thus how corals within these habitats are potentially adapted to future acidification. Spatial, diurnal, lunar and seasonal variability have been identified as important factors with pCO2 values of up to 700-800 μatm and pH values as low as 7.801 for lagoon habitats, showing that some species are already being exposed to typical pCO2 and pH levels expected for the oceans in ~50 years' time. Using an eco-physiological approach, we are exploring how some reef-building corals are able to acclimate to more variable chemistry compared to others and whether this natural capacity installs increased tolerance to future acidification. These eco-physiological studies provide important information that can be utilized in a management framework. The aim of this framework will be to provide options to buffer or decrease the future impacts of global climate change on tropical coral reef systems.
Gender and climate change in the Indian Hindu-Kush Himalayas: global threats, local vulnerabilities
NASA Astrophysics Data System (ADS)
Ogra, M. V.; Badola, R.
2014-11-01
Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the Western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, seasonal pastoral migration, male out-migration, and localized natural resource extraction. Particularly under conditions of heavy male outmigration, but throughout the region, mountain women play a key role in providing labor and knowledge related to the management of local natural resources, yet often lack authority in related political and economic decision-making processes. This gap has important implications for addressing the impacts of climate change: while warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios throughout the region, mountain women increasingly face new challenges in their roles as household managers that have not adequately been emphasized in larger scale planning for climate change adaptation and mitigation. These challenges are complex in nature, and are shaped not only by gender issues but also interacting factors such as class, caste, ethnicity, and age (among others). In this paper, we review the main arguments behind the discursive gender/climate change nexus, discuss the implications for gendered vulnerabilities and transformation of adaptive capacities in the region, and suggest ways that researchers and policymakers seeking to promote "climate justice" can benefit from the incorporation of gender-based perspectives and frameworks.
Chapin, F Stuart; Lovecraft, Amy L; Zavaleta, Erika S; Nelson, Joanna; Robards, Martin D; Kofinas, Gary P; Trainor, Sarah F; Peterson, Garry D; Huntington, Henry P; Naylor, Rosamond L
2006-11-07
Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social-ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously.
NASA Astrophysics Data System (ADS)
Branciforte, R.; Weiss, S. B.; Schaefer, N.
2008-12-01
Climate change threatens California's vast and unique biodiversity. The Bay Area Upland Habitat Goals is a comprehensive regional biodiversity assessment of the 9 counties surrounding San Francisco Bay, and is designing conservation land networks that will serve to protect, manage, and restore that biodiversity. Conservation goals for vegetation, rare plants, mammals, birds, fish, amphibians, reptiles, and invertebrates are set, and those goals are met using the optimization algorithm MARXAN. Climate change issues are being considered in the assessment and network design in several ways. The high spatial variability at mesoclimatic and topoclimatic scales in California creates high local biodiversity, and provides some degree of local resiliency to macroclimatic change. Mesoclimatic variability from 800 m scale PRISM climatic norms is used to assess "mesoclimate spaces" in distinct mountain ranges, so that high mesoclimatic variability, especially local extremes that likely support range limits of species and potential climatic refugia, can be captured in the network. Quantitative measures of network resiliency to climate change include the spatial range of key temperature and precipitation variables within planning units. Topoclimatic variability provides a finer-grained spatial patterning. Downscaling to the topoclimatic scale (10-50 m scale) includes modeling solar radiation across DEMs for predicting maximum temperature differentials, and topographic position indices for modeling minimum temperature differentials. PRISM data are also used to differentiate grasslands into distinct warm and cool types. The overall conservation strategy includes local and regional connectivity so that range shifts can be accommodated.
Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.
Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E
2017-07-19
Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa
2017-01-01
Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584173
EDITORIAL: Global impacts of particulate matter air pollution
NASA Astrophysics Data System (ADS)
Bell, Michelle L.; Holloway, Tracey
2007-10-01
Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and sulfate aerosol exposure (both domestically and on downwind continents), while presenting a new metric to quantify the impact of distance on health-relevant exposure: the 'influence potential'. Extending the scope of aerosol impacts from health to climate, Bond outlines the barriers to including aerosols in climate agreements, and proposes solutions to facilitate the integration of this key climate species in a policy context. Together, the articles scope out the state-of-the-science with respect to key issues in international air pollution. All four studies advance understanding the human health implications of air pollution, by drawing from worldwide data sources and considering a global perspective on key processes and impacts. To extend exposure estimates, like those of van Vliet and Kinney or Liu and Mauzerall, and to evaluate the induced physiological response of PM exposure, typically existing dose response relationships are applied. Unfortunately, the common practice of applying health response estimates from one location to another is problematic. In addition to potential differences in the chemical composition of particles, the underlying populations may differ with respect to their baseline health status, occupational exposures, age and gender distribution, and behavioral factors such as nutrition and smoking habits. Health response to a given stressor is affected by the quality of and access to health care, which varies widely, and can be almost non-existent in some regions of developing countries. Further, exposure to ambient PM is affected by the relative fraction of time spent in different settings (e.g., work, home, outside, in transit), the activities that affect ventilation rate (e.g., exercising heavily versus sitting still), and housing characteristics that alter the penetration of outdoor particles into indoor environments (e.g., housing materials, windows, air conditioning). To make the most of exposure estimates, the 'missing link' is the development of dose response relationships that take into account how the high degree of source and demographic variability affect PM health response. We look forward to the continued growth of research in ERL contributing to air pollution emissions, distribution, and impacts. As the integrated study of air quality connects to economics, energy, agriculture, meteorology, climate change, and public health—among other subjects—its advancement is well-suited to an interdisciplinary, open-access journal like ERL. Thanks to our authors for contributing to ERL's growth in global air pollution research with such excellent work. Focus on Global Impacts of Particulate Matter Air Pollution Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Major components of China's anthropogenic primary particulate emissions Qiang Zhang, David G Streets, Kebin He and Zbigniew Klimont Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya E D S van Vliet and P L Kinney Potential influence of inter-continental transport of sulfate aerosols on air quality Junfeng Liu and Denise L Mauzerall Can warming particles enter global climate discussions? Tami C Bond
Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine
Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.
2009-01-01
This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.
NASA Astrophysics Data System (ADS)
Schuster, Z.
2015-12-01
The paradigm of stakeholder-based science is becoming more popular as organizations such as the U.S. Department of the Interior Climate Science Centers adopt it as a way of providing practicable climate change information to practitioners. One of the key issues stakeholders face in adopting climate change information into their decision processes is how uncertainty is addressed and communicated. In this study, we conducted a series of semi-structured interviews with managers and scientists working on stream habitat restoration of cold-water fisheries in the Driftless Area of Wisconsin that were focused on how they interpret and manage uncertainty and what types of information they need to make better decisions. One of the important lessons we learned from the interviews is that if researchers are going to provide useful climate change information to stakeholders, they need to understand where and how decisions are made and what adaptation measures are actually available in a given decision arena. This method of incorporating social science methods into climate science production can provide a framework for researchers from the Climate Science Centers and others who are interested in pursuing stakeholder-based science. By indentifying a specific ecological system and conducting interviews with actors who work on that system, researchers will be able to gain a better understanding of how their climate change science can fit into existing or shape new decision processes. We also interpreted lessons learned from our interviews via existing literature in areas such as stakeholder-based modeling and the decision sciences to provide guidance specific to the stakeholder-based science process.
Challenges to producing a long-term stratospheric aerosol climatology for chemistry and climate
NASA Astrophysics Data System (ADS)
Thomason, Larry; Vernier, Jean-Paul; Bourassa, Adam; Rieger, Landon; Luo, Beiping; Peter, Thomas; Arfeuille, Florian
2016-04-01
Stratospheric aerosol data sets are key inputs for climate models (GCMs, CCMs) particularly for understanding the role of volcanoes on climate and as a surrogate for understanding the potential of human-derived stratospheric aerosol as mitigation for global warming. In addition to supporting activities of individual climate models, the data sets also act as a historical input to the activities of SPARC's Chemistry-Climate Model Initiative (CCMI) and the World Climate Research Programme's Coupled Model Intercomparison Project (CMIP). One such data set was produced in 2004 as a part of the SPARC Assessment of Stratospheric Aerosol Properties (ASAP), extending from 1979 and 2004. It was primarily constructed from the Stratospheric Aerosol and Gas Experiment series of instruments but supplemented by data from other space-based sources and a number of ground-based and airborne instruments. Updates to this data set have expanded the timeframe to span from 1850 through 2014 through the inclusion of data from additional sources, such as photometer data and ice core analyses. Fundamentally, there are limitations to the reliability of the optical properties of aerosol inferred from even the most complete single instrument data sets. At the same time, the heterogeneous nature of the underlying data to this historical data set produces considerable challenges to the production of a climate data set which is both homogeneous and reliable throughout its timespan. In this presentation, we will discuss the impact of this heterogeneity showing specific examples such as the SAGE II to OSIRIS/CALIPSO transition in 2005. Potential solutions to these issues will also be discussed.
Harmonizing Access to Federal Data - Lessons Learned Through the Climate Data Initiative
NASA Astrophysics Data System (ADS)
Bugbee, K.; Pinheiro Privette, A. C.; Meyer, D. J.; Ramachandran, R.
2016-12-01
The Climate Data Initiative (CDI), launched by the Obama Administration in March of 2014, is an effort to leverage the extensive open Federal data to spur innovation and private-sector entrepreneurship in order to advance awareness of and preparedness for the impacts of climate change (see the White House fact sheet). The project includes an online catalog of climate-related datasets and data products in key areas of climate change risk and vulnerability from across the U.S. federal government through http://Climate.Data.gov. NASA was tasked with the implementation and management of the project and has been working closely with Subject Matter Experts (SMEs) and Data Curators (DCs) from across the Federal Government to identify and catalog federal datasets relevant for assessing climate risks and impacts. These datasets are organized around key themes and are framed by key climate questions. The current themes within CDI include: Arctic, Coastal Flooding, Ecosystem Vulnerability, Energy Infrastructure, Food Resilience, Human Health, Transportation, Tribal Nations and Water. This paper summarizes the main lessons learned from the last 2.5 years of CDI implementation.
Comparison and Evaluation of Global Scale Studies of Vulnerability and Risks to Climate Change
NASA Astrophysics Data System (ADS)
Muccione, Veruska; Allen, Simon K.; Huggel, Christian; Birkmann, Joern
2015-04-01
Understanding the present and future distribution of different climate change impacts and vulnerability to climate change is a central subject in the context of climate justice and international climate policy. Commonly, it is claimed that poor countries that contributed little to anthropogenic climate change are those most affected and most vulnerable to climate change. Such statements are backed by a number of global-scale vulnerability studies, which identified poor countries as most vulnerable. However, some studies have challenged this view, likewise highlighting the high vulnerability of richer countries. Overall, no consensus has been reached so far about which concept of vulnerability should be applied and what type of indicators should be considered. Furthermore, there is little agreement which specific countries are most vulnerable. This is a major concern in view of the need to inform international climate policy, all the more if such assessments should contribute to allocate climate adaptation funds as was invoked at some instances. We argue that next to the analysis of who is most vulnerable, it is also important to better understand and compare different vulnerability profiles assessed in present global studies. We perform a systematic literature review of global vulnerability assessments with the scope to highlight vulnerability distribution patterns. We then compare these distributions with global risk distributions in line with revised and adopted concepts by most recent IPCC reports. It emerges that improved differentiation of key drivers of risk and the understanding of different vulnerability profiles are important contributions, which can inform future adaptation policies at the regional and national level. This can change the perspective on, and basis for distributional issues in view of climate burden share, and therefore can have implications for UNFCCC financing instruments (e.g. Green Climate Fund). However, in order to better compare traditional vulnerability distributions with more recent conceptualisation of risks, more research should be devoted to global assessments of climate change risk distributions.
NASA Astrophysics Data System (ADS)
Klein, R.; Gordon, E.
2010-12-01
Scholars and policy analysts often contend that an effective climate adaptation strategy must entail "mainstreaming," or incorporating responses to possible climate impacts into existing planning and management decision frameworks. Such an approach, however, makes it difficult to assess the degree to which decisionmaking entities are engaging in adaptive activities that may or may not be explicitly framed around a changing climate. For example, a drought management plan may not explicitly address climate change, but the activities and strategies outlined in it may reduce vulnerabilities posed by a variable and changing climate. Consequently, to generate a strategic climate adaptation plan requires identifying the entire suite of activities that are implicitly linked to climate and may affect adaptive capacity within the system. Here we outline a novel, two-pronged approach, leveraging social science methods, to understanding adaptation throughout state government in Colorado. First, we conducted a series of interviews with key actors in state and federal government agencies, non-governmental organizations, universities, and other entities engaged in state issues. The purpose of these interviews was to elicit information about current activities that may affect the state’s adaptive capacity and to identify future climate-related needs across the state. Second, we have developed an interactive database cataloging organizations, products, projects, and people actively engaged in adaptive planning and policymaking that are relevant to the state of Colorado. The database includes a wiki interface, helping create a dynamic component that will enable frequent updating as climate-relevant information emerges. The results of this project are intended to paint a clear picture of sectors and agencies with higher and lower levels of adaptation awareness and to provide a roadmap for the next gubernatorial administration to pursue a more sophisticated climate adaptation agenda. Project results can also inform numerous other ongoing database efforts connected to the U.S. National Assessment of Climate Change.
A Recommended Set of Key Arctic Indicators
NASA Astrophysics Data System (ADS)
Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.
2017-12-01
The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.
Climate Change Indicators in the United States, 2016 ...
EPA partners with over 40 data contributors from various government agencies, academic institutions, and other organizations to compile and communicate key indicators related to the causes and effects of climate change, the significance of these changes, and their possible consequences for people, the environment, and society. This is the fourth edition of the Climate Change Indicators in the United States report. To summarize and communicate key indicators related to the causes and effects of climate change.
Maslin, Mark A; Christensen, Beth
2007-11-01
The late Cenozoic climate of Africa is a critical component for understanding human evolution. African climate is controlled by major tectonic changes, global climate transitions, and local variations in orbital forcing. We introduce the special African Paleoclimate Issue of the Journal of Human Evolution by providing a background for and synthesis of the latest work relating to the environmental context for human evolution. Records presented in this special issue suggest that the regional tectonics, appearance of C(4) plants in East Africa, and late Cenozoic global cooling combined to produce a long-term drying trend in East Africa. Of particular importance is the uplift associated with the East African Rift Valley formation, which altered wind flow patterns from a more zonal to more meridinal direction. Results in this volume suggest a marked difference in the climate history of southern and eastern Africa, though both are clearly influenced by the major global climate thresholds crossed in the last 3 million years. Papers in this volume present lake, speleothem, and marine paleoclimate records showing that the East African long-term drying trend is punctuated by episodes of short, alternating periods of extreme wetness and aridity. These periods of extreme climate variability are characterized by the precession-forced appearance and disappearance of large, deep lakes in the East African Rift Valley and paralleled by low and high wind-driven dust loads reaching the adjacent ocean basins. Dating of these records show that over the last 3 million years such periods only occur at the times of major global climatic transitions, such as the intensification of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1-0.7 Ma). Authors in this volume suggest this onset occurs as high latitude forcing in both Hemispheres compresses the Intertropical Convergence Zone so that East Africa becomes locally sensitive to precessional forcing, resulting in rapid shifts from wet to dry conditions. These periods of extreme climate variability may have provided a catalyst for evolutionary change and driven key speciation and dispersal events amongst mammals and hominins in Africa. In particular, hominin species seem to differentially originate and go extinct during periods of extreme climate variability. Results presented in this volume may represent the basis of a new theory of early human evolution in Africa.
Narratives of Dynamic Lands: Science Education, Indigenous Knowledge and Possible Futures
ERIC Educational Resources Information Center
McGinty, Megan; Bang, Megan
2016-01-01
We aim to share some of our work currently focused on understanding and unearthing the multiplicities of ways the denial of culture in relation to science and knowledge construction is embedded in issues of climate change and climate change education. The issues become more troubling when we consider how effects of climate change are manifesting…
Training on Eastern Pacific tropical cyclones for Latin American students
NASA Astrophysics Data System (ADS)
Farfán, L. M.; Raga, G. B.
2009-05-01
Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.
Tracing the recombination and colonization history of hybrid species in space and time.
Lexer, C; Stölting, K N
2011-09-01
Hybrid speciation has long fascinated evolutionary biologists and laymen alike, presumably because it challenges our classical view of evolution as a 'one-way street' leading to strictly tree-like patterns of ancestry and descent. Homoploid hybrid speciation (HHS) has been a particularly interesting puzzle, as it appears to occur extremely rapidly, perhaps within less than 50 generations (McCarthy et al. 1995; Buerkle et al. 2000). Nevertheless, HHS may sometimes involve extended or repeated periods of recombination and gene exchange between populations subject to strong divergent natural selection (Buerkle & Rieseberg 2008). Thus, HHS provides a highly interesting setting for understanding the drivers and tempo of adaptive divergence and speciation in the face of gene flow (Arnold 2006; Rieseberg & Willis 2007; Nolte & Tautz 2009). In the present issue of Molecular Ecology, Wang et al. (2011) explore a particularly challenging issue connected to HHS: they attempt to trace the colonization and recombination history of an ancient (several MYA) hybrid species, from admixture and recombination in the ancestral hybrid zone to subsequent range shifts triggered by tectonic events (uplift of the Tibetan plateau) and climatic shifts (Pleistocene ice ages). This work is important because it addresses key issues related to the origin of the standing genetic variation available for adaptive responses (e.g. to climate change) and speciation in temperate species, which are topics of great current interest (Rieseberg et al. 2003; Barrett & Schluter 2008; de Carvalho et al. 2010). © 2011 Blackwell Publishing Ltd.
Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America
Vorosmarty, Charles J.; de Guenni, Lelys Bravo; Wollheim, Wilfred M.; Pellerin, Brian A.; Bjerklie, David M.; Cardoso, Manoel; D'Almeida, Cassiano; Colon, Lilybeth
2013-01-01
Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960–2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.
Determining the effect of key climate drivers on global hydropower production
NASA Astrophysics Data System (ADS)
Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.
2017-12-01
Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.
Campus Climate and Students with Disabilities. NCCSD Research Brief. Volume 1, Issue 2
ERIC Educational Resources Information Center
Harbour, Wendy S.; Greenberg, Daniel
2017-01-01
This research brief summarizes issues related to campus climate issues and disability, to improve social and educational outcomes for students with disabilities, support faculty and staff with disabilities, and increase understanding of disability among nondisabled members of the campus community. Instead of relying on disability services offices…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shales, J.
Scientists from all over the world are currently attempting to evaluate the impact of both manmade and natural phenomena on climate change, including such issues as the role of oceans as sinks in absorbing CO{sub 2}, the role of sunspots, the absorptive capacity of different tree species, the impact of nitrous oxide and non- CO{sub 2} greenhouse gases, the length of time carbon remains in the atmosphere, the impact of ocean currents and innumerable other issues. Understanding these phenomena, and their interaction will be critical to properly addressing the issue which has tremendous importance for both the US and themore » world economic future development. The climate change issue has the potential to become the vehicle which will link developing countries to the rest of the world, since, embodies in the global climate debate are several of the social issues that the U.N. has attempted to address over the last two decades: hunger, overpopulation, environment, technology, and development. The climate change issue has the potential to test new international institutions, relationships between developed and developing counties and between traditional trading partners.« less
NASA Astrophysics Data System (ADS)
Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.
2015-12-01
Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.
NASA Astrophysics Data System (ADS)
di Luca, Alejandro; de Elía, Ramón; Laprise, René
2012-03-01
Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions.
Teleconnections in the Presence of Climate Change: A Case Study of the Annular Modes
NASA Astrophysics Data System (ADS)
Gerber, Edwin; Baldwin, Mark
2010-05-01
Long model integrations of future and past climates present a problem for defining teleconnection patterns through Empirical Orthogonal Function (EOF) or correlation analysis when trends in the underlying climate begin to dominate the covariance structure. Similar issues may soon appear in observations as the record becomes longer, especially if climate trends accelerate. The Northern and Southern Annular Modes provide a prime example, because the poleward shift of the jet streams strongly projects onto these patterns, particularly in the Southern Hemisphere. Climate forecasts of the 21st century by chemistry climate models provide a case study. Computation of the annular modes in these long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The new procedure involves two key changes. First, the global mean geopotential height is removed at each time step before computing anomalies. This is particularly important high in the atmosphere, where seasonal variations in geopotential height become significant, and filters out trends due to changes in the temperature structure of the atmosphere. Pattern definition can be very sensitive near the tropopause, as regions of the atmosphere that used to be more of stratospheric character begin to take on tropospheric characteristics as the tropopause rises. The second change is to define anomalies relative to a slowly evolving seasonal climatology, so that the covariance structure reflects internal variability. Once these changes are accounted for, it is found that the zonal mean variability of the atmosphere stays remarkably constant, despite significant changes in the baseline climate forecast for the rest of the century. This stability of the internal variability makes it possible to relate trends in climate to teleconnections.
Linking Federal, State, and Local Adaptation Strategies in New York (Invited)
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2010-12-01
New York City and New York State are leaders in adaptation in the U.S. In 2008 Mayor Bloomberg convened the NYC Climate Change Adaptation Task Force and the New York City Panel on Climate Change (NPCC). Also in 2008, the New York State Energy Research and Development Authority (NYSERDA) initiated the Integrated Assessment for Effective Climate Change Adaptation Strategies (ClimAID), to provide New York State decision-makers with cutting-edge information on its vulnerability to climate change and to facilitate the development of adaptation strategies informed by both local experience and scientific knowledge. The two efforts are working together to develop effective adaptation strategies across multiple jurisdictions. The New York Task Force consists of approximate 40 city, state, and federal agencies, regional public authorities, and private companies that operate, maintain, or regulate critical infrastructure in the region. The NPCC consisted of climate change and impacts scientists, and legal, insurance, and risk-management experts and served as the technical advisory body for the Mayor and the Task Force on issues related to climate change, impacts, and adaptation. In its 2010 report, the NPCC recommended adoption of a risk-based approach to climate change; creation of a monitoring program to track and analyze key climate change factors, impacts, and adaptation indicators; review of relevant standards and codes; inclusion of multiple layers of government and a wide range of public and private stakeholder experts to build buy-in; and formation of crucial partnerships for development of coordinated adaptation strategies. The task now is for these partnerships to create pilot programs that move adaptation from the planning phase to implementation; urban areas can provide critical ‘test-beds’ for such efforts.
The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense
2016-03-24
Climate Change Effects: Issues for International and US National Security (Alexandria, VA: The Institute for Defense Analyses, 2009), 3. 3 in...Security Needs Assessment, (New York: United Nations, 2012), 7. 50 Christine Youngblut, Climate Change Effects: Issues for International and US National...Master’s Thesis 3. DATES COVERED (From - To) 10-01-2015 - 03-19-2016 4. TITLE AND SUBTITLE The Climate Change Strategy Gap: Crafting a Strategic 5a
The Climate Change Strategy Gap: Crafting a Strategic Framework for the Department of Defense
2016-03-23
Climate Change Effects: Issues for International and US National Security (Alexandria, VA: The Institute for Defense Analyses, 2009), 3. 3 in...Security Needs Assessment, (New York: United Nations, 2012), 7. 50 Christine Youngblut, Climate Change Effects: Issues for International and US National...Master’s Thesis 3. DATES COVERED (From - To) 10-01-2015 - 03-19-2016 4. TITLE AND SUBTITLE The Climate Change Strategy Gap: Crafting a Strategic 5a
Developing a Carbon Observing System
NASA Astrophysics Data System (ADS)
Moore, B., III
2015-12-01
There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community workshop in March 2015 addressed issues and prioritzed a set of research and observational needs in the study of the Carbon-Climate System. This paper will refect upon the past 30 plus years of carbon research supported by NASA and Dr. Wickland's role, and it will conclude with the findings of the March 2015 Workshop.
Climate change and archaeology in Mesoamerica
NASA Astrophysics Data System (ADS)
Beach, Timothy
2016-03-01
I first encountered Mesoamerican paleoclimate in a graduate seminar taught by Herb Wright, Jr. in Geology at the University of Minnesota in 1984. Herb passed away in 2015 at 98 after decades of studying paleoclimate and many other aspects of Quaternary studies. In 1984 there were few Maya paleoclimate studies, and a Science article on Mayan Urbanism by Deevey et al. (1979) was still current. Mark Brenner was one of the authors of that piece and he has been constant over these decades, appearing again as a coauthor of two articles in this issue. Several recent articles have noted the expansion in Maya climate studies from the perspectives of Climate Science, to Paleotempestology, and to Archeology (Douglas et al., in this issue;Beach et al., 2015; Luzzadder-Beach et al., in press). This special issue grew out of the recognition of that explosion of studies and the need to bring some important current findings together in one issue. This special issue does that by incorporating new reviews and specific studies that help us refine the trends of climate change and the drivers of climate and their connections to what we know of human history and archeology in the region.
NASA Astrophysics Data System (ADS)
Chaumont, Diane; Huard, David; Logan, Travis; Sottile, Marie-France; Brown, Ross; Gauvin St-Denis, Blaise; Grenier, Patrick; Braun, Marco
2013-04-01
Planning and adapting to a changing climate requires credible information about the magnitude and rate of projected changes. Ouranos, a consortium on regional climatology and adaptation to climate change was launched in the Province of Québec, Canada, ten years ago, with the objective of developing and providing climate information and expertise in support to adaption. Ouranos differs from most other climate service centers by integrating climate modeling activities, impacts and adaptation expertise and climate analysis services under one roof. The Climate Scenarios Group operates at the interface between climate modellers and users and is responsible for developing, producing and communicating climate scenarios to end-users in a consistent manner. This process requires close collaboration with users to define, understand and eventually anticipate their needs. The varied scientific expertise of climate scenarios specialists --who also act as communicators-- has proven to be a key element for successful communication. A large amount of effort is spent on the characterization and communication of the uncertainties involved in scenario construction. Two main activities have been put in place by the experts in climate modeling to address this: (1) a training course on climate models and (2) a fact-sheet summarizing the uncertainty and robustness of the climate change scenario provided for each I&A application. The latter tool ensures the transparency, traceability, and accountability of our products, and at the same time, encourages a sense of shared responsibility for the final choice of climate scenarios. In addition to uncertainty, two other main issues have been identified as essential in communication with users: 1) observed natural variability at relevant scales and 2) reconciliation of the projected trend with the recent observed trend. Our group has devoted substantial resources for the advancement of communication with end-users in these particular areas. This presentation will provide an overview of progress in communicating climate information at the Ouranos Consortium. We will discuss success and failures and future plans, in particular the extent to which Ouranos needs to work with users in decision-making activities.
Arctic melt ponds and bifurcations in the climate system
NASA Astrophysics Data System (ADS)
Sudakov, I.; Vakulenko, S. A.; Golden, K. M.
2015-05-01
Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a bifurcation point - an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a bifurcation analysis of the energy balance climate model with ice-albedo feedback as the key mechanism driving the system to bifurcation points.
Coupled Human-Atmosphere-System Thinking
NASA Astrophysics Data System (ADS)
Schmale, Julia; Chabay, Ilan
2014-05-01
With the discovery of fire, humankind started changing the composition of the atmosphere. Beginning with the industrial revolution, this has led to significant environmental problems, mainly air pollution and climate change. While climate change has been recognized as one key challenge of the Anthropocene, air pollution contributes to the top causes of global premature mortality. Air pollution also plays a key role in contamination of ecosystems and bio-magnification of toxins along food chains. Even though emissions leading to air pollution and climate change often originate from the same sources, they are generally perceived and regulated separately. Climate change impacts are global and hence are tackled at an international level. Conversely, air pollution has local to regional impacts and is thus a matter of national or regional legislation. This legislative and policy divide is generally useful, since full integration could lead, for example, to detrimental delays in action against air pollution through protracted international climate negotiations. However, the separation obscures the fact that almost any kind of human activity leads to the simultaneous emission of air pollutants, toxins and long-lived greenhouse gases. The atmosphere functions as a "dump" for human generated gaseous waste, which is then dispersed and transformed, partly chemically and partly micro-physically, perturbing natural processes in the atmosphere and leading to manifold impacts. In addition, air pollutants affect the Earth's radiative balance directly and indirectly, hence affecting climate change, while a changing climate in turn affects air pollution. Current policies often neglect these linkages and favor mitigation in one arena, which sometimes has detrimental effects on the other. One example is domestic wood burning, which though nearly carbon neutral, deteriorates air quality. Moreover, the design of appliances, machinery, or infrastructure generally does not attempt to minimize atmospheric release, but rather only complies with either climate or air quality requirements. Nor do current narratives promote behavioral change for the overall reduction of emissions (e.g., you can drive your diesel SUV as long as it has a low fuel consumption). This divide and thinking has not only been manifested in policy and regulations and hence media coverage, but has also shaped the public's general perception of this issue. There is no public conceptual understanding regarding humanity's modification of the atmosphere through the continuously and simultaneously released substances by almost any kind of activity and resulting impacts. Here, we propose a conceptual framework that provides a new perspective on the coupled human-atmosphere-system. It makes tangible the inherent linkages between the socio-economic system, the atmospheric physico-chemical changes and impacts, and legal frameworks for sustainable transformations at all levels. To implement HAS-thinking in decision and policy making, both salient disciplinary and interdisciplinary research and comprehensive science-society interactions in the form of transdisciplinary research are necessary. Societal transformations for the sake of a healthy human-atmosphere relationship are highly context dependent and require discussions of normative and value-related issues, which can only be solved through co-designed solutions. We demonstrate the importance of HAS-thinking by examples of sustainable development in the Arctic and Himalayan countries.
Morrison, Mark; Parton, Kevin; Hine, Donald W
2018-01-01
Using national Australian samples collected in 2011 (n = 1927) and 2016 (n = 2503), we identified six Australian household segments which we labelled Alarmed, Concerned, Cautious, Disengaged, Doubtful and Dismissive. Between the two periods, we found the proportion of households in the Alarmed and Concerned segments was stable; however there was a decrease (28% to 20%) in the proportion of households in the Doubtful and Dismissive segments and an increase (27% to 33%) in the Cautious and Disengaged segments. We found that a greater proportion of households have personally experienced climate change, and were more likely to believe in human causation and believe that there is a scientific consensus about the issue. However, there was evidence of issue fatigue. Households were less likely to report that they had thought about climate change or talked about it with their friends in 2016 relative to 2011. They were also less likely to pursue certain climate friendly behaviours or reward or punish companies for their climate behaviours. These findings suggest a need to motivate households to maintain efforts to mitigate climate change, particularly the Cautious and Disengaged households that are more amenable to changing their views about this issue.
Should the United Nations Framework Convention on Climate Change recognize climate migrants?
NASA Astrophysics Data System (ADS)
Gibb, Christine; Ford, James
2012-12-01
Climate change is expected to increase migration flows, especially from socially and environmentally vulnerable populations. These ‘climate migrants’ do not have any official protection under international law, which has implications for the human security of migrants. This work argues that the United Nations Framework Convention on Climate Change (UNFCCC) can and should recognize climate migrants, and is the most relevant international framework for doing so. While not legally binding, the acknowledgment of climate displacement, migration and planned relocation issues in the UNFCCC’s Cancun Adaptation Framework indicates a willingness to address the issue through an adaptation lens. Herein, the paper proposes a framework for setting the institutional groundwork for recognizing climate migrants, focusing on the most vulnerable, promoting targeted research and policy agendas, and situating policies within a comprehensive strategy.
Primer on transportation and climate change
DOT National Transportation Integrated Search
2008-04-01
This primer is an introduction to the issue of climate change and its implications for transportation policy in the United States. Its purpose is to outline the current thinking of governmental agencies, researchers, and advocacy groups on the issue ...
Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response
Shakesby, Richard A.; Moody, John A.; Martin, Deborah A.; Robichaud, Peter R.
2016-01-01
Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including modelling, to focus on priority research issues. The aim was to improve our understanding of controls and responses and the predictive capabilities of models. This conference led to the eight selected papers in this special issue. They address aspects of the distinctiveness in the controls and responses among wildfire regions, spatiotemporal rainfall variability, infiltration, runoff connectivity, debris flow formation and modelling applications. Here we summarise key findings from these papers and evaluate their contribution to improving understanding and prediction of post-wildfire runoff and erosion under changes in climate, human intervention and population pressure on wildfire-prone areas.
Infectious diseases of animals and plants: an interdisciplinary approach
Wilkinson, Katy; Grant, Wyn P.; Green, Laura E.; Hunter, Stephen; Jeger, Michael J.; Lowe, Philip; Medley, Graham F.; Mills, Peter; Phillipson, Jeremy; Poppy, Guy M.; Waage, Jeff
2011-01-01
Animal and plant diseases pose a serious and continuing threat to food security, food safety, national economies, biodiversity and the rural environment. New challenges, including climate change, regulatory developments, changes in the geographical concentration and size of livestock holdings, and increasing trade make this an appropriate time to assess the state of knowledge about the impact that diseases have and the ways in which they are managed and controlled. In this paper, the case is explored for an interdisciplinary approach to studying the management of infectious animal and plant diseases. Reframing the key issues through incorporating both social and natural science research can provide a holistic understanding of disease and increase the policy relevance and impact of research. Finally, in setting out the papers in this Theme Issue, a picture of current and future animal and plant disease threats is presented. PMID:21624914
Estimating Global Precipitation for Science and Application
NASA Technical Reports Server (NTRS)
Huffman, George J.
2013-01-01
Over the past two decades there has been vigorous development in the satellite assets and the algorithms necessary to estimate precipitation around the globe. In particular the highly successful joint NASAJAXA Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission, also joint between NASA and JAXA, have driven these issues. At the same time, the long-running Global Precipitation Climatology Project (GPCP) continues to extend a stable, climate-oriented view of global precipitation. This talk will provide an overview of these projects and the wider international community of precipitation datasets, sketch plans for next-generation products, and provide some examples of the best use for the different products. One key lesson learned is that different data sets are needed to address the variety of issues that need precipitation data, including detailed 3-D views of hurricanes, flash flood forecasting, drought analysis, and global change.
The current state of nursing performance measurement, public reporting, and value-based purchasing.
Kurtzman, Ellen T; Dawson, Ellen M; Johnson, Jean E
2008-08-01
Over the last decade, there has been a substantial investment in holding health care providers accountable for the quality of care provided in hospitals and other settings of care. This investment has been realized through the proliferation of national policies that address performance measurement, public reporting, and value-based purchasing. Although nurses represent the largest segment of the health care workforce and despite their acknowledged role in patient safety and health care outcomes, they have been largely absent from policy setting in these areas. This article provides an analysis of current nursing performance measurement and public reporting initiatives and presents a summary of emerging trends in value-based purchasing, with an emphasis on activities in the United States. The article synthesizes issues of relevance to advancing the current climate for nursing quality and concludes with key issues for future policy setting.
Development of key indicators to quantify the health impacts of climate change on Canadians.
Cheng, June J; Berry, Peter
2013-10-01
This study aimed at developing a list of key human health indicators for quantifying the health impacts of climate change in Canada. A literature review was conducted in OVID Medline to identify health morbidity and mortality indicators currently used to quantify climate change impacts. Public health frameworks and other studies of climate change indicators were reviewed to identify criteria with which to evaluate the list of proposed key indicators and a rating scale was developed. Total scores for each indicator were calculated based on the rating scale. A total of 77 health indicators were identified from the literature. After evaluation using the chosen criteria, 8 indicators were identified as the best for use. They include excess daily all-cause mortality due to heat, premature deaths due to air pollution (ozone and particulate matter 2.5), preventable deaths from climate change, disability-adjusted life years lost from climate change, daily all-cause mortality, daily non-accidental mortality, West Nile Disease incidence, and Lyme borreliosis incidence. There is need for further data and research related to health effect quantification in the area of climate change.
NASA Climate Days: Promoting Climate Literacy One Ambassador and One Event at a Time
NASA Astrophysics Data System (ADS)
Weir, H. M.; Lewis, P. M.; Chambers, L. H.; Millham, R. A.; Richardson, A.
2012-12-01
With so many informal outreach and education venues across the world, leveraging them for climate education allows vast amounts of information to be translated to the public in a familiar setting through trusted local sources. One of the challenges is the development of an effective process for training informal educators and providing them with adequate support materials. The 'NASA Climate Day Kit', and its related training strategy for Earth Ambassadors, is designed to address some of these issues. The purpose of the NASA Climate Day project is to collect existing NASA climate education materials, assemble a cadre of informal educators, and provide professional development on the subject of climate change. This training is accomplished through a series of exercises, games, science talks and place-based training. After their training and immersion in climate-related content, participants develop and implement a climate event at their local informal education venue. Throughout their training the Earth Ambassadors are exposed to a wide array of climate related exercises and background content. Some of these include one-on-one science content talks with NASA scientists who study climate on a daily basis. This allows the Ambassador to have direct access to new cutting edge data and information. To complement the science talks, participants explore activities and games that can engage all ages at their climate event. During their training, they also explore the 'Climate Day Kit'. This Kit is an assemblage of climate-related materials created by various NASA groups. Key components of this Kit include data visualizations, articles, electronic reference material, science talks, NASA Education and Public Outreach (E/PO) climate materials, and examples of Climate Day events that have been conducted in the past. As an on-going resource and to use for their own climate event, each group of Earth Ambassadors has access to a dynamic website that hosts all of the science presentations from the training, along with downloadable Climate Day Kit materials. Utilizing informal educators from museums, aquariums, libraries and other similar venues allow the hard-to-understand, sometimes-controversial, topic of climate change to be presented to the public in tailored events that suit an individual community's needs. Included in the process of scheduling and executing these climate events, the Ambassadors participate in virtual conferences to discuss progress, to ensure proper evaluation and to allow ample time for questions from the trainers and scientists. This ensures an accurate stream of information from the scientist to the public in a fashion that can be understood and digested by the layperson, helping them to make better-informed decisions about societal issues related to global climate change. Through a series of local Climate Day events, it is hoped that the public will have the opportunity to have first hand experience with the topic of climate change, leaving with a better understanding of its scientific basis. Outcome: This paper will summarize the various methods and strategies used in the Climate Day training events. A discussion of methods that work and those that do not for informal education will help provide a better understanding of the challenges faced in educating the public on such a controversial and hard-to-understand topic.
Uncertainty Quantification in Climate Modeling and Projection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Jackson, Charles; Giorgi, Filippo
The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for assessing reliability and uncertainties of climate change information. An alternative approach is to generate similar ensembles by perturbing parameters within a single-model framework. One of workshop’s objectives was to give participants a deeper understanding of these approaches within a Bayesian statistical framework. However, there remain significant challenges still to be resolved before UQ can be applied in a convincing way to climate models and their projections.« less
180,000 years of climate change in Europe: avifaunal responses and vegetation implications.
Holm, Sandra Ravnsbæk; Svenning, Jens-Christian
2014-01-01
Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000-10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.
USGS science at work in the San Francisco Bay and Sacramento-San Joaquin Delta estuary
Shouse, Michelle K.; Cox, Dale A.
2013-01-01
The San Francisco Bay and Sacramento-San Joaquin Delta form one of the largest estuaries in the United States. The “Bay-Delta” system provides water to more than 25 million California residents and vast farmlands, as well as key habitat for birds, fish, and other wildlife. To help ensure the health of this crucial estuary, the U.S. Geological Survey, in close cooperation with partner agencies and organizations, is providing science essential to addressing societal issues associated with water quantity and quality, sediment transportation, environmental contamination, animal health and status, habitat restoration, hazards, ground subsidence, and climate change.
Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges
NASA Technical Reports Server (NTRS)
Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter
2006-01-01
The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.
Global Precipitation Measurement Mission: Architecture and Mission Concept
NASA Technical Reports Server (NTRS)
Bundas, David
2005-01-01
The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.
Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges
NASA Astrophysics Data System (ADS)
Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter
2006-09-01
The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.
The Great Acceleration and the disappearing surficial geologic record
Rech, Jason A.; Springer, Kathleen; Pigati, Jeffrey S.
2017-01-01
The surficial geologic record is the relatively thin veneer of young (<~1 Ma) and mostly unconsolidated sediments that cover portions of Earth’s terrestrial surface (Fig. 1). Once largely ignored as “overburden” by geologists, surficial deposits are now studied to address a wide range of issues related to the sustainability of human societies. Geologists use surficial deposits to determine the frequency and severity of past climatic changes, quantify natural and anthropogenic erosion rates, identify hazards, and calculate recurrence intervals associated with earthquakes, landslides, tsunamis, and volcanic eruptions. Increasingly, however, humans are eradicating the surficial geologic record in many key areas through progressive modification of Earth’s surface.
NASA Astrophysics Data System (ADS)
Estrada, M.
2015-12-01
Climate Education Partners (CEP) has been using an action research approach to build climate literacy and partnership with key influential (KI) leaders in the San Diego community. After identifying 6 key sectors that either (a) could reduce green house gas emissions and adapt to impacts, or (b) would be highly vulnerable to the impacts of climate change, we conducted 89 interviews with KIs from the San Diego region -- including elected officials, academics, laborers, and representatives from local businesses, non-profits, ethnic and cultural communities, faith-based groups, and special interest groups -- to assess their science knowledge and opinions about climate change and the impacts of climate change. Other questions asked were about KIs' personal efficacy, identity, values and engagement in pro-environmental behaviors related to climate change. The results of the interviews contributed to CEP's action research approach in two ways: 1) it provided critical data regarding which leaders wanted further engagement with CEP and what that engagement should entail (e.g., being a connector to other leaders, a spokesperson, or a participant in future educational activities), and 2) it provided key information about the extent to which "knowledge deficit" is related to use of climate change knowledge to inform engagement in mitigation and adaptive behaviors. Practically, the results were used to create a database that is being used to inform the contact and education of KIs. We were able to show, consistent with previous research and identity theory, that liberal leaders were more likely than conservatives to believe in, feel concern for, and be knowledgeable about climate change. However, engagement in mitigation behaviors- specifically making decisions that would reduce electricity, gas, or water use- were similar for both groups. These results are being used to create resources and direct climate education activities going forward.
The Tyndall Petition: Bridging the Gap between Academia and the General Public
NASA Astrophysics Data System (ADS)
Duong, K.; Ong, J.
2017-12-01
Climatepedia is a student-founded organization with a mission to communicate climate science to a broad audience. Since its inception in 2011, Climatepedia has grown from a UCLA club to a transitioning 501(c)(3) non-profit organization with members from UCLA, UC Irvine, Yale University, Duke University, UC Santa Barbara, and the University of Pennsylvania. Our main project is the Tyndall Petition (http://www.climatepedia.org/home/tyndallpetition) - the largest online climate petition of its kind - which features nearly 700 signatories who agree that human-induced climate change is an urgent and real issue. Our signatories are PhD level experts with a research focus in climate science or a highly related field. Each signatory has their own profile page that links to other signatories within our network. The Tyndall Petition can be used as a tool to bring transparency to the climate experts that support our statement. In this way, we hope to inform the general audience about the strong scientific consensus about climate change. We also seek to improve climate literacy through exposure to diverse research topics related to climate change. The Tyndall Petition can serve as a mechanism to connect signatories to regional climate issues and the communities affected by these issues. In parallel, Climatepedia administers a Student Certificate Program that trains college students to become climate literate, gain skills in climate communication, and support the growth of the Tyndall Petition.
Nurses' perceptions of climate and environmental issues: a qualitative study.
Anåker, Anna; Nilsson, Maria; Holmner, Åsa; Elf, Marie
2015-08-01
The aim of this study was to explore nurses' perceptions of climate and environmental issues and examine how nurses perceive their role in contributing to the process of sustainable development. Climate change and its implications for human health represent an increasingly important issue for the healthcare sector. According to the International Council of Nurses Code of Ethics, nurses have a responsibility to be involved and support climate change mitigation and adaptation to protect human health. This is a descriptive, explorative qualitative study. Nurses (n = 18) were recruited from hospitals, primary care and emergency medical services; eight participated in semi-structured, in-depth individual interviews and 10 participated in two focus groups. Data were collected from April-October 2013 in Sweden; interviews were transcribed verbatim and analysed using content analysis. Two main themes were identified from the interviews: (i) an incongruence between climate and environmental issues and nurses' daily work; and (ii) public health work is regarded as a health co-benefit of climate change mitigation. While being green is not the primary task in a lifesaving, hectic and economically challenging context, nurses' perceived their profession as entailing responsibility, opportunities and a sense of individual commitment to influence the environment in a positive direction. This study argues there is a need for increased awareness of issues and methods that are crucial for the healthcare sector to respond to climate change. Efforts to develop interventions should explore how nurses should be able to contribute to the healthcare sector's preparedness for and contributions to sustainable development. © 2015 The Authors. Journal of Advanced Nursing published by John Wiley & Sons Ltd.
Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes
NASA Astrophysics Data System (ADS)
Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin
2013-04-01
The Baia Mare Urban System is located in the north-western part of Romania, with around 200,000 inhabitants and represents one of the most important former mining areas in the country, whose socioeconomic profile and environmental conditions have greatly changed over the last 20 years during the transition and post-transition period. Currently the mining is closed in the area, but the historical legacy of this activity has implications in terms of economic growth, social and cultural developments and environmental quality. Baia Mare city lies in an extended depression, particularly sheltered by the mountain and hilly regions located in the north and respectively, in the south-south-eastern part of it, which explains the high frequency of calm conditions and low airstream channeling occurrences. This urban system has a typically moderate temperate-continental climate, subject to frequent westerly airflows (moist), which moderate the thermal regime (without depicting severe extremes, both positive and negative) and enhance the precipitation one (entailing a greater frequency of wet extremes). During the reference period (1971-2000), the climate change signal in the area is rather weak and not statistically significant. However, since the mid 1980s, the warming signal became more evident from the observational data (Baia Mare station), showing a higher frequency of dry spells and positive extremes. The modelling experiments covering the 2021-2050 time horizon using regional (RM5.1/HadRM3Q0/RCA3) and global (ARPEGE/HadCM3Q0/BCM/ECHAM5) circulation models carried out within the ECLISE FP7 project suggest an ongoing temperature rise, associated to an intensification of temperature and precipitation extremes. In this context, the aim of this study was to evaluate how the local authorities consider and include climate change in their activity, as well as in the development plans (e.g. territorial, economic and social development plans). Individual interviews have been undertaken with key institutions focusing on environmental, health and urban development issues. The survey was conducted in order to identify the local authorities' perception and needs on climate change information and the importance of climate services for the city and institution's activity. Generally, the results suggest that the selected institutions are poorly aware of the potential impacts of climate change and associated extremes in the area, but they showed a real interest for future climate estimations necessary to undertake reliable adaptation measures. At institutional level, do not exist specialized departments (job positions) to tackle or manage climate information and climate-related aspects, this not being a pressing or priority issue for the city. The climate services aspects are seen with interest mainly in supplying climate scenarios and models for a relatively short term (next 10 or 15 years), the climate information being in this way included in the local planning strategies.
NASA Astrophysics Data System (ADS)
Okruszko, T.; O'Keeffe, J.; Marcinkowski, P.; Utratna, M.; Szcześniak, M.; Piniewski, M.
2016-12-01
This study presents a broad overview of climate change impacts on eco- and agro-systems in Poland using an index-based approach for the Vistula and Odra river basins in Poland. The issues of risks to biodiversity and agricultural productivity caused by climate change (CC) are explicitly addressed. The biodiversity issue is tackled by the analysis of two types of ecosystems: instream and wetland (both river-and groundwater fed). Agro-systems are analyzed using key crops (spring and winter grains, potatoes, corn and grasslands),including their regional differentiation and dominant soil types. The study was accomplished in the following steps: (1) development of historical climate dataset and its application for bias correction of climate projections, (2) modelling the hydrological system using the SWAT model for historical and future climate, (3) development of indices quantifying the impact of water factoron eco- and agro-systems based on the SWAT model results, (4) calculation and critical analysis of results for two emission scenarios (RCPs) and two time horizons. The 5-km resolution precipitation and temperature dataset (10.5194/essd-8-127-2016) was developed and applied for bias correction of the multi-model ensemble of 9 CORDEX RCMs under two RCPs 4.5 and 8.5. Comprehensive calibration/validation of SWAT showed overall good results across a range of catchment sizes in Poland. The ensemble median increase (relative to historical period) ranged between 6 and 16 % for precipitation and between 18 and 48 % for water yield simulated by SWAT, depending on the future time horizon and RCP. The Indicators of Hydrological Alteration (IHA) quantifying the natural flow regime were used as a proxy for quantifying the CC effect on instream biota (notably fish). Changes in frequency and magnitude of the identified flood events informed about the alteration to the water supply for riparian wetlands. Changes in groundwater recharge are used as a proxy for water conditions in mires. The SWAT output on water stress has proven to be a good indicator of agricultural drought. The results showed that developed indicators are highly sensitive to projected changes in water conditions under changing climate. It means that they can be used for agriculture adaptation programs and in conservation policy.
NASA Astrophysics Data System (ADS)
Vorosmarty, C. J.; Miara, A.; Macknick, J.; Newmark, R. L.; Cohen, S.; Sun, Y.; Tidwell, V. C.; Corsi, F.; Melillo, J. M.; Fekete, B. M.; Proussevitch, A. A.; Glidden, S.; Suh, S.
2017-12-01
The focus of this talk is on climate adaptation and the reliability of power supply infrastructure when viewed through the lens of strategic water issues. Power supply is critically dependent upon water resources, particularly to cool thermoelectric plants, making the sector particularly sensitive to any shifts in the geography or seasonality of water supply. We report on results from an NSF-Funded Water Sustainability and Climate effort aimed at uncovering key energy and economic system vulnerabilities. We have developed the National Energy-Water System assessment framework (NEWS) to systematically evaluate: a) the performance of the nation's electricity sector under multiple climate scenarios; b) the feasibility of alternative pathways to improve climate adaptation; and, c) the impacts of energy technology and investment tradeoffs on the economic productivity, water availability and aquatic ecosystem condition. Our project combines core engineering and geophysical models (ReEDS [Regional Energy Deployment System], TP2M [Thermoelectric Power and Thermal Pollution], and WBM [Water Balance]) through unique digital "handshake" protocols that operate across different institutions and modeling platforms. Combined system outputs are fed into a regional-to-national scale economic input/output model to evaluate economic consequences of climate constraints, technology choices, and environmental regulation. The impact assessments in NEWS are carried out through a series of climate/energy policy scenario studies to 2050. We find that despite significant climate-water impacts on individual plants, the current US power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. However, the magnitude and implications of climate-water impacts vary depending on the configuration of the future power sector. To evaluate future power supply performance, we model alternative electricity sector pathways in combination with varying climate-water conditions. Further, water-linked disruptions in electricity supply yield substantial impacts on regional economies yet system-level shocks can be attenuated through different technology mixes and infrastructure.
Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research
NASA Astrophysics Data System (ADS)
Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.
2009-12-01
The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.
Masud, Muhammad Mehedi; Junsheng, Ha; Akhtar, Rulia; Al-Amin, Abul Quasem; Kari, Fatimah Binti
2015-02-01
This paper estimates Malaysian farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in the Malaysian agricultural sector. We used the contingent valuation method (CVM) for a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues in the Malaysian agricultural sector. Structured questionnaires were distributed among the sampled farmers. The study found that 74 % of respondents were willing to pay for a planned adaptation programme and that several socioeconomic and motivation factors have greater influence on their WTP. This paper clearly specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support policy makers to better design an efficient adaptation framework for adapting to the adverse impacts of climate change.
NASA Astrophysics Data System (ADS)
Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.
2013-12-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial scales that are the most relevant for their intended use. National decision-makers may find indicators of national greenhouse gas emissions to be informative; however, state or local decision-makers have the freedom in this framework to define indicators of state, regional, or local greenhouse emissions that are more relevant to their concerns. The framework is also independent of time scale and topics within the broad categories. It therefore allows indicators of different sectors to be developed, and allows the consideration of both indicators of current state, past trends, and leading indicators. In this talk we will discuss the general conceptual model for the system, the sector specific conceptual models, and indicators that will be included in the prototype end-to-end indicator system.
NASA Astrophysics Data System (ADS)
Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.
2012-12-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial scales that are the most relevant for their intended use. National decision-makers may find indicators of national greenhouse gas emissions to be informative; however, state or local decision-makers have the freedom in this framework to define indicators of state, regional, or local greenhouse emissions that are more relevant to their concerns. The framework is also independent of time scale and topics within the broad categories. It therefore allows indicators of different sectors to be developed, and allows the consideration of both indicators of current state, past trends, and leading indicators. In this talk we will discuss a number of existing candidate indicators that could be included in this framework as well as the research needed to fully develop an end-to-end indicator system.
The climate response of the Indo-Pacific warm pool to glacial sea level
NASA Astrophysics Data System (ADS)
Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro
2016-06-01
Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.
Ad hoc committee on global climate issues: Annual report
Gerhard, L.C.; Hanson, B.M.B.
2000-01-01
The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.
Corrieri, Sandro; Conrad, Ines; Riedel-Heller, Steffi G
2014-12-01
Mental disorders in children and adolescents are common and have serious consequences. Schools present a key opportunity to promote mental health and implement prevention measures. Four school coaches in five German schools were enlisted to engage students, teachers and parents in building a sustainably healthy school and classroom climate. Altogether, 58 focus groups with students (N=244), parents (N=54) and teachers (N=62) were conducted longitudinally. Topics included: (1) the development of the school and classroom climate, (2) the role of mental health in the regular curriculum, and (3) the role of school coaches in influencing these aspects. Over time, school coaches became trusted reference persons for an increasing number of school system members. They were able to positively influence the school and classroom climate by increasing the awareness of students, teachers and parents of mental health in daily routines. Nevertheless, topics like bullying and student inclusion remained an issue at follow-up. Overall, the school coach intervention is a good model for establishing the topic of mental health in everyday school life and increasing its importance. Future efforts will focus on building self-supporting structures and networks in order to make these efforts sustainable.
Yoho, Rachel A.; Vanmali, Binaben H.
2016-01-01
The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to “hot topics” of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education PMID:27047604
The physician's response to climate change.
Sarfaty, Mona; Abouzaid, Safiya
2009-05-01
Climate change will have an effect on the health and well-being of the populations cared for by practicing physicians. The anticipated medical effects include heat- and cold-related deaths, cardiovascular illnesses, injuries and mental harms from extreme weather events, respiratory illnesses caused by poor air quality, infectious diseases that emanate from contaminated food, water, or spread of disease vectors, the injuries caused by natural disasters, and the mental harm associated with social disruption. Within several years, such medical problems are likely to reach the doorsteps of many physicians. In the face of this reality, physicians should assume their traditional roles as medical professionals, health educators, and community leaders. Clinicians provide individual health services to patients, some of whom will be especially vulnerable to the emerging health consequences of global warming. Physicians also work in academic medical institutions and hospitals that educate and provide continuing medical education to students, residents, and practitioners. The institutions also produce a measurable carbon footprint. Societies of physicians at national, state, and local levels can choose to use their well-developed avenues of communication to raise awareness of the key issues that are raised by climate change as well as other environmental concerns that have profound implications for human health and well-being.
NASA Astrophysics Data System (ADS)
Dawson, Vaille
2015-05-01
Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to participate in this discourse. The purpose of this study was to examine Western Australian high school students' understanding of climate change and the greenhouse effect, in order to identify their alternative conceptions about climate change science and provide a baseline for more effective teaching. A questionnaire designed to elicit students' understanding and alternative conceptions was completed by 438 Year 10 students (14-15 years old). A further 20 students were interviewed. Results showed that students know different features of both climate change and the greenhouse effect, however not necessarily all of them and the relationships between. Five categories of alternative conceptions were identified. The categories were (1) the greenhouse effect and the ozone layer; (2) types of greenhouse gases; (3) types of radiation; (4) weather and climate and (5) air pollution. These findings provide science educators a basis upon which to develop strategies and curriculum resources to improve their students' understanding and decision-making skills about the socioscientific issue, climate change.
Otmani del Barrio, Mariam
2017-01-01
Background: There is limited published evidence of the effectiveness of adaptation in managing the health risks of climate variability and change in low- and middle-income countries. Objectives: To document lessons learned and good practice examples from health adaptation pilot projects in low- and middle-income countries to facilitate assessing and overcoming barriers to implementation and to scaling up. Methods: We evaluated project reports and related materials from the first five years of implementation (2008–2013) of multinational health adaptation projects in Albania, Barbados, Bhutan, China, Fiji, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Philippines, Russian Federation, Tajikistan, and Uzbekistan. We also collected qualitative data through a focus group consultation and 19 key informant interviews. Results: Our recommendations include that national health plans, policies, and budget processes need to explicitly incorporate the risks of current and projected climate variability and change. Increasing resilience is likely to be achieved through longer-term, multifaceted, and collaborative approaches, with supporting activities (and funding) for capacity building, communication, and institutionalized monitoring and evaluation. Projects should be encouraged to focus not just on shorter-term outputs to address climate variability, but also on establishing processes to address longer-term climate change challenges. Opportunities for capacity development should be created, identified, and reinforced. Conclusions: Our analyses highlight that, irrespective of resource constraints, ministries of health and other institutions working on climate-related health issues in low- and middle-income countries need to continue to prepare themselves to prevent additional health burdens in the context of a changing climate and socioeconomic development patterns. https://doi.org/10.1289/EHP405 PMID:28632491
Whitehead, Paul G; Jin, Li; Macadam, Ian; Janes, Tamara; Sarkar, Sananda; Rodda, Harvey J E; Sinha, Rajiv; Nicholls, Robert J
2018-09-15
The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality. Climate datasets downscaled from three different Global Climate Models have been used to drive a daily process based flow and water quality model. The results suggest that due to climate change the flows will increase in the monsoon period and also be enhanced in the dry season. However, once socio-economic changes are also considered, increased population, irrigation, water use and industrial development reduce water availability in drought conditions, threatening water supplies and posing a threat to river and coastal ecosystems. This study, as part of the DECCMA (Deltas, vulnerability and Climate Change: Migration and Adaptation) project, also addresses water quality issues, particularly nutrients (N and P) and their transport along the rivers and discharge into the Delta System. Climate will alter flows, increasing flood flows and changing pollution dilution factors in the rivers, as well as other key processes controlling water quality. Socio-economic change will affect water quality, as water diversion strategies, increased population and industrial development alter the water balance and enhance fluxes of nutrients from agriculture, urban centers and atmospheric deposition. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrated Climate Change Impacts Assessment in California
NASA Astrophysics Data System (ADS)
Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.
2014-12-01
This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.
Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Elder, Kelly; Schuster, Paul F.; Mutter, Edda A.
2016-01-01
Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.
Panthi, Jeeban; Li, Fengting; Wang, Hongtao; Aryal, Suman; Dahal, Piyush; Ghimire, Sheila; Kabenge, Martin
2017-06-01
Both climatic and non-climatic factors affect surface water quality. Similar to its effect across various sectors and areas, climate change has potential to affect surface water quality directly and indirectly. On the one hand, the rise in temperature enhances the microbial activity and decomposition of organic matter in the river system and changes in rainfall alter discharge and water flow in the river ultimately affecting pollution dilution level. On the other hand, the disposal of organic waste and channelizing municipal sewage into the rivers seriously worsen water quality. This study attempts to relate hydro-climatology, water quality, and impact of climatic and non-climatic stresses in affecting river water quality in the upper Bagmati basin in Central Nepal. The results showed that the key water quality indicators such as dissolved oxygen and chemical oxygen demand are getting worse in recent years. No significant relationships were found between the key water quality indicators and changes in key climatic variables. However, the water quality indicators correlated with the increase in urban population and per capita waste production in the city. The findings of this study indicate that dealing with non-climatic stressors such as reducing direct disposal of sewerage and other wastes in the river rather than emphasizing on working with the effects from climate change would largely help to improve water quality in the river flowing from highly populated urban areas.
Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa
NASA Astrophysics Data System (ADS)
Fakhruddin, S. H. M.
2015-03-01
Pacific Islanders have been exposed to risks associated with climate change. Samoa as one of the Pacific Islands are prone to climatic hazards that will likely increase in coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase in such events. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructures were developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM) was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Evan cyclone recovery needs document. On the other hand, criticality and capacity to repair data were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a) criticality of a given infrastructure could be viewed differently among different stakeholders, and (b) stakeholders were the best available source (in this study) to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested rankings from most vulnerable to least vulnerable sectors are the transportation sector, the power sector, the water supply sector and the sewerage system.
Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa
NASA Astrophysics Data System (ADS)
Fakhruddin, S. H. M.; Babel, M. S.; Kawasaki, A.
2015-06-01
Pacific Islanders have been exposed to risks associated with climate change. Samoa, as one of the Pacific Islands, is prone to climatic hazards that will likely increase in the coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructure was developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM) was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Cyclone Evan recovery needs document. Additionally, data on criticality and capacity to repair damage were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a) criticality of a given infrastructure could be viewed differently among different stakeholders, and (b) stakeholders were the best available source (in this study) to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested a ranking of sectors from the most vulnerable to least vulnerable are: the transportation sector, the power sector, the water supply sector and the sewerage system.
NASA Astrophysics Data System (ADS)
Jacobs, P.; Cook, J.; Nuccitelli, D.
2014-12-01
An overwhelming scientific consensus exists on the issue of anthropogenic climate change. Unfortunately, public perception of expert agreement remains low- only around 1 in 10 Americans correctly estimates the actual level of consensus on the topic. Moreover, several recent studies have demonstrated the pivotal role that perceived consensus plays in the public's acceptance of key scientific facts about environmental problems, as well as their willingness to support policy to address them. This "consensus gap", between the high level of scientific agreement vs. the public's perception of it, has led to calls for increased consensus messaging. However this call has been challenged by a number of different groups: climate "skeptics" in denial about the existence and validity of the consensus; some social science researchers and journalists who believe that such messages will be ineffective or counterproductive; and even some scientists and science advocates who downplay the value of consensus in science generally. All of these concerns can be addressed by effectively communicating the role of consensus within science to the public, as well as the conditions under which consensus is likely to be correct. Here, we demonstrate that the scientific consensus on anthropogenic climate change satisfies these conditions, and discuss past examples of purported consensus that failed or succeeded to satisfy them as well. We conclude by discussing the way in which scientific consensus is interpreted by the public, and how consensus messaging can improve climate literacy.
Integrated remote sensing for multi-temporal analysis of urban land cover-climate interactions
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.
2016-08-01
Climate change is considered to be the biggest environmental threat in the future in the South- Eastern part of Europe. In frame of predicted global warming, urban climate is an important issue in scientific research. Surface energy processes have an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. This paper investigated the influences of urban growth on thermal environment in relationship with other biophysical variables in Bucharest metropolitan area of Romania. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- climate interactions over period between 2000 and 2015 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, and urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.
Climate Change Concepts and POGIL: Using climate change to teach general chemistry
NASA Astrophysics Data System (ADS)
King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.
2013-12-01
Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.
Jude, S R; Drew, G H; Pollard, S J T; Rocks, S A; Jenkinson, K; Lamb, R
2017-01-01
There is increasing recognition that organisations, particularly in key infrastructure sectors, are potentially vulnerable to climate change and extreme weather events, and require organisational responses to ensure they are resilient and adaptive. However, detailed evidence of how adaptation is facilitated, implemented and reported, particularly through legislative mechanisms is lacking. The United Kingdom Climate Change Act (2008), introduced the Adaptation Reporting Power, enabling the Government to direct so-called reporting authorities to report their climate change risks and adaptation plans. We describe the authors' unique role and experience supporting the Department for Environment, Food and Rural Affairs (Defra) during the Adaptation Reporting Power's first round. An evaluation framework, used to review the adaptation reports, is presented alongside evidence on how the process provides new insights into adaptation activities and triggered organisational change in 78% of reporting authorities, including the embedding of climate risk and adaptation issues. The role of legislative mechanisms and risk-based approaches in driving and delivering adaptation is discussed alongside future research needs, including the development of organisational maturity models to determine resilient and well adapting organisations. The Adaptation Reporting Power process provides a basis for similar initiatives in other countries, although a clear engagement strategy to ensure buy-in to the process and research on its long-term legacy, including the potential merits of voluntary approaches, is required. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Climate change risk perception and communication: addressing a critical moment?
Pidgeon, Nick
2012-06-01
Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions. © 2012 Society for Risk Analysis.
How Changing Human Lifestyles are Shaping Europe's Regional Seas
NASA Astrophysics Data System (ADS)
Mee, L. D.; Lowe, C. D.; Langmead, O.; McQuatters-Gollop, A.; Attrill, M.; Cooper, P.; Gilbert, A.; Knudsen, S.; Garnacho, E.
2007-05-01
European society is experiencing unprecedented changes triggered by expansion of the European Union, the fall of Communism, economic growth and the onset of globalisation. Europe's regional seas, the Baltic, Black Sea, Mediterranean and North-East Atlantic (including the North Sea), provide key goods and services to the human population but have suffered from severe degradation in past decades. Their integrity as coupled social and ecological systems depends on how humanity will anticipate potential problems and deal with its ecological footprint in the future. We report the outcome of an EU-funded 15-country, 28 institution project entitled European Lifestyles and Marine Ecosystems (ELME). Our studies were designed to inform new EU policy and legislation that incorporates Ecosystem-Based Management. ELME has modelled the key relationships between economic and social drivers (D), environmental pressures (P) and changes in the state of the environment (S) in Europe's regional seas. We examined four key issues in each sea: habitat change, eutrophication, chemical pollution and fisheries. We developed conceptual models for each regional sea and employed a novel stochastic modelling technique to examine the interrelationship between key components of the conceptual models. We used the models to examine 2-3 decade projections of current trends in D, P and S and how a number of alternative development scenarios might modify these trends. These simulations demonstrate the vulnerability of Europe's seas to human pressure. As affluence increases in countries acceding to the EU, so does the demand for marine goods and services. There are `winners' and `losers' amongst marine species; the winners are often species that are opportunistic invaders or those with low economic value. In the case of eutrophication, semi-enclosed seas such as the Baltic or Black Sea are already affected by the `legacy of the past'; nutrients that have accumulated in soils, ground waters and sediments and are gradually released to the water column. This situation is analogous to climate change `locked in' by current greenhouse gas concentrations that are products of past economic activities. For the Baltic Sea for example, only a radical reduction in both phosphorus and nitrogen loads to the sea would overcome eutrophication, and future management strategies must contemplate adaptation as well as mitigation. These strategies will also need to accommodate climate change, regime shifts and emergent issues such as `lifestyle' chemicals and the massive development of offshore renewable energy.
Images of climate change in the news: Visual framing of a global environmental issue
NASA Astrophysics Data System (ADS)
Rebich Hespanha, S.; Rice, R. E.; Montello, D. R.; Retzloff, S.; Tien, S.
2012-12-01
News media play a powerful role in disseminating and framing information and shaping public opinion on environmental issues. Choices of text and images that are made by the creators and distributors of news media not only influence public perception about which issues are important, but also surreptitiously lead consumers of these media to perceive certain aspects or perspectives on an issue while neglecting to consider others. Our research was motivated by a desire to obtain comprehensive quantitative and qualitative understanding of the types of information - both textual and visual -- that have been provided to the U.S. public over the past several decades through news reports about climate change. As part of this project, we documented and examined 118 themes in 19 categories presented in 350 randomly-selected visual images from U.S. news coverage of global climate change between 1969 and late 2009. This study examines how the use of imagery in print news positions climate change within public and private arenas and how it emphasizes particular geographic, political, scientific, technological, sociological, and ideological aspects of the issue.
Earth Sciences Division Research Summaries 2002-2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodvarsson, G.S.
2003-11-01
Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.« less
Climate Change: A Review of Its Health Impact and Percieved Awareness by the Young Citizens
Rahman, Muhammad Sabbir; Mohamad, Osman Bin; Zarim, Zainal bin Abu
2014-01-01
In recent time climate change and its impact on human health and awareness constitute a set of complex and serious consequences to be tackled by an individual country. Climate change is not merely an environmental issue, but also it is a threat that goes beyond national borders. The purpose of this study is to identify the awareness and the impact of climate change, perceived by the young citizens in Malaysia by focusing on gender differences. Based on a survey of 200 respondents from different public and private University’s students in Malaysia, this research used descriptive statistics and T-test to look into the research objective. The results revealed media can play an important role in the awareness of climate change. Meanwhile the male respondents have shown considerable attention on the physical impact of climate change like heat related stress. On the other hand female respondents have shown considerable attention to the psychological impact by the climate change. From a pragmatic perspective, the findings from this research will assists the policy makers to understand more about the perceived awareness on the climate change issues of the young citizens which ultimately assist them to inaugurate new initiatives to confront the challenges of climate changes. This research is among the pioneer study on the issue of the perceived awareness in regards to climate change in Malaysia by focusing on gender differences. PMID:24999143
Climate change: a review of its health impact and perceived awareness by the young citizens.
Rahman, Muhammad Sabbir; Mohamad, Osman Bin; Zarim, Zainal bin Abu
2014-04-16
In recent time climate change and its impact on human health and awareness constitute a set of complex and serious consequences to be tackled by an individual country. Climate change is not merely an environmental issue, but also it is a threat that goes beyond national borders. The purpose of this study is to identify the awareness and the impact of climate change, perceived by the young citizens in Malaysia by focusing on gender differences. Based on a survey of 200 respondents from different public and private University's students in Malaysia, this research used descriptive statistics and T-test to look into the research objective. The results revealed media can play an important role in the awareness of climate change. Meanwhile the male respondents have shown considerable attention on the physical impact of climate change like heat related stress. On the other hand female respondents have shown considerable attention to the psychological impact by the climate change. From a pragmatic perspective, the findings from this research will assists the policy makers to understand more about the perceived awareness on the climate change issues of the young citizens which ultimately assist them to inaugurate new initiatives to confront the challenges of climate changes. This research is among the pioneer study on the issue of the perceived awareness in regards to climate change in Malaysia by focusing on gender differences.
Debate on global warming as a socio-scientific issue: science teaching towards political literacy
NASA Astrophysics Data System (ADS)
dos Santos, Wildson Luiz Pereira
2014-09-01
The focus of this response to the original article by Tom G. H. Bryce and Stephen P. Day (Cult Stud Sci Educ. doi: 10.1007/s11422-012-9407-1, 2013) is the use of empirical data to illustrate and expand the understanding of key points of their argument. Initially, I seek to discuss possible answers to the three questions posed by the authors related to: (1) the concerns to be addressed and the scientific knowledge to be taken into account in the climate change debate, (2) the attention to be paid to perspectives taken by "alarmists" and "deniers," and (3) the approaches to be used to conduct controversial global warming debate. In this discussion, I seek to contribute to the debate proposed by the original paper, illustrating various points commented on by the authors and expanding to other possibilities, which highlight the importance of political issues in the debate. Therefore, I argue that socio-political issues must be taken into account when I aim for a scientific literacy that can enhance students' political education. Likewise, I extend the debate presented in the original article, emphasizing the attention that should be paid to these aspects and approaching science education from a critical perspective. Highlighting only the confirmation bias without considering political implications of the debate can induce a reductionist and empiricist view of science, detached from the political power that acts on scientific activity. In conclusion, I support the idea that for a critical science education, the discussion of political issues should be involved in any controversial debate, a view, which goes beyond the confirmation bias proposed by Bryce and Day for the global warming debate. These issues are indeed vital and science teachers should take them into account when preparing their lessons for the debate on climate change.
NASA Astrophysics Data System (ADS)
Wildhaber, M. L.; Wikle, C. K.; Anderson, C. J.; Franz, K. J.; Moran, E. H.; Dey, R.
2012-12-01
Recent decades have brought substantive changes in land use and climate across the earth, prompting a need to think of population and community ecology not as a static entity, but as a dynamic process. Increasingly there is evidence of ecological changes due to climate change. Although much of this evidence comes from ground-truth observations of biogeographic data, there is increasing reliance on models that relate climate variables to biological systems. Such models can then be used to explore potential changes to population and community level ecological systems in response to climate scenarios as obtained from global climate models (GCMs). A key issue associated with modeling ecosystem response to climate is GCM downscaling to regional and local ecological/biological response models that can be used in vulnerability and risk assessments of the potential effects of climate change. The need is for an explicit means for scaling results up or down multiple hierarchical levels and an effective assessment of the level of uncertainty surrounding current knowledge, data, and data collection methods with these goals identified as in need of acceleration in the U.S. Climate Change Science Program FY2009 Implementation Priorities. In the end, such work should provide the information needed to develop adaptation and mitigation methodologies to minimize the effects of directional and nonlinear climate change on the Nation's land, water, ecosystems, and biological populations. We are working to develop an approach that includes multi-scale and hierarchical Bayesian modeling of Missouri River sturgeon population dynamics. Statistical linkages are defined to quantify implications of climate on fish populations of the Missouri River ecosystem. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. The model must include linkages between climate and habitat, and between habitat and population. A key advantage of the hierarchical approach used in this study is that it incorporates various sources of observations and includes established scientific knowledge, and associated uncertainties. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. The predictive modeling system being developed will be a powerful tool for evaluating management options for coping with global change consequences and assessing uncertainty of those evaluations. Specifically for the endangered pallid sturgeon (Scaphirhynchus albus), we are already able to assess potential effects of any climate scenario on growth and population size distribution. Future models will incorporate survival and reproduction. Ultimately, these models provide guidance for successful recovery and conservation of the pallid sturgeon. Here we present a basic outline of the approach we are developing and a simple pallid sturgeon example to demonstrate how multiple scales and parameter uncertainty are incorporated.
NASA Technical Reports Server (NTRS)
1992-01-01
The U.S. Global Change Reasearch Program (USGCRP) was established as a Presidential initiative in the FY-1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction).
Ethics as an Integral Component of Geoengineering Analysis
NASA Astrophysics Data System (ADS)
Haqq-Misra, J.; Tuana, N.; Keller, K.; Sriver, R. L.; Svoboda, T.; Tonkonojenkov, R.; Irvine, P. J.
2011-12-01
Concerns about the risks of unmitigated greenhouse gas emissions are growing. At the same time, confidence is declining that international policy agreements will succeed in considerably lowering anthropogenic greenhouse gas emissions. Perhaps as a result, various geoengineering solutions are gaining attention and credibility as a way to manage climate change. Serious consideration is currently being given to proposals to cool the planet through solar-radiation management (SRM). Here we analyze how the unique and nontrivial risks of geoengineering strategies pose fundamental questions at the interface between science and ethics. We define key open questions to analyze SRM geoengineering proposals, which include whether SRM can be tested, how quickly learning could occur, normative decisions embedded in how different climate trajectories are valued, and justice issues regarding distribution of the harms and benefits of geoengineering. To ensure that ethical analyses are coupled with scientific analyses of this form of geoengineering, we advocate that funding agencies recognize the essential nature of this coupled research by establishing an Ethical, Legal, and Social Implications (ELSI) program for SRM.
Review and synthesis: Changing permafrost in a warming world and feedbacks to the Earth System
Grosse, Guido; Goetz, Scott; McGuire, A. David; Romanovsky, Vladimir E.; Schuur, Edward A.G.
2016-01-01
The permafrost component of the cryosphere is changing dramatically, but the permafrost region is not well monitored and the consequences of change are not well understood. Changing permafrost interacts with ecosystems and climate on various spatial and temporal scales. The feedbacks resulting from these interactions range from local impacts on topography, hydrology, and biology to complex influences on global scale biogeochemical cycling. This review contributes to this focus issue by synthesizing its 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales. We synthesize study results from a diverse range of permafrost landscapes and ecosystems by reporting key observations and modeling outcomes for permafrost thaw dynamics, identifying feedbacks between permafrost and ecosystem processes, and highlighting biogeochemical feedbacks from permafrost thaw. We complete our synthesis by discussing the progress made, stressing remaining challenges and knowledge gaps, and providing an outlook on future needs and research opportunities in the study of permafrost–ecosystem–climate interactions.
Engaging the public on climate change issues
NASA Astrophysics Data System (ADS)
Bean, Alice
2016-03-01
As a Jefferson Science Fellow from August 2014-August 2015, Alice Bean worked with the Office of Religion and Global Affairs at the U.S. Department of State on climate change and environmental issues. The Office of Religion and Global Affairs works to implement the National Strategy on Religious Leader and Faith Community Engagement which includes building partnerships on environmental issues. With the United Nations Framework Convention on Climate Change Conference of the Parties meeting 21 in December, 2015 in Paris, there were and continue to be great opportunities for physicists to interact with policy makers and the general public. As an experimental particle physicist, much was learned about climate change science, how the public views scientists, how science can influence policy, but most especially how to communicate about science.
Worker health and safety and climate change in the Americas: issues and research needs.
Kiefer, Max; Rodríguez-Guzmán, Julietta; Watson, Joanna; van Wendel de Joode, Berna; Mergler, Donna; da Silva, Agnes Soares
2016-09-01
SYNOPSIS This report summarizes and discusses current knowledge on the impact that climate change can have on occupational safety and health (OSH), with a particular focus on the Americas. Worker safety and health issues are presented on topics related to specific stressors (e.g., temperature extremes), climate associated impacts (e.g., ice melt in the Arctic), and a health condition associated with climate change (chronic kidney disease of non-traditional etiology). The article discusses research needs, including hazards, surveillance, and risk assessment activities to better characterize and understand how OSH may be associated with climate change events. Also discussed are the actions that OSH professionals can take to ensure worker health and safety in the face of climate change.
Worker health and safety and climate change in the Americas: issues and research needs
Kiefer, Max; Rodríguez-Guzmán, Julietta; Watson, Joanna; van Wendel de Joode, Berna; Mergler, Donna; da Silva, Agnes Soares
2016-01-01
SYNOPSIS This report summarizes and discusses current knowledge on the impact that climate change can have on occupational safety and health (OSH), with a particular focus on the Americas. Worker safety and health issues are presented on topics related to specific stressors (e.g., temperature extremes), climate associated impacts (e.g., ice melt in the Arctic), and a health condition associated with climate change (chronic kidney disease of non-traditional etiology). The article discusses research needs, including hazards, surveillance, and risk assessment activities to better characterize and understand how OSH may be associated with climate change events. Also discussed are the actions that OSH professionals can take to ensure worker health and safety in the face of climate change. PMID:27991978
Kang, Chuan-Zhi; Zhou, Tao; Jiang, Wei-Ke; Guo, Lan-Ping; Zhang, Xiao-Bo; Xiao, Cheng-Hong; Zhao, Dan
2016-07-01
Maxent model was applied in the study to filtering the climate factors layer by layer. Polysaccharides and pseudostellarin B the two internal quality evaluation index were combined to analyse the interlinkages between climate factors and chemical constituents in order to search for the critical climate factors of Pseudostellaria heterophylla. Then based on the key climate factors to explicit the quality spatial distribution of P. heterophylla. The results showed that polysaccharides and climatic factors had no significant correlation, suggesting that the indicator was not climate-driven metabolites. Pseudostellarin B could construct regression model with the precipitation. And quality regionalization results showed that pseudostellarin B content presented firstly increased and then decreased trend from southeast to northwest, which was the consistent change with precipitation. It clearly proposed that precipitation was the key climate factor, which affected the accumulation of cyclopeptide compound for Pseudostellariae Radix. Copyright© by the Chinese Pharmaceutical Association.
Receptive Audiences for Climate Change Education: Understanding Attitudes and Barriers
NASA Astrophysics Data System (ADS)
Kelly, L. D.; Luebke, J. F.; Clayton, S.; Saunders, C. D.; Matiasek, J.; Grajal, A.
2012-12-01
Much effort has been devoted to finding ways to explain climate change to uninterested audiences and encourage mitigation behaviors among dismissive audiences. Most approaches have focused on conveying information about climate change processes or threats. Here we report the results of a national survey designed to characterize the readiness of zoo and aquarium visitors to engage with the issue of climate change. Two survey forms, one focused primarily on attitudes (N=3,594) and another on behaviors (N=3,588), were administered concurrently in summer 2011 at 15 Association of Zoos and Aquariums accredited institutions. The attitudes survey used Global Warming's Six Americas segmentation protocols (climatechangecommunication.org) to compare climate change attitudes of zoo and aquarium visitors with the American public (Leiserowitz et al., 2011). Our results reveal that visitors are receptive audiences for climate change education and want to do more to address climate change. Even these favorable audiences, however, perceive barriers to engaging in the issue, signifying the importance of meeting the learning needs of those who acknowledge anthropogenic climate change, and not only of climate change 'deniers.' While 39% of the general public is 'concerned' or 'alarmed' about global warming, 64% of zoo and aquarium visitors fall into these two "Six Americas" segments. Visitors also differ from the national sample in key attitudinal characteristics related to global warming. For example, nearly two-thirds believe human actions are related to global warming, versus less than one-half of the general public; and approximately 60% think global warming will harm them personally, moderately or a great deal, versus less than 30% of the general public. Moreover, 69% of visitors would like to do more to address climate change. Despite zoo and aquarium visitors' awareness of climate change and motivation to address it, survey results indicate they experience barriers to engagement including (1) pessimism—50% of visitors are uncertain whether people will do what is needed to address global warming, and 30% think it is unlikely; (2) low self-efficacy—almost one-half of visitors believe they can personally have little to no impact on addressing climate change; and (3) perceived obstacles—when asked what is standing in their way of doing more to address climate change, over 90% of visitors reported at least one obstacle. The most frequently selected obstacles were lack of knowledge about which actions would be effective and concern about the cost of actions. Nevertheless, zoo visitors are slightly more optimistic about humans' capability to reduce global warming than the general public. Importantly, results also indicate that visitors' concern about climate change and participation in behaviors to address it vary with their sense of connection with animals and nature. Thus, this study offers guidance for the development of educational resources that meet visitors' needs while building on their emotional connections with animals. Our data suggest these resources will be more effective if they support social interactions that reinforce a person's inclination to address climate change, demonstrate the collective impact of individual actions, and aid informed decision-making about effective actions to address climate change.
Socioscientific Issues and Multidisciplinarity in School Science Textbooks
NASA Astrophysics Data System (ADS)
Morris, Helen
2014-05-01
The inclusion of socioscientific issues (SSIs) in the science curriculum is a well-established trend internationally. Apart from claims about its innate value, one of the rationales for this approach is its potential for helping to counter declining interest and participation. SSIs involve the use of science and are of interest to society, also raising ethical and moral dilemmas. Introducing such problems presents a significant and usually cross-disciplinary challenge to curriculum developers and teachers. The aim of this paper is to examine how this challenge has been met when judged against contemporary views of the issues concerned. It first explores how SSIs have been interpreted in an important and innovative science course for students aged 14-16 in England, entitled Twenty First Century Science. This paper analyses the Twenty First Century Science textbooks, focusing in detail on two SSIs, reproductive genetic technology and climate change. For each of these issues, the key ideas present in the social science literature surrounding the problems are outlined. This review is then used as an analytical framework to examine how the issues are presented in the textbooks. It is argued in this paper that the perspectives the textbooks take on these issues largely do not include perspectives from social science disciplines. It goes on to suggest that the development of future SSI-based curricula needs to take account of these wider, often interdisciplinary, perspectives.
Climate Change, Globalization and Geopolitics in the New Maritime Arctic
NASA Astrophysics Data System (ADS)
Brigham, L. W.
2011-12-01
Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.
Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics
NASA Astrophysics Data System (ADS)
Jantz, Patrick; Goetz, Scott; Laporte, Nadine
2014-02-01
A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.
Response of ESV to Climate Change and Human Activities in the Yanqi Basin, Xinjiang, China
NASA Astrophysics Data System (ADS)
Rusuli, Yusufujiang; Sidik, Halida; Gupur, Adila; Hong, Jiang; Kadir, Rayila
2016-04-01
Ecosystem goods and services refer to the dependence of economic wealth and human well-being on natural systems. It is a common knowledge that the changing of structure and function of the ecosystem due to climate change and human activities. It is a priority issue to study on various spatiotemporal scales, the sensitivity of ecosystems to climate change and anthropogenic pressure in inland areas. In an effort to better understand the influence of climate change and human activities on ecosystem services, we evaluated the change in ESV of the Yanqi Basin in Xinjiang, China from 1973 to 2014 employing methods of MK, MK Sneyers, ESV and dynamic degree of LUCC. The Landsat images, digital elevation model (DEM) and metrological data were applied to assessing the ESV and its change. According to the degree of effects of the climate change and human activities, the research area was divided into two parts: the mountain area and the plain oasis area at a contour of 1400 m above sea level. According to type and affect, the land cover was classified as water, wetland, desert, fields, glacier, warm shrub grassland, cold meadow steppe and highland vegetation. We analyzed the relationship between the variation of ESV and precipitation, and evaporation and then quantitatively differentiated the influence of climate change and human activities on ESV. Results show that: (1) distinct change points of precipitation and evaporation in mountain and plain oasis of the Yanqi basin were detected by the MK-Sneyers test. The precipitation increased and the evaporation declined in mountain and plain oasis in the same way. Enlargement of agricultural areas to accommodate an increased population and socio-economic development was detected by conversion matrix of LUCC in oasis area. As a result, the variation of ESV was caused by climate change and human activities jointly; (2) the declining trend of ESV in the mountain area was mainly caused by shrinking of the glacier area; (3) ESV was decreased initially and increased afterwards taking 2004 as a turning point following the trend of increased precipitation and decreased evaporation. Combined effects of climate change and human activities are main cause of ESV variations in the past 40 years in Yanqi basin. The main reasons for increased ESV in plain oasis include enlarging the artificial oasis due to intensified human activities, and supporting favorable climate change (increased precipitation and decreased evaporation). Key words: Climate change; Human activities; Ecosystem Service Value; Yanqi basin Acknowledgements: This work was supported jointly by the Natural Sciences Foundation of China (No.41161007, No. 41461006), the Doctoral Start-up Foundation of Xinjiang Normal University (No.XJNUBS1528) and the Special funds for Key Laboratory of Xinjiang Uyghur Autonomous Region (No.2014KL016).
Tribal engagement strategy of the South Central Climate Science Center, 2014
Andrews, William J.; Taylor, April; Winton, Kimberly T.
2014-01-01
The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.
Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1992-05-01
Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.
Estimation of rice yield affected by drought and relation between rice yield and TVDI
NASA Astrophysics Data System (ADS)
Hongo, C.; Tamura, E.; Sigit, G.
2016-12-01
Impact of climate change is not only seen on food production but also on food security and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change. As the adaptation, the Government of Indonesia has launched agricultural insurance program for damage of rice by drought, flood and pest and disease. The Government started a pilot project in 2013 and this year the pilot project has been extended to 22 provinces. Having the above as background, we conducted research on development of new damage assessment method for rice using remote sensing data which could be used for evaluation of damage ratio caused by drought in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield affected by drought in dry season could be estimated at level of 1 % significance using SPOT 7 data taken in 2015, and the validation result was 0.8t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data of the estimated result and the average yield of the past 10 years. In addition, TVDI (Temperature Vegetation Dryness Index) which was calculated from Landsat8 data in heading season indicated the dryness in low yield area. The result suggests that rice yield was affected by irrigation water shortage around heading season as a result of the decreased precipitation by El Nino. Through our study, it becomes clear that the utilization of remote sensing data can be promising for assessment of the damage ratio of rice production precisely, quickly and quantitatively, and also it can be incorporated into the insurance procedures.
NASA Astrophysics Data System (ADS)
Azuara, Julien; Lebreton, Vincent; Jalali, Bassem; Sicre, Marie-Alexandrine; Sabatier, Pierre; Dezileau, Laurent; Peyron, Odile; Frigola, Jaime; Combourieu-Nebout, Nathalie
2017-04-01
Forcings and physical mechanisms underlying Holocene climate variability still remain poorly understood. Comparison of different paleoclimatic reconstructions using spectral analysis allows to investigate their common periodicities and helps to understand the causes of past climate changes. Wavelet analysis applied on several proxy time series from the Atlantic domain already revealed the first key-issues on the origin of Holocene climate variability. However the differences in duration, resolution and variance between the time-series are important issues for comparing paleoclimatic sequences in the frequency domain. This work compiles 7 paleoclimatic proxy records from 4 time-series from the north-western Mediterranean all ranging from 7000 to 1000 yrs cal BP: -pollen and clay mineral contents from the lagoonal sediment core PB06 recovered in southern France, -Sea Surface Temperatures (SST) derived from alkenones, concentration of terrestrial alkanes and their average chain length (ACL) from core KSGC-31_GolHo-1B recovered in the Gulf of Lion inner-shelf, - δ18O record from speleothems recovered in the Asiul Cave in north-western Spain, -grain size record from the deep basin sediment drift core MD99-2343 north of Minorca island. A comparison of their frequency content is proposed using wavelet analysis and cluster analysis of wavelet power spectra. Common cyclicities are assessed using cross-wavelet analysis. In addition, a new algorithm is used in order to propagate the age model errors within wavelet power spectra. Results are consistents with a non-stationnary Holocene climate variability. The Halstatt cycles (2000-2500 years) depicted in many proxies (ACL, errestrial alkanes and SSTs) demonstrate solar activity influence in the north-western Mediterranean climate. Cluster analysis shows that pollen and ACL proxies, both indicating changes in aridity, are clearly distinct from other proxies and share significant common periodicities around 1000 and 600 years, since the mid-Holocene. The 1000 years period is also evidenced in terrestrial alkanes and Minorca sediment drift grain size, which respectively indicate changes in the Rhône hydrology and changes in the north-western Mediterranean deep water formation. These findings suggests that an original climate driver influences the Gulf of Lion area. Finally, both clay mineral content from PB06, indicative of past storminess and δ18O record from the north western Iberia, related to precipitations, record the well known 1500 years period since the middle Holocene. The presence of this period, widely encountered in the Atlantic, highlights the link between the north-western Mediterranean and the Atlantic climate variability.
Examining the recent climate through the lens of ecology: inferences from temporal pattern analysis.
Paul F. Hessburg; Ellen E. Kuhlmann; Thomas W. Swetnam
2005-01-01
Ecological theory asserts that the climate of a region exerts top-down controls on regional ecosystem patterns and processes, across space and time. To provide empirical evidence of climatic controls, it would be helpful to define climatic regions that minimized variance in key climate attributes, within climatic regions-define the periods and features of climatic...
Special Issue ;Sediment cascades in cold climate geosystems;
NASA Astrophysics Data System (ADS)
Morche, David; Krautblatter, Michael; Beylich, Achim A.
2017-06-01
This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.
Improving the Representation of Land in Climate Models by Application of EOS Observations
NASA Technical Reports Server (NTRS)
2004-01-01
The PI's IDS current and previous investigation has focused on the applications of the land data toward the improvement of climate models. The previous IDS research identified the key factors limiting the accuracy of climate models to be the representation of albedos, land cover, fraction of landscape covered by vegetation, roughness lengths, surface skin temperature and canopy properties such as leaf area index (LAI) and average stomatal conductance. Therefore, we assembled a team uniquely situated to focus on these key variables and incorporate the remotely sensed measures of these variables into the next generation of climate models.
NASA Astrophysics Data System (ADS)
Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald
2014-05-01
Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are accompanied by the WASCAL Graduate Research Program on the West African Climate System. The GRP-WACS provides ten scholarships per year for West African PhD students with a duration of three years. Present and future WASCAL PhD students will constitute one important user group of the Linux cluster that will be installed at the Competence Center in Ouagadougou, Burkina Faso. Regional Land-Atmosphere Simulations A key research activity of the WASCAL Core Research Program is the analysis of interactions between the land surface and the atmosphere to investigate how land surface changes affect hydro-meteorological surface fluxes such as evapotranspiration. Since current land surface models of global and regional climate models neglect dominant lateral hydrological processes such as surface runoff, a novel land surface model is used, the NCAR Distributed Hydrological Modeling System (NDHMS). This model can be coupled to WRF (WRF-Hydro) to perform two-way coupled atmospheric-hydrological simulations for the watershed of interest. Hardware and network prerequisites include a HPC cluster, network switches, internal storage media, Internet connectivity of sufficient bandwidth. Competences needed are HPC, storage, and visualization systems optimized for climate research, parallelization and optimization of climate models and workflows, efficient management of highest data volumes.
Climate Prediction Center - 6-10 and 8-14 Day Prognostic Discussions
About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team 6-10 Day outlooks are issued DISCUSSIONS FOR 6 TO 10 AND 8 TO 14 DAY OUTLOOKS NWS CLIMATE PREDICTION CENTER COLLEGE PARK MD 300 PM EDT SAT CONSISTENCY ISSUES. IN THESE CASES, FORECASTS ARE MANUALLY DRAWN BUT A FULL DISCUSSION IS NOT ISSUED. THE
Clean air issues in the 110th Congress : climate change, air quality standards, and oversight
DOT National Transportation Integrated Search
2008-07-28
Attention to environmental issues in the 110th Congress focused early and heavily on climate change the state of the science, and whether (and, if so, how) to address greenhouse gas (GHG) emissions. Fourteen bills had been introduced to establish...
Hydrothermal impacts on trace element and isotope ocean biogeochemistry.
German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H
2016-11-28
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.
Hydrothermal impacts on trace element and isotope ocean biogeochemistry
Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.
2016-01-01
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265
Global water risks and national security: Building resilience (Invited)
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2013-12-01
The UN defines water security as the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability. This definition highlights complex and interconnected challenges and underscores the centrality of water for environmental services and human aactivities. Global risks are expressed at the national level. The 2010 Quadrennial Defense Review and the 2010 National Security Strategy identify climate change as likely to trigger outcomes that will threaten U.S. security including how freshwater resources can become a security issue. Impacts will be felt on the National Security interest through water, food and energy security, and critical infrastructure. This recognition focuses the need to consider the rates of change in climate extremes, in the context of more traditional political, economic, and social indicators that inform security analyses. There is a long-standing academic debate over the extent to which resource constraints and environmental challenges lead to inter-state conflict. It is generally recognized that water resources as a security issue to date exists mainly at the substate level and has not led to physical conflict between nation states. In conflict and disaster zones, threats to water security increase through inequitable and difficult access to water supply and related services, which may aggravate existing social fragility, tensions, violence, and conflict. This paper will (1) Outline the dimensions of water security and its links to national security (2) Analyze water footprints and management risks for key basins in the US and around the world, (3) map the link between global water security and national concerns, drawing lessons from the drought of 2012 and elsewhere, and (3) Identify preventable risks, public leadership and private innovation needed for developing adaptive water resource management institutions that take advantage of climate and hydrologic information and changes. The presentation will conclude with a preliminary framework for assessing and implementing water security measures given insecure conditions introduced by a changing climate and in the context of national security.
NASA Astrophysics Data System (ADS)
Chakraborty, Debojyoti; Schueler, Silvio
2017-04-01
Adaptive management aiming at reducing vulnerability and enhancing the resilience of forested ecosystems is a key to preserving the potential of forests to provide multiple ecosystem services under climate change. Planting alternative or non native tree species adapted to future conditions and also utilizing the genetic variation within tree species has also been suggested as an important adaptive management strategy under climate change. Therefore, knowledge on suitable provenances/populations is a key issue. Provenance trial experiments, where several populations of a species are planted in a particular climate or throughout an appropriate climatic gradient offers a great opportunity to understand adaptive genetic variation within a tree species. These trials were primarily established, for identifying populations with desired growth and fitness characteristics. Due to the increasing interest in climate change, such trials were revisited to understand the relation between growth performance and climate and to recommend suitable populations for future conditions. Here we present the lessons learned from provenance trials of Norway spruce and Douglas -fir in central Europe. With data from provenance trials planted across a wide range of environmental conditions in central Europe we developed multivariate models, Universal Response Functions (URFs). The URFs predict growth performance as a function of climate of planting locations (i.e. environmental factors) and provenance/ population origin (i.e. genetic factors). The flexibility of the URFs as a decision making tool is remarkable. The model can be used as to identify suitable planting material for a give site, and vice versa and also as a species distribution model (SDM) with integrated genetic variation. Under current and climate change scenarios, the URFs were applied to predict populations with higher growth performance in central Europe and also as species distribution models for Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) and Norway spruce (Picea abies (L.) Karst). For both Douglas-fir and Norway spruce wide variation in growth performance were detected. Populations of Douglas-fir identified by the URFs to be optimum for central Europe current climate and climate change scenarios originate from western Cascades and coastal areas of British Columbia, Washington and Oregon. The current seed stands of Douglas-fir in North America, providing planting materials for Central Europe under the legal framework of the Organization for Economic Cooperation and Development (OECD) were found to be suitable for under future conditions. In case of Norway spruce provenances originating from warm and drier regions of south east Europe were found to be suitable for central Europe under future conditions. Even though calibrated with data from Central Europe, when applied as SDMs, the URFs predicted the observed occurrence of Douglas-fir in its native range in North America with reasonable accuracy compared to contemporary SDMs developed in North America. For both Douglas-fir and Norway spruce significant variation in habitat suitability was found depending on the planted population or seed source indicating the role of intraspecific variation in buffering effects of climate change.
Time to refine key climate policy models
NASA Astrophysics Data System (ADS)
Barron, Alexander R.
2018-05-01
Ambition regarding climate change at the national level is critical but is often calibrated with the projected costs — as estimated by a small suite of energy-economic models. Weaknesses in several key areas in these models will continue to distort policy design unless collectively addressed by a diversity of researchers.
The uncertainty of crop yield projections is reduced by improved temperature response functions
USDA-ARS?s Scientific Manuscript database
Increasing the accuracy of crop productivity estimates is a key Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on cr...
DOT National Transportation Integrated Search
2014-12-01
This report summarizes potential climate change effects on the availability of water, land use, transportation infrastructure, and key natural resources in central New Mexico. This work is being done as part of the Interagency Transportation, Land Us...
Changing feedbacks in the climate-biosphere system
F. Stuart Chapin; James T. Randerson; A. David McGuire; Jonathan A. Foley; Christopher B. Field
2008-01-01
Ecosystems influence climate through multiple pathways, primarily by changing the energy, water, and greenhouse-gas balance of the atmosphere. Consequently, efforts to mitigate climate change through modification of one pathway, as with carbon in the Kyoto Protocol, only partially address the issue of ecosystem-climate interactions. For example, the cooling of climate...
Exploring the Climate Change, Migration and Conflict Nexus.
Burrows, Kate; Kinney, Patrick L
2016-04-22
The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.
Exploring the Climate Change, Migration and Conflict Nexus
Burrows, Kate; Kinney, Patrick L.
2016-01-01
The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806
Generating relevant climate adaptation science tools in concert with local natural resource agencies
NASA Astrophysics Data System (ADS)
Micheli, L.; Flint, L. E.; Veloz, S.; Heller, N. E.
2015-12-01
To create a framework for adapting to climate change, decision makers operating at the urban-wildland interface need to define climate vulnerabilities in the context of site-specific opportunities and constraints relative to water supply, land use suitability, wildfire risks, ecosystem services and quality of life. Pepperwood's TBC3.org is crafting customized climate vulnerability assessments with selected water and natural resource agencies of California's Sonoma, Marin, Napa and Mendocino counties under the auspices of Climate Ready North Bay, a public-private partnership funded by the California Coastal Conservancy. Working directly with managers from the very start of the process to define resource-specific information needs, we are developing high-resolution, spatially-explicit data products to help local governments and agency staff implement informed and effective climate adaptation strategies. Key preliminary findings for the region using the USGS' Basin Characterization Model (at a 270 m spatial resolution) include a unidirectional trend, independent of greater or lesser precipitation, towards increasing climatic water deficits across model scenarios. Therefore a key message is that managers will be facing an increasingly arid environment. Companion models translate the impacts of shifting climate and hydrology on vegetation composition and fire risks. The combination of drought stress on water supplies and native vegetation with an approximate doubling of fire risks may demand new approaches to watershed planning. Working with agencies we are exploring how to build capacity for protection and enhancement of key watershed functions with a focus on groundwater recharge, facilitating greater drought tolerance in forest and rangeland systems, and considering more aggressive approaches to management of fuel loads. Lessons learned about effective engagement include the need for extended in-depth dialog, translation of key climate adaptation questions into deliverable metrics and indicators, and the need to take time to digest and formulate results in terms of adaptive management actions. Agencies also express a benefit in using Climate Ready results to raise public awareness of the resource challenges that may lay ahead.
NASA Astrophysics Data System (ADS)
Baer, Paul; Kammen, Daniel M.
2009-06-01
This is not the usual Editor-in-Chief letter, namely one that focuses on the accomplishments of the journal—and for ERL they have been numerous this year—but a recognition of the critical time that we are now in when it comes to addressing not only global climate change, but also the dialog between science and politics. In recognition of the many 'tipping points' that we now confront—ideally some of them positive social moments—as well as the clear scientific conclusion that environmental tipping points are points of long-lasting disruption, this paper takes a different form than I might have otherwise written. While the scientific body of knowledge around global environmental change mounts, so too, do the hopeful signs that change can happen. The election of Barack Obama is unquestionably one such sign, witnessed by the exceptional interest that his story has brought not only to US politics, but also to global views of the potential of the United States, as well as to the potential role of science and investigation in addressing pressing issues. In light of these inter-related issues, reproduced here—largely due to the efforts of Paul Baer to transcribe a remarkable conversation—is a dialog not only on the science of global warming and the potential set of means to address this issue, but also on the interaction between research, science and the political process. The dialog itself is sufficiently important that I will dispense with the usual discussion of the exciting recognition that ERL has received with an ISI rating (a factor rapidly increasing), the high levels of downloads of our papers (for some articles over 5000 and counting), and the many news and scientific publications picking up ERL articles (in recent days alone Science, Environmental Science and Technology, and The Economist). This conversation was the concluding plenary session of the 10-12 March International Association of Research Universities (IARU) Conference on Climate Change (http://climatecongress.ku.dk/). Conference Chair Professor Katherine Richardson began the panel by reading the 'key messages'. She then she asked the panelists—Professor Stefan Rahmstorf, Professor Will Steffen, Lord Nicholas Stern, and Professor Dan Kammen to respond. After that, she invited the Danish Prime Minister, Mr Anders Fogh Rasmussen, to respond to the messages. Next there was a dialogue between the panelists and the Prime Minister, with closing remarks from the Prime Minister.
ERIC Educational Resources Information Center
McCullagh, John; Jarman, Ruth
2009-01-01
This paper reports the findings of a study of the literacy perceptions and practices of general primary teachers (Key Stage 2) and post-primary science teachers (Key Stage 3) within two clusters of schools. The study also explores the possible impact on pupils of any difference in the language climate which may accompany them on their journey…
NASA Astrophysics Data System (ADS)
Fujiwara, Masatomo; Wright, Jonathon S.; Manney, Gloria L.; Gray, Lesley J.; Anstey, James; Birner, Thomas; Davis, Sean; Gerber, Edwin P.; Harvey, V. Lynn; Hegglin, Michaela I.; Homeyer, Cameron R.; Knox, John A.; Krüger, Kirstin; Lambert, Alyn; Long, Craig S.; Martineau, Patrick; Molod, Andrea; Monge-Sanz, Beatriz M.; Santee, Michelle L.; Tegtmeier, Susann; Chabrillat, Simon; Tan, David G. H.; Jackson, David R.; Polavarapu, Saroja; Compo, Gilbert P.; Dragani, Rossana; Ebisuzaki, Wesley; Harada, Yayoi; Kobayashi, Chiaki; McCarty, Will; Onogi, Kazutoshi; Pawson, Steven; Simmons, Adrian; Wargan, Krzysztof; Whitaker, Jeffrey S.; Zou, Cheng-Zhi
2017-01-01
The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue The SPARC Reanalysis Intercomparison Project (S-RIP)
in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.
Speaking Out on Gender: Reflections on Women's Advancement in the STEM Disciplines
NASA Astrophysics Data System (ADS)
Wachs, Faye Linda; Nemiro, Jill
Faculty at Cal Poly Pomona initiated a campus-wide study to assess the experiences of women in the STEM (Science, Technology, Engineering, and Math) disciplines and to explore what factors were perceived as critical to advancement by successful women on campus. Focus groups with female faculty and administrators at various stages in their career were conducted to address questions of retention, tenure, promotion, and overall job satisfaction. Workload, work-family conflict, and climate emerge as key factors in faculty satisfaction and attributions of success. Ironically, the type of mentoring relationships and professional development cited as key by senior women were rendered improbable for junior female faculty by increasing workloads and work-family conflict. Gender schemas (Valian, 2004) continue to play a role in the increase in workloads and the type of work women are more likely to be asked to do. Women in departments that recognized and accommodated faculty needs, and included faculty in the decision making process, reported much higher levels of satisfaction and productivity than those in inflexible departments. Understanding these issues is critical to overcoming the effects of discrimination such as the continuing shortage of female faculty, especially at the top ranks. Addressing how gender schemas shape the type of work women do within departments and the relative valuation of that work in the RTP (retention, tenure, promotion) process is critical to creating an institutional climate in which female faculty can succeed.
Engineering a Cause and Cure to Climate Change; Working a culture change with our Future Engineers.
NASA Astrophysics Data System (ADS)
Hudier, E. J. J.
2014-12-01
Where scientist unravel the laws of nature giving the human race the means to remodel their environment, engineers are the tools that put together the very technologies that give humans this power. Early on, along our first steps through this industrialization era, development was the key word, nature could digest our waste products no matter what. We have managed to tamper with our atmosphere's gas composition and the climate is slowly remodelling our way of life. Engineers are now expected to be a key part of the solution. Engineering programs have evolved to include new dimensions such as ethics, communication and environment. We want future engineers to put these dimensions first while working on new machine designs, concepts and procedures. As undergraduate students with a deep science background we also want them to be a source of information for their co-workers and more. How well are we getting through? How good teachers our future engineers will be? This work take a look at the teaching/learning successes comparing engineering students with students attending an undergraduate program in biology. Methods emphasizing the acquisition of knowledge through lectures and reading assignments are tested along with activities aiming at unraveling the scientific fundamental behind environmental issues and putting forward original solutions to specific problematic. Concept knowledge scores, communications' quality and activities evaluations by students are discussed.
Rethinking Global Water Governance for the 21st Century
NASA Astrophysics Data System (ADS)
Ajami, N. K.; Cooley, H.
2012-12-01
Growing pressure on the world's water resources is having major impacts on our social and economic well-being. According to the United Nations, today, at least 1.1 billion people do not have access to clean drinking water. Pressures on water resources are likely to continue to worsen in response to decaying and crumbling infrastructure, continued population growth, climate change, degradation of water quality, and other challenges. If these challenges are not addressed, they pose future risks for many countries around the world, making it urgent that efforts are made to understand both the nature of the problems and the possible solutions that can effectively reduce the associated risks. There is growing understanding of the need to rethink governance to meet the 21st century water challenges. More and more water problems extend over traditional national boundaries and to the global community and the types and numbers of organizations addressing water issues are large and growing. Economic globalization and transnational organizations and activities point to the need for improving coordination and integration on addressing water issues, which are increasingly tied to food and energy security, trade, global climate change, and other international policies. We will present some of the key limitations of global water governance institutions and provide recommendations for improving these institutions to address 21st century global water challenges more effectively.
Understanding the systemic nature of cities to improve health and climate change mitigation.
Chapman, Ralph; Howden-Chapman, Philippa; Capon, Anthony
2016-09-01
Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla
2015-04-01
Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over themore » influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.« less
Overview of different aspects of climate change effects on soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla P.
2014-08-01
Climate change [i.e., high atmospheric carbon dioxide (CO 2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO 2 and create organic carbon (C) that is either reprocessed to CO 2 or stored in soils, are the subject of active current investigations with greatmore » concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO 2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca 2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.« less
NASA Astrophysics Data System (ADS)
Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.
2009-08-01
Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.
Fun Teaching: The Key to the Future Climatology
NASA Astrophysics Data System (ADS)
Mulvey, G.
2016-12-01
In general meteorology is a science of immediate impact. What will the weather be tomorrow or next week? Climatology and climate change is the science of our long range past and future. Decisions made in the past, now, and in the future on climate change issues did and will continue to impact the global climate. It is essential that current and future generations understand the causes of climate change to make informed decisions regarding individual and government actions needed to mitigate human impacts on the future climate. The university challenge is make climatology an exciting and dynamic adventure into the past, present and future. Instructor and supporting organizations have stepped outside the "old yellow notes" approach to enable students to progress beyond remember, understand, and apply; to analyze, evaluate and create. Responding to this instructional challenge by shifting instructional techniques and tools to a new paradigm does not happen overnight. The instructional strategies to make this jump are known in general, but not in specific. This paper deals with examples of how to translate the instructional strategies into practice in ways that are fun for students and instructors. Techniques to be described include interactive discussions, debates and team challenges, such as: - Describing continental climates during past geological periods - In-class teams debates on legislature to control/modify human CO2 releases Low or no cost teaching aids such as video clips, demonstrations, specimens, and experiments will be described with outcomes and resources interest. Some examples to be discussed are - Tree cookies, cross sections - Ocean core smear slide samples of diatoms, foraminifera, etc. - Ice pack/glacial melt experiments - Glacial flow and interpreting glacial ice cores experiment - Field trips to observe geological strata and geological samples - Storytelling - the shared experiences of each instructor
Detecting extinction risk from climate change by IUCN Red List criteria.
Keith, David A; Mahony, Michael; Hines, Harry; Elith, Jane; Regan, Tracey J; Baumgartner, John B; Hunter, David; Heard, Geoffrey W; Mitchell, Nicola J; Parris, Kirsten M; Penman, Trent; Scheele, Ben; Simpson, Christopher C; Tingley, Reid; Tracy, Christopher R; West, Matt; Akçakaya, H Resit
2014-06-01
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow-acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short-lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Matthews, B.
2003-04-01
To reach an effective global agreement to help avoid "dangerous anthropogenic interference in the climate system" (UNFCCC article 2) we must balance many complex interacting issues, and also inspire the active engagement of citizens around the world. So we have to transfer understanding back from computers and experts, into the ultimate "integrated assessment model" which remains the global network of human heads. The Java Climate Model (JCM) tries to help provide a quantitative framework for this global dialogue, by enabling anybody to explore many mitigation policy options and scientific uncertainties simply by adjusting parameter controls with a mouse in a web browser. The instant response on linked plots helps to demonstrate cause and effect, and the sensitivity to various assumptions, risk and value judgements. JCM implements the same simple models and formulae as used by IPCC for the TAR projections, in efficient modular structure, including carbon cycle and atmospheric chemistry, radiative forcing, changes in temperature and sealevel, including some feedbacks. As well as explore the SRES scenarios, the user can create a wide variety of inverse scenarios for stabilising CO2, forcing, or temperature. People ask how local emissions which they can control, may influence the vast global natural and human systems, and change local climate impacts which affect them directly. JCM includes regional emissions and socioeconomic data, and scaled climate impact maps. However to complete this loop in a fast interactive model is a challenge! For transparency and accessibility, pop-up information is provided in ten languages, and documentation ranges from key cross-cutting questions, to them details of the model formulae, including all source code.
NASA Astrophysics Data System (ADS)
Howarth, C.
2016-12-01
The nexus represents a multi-dimensional means of scientific enquiry encapsulating the complex and non-linear interactions between water, energy, food, environment with the climate, and wider implications for society. These resources are fundamental for human life but are negatively affected by climate change. Methods of analysis, which are currently used, were not built to represent complex systems and are insufficiently equipped to understand positive and negative externalities generated by interactions among different stakeholders involved in the nexus. In addition misalignment between the science that scientists produce and the evidence decision-makers need leads to a range of complexities within the science-policy interface. Adopting a bottom-up, participative approach, the results of five themed workshops organized in the UK (focusing on: shocks and hazards, infrastructure, local economy, governance and governments, finance and insurance) featuring 80 stakeholders from academia, government and industry allow us to map perceptions of opportunities and challenges of better informing decision making on climate change when there is a strong disconnect between the evidence scientists provide and the actions decision makers take. The research identified key areas where gaps could be bridged between science and action and explores how a knowledge co-production approach can help identify opportunities for building a more effective and legitimate policy agenda to face climate risks. Concerns, barriers and opportunities to better inform decision making centred on four themes: communication and collaboration, decision making processes, social and cultural dimensions, and the nature of responses to nexus shocks. In so doing, this analysis provides an assessment of good practice on climate decision-making and highlights opportunities for improvement to bridge gaps in the science-policy interface
Successfully Integrating Climate Change Education into School System Curriculum
NASA Astrophysics Data System (ADS)
Scallion, M.
2017-12-01
Maryland's Eastern Shore is threatened by climate change driven sea level rise. By working with school systems, rather than just with individual teachers, educators can gain access to an entire grade level of students, assuring that all students, regardless of socioeconomic background or prior coursework have an opportunity to explore the climate issue and be part of crafting community level solutions for their communities. We will address the benefits of working with school system partners to achieve a successful integration of in-school and outdoor learning by making teachers and administrators part of the process. We will explore how, through the Maryland and Delaware Climate Change Education, Assessment, and Research Project, teachers, content supervisors and informal educators worked together to create a climate curriculum with local context that effectively meets Common Core and Next Generation Science Standards. Over the course of several weeks during the year, students engage in a series of in-class and field activities directly correlated with their science curriculum. Wetlands and birds are used as examples of the local wildlife and habitat being impacted by climate change. Through these lessons led by Pickering Creek Audubon Center educators and strengthened by material covered by classroom teachers, students get a thorough introduction to the mechanism of climate change, local impacts of climate change on habitats and wildlife, and actions they can take as a community to mitigate the effects of climate change. The project concludes with a habitat and carbon stewardship project that gives students and teachers a sense of hope as they tackle this big issue on a local scale. We'll explore how the MADE-CLEAR Informal Climate Change Education (ICCE) Community of Practice supports Delaware and Maryland environmental educators in collaboratively learning and expanding their programming on the complex issue of climate change. Participants will learn how to include climate change education as part of a larger ecological exploration, giving students and teachers local context to this global issue and memorable outdoor hands-on experiences and student driven adaptation projects.
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Dhaniyala, S.
2015-12-01
Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. Yet climate change classes targeting engineering students are scarce. Technical education must focus on the problem formulation and solutions that consider multiple, complex interactions between engineered systems and the Earth's climate system and recognize that transformation raises societal challenges, including trade-offs among benefits, costs, and risks. Moreover, improving engineering students' climate science literacy will require strategies that also inspire students' motivation to work toward their solution. A climate science course for engineers has been taught 5 semesters as part of a NASA Innovations in Climate Education program grant (NNXlOAB57A). The basic premise of this project was that effective instruction must incorporate scientifically-based knowledge and observations and foster critical thinking, problem solving, and decision-making skills. Lecture, in-class cooperative and computer-based learning and a semester project provide the basis for engaging students in evaluating effective mitigation and adaptation solutions. Policy and social issues are integrated throughout many of the units. The objective of this presentation is to highlight the content and pedagogical approach used in this class that helped to contribute to significant gains in engineering students' climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire. As a whole, students demonstrated significant gains in climate-related content knowledge (p<0.001), affect (p<0.001), and behavior (p=0.002). Mean post scores were above a 'passing' cutoff (70%) for all three subscales. Assessment of semester project reports with a critical thinking rubric showed that the students did an excellent job of formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are sometimes foreign to technically focused, number crunching engineering students, but are critical for using their engineering skills and profession to address climate change mitigation and adaptation strategies.
Assessing and Upgrading Ocean Mixing for the Study of Climate Change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.
2016-12-01
Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate science by improving our mixing schemes. We are incorporating climate research into our college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293.
Extinction vulnerability of coral reef fishes.
Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K
2011-04-01
With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.
Extinction vulnerability of coral reef fishes
Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron MacNeil, M; McClanahan, Tim R; Öhman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K
2011-01-01
With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. PMID:21320260
Vulnerability of southern plains agriculture to climate change
USDA-ARS?s Scientific Manuscript database
Climate is a key driver for all ecological and economic systems; therefore, climate change introduces additional uncertainty and vulnerability into these systems. Agriculture represents a major land use that is critical to the survival of human societies and it is highly vulnerable to climate. Clima...
Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target.
MacMartin, Douglas G; Ricke, Katharine L; Keith, David W
2018-05-13
Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).
Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target
NASA Astrophysics Data System (ADS)
MacMartin, Douglas G.; Ricke, Katharine L.; Keith, David W.
2018-05-01
Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical-science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3°C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Füssel, Hans-Martin
2008-02-01
Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.
Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Khan, Firdos; Pilz, Jürgen
2015-04-01
The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem. The analyses show that there will be much more water available in future under the considered emission scenarios but in some months there will be scarcity of water. However, by proper management and optimum utilization of the available water, the scarcity of water can be minimized considerably. Finally, a meta-analysis has been performed to present a combined picture of all scenarios considered in this study. One way to avoid water scarcity is to upgrade and install new reservoirs and water storage capacities to reserve the extra water during high river flow in Indus River, which will then be utilized during low river flow. __________________________________________________________________________________ KEY WORDS: Agriculture, Climate Change, Hydro-power, Indus River, Tarbela Reservoir, Upper Indus Basin, Meta-analysis, Hydrological model.
Fixing the Sky: Why the History of Climate Engineering Matters (Invited)
NASA Astrophysics Data System (ADS)
Fleming, J. R.
2010-12-01
What shall we do about climate change? Is a planetary-scale technological fix possible or desirable? The joint AMS and AGU “Policy Statement on Geoengineering the Climate System” (2009) recommends “Coordinated study of historical, ethical, legal, and social implications of geoengineering that integrates international, interdisciplinary, and intergenerational issues and perspectives and includes lessons from past efforts to modify weather and climate.” I wrote Fixing the Sky: The Checkered History of Weather and Climate Control (Columbia University Press, 2010) with this recommendation in mind, to be fully accessible to scientists, policymakers, and the general public, while meeting or exceeding the scholarly standards of history. It is my intent, with this book, to bring history to bear on public policy issues.
Effects of climate change on surface-water photochemistry: a review.
De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2014-10-01
Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.
Models and the paleo record of biome responses to glacial climate and CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice; Colin, I.; Haxeltine
1995-06-01
Continental-scale reconstructions of the distribution of biomes at the last glacial maximum (LGM) indicate big changes, which can primarily be explained by climate. The climate was different from today mainly because of a combination of low concentrations of CO{sub 2} and other greenhouse gases and the presence of large continental ice sheets. Atmospheric general circulation model (AGCM) simulations, driven by these factors and linked to simple biome models in {open_quotes}diagnostic{close_quotes} mode, account for the broad outlines of the changes in vegetation patterns, including encroachment of C4 grasslands and savannas on what are now tropical forests. Physiological effects of low CO{submore » 2} might also have played a role by altering the partitioning of precipitation to evapotranspiration and runoff, and altering the competitive balance of C3 and C4 plants. Such effects have not been quantified until recently, with the development of integrated biome/biochemistry models like those used in the VEMAP project. In these models, vegetation composition affects the coupled C and H{sub 2}O fluxes, which in turn influence the competitive balance of the constituent plant types. The relative importance of climatic and physiological effects of CO{sub 2} on biome distributions is a key issue for the future. This is gives added impetus to research that aims to exploit the potential of palaeo, data, through global data synthesis projects like BIOME 6000, to provide objective benchmarks against which to test models of the biosphere and climate.« less
Building partnerships with Indigenous communities around climate change: A new UCAR initiative.
NASA Astrophysics Data System (ADS)
Pandya, R. E.
2008-12-01
The atmospheric and related sciences have one of the lowest rates of participation by American Indians of any physical science. This not only disadvantages the atmospheric sciences by isolating them from a rich and relevant intellectual heritage, it disadvantages tribal communities who seek to apply the insights from atmospheric sciences to planning their own future. In a time of rapid environmental change and its impact on tribal lands and all lands, the need for connection between these two communities is especially urgent. In 2007, the University Corporation for Atmospheric Research launched a new Community Building Program, in order to catalyze and coordinate activities that contribute to UCAR's strategic goal of developing a diverse atmospheric science workforce. A key goal of this program has been to look for partnerships with the American Indian community around climate change issues. The goal of these partnerships is to support North American tribal efforts to enhance their own scientific and adaptive capacity around climate change. In the early stages of this partnership, we have listened to some important messages from Indigenous communities: •Climate change, like all things related to the landscape, is intimately connected to identity and sovereignty • Scientific expertise is one among many skills indigenous people employ in their relation with their homelands • Climate change research and education are embedded in decision-making about economic development, energy, public health as well as cultural preservation, language, and tribal sovereignty This presentation will be an opportunity to check and extend these insights discuss and use them as a basis for a long-term partnership between UCAR and tribal communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.
Solar geoengineering has been proposed as a means to cool the planet by increasing the reflection of sunlight back to space, for example by injecting reflective aerosol particles into the middle atmosphere. Such proposals are not able to physically substitute for mitigation of greenhouse gas emissions as a response to the risks of climate change, but might eventually be applied as a complementary approach to reduce climate risks. Thus, the Earth system consequences of solar geoengineering are central to understanding its potentials and risks. Here we review the state-of-the-art knowledge about geoengineering by stratospheric sulphate aerosol injection. We examine themore » common responses found in studies of an idealized form of solar geoengineering, in which the intensity of incoming sunlight is directly reduced in models. The studies reviewed are consistent in suggesting that solar geoengineering would generally reduce the differences in climate in comparison to future scenarios with elevated greenhouse gas concentrations and no solar geoengineering. However, it is clear that a solar geoengineered climate would be novel in some respects, for example a notable reduction in the intensity of the hydrological cycle. We provide an overview of the unique aspects of the response to stratospheric aerosol injection and the uncertainties around its consequences. We also consider the issues raised by the partial control over the climate that solar geoengineering would allow. Finally, this overview also highlights the key research gaps that will need to be resolved in order to effectively guide future decisions on the potential use of solar geoengineering.« less
Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Teegavarapu, R. S.
2008-05-01
The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.
NASA Astrophysics Data System (ADS)
Casola, J. H.; Huber, D.
2013-12-01
Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision makers can arrive at invalid conclusions from a seemingly valid scientific messages. Honest discussion of uncertainties, and recognition of the spatial and time scales associated with decision making, can work to combat this potential confusion.
Climate change and food safety: an emerging issue with special focus on Europe.
Miraglia, M; Marvin, H J P; Kleter, G A; Battilani, P; Brera, C; Coni, E; Cubadda, F; Croci, L; De Santis, B; Dekkers, S; Filippi, L; Hutjes, R W A; Noordam, M Y; Pisante, M; Piva, G; Prandini, A; Toti, L; van den Born, G J; Vespermann, A
2009-05-01
According to general consensus, the global climate is changing, which may also affect agricultural and livestock production. The potential impact of climate change on food security is a widely debated and investigated issue. Nonetheless, the specific impact on safety of food and feed for consumers has remained a less studied topic. This review therefore identifies the various food safety issues that are likely to be affected by changes in climate, particularly in Europe. Amongst the issues identified are mycotoxins formed on plant products in the field or during storage; residues of pesticides in plant products affected by changes in pest pressure; trace elements and/or heavy metals in plant products depending on changes in their abundance and availability in soils; polycyclic aromatic hydrocarbons in foods following changes in long-range atmospheric transport and deposition into the environment; marine biotoxins in seafood following production of phycotoxins by harmful algal blooms; and the presence of pathogenic bacteria in foods following more frequent extreme weather conditions, such as flooding and heat waves. Research topics that are amenable to further research are highlighted.
NASA Astrophysics Data System (ADS)
Pages, Lucien; Bertel, Evelyne; Joffre, Henri; Sklavenitis, Laodamas
2012-12-01
Even though the United States lacks a national climate policy, significant action has occurred at the local and regional levels. Some of the most aggressive climate change policies have occurred at the state and local levels and in interagency cooperation on specific management issues. While there is a long history of partnerships in dealing with a wide variety of policy issues, the uncertainty and the political debate surrounding climate change has generated new challenges to establishing effective policy networks. This paper investigates the formation of climate policy networks in the State of Nevada. It presents a methodology based on social network analysis for assessing the structure and function of local policy networks across a range of substantive climate impacted resources (water, landscape management, conservation, forestry and others). It draws from an emerging literature on federalism and climate policy, public sector innovation, and institutional analysis in socio-ecological systems. Comparisons across different policy issue networks in the state are used to highlight the influence of network structure, connectivity, bridging across vertical and horizontal organizational units, organizational diversity, and flows between organizational nodes.
ERIC Educational Resources Information Center
National Center on Safe Supportive Learning Environments, 2017
2017-01-01
Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines how family members--including guardians of students--can support school climate improvements. Key action steps are provided for the following strategies: (1) Participate in planning for school climate improvements; (2) Engage…
Buse, Chris G; Smith, Maxwell; Silva, Diego S
2018-06-04
Accelerated changes to the planet have created novel spaces to re-imagine the boundaries and foci of environmental health research. Climate change, mass species extinction, ocean acidification, biogeochemical disturbance, and other emergent environmental issues have precipitated new population health perspectives, including, but not limited to, one health, ecohealth, and planetary health. These perspectives, while nuanced, all attempt to reconcile broad global challenges with localized health impacts by attending to the reciprocal relationships between the health of ecosystems, animals, and humans. While such innovation is to be encouraged, we argue that a more comprehensive engagement with the ethics of these emerging fields of inquiry will add value in terms of the significance and impact of associated interventions. In this contribution, we highlight how the concept of spatial and temporal scale can be usefully deployed to shed light on a variety of ethical issues common to emerging environmental health perspectives, and that the potential of scalar analysis implicit to van Potter's conceptualization of bioethics has yet to be fully appreciated. Specifically, we identify how scale interacts with key ethical issues that require consideration and clarification by one health, ecohealth, and planetary health researchers and practitioners to enhance the effectiveness of research and practice, including justice and governance.
Human Choice and CCS Deployment: What have we learned from the social sciences about CCS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
2013-08-20
It is my pleasure to present this Virtual Special Issue of key social science papers that have been published in the International Journal of Greenhouse Gas Control (IJGCC). These papers show that the social science research community has significantly advanced the state-of-the-art from vague discussions about the “acceptance of CCS” to a body of deeply insightful and actionable knowledge about how CCS is likely to be framed and how framing will impact the ultimate deployment of CCS as a means of mitigating anthropogenic climate change. The papers assembled here shed light on core issues such as how do humans makemore » decisions about a new technology like CCS that they have no direct personal experience with and what is it is about “new” technologies that we find unsettling. These papers also speak to what are the best, and for that matter the worst, ways of presenting inherently highly technical information to lay audiences, including insights about the substance of the information, the form in which the information is delivered, and who delivers it. An extended editorial about this virtual special issue is freely available on ScienceDirect. I hope you find the papers contained in this Virtual Issue to be as informative and insightful as I do.« less
International challenges and public policy issues.
Morris, N
1999-01-01
The paper presents an overview of current public policy issues relating to biological standardisation and control, drawing on the extensive background material assembled for two recent international reviews, and previously published work. It identifies a number of factors which are destabilising the current system and promoting a climate for change. These include the squeeze on public sector resources, the growth in volume and complexity of biologicals, developing world needs, concerns about harmonisation and new social and ethical issues. It is argued that this situation presents important opportunities for reviewing the existing boundaries between regulatory scientists, industry, and the public, for international agreement on priorities and for harmonisation and mutual recognition. While considerable progress has already been made on these issues at national, regional and global level, there is a need for fuller international participation and the additional impetus that would come from a higher-profile commitment by governments. Such commitment will also be important for the vital questions of sustaining the scientific base and securing the resource for an effective, truly worldwide programme of standardisation and control. An international approach will also be essential in steering biologicals control through the difficult social and ethical questions of the future. WHO, in collaboration with national authorities, has a key role to play in these developments.
OverView of Space Applications for Environment (SAFE) initiative
NASA Astrophysics Data System (ADS)
Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki
2014-06-01
Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.
The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies
NASA Technical Reports Server (NTRS)
Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.
1997-01-01
How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.
Climate Information and Misinformation: Getting the Message Out
NASA Astrophysics Data System (ADS)
Carr, M.; Rubenstein, M.; Brash, K.; Hernandez, T. E.; Anderson, R. F.; Fulton, M.; Kahn, B.
2010-12-01
While it is commonly accepted that improved science comprehension is a key element to informed decisions on the many societal issues that interface with science and technology, it is not always clear what that understanding should entail. Is it knowledge of a set of facts and their context, the ability to read scientific papers, familiarity with data sets and their strengths and limitations, the development of original research? Physical scientists continue to operate assuming the deficit model: that lack of societal engagement results from ignorance or lack of information. Yet, in the case of climate, an active community of citizen scientists is engaged in a parallel research activity that aims to audit the basic tenets of the field, thus illustrating that greater literacy does not necessarily lead to consensus. Communication experts have long noted the inadequacy of the deficit model, highlighting the importance of prior knowledge, interests, and values. Science communicators recommend direct public engagement using non-traditional tools and fora. Here we explore three modes of engaging the public on the theme of climate change skepticism: a report published by a major financial institution (following a deficit model, but targeting a highly educated non-science community), blogging (using the broad potential reach and ongoing engagement of the internet), and student discussion groups (taking a participatory 'community outreach' approach).
On requirements for a satellite mission to measure tropical rainfall
NASA Technical Reports Server (NTRS)
Thiele, Otto W. (Editor)
1987-01-01
Tropical rainfall data are crucial in determining the role of tropical latent heating in driving the circulation of the global atmosphere. Also, the data are particularly important for testing the realism of climate models, and their ability to simulate and predict climate accurately on the seasonal time scale. Other scientific issues such as the effects of El Nino on climate could be addressed with a reliable, extended time series of tropical rainfall observations. A passive microwave sensor is planned to provide information on the integrated column precipitation content, its areal distribution, and its intensity. An active microwave sensor (radar) will define the layer depth of the precipitation and provide information about the intensity of rain reaching the surface, the key to determining the latent heat input to the atmosphere. A visible/infrared sensor will provide very high resolution information on cloud coverage, type, and top temperatures and also serve as the link between these data and the long and virtually continuous coverage by the geosynchronous meteorological satellites. The unique combination of sensor wavelengths, coverages, and resolving capabilities together with the low-altitude, non-Sun synchronous orbit provide a sampling capability that should yield monthly precipitation amounts to a reasonable accuracy over a 500- by 500-km grid.
A CBO Study: The Economics of Climate Change: A Primer
2003-04-01
issues related to climate change , focusing primarily on its economic aspects. The study draws from numerous published sources to summarize the current...state of climate science and provide a conceptual framework for addressing climate change as an economic problem. It also examines public policy
Task 7.1 - Strategic Planning: Semi-annual report, July 1- December 31, 1996.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, D.J.
As directed by the EERC senior management, activities during the reporting period have focused on research in support of the development of a series of white papers dealing with the status and future direction of select areas of environmental policy. These areas include (1) brownfields, (2) onshore solid waste management, (3) water related policy, (4) climate change, (5) nuclear facility cleanup and waste disposition, and (6) air emissions. Each white paper is designed to consist of two parts: (1) a summary of status and future directions and (2) an evaluation of a select group of key issues. The EERC believesmore » that energy and environmental issues are inseparable and the environmental policy evaluations are considered to be a continuation of the activities begun at the EERC in 1989 focused on the assessment of trends and policies affecting energy industries. The conclusions reached are our own, based on a broad list of sources with certain findings attributed by reference.« less
Adaptive Management for Climate Change Impact for Water Sector in China
NASA Astrophysics Data System (ADS)
Xia, Jun
2013-04-01
China, as a larger developing country in the world, in facing to bigger challenges than before on wisely managing water resources to support rapidly socio-economic development in 2020 and beyond. China has a vast area of 9.6 million sq. km and relatively abundant water resources with ranked sixth in the world after Brazil, the Russian Federation, Canada, the United States and Indonesia in terms of absolute amount of annual runoff. However, given its large population of over 1.3 billion, China has a very low per capita amount (about one quarter of the world average) of water resources and, is therefore one of the countries with the most severe shortage of water in the world, particular North China. North China is one of very important regions in China. For this region, population has 0.437 billion in 2000 that occupies 35% of total in China, GDP reaches 386 billion US that is also 32% of total in China. Irrigation area of North China is 42% of total in China, and agricultural product has 40% of total in China. However, it is the most water shortage area in China. For instance, water resources per capita in Hai River Basin have only 270 cubic meters, which is only 1/7 of the national average and 1/24 of the world average. Water Resource Vulnerability under impact of both climate change and human activities are rather significantly. This presentation will focus on two issues: (1) how to screening climate changes impact to water sector, and how to quantify water resource vulnerability related to impact of climate change and human activity? (2) how to take adaptation & wisely manage water to changing environment on existing water projects and new water programme & water policy in China? A screening process for climate impact to water sector in North China was proposed. A new study on quantifying water resource vulnerability, based on three practical and workable, i.e., the use to availability ratio, water crowding and per capita water use, were developed. Four case studies in China are given as explanation of this study. The concept on good water governance was discussed. It was shown that: (1) climate change and human activity are two big issues to water sustainable use. Science & technology will play a key role on understanding & reduce risk; (2) Water policy, in China will had to shift from water quantity management into water quality management, and water supply management into water demand management. Improving Water Governance will be a priority on climate change adaptation.
Learning as change: Responding to socio-scientific issues through informal education
NASA Astrophysics Data System (ADS)
Allen, Lauren Brooks
Informal learning is an important venue for educating the general public about complex socio-scientific issues: intersections of scientific understanding and society. My dissertation is a multi-tiered analysis of how informal education, and particularly informal educators, can leverage learning to respond to one particular socio-scientific issue: climate change. Life-long, life-wide, and life-deep learning not only about the science of climate change, but how communities and society as a whole can respond to it in ways that are commensurate with its scale are necessary. In my three-article dissertation, I investigated the changes in practice and learning that informal educators from a natural history museum underwent in the process of implementing a new type of field trip about climate change. This study focused on inquiry-based learning principles taken on by the museum educators, albeit in different ways: learner autonomy, conversation, and deep investigation. My second article, a short literature review, makes the argument that climate change education must have goals beyond simply increasing learners' knowledge of climate science, and proposes three research-based principles for such learning: participation, relevance, and interconnectedness. These principles are argued to promote learning to respond to climate change as well as increased collective efficacy, necessary for responding. Finally, my third article is an in-depth examination of a heterogeneous network of informal educators and environmental professionals who worked together to design and implement a city-wide platform for informal climate change learning. By conceptualizing climate change learning at the level of the learning ecology, educators and learners are able to see how it can be responded to at the community level, and understand how climate change is interconnected with other scientific, natural, and social systems. I briefly discuss a different socio-scientific issue to which these principles can be applied: heritable, human manipulation of other biological entities; in other words, genetic engineering.
The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment
This assessment strengthens and expands our understanding of climate-related health impacts by providing a more definitive description of climate-related health burdens in the United States. It builds on the 2014 USGCRP National Climate Assessment and reviews and synthesizes key ...
Aligning climate policy with finance ministers' G20 agenda
NASA Astrophysics Data System (ADS)
Edenhofer, Ottmar; Knopf, Brigitte; Bak, Céline; Bhattacharya, Amar
2017-07-01
There is no longer a choice between climate policy and no climate policy. G20 finance ministers have to play a key role in implementing smart climate policies like carbon pricing. Yet they remain reluctant to take advantage of the merits of carbon pricing for sound fiscal policy.
An innovative approach to undergraduate climate change education: Sustainability in the workplace
NASA Astrophysics Data System (ADS)
Robinson, Z. P.
2009-04-01
Climate change and climate science are a core component of environment-related degree programmes, but there are many programmes, for example business studies, that have clear linkages to climate change and sustainability issues which often have no or limited coverage of the subject. Although an in-depth coverage of climate science is not directly applicable to all programmes of study, the subject of climate change is of great relevance to all of society. Graduates from the higher education system are often viewed as society's ‘future leaders', hence it can be argued that it is important that all graduates are conversant in the issues of climate change and strategies for moving towards a sustainable future. Rather than an in depth understanding of climate science it may be more important that a wider range of students are educated in strategies for positive action. One aspect of climate change education that may be missing, including in programmes where climate change is a core topic, is practical strategies, skills and knowledge for reducing our impact on the climate system. This presentation outlines an innovative approach to undergraduate climate change education which focuses on the strategies for moving towards sustainability, but which is supported by climate science understanding taught within this context. Students gain knowledge and understanding of the motivations and strategies for businesses to improve their environmental performance, and develop skills in identifying areas of environmental improvement and recommending actions for change. These skills will allow students to drive positive change in their future careers. Such courses are relevant to students of all disciplines and can give the opportunity to students for whom climate change education is not a core part of their programme, to gain greater understanding of the issues and an awareness of practical changes that can be made at all levels to move towards a more sustainable society.
A Climate-Data Record (CDR) of the "Clear Sky" Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.
2011-01-01
To quantify the ice-surface temperature (IST) we are developing a climate-data record (CDR) of monthly IST of the Greenland ice sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data at 5-km resolution. "Clear-sky" surface temperature increases have been measured from the early 1980s to the early 2000s in the Arctic using AVHRR data, showing increases ranging from 0.57-0.02 (Wang and Key, 2005) to 0.72 0.10 deg C per decade (Comiso, 2006). Arctic warming has implications for ice-sheet mass balance because much of the periphery of the ice sheet is near 0 deg C in the melt season and is thus vulnerable to more extensive melting (Hanna et al., 2008). The algorithm used for this work has a long history of measuring IST in the Arctic with AVHRR (Key and Haefliger, 1992). The data are currently available from 1981 to 2004 in the AVHRR Polar Pathfinder (APP) dataset (Fowler et al., 2000). J. Key1NOAA modified the AVHRR algorithm for use with MODIS (Hall et al., 2004). The MODIS algorithm is now being processed over Greenland. Issues being addressed in the production of the CDR are: time-series bias caused by cloud cover, and cross-calibration between AVHRR and MODIS instruments. Because of uncertainties, time series of satellite ISTs do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with in-situ (see Koenig and Hall, in press) and automatic-weather station data (e.g., Shuman et al., 2001).
Assessing political priority for reproductive health in Ethiopia.
Prata, Ndola; Summer, Anna
2015-11-01
Ethiopia is among the top six countries contributing to the highest numbers of maternal deaths globally. The Ethiopian total fertility rate was estimated at 4.8 in 2011, and the use of contraceptives by married women was 29%. Lack of knowledge, cultural stigma surrounding abortion, and barriers to access of services contribute to persistently high rates of unsafe abortion and abortion-related mortality. This study seeks to assess the generation and institutionalization of political priority for reproductive health within the political systems of Ethiopia. Interviews with key policy makers, government ministers, academics, and leaders of prominent non-governmental organizations in Ethiopia between July 2010 and January 2011 were conducted, using Shiffman and Smith's Framework, to analyse the key actors and ideas behind the shift towards prioritization of reproductive health in Ethiopia, as well as the political context and primary characteristics of the issues that propelled progressive action in reproductive health in that country. Some of the key lessons point to the readiness of the Ethiopian government to reform and to improve the socio-economic status of the population. The role of civil society organizations working alongside the government was crucial to creating a window of opportunity in a changing political climate to achieve gains in reproductive health. To our knowledge, this is the first time Shiffman and Smith's Framework has been used for reproductive health policies. We conclude that Ethiopian experience fits well within this framework for understanding prioritization of global health issues and may serve as a model for other sub-Saharan African countries. Copyright © 2015 Elsevier Inc. All rights reserved.
Tayyebi, Amin; Darrel Jenerette, G
2016-04-01
Urbanization has increased heat in the urban environment, with many consequences for human health and well-being. Managing climate change in part through increasing vegetation is desired by many cities to mitigate current and future heat related issues. However, little information is available on what influences the current effectiveness and availability of vegetation for local cooling. In this study, we identified the variation in the interacting relationships among vegetation (normalized difference vegetation index), socioeconomic status (neighborhood income), elevation and land surface temperature (LST) to identify how vegetation based surface cooling services change throughout the pronounced coastal to desert climate gradient of the Los Angeles, CA metropolitan region, a megacity of >18 million residents. A key challenge for understanding variation in vegetation as a climate change adaptation tool spanning neighborhood to megacity scales is developing new "big data" analytical tools. We used structural equation modeling (SEM) to quantify the interacting relationships among socio-economic status data obtained from government census data, elevation and new LST and vegetation data obtained from an airborne imaging campaign conducted in 2013 for the urban and suburban areas across a series of fifteen climate zones. Vegetation systematically increased in cooling effectiveness from 6.06 to 31.77 degrees with increasing distance from the coast. Vegetation and neighborhood income were positively correlated throughout all climate zones with a peak in the relationship occurring near 25km from the coast. Because of the interaction between these two relationships, we also found that higher income neighborhoods were cooler and that this effect peaked at about 30km from the coast. These results show the availability and effectiveness of vegetation on the local climate varies tremendously throughout the Los Angeles, CA metropolitan area. Further, using the more inland climate zones as future analogs for more coastal zones, suggests that in the warmer climate conditions projected for the region the effectiveness of vegetation for regional cooling may increase thus acting as a localized negative feedback mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.
2016-12-01
Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.
Scientific Uncertainties in Climate Change Detection and Attribution Studies
NASA Astrophysics Data System (ADS)
Santer, B. D.
2017-12-01
It has been claimed that the treatment and discussion of key uncertainties in climate science is "confined to hushed sidebar conversations at scientific conferences". This claim is demonstrably incorrect. Climate change detection and attribution studies routinely consider key uncertainties in observational climate data, as well as uncertainties in model-based estimates of natural variability and the "fingerprints" in response to different external forcings. The goal is to determine whether such uncertainties preclude robust identification of a human-caused climate change fingerprint. It is also routine to investigate the impact of applying different fingerprint identification strategies, and to assess how detection and attribution results are impacted by differences in the ability of current models to capture important aspects of present-day climate. The exploration of the uncertainties mentioned above will be illustrated using examples from detection and attribution studies with atmospheric temperature and moisture.
Global climate change implications for coastal and offshore oil and gas development
Burkett, V.
2011-01-01
The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. ?? 2011.
Demanding stories: television coverage of sustainability, climate change and material demand
2017-01-01
This paper explores the past, present and future role of broadcasting, above all via the medium of television, in shaping how societies talk, think about and act on climate change and sustainability issues. The paper explores these broad themes via a focus on the important but relatively neglected issue of material demand and opportunities for its reduction. It takes the outputs and decision-making of one of the world's most influential broadcasters, the BBC, as its primary focus. The paper considers these themes in terms of stories, touching on some of the broader societal frames of understanding into which they can be grouped. Media decision-makers and producers from a range of genres frequently return to the centrality of ‘story’ in the development, commissioning and production of an idea. With reference to specific examples of programming, and drawing on interviews with media practitioners, the paper considers the challenges of generating broadcast stories that can inspire engagement in issues around climate change, and specifically material demand. The concluding section proposes actions and approaches that might help to establish material demand reduction as a prominent way of thinking about climate change and environmental issues more widely. This article is part of the themed issue ‘Material demand reduction’. PMID:28461439
NATO’s Future Role in the Arctic
2016-05-01
iv Global Climate Change and Arctic Geopolitics............................. Error! Bookmark not defined. Russian Claims to the Arctic...13 1 Global Climate Change and Arctic Geopolitics Global climate change has a profound...explaining the effect of climate change in the Arctic and the consequences on regional security. Issues regarding territorial sovereignty will be
School Climate Reports from Norwegian Teachers: A Methodological and Substantive Study.
ERIC Educational Resources Information Center
Kallestad, Jan Helge; Olweus, Dan; Alsaker, Francoise
1998-01-01
Explores methodological and substantive issues relating to school climate, using a dataset derived from 42 Norwegian schools at two points of time and a standard definition of organizational climate. Identifies and analyzes four school-climate dimensions. Three dimensions (collegial communication, orientation to change, and teacher influence over…
Fostering Hope in Climate Change Educators
ERIC Educational Resources Information Center
Swim, Janet K.; Fraser, John
2013-01-01
Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…
Measuring School Climate: Questions and Considerations.
ERIC Educational Resources Information Center
Wilson, Bruce L.; McGrail, Janet
School climate is an elusive but powerful concept that has captured the attention of both researchers and practitioners, but choosing an instrument to assess climate can be very complicated. This monograph accordingly discusses four basic issues that should be considered prior to selecting an instrument to measure school climate: purpose, choice…
How do supervisors perceive and manage employee mental health issues in their workplaces?
Kirsh, Bonnie; Krupa, Terry; Luong, Dorothy
2018-01-01
Organizations have become increasingly concerned about mental health issues in the workplace as the economic and social costs of the problem continue to grow. Addressing employees' mental health problems and the stigma that accompanies them often falls to supervisors, key people in influencing employment pathways and the social climate of the workplace. This study examines how supervisors experience and perceive mental illness and stigma in their workplaces. It was conducted under the mandate of the Mental Health Commission of Canada's Opening Minds initiative. The study was informed by a theoretical framework of stigma in the workplace and employed a qualitative approach. Eleven supervisors were interviewed and data were analyzed for major themes using established procedures for conventional content analysis. Themes relate to: perceptions of the supervisory role relative to managing mental health problems at the workplace; supervisors' perceptions of mental health issues at the workplace; and supervisors' experiences of managing mental health issues at work. The research reveals the tensions supervisors experience as they carry out responsibilities that are meant to benefit both the individual and workplace, and protect their own well-being as well. This study emphasizes the salience of stigma and mental health issues for the supervisor's role and illustrates the ways in which these issues intersect with the work of supervisors. It points to the need for future research and training in areas such as balancing privacy and supports, tailoring disclosure processes to suit individuals and workplaces, and managing self-care in the workplace.
NASA Astrophysics Data System (ADS)
Damon Matthews, H.; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R.
2018-01-01
The Environmental Research Letters focus issue on ‘Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets’ was launched in 2015 to highlight the emerging science of the climate response to cumulative emissions, and how this can inform efforts to decrease emissions fast enough to avoid dangerous climate impacts. The 22 research articles published represent a fantastic snapshot of the state-or-the-art in this field, covering both the science and policy aspects of cumulative emissions and carbon budget research. In this Review and Synthesis, we summarize the findings published in this focus issue, outline some suggestions for ongoing research needs, and present our assessment of the implications of this research for ongoing efforts to meet the goals of the Paris climate agreement.
Covering Water Issues Through a Climate Lens
NASA Astrophysics Data System (ADS)
Freedman, A. C.
2017-12-01
Media portrayals of critical water issues can help or hinder decision makers' understanding of critical, complex water issues. Through a series of case studies, this presentation will provide examples of how today's media - complete with its 5-minute news cycle - has uncovered water quality scandals (Flint), investigated chronic flooding that will worsen with climate change (Houston), and more. It will also delve into why reporters often fail to convey the magnitude of water supply challenges in the West (Colorado River) and around the world (Middle East, Southeast Asia).
Issues in Integrating Information Technology in Learning and Teaching EFL: The Saudi Experience
ERIC Educational Resources Information Center
Al-Maini, Yousef Hamad
2013-01-01
The Saudi education system is facing a climate of change characterized by an interest in integrating new technology and educational approaches to improve teaching and learning. In this climate, the present paper explores the issues in integrating information technology in learning and teaching English as a foreign language (EFL) in government…
ERIC Educational Resources Information Center
Todd, Claire; O'Brien, Kevin J.
2016-01-01
Anthropogenic climate change is a complicated issue involving scientific data and analyses as well as political, economic, and ethical issues. In order to capture this complexity, we developed an interdisciplinary student and faculty collaboration by (1) offering introductory lectures on scientific and ethical methods to two classes, (2) assigning…
Atlanta households’ willingness to increase urban forests to mitigate cimate change
Y. Tran; J. P. Siry; J. M. Bowker; N. C. Poudyal
2017-01-01
Investments in urban forests have been increasing in many US cities. Urban forests have been shownto provide countless ecosystem benefits with many addressing climate change issues, such as seques-tering carbon, reducing air pollution, and decreasing the heat island effect. Individual groups within theAmerican public may not respond to the issue of climate change in...
Connecting to Nature at the Zoo: Implications for Responding to Climate Change
ERIC Educational Resources Information Center
Clayton, Susan; Luebke, Jerry; Saunders, Carol; Matiasek, Jennifer; Grajal, Alejandro
2014-01-01
Societal response to climate change has been inadequate. A perception that the issue is both physically and temporally remote may reduce concern; concern may also be affected by the political polarization surrounding the issue in the USA. A feeling of connection to nature or to animals may increase personal relevance, and a supportive social…
Break and trend analysis of EUMETSAT Climate Data Records
NASA Astrophysics Data System (ADS)
Doutriaux-Boucher, Marie; Zeder, Joel; Lattanzio, Alessio; Khlystova, Iryna; Graw, Kathrin
2016-04-01
EUMETSAT reprocessed imagery acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8-9. The data covers the period from 2004 to 2012. Climate Data Records (CDRs) of atmospheric parameters such as Atmospheric Motion Vectors (AMV) as well as Clear and All Sky Radiances (CSR and ASR) have been generated. Such CDRs are mainly ingested by ECMWF to produce a reanalysis data. In addition, EUMETSAT produced a long CDR (1982-2004) of land surface albedo exploiting imagery acquired by the Meteosat Visible and Infrared Imager (MVIRI) on board Meteosat 2-7. Such CDR is key information in climate analysis and climate models. Extensive validation has been performed for the surface albedo record and a first validation of the winds and clear sky radiances have been done. All validation results demonstrated that the time series of all parameter appear homogeneous at first sight. Statistical science offers a variety of analyses methods that have been applied to further analyse the homogeneity of the CDRs. Many breakpoint analysis techniques depend on the comparison of two time series which incorporates the issue that both may have breakpoints. This paper will present a quantitative and statistical analysis of eventual breakpoints found in the MVIRI and SEVIRI CDRs that includes attribution of breakpoints to changes of instruments and other events in the data series compared. The value of different methods applied will be discussed with suggestions how to further develop this type of analysis for quality evaluation of CDRs.
A leaf wax biomarker record of early Pleistocene hydroclimate from West Turkana, Kenya
NASA Astrophysics Data System (ADS)
Lupien, R. L.; Russell, J. M.; Feibel, C.; Beck, C.; Castañeda, I.; Deino, A.; Cohen, A. S.
2018-04-01
Climate is thought to play a critical role in human evolution; however, this hypothesis is difficult to test due to a lack of long, high-quality paleoclimate records from key hominin fossil locales. To address this issue, we analyzed organic geochemical indicators of climate in a drill core from West Turkana, Kenya that spans ∼1.9-1.4 Ma, an interval that includes several important hominin evolutionary transitions. We analyzed the hydrogen isotopic composition of terrestrial plant waxes (δDwax) to reconstruct orbital-timescale changes in regional hydrology and their relationship with global climate forcings and the hominin fossil record. Our data indicate little change in the long-term mean hydroclimate during this interval, in contrast to inferred changes in the level of Lake Turkana, suggesting that lake level may be responding dominantly to deltaic progradation or tectonically-driven changes in basin configuration as opposed to hydroclimate. Time-series spectral analyses of the isotopic data reveal strong precession-band (21 kyr) periodicity, indicating that regional hydroclimate was strongly affected by changes in insolation. We observe an interval of particularly high-amplitude hydrologic variation at ∼1.7 Ma, which occurs during a time of high orbital eccentricity hence large changes in processionally-driven insolation amplitude. This interval overlaps with multiple hominin species turnovers, the appearance of new stone tool technology, and hominin dispersal out of Africa, supporting the notion that climate variability played an important role in hominin evolution.
Bosworth, Kris; Ford, Lysbeth; Hernandaz, Diley
2011-04-01
To ensure that schools are safe places where students can learn, researchers and educators must understand student and faculty safety concerns. This study examines student and teacher perceptions of school safety. Twenty-two focus groups with students and faculty were conducted in 11 secondary schools. Schools were selected from a stratified sample to vary in location, proximity to Indian reservations, size, and type. The data analysis was based on grounded theory. In 9 of 11 schools, neither faculty nor students voiced overwhelming concerns about safety. When asked what makes school safe, students tended to report physical security features. School climate and staff actions also increased feelings of safety. Faculty reported that relationships and climate are key factors in making schools safe. High student performance on standardized tests does not buffer students from unsafe behavior, nor does living in a dangerous neighborhood necessarily lead to more drug use or violence within school walls. School climate seemed to explain the difference between schools in which students and faculty reported higher versus lower levels of violence and alcohol and other drug use. The findings raise provocative questions about school safety and provide insight into elements that lead to perceptions of safety. Some schools have transcended issues of location and neighborhood to provide an environment perceived as safe. Further study of those schools could provide insights for policy makers, program planners, and educational leaders. © 2011, American School Health Association.
Lewandowsky, Stephan; Ballard, Timothy; Pancost, Richard D.
2015-01-01
This issue of Philosophical Transactions examines the relationship between scientific uncertainty about climate change and knowledge. Uncertainty is an inherent feature of the climate system. Considerable effort has therefore been devoted to understanding how to effectively respond to a changing, yet uncertain climate. Politicians and the public often appeal to uncertainty as an argument to delay mitigative action. We argue that the appropriate response to uncertainty is exactly the opposite: uncertainty provides an impetus to be concerned about climate change, because greater uncertainty increases the risks associated with climate change. We therefore suggest that uncertainty can be a source of actionable knowledge. We survey the papers in this issue, which address the relationship between uncertainty and knowledge from physical, economic and social perspectives. We also summarize the pervasive psychological effects of uncertainty, some of which may militate against a meaningful response to climate change, and we provide pointers to how those difficulties may be ameliorated. PMID:26460108
Media coverage of climate change in Russia: governmental bias and climate silence.
Poberezhskaya, Marianna
2015-01-01
This paper explores which actors and factors influence media coverage of climate change in Russia. It does this by analysing the coverage of three events by five Russian national newspapers (Komsomol'skaya pravda, Rossiyskaya gazeta, Izvestiya, Kommersant and Sovetskaya Rossiya). The three events are the Kyoto Conference in 1997, the Copenhagen Conference in 2009 and the Russian heat-wave of 2010. This paper concludes that regardless of the ownership structure of the newspapers or their dependence on advertising, there is little difference in quantity and quality of overall coverage on climate change. With most newspapers relying on Russian officials as information sources, almost none criticise or question Russian climate policy. Furthermore, the article concludes that, in Russia, the omission of climate change issues from discussion in national newspapers becomes a greater problem than biased coverage, as the lack of commentary decidedly prevents these issues from entering the public debate. © The Author(s) 2014.
Climate Change Impact Assessment of Food- and Waterborne Diseases.
Semenza, Jan C; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas
2012-04-01
The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998-2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options.
Climate Change Impact Assessment of Food- and Waterborne Diseases
Semenza, Jan C.; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas
2011-01-01
The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720
NASA Astrophysics Data System (ADS)
Kunkel, K.; Dissen, J.; Easterling, D. R.; Kulkarni, A.; Akhtar, F. H.; Hayhoe, K.; Stoner, A. M. K.; Swaminathan, R.; Thrasher, B. L.
2017-12-01
s part of the Department of State U.S.-India Partnership for Climate Resilience (PCR), scientists from NOAA NCEI, CICS-NC, Texas Tech University (TTU), Stanford University (SU), and the Indian Institute of Tropical Meteorology (IITM) held a workshop at IITM in Pune, India during 7-9 March 2017 on the development, techniques and applications of downscaled climate projections. Workshop participants from TTU, SU, and IITM presented state-of-the-art climate downscaling techniques using the ARRM method, NASA NEX climate products, CORDEX-South Asia and analysis tools for resilience planning and sustainable development. PCR collaborators in attendance included Indian practitioners, researchers and other NGO including the WRI Partnership for Resilience and Preparedness (PREP), The Energy and Resources Institute (TERI), and NIH. The scientific techniques were provided to workshop participants in a software package written in R by TTU scientists and several sessions were devoted to hands-on experience with the software package. The workshop further examined case studies on the use of downscaled climate data for decision making in a range of sectors, including human health, agriculture, and water resources management as well as to inform the development of the India State Action Plans. This talk will discuss key outcomes including information needs for downscaling climate projections, importance of QA/QC of the data, key findings from select case studies, and the importance of collaborations and partnerships to apply downscaling projections to help inform the development of the India State Action Plans.
Evan M. Oswald; Jennifer Pontius; Shelly A. Rayback; Paul G. Schaberg; Sandra H. Wilmot; Lesley-Ann Dupigny-Giroux
2018-01-01
This study compared 141 ecologically relevant climate metrics to field assessments of sugar maple (Acer saccharum Marsh.) canopy condition across Vermont, USA from 1988 to 2012. After removing the influence of disturbance events during this time period to isolate the impact of climate, we identified five climate metrics that were significantly...
Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart
2015-01-01
The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...
Feldbacher, Eva; Paun, Mihaela; Reckendorfer, Walter; Sidoroff, Manuela; Stanica, Adrian; Strimbu, Bogdan; Tusa, Iris; Vulturescu, Viorel; Hein, Thomas
2016-12-01
The Danube River-Danube Delta-Black Sea (DBS) region has witnessed major political, social and economic changes during the past three decades, which have profoundly affected the riverine, coastal and marine systems, their water management situation and the development of related research programmes. We reviewed the research activities in the DBS system of the past twenty years to determine the main funding bodies and to assess key research areas and how they varied over time and geographic region. As data basis we used a metadatabase filled with 478 projects addressing environmental and water management issues in the Danube River Basin, covering also the Danube Delta and the north-western Black Sea. As overall outcome extensive research efforts in the field of water management could be proven for the past two decades, despite the tumultuous times of political and economic transformations. One of the main findings was that EU funded projects played a key role for the development of transboundary research collaboration and were also the scientifically most productive one's. Historically, nutrient pollution was the main problem addressed, shifting to pollution in a broader sense and hydromorphological alterations in recent years. The newly arising challenges of climate change impacts and sediment management became important research questions in the last years, too. Most research was performed in the thematic field of navigation, followed by restoration and biodiversity issues. To meet all of the already identified and newly emerging challenges in the DBS System, cross-border and integrated (river-delta-sea) research activities are of major importance and have to be further promoted. We thus suggest drawing up a regional DBS Research Agenda linked to key challenges in water management to strengthen research collaboration and advance targeted scientific projects, an approach fostering also the scientific capacity in the region. Copyright © 2015 Elsevier B.V. All rights reserved.
Lins, Harry F.; Hirsch, Robert M.; Kiang, Julie
2010-01-01
Of all the potential threats posed by climatic variability and change, those associated with water resources are arguably the most consequential for both society and the environment (Waggoner, 1990). Climatic effects on agriculture, aquatic ecosystems, energy, and industry are strongly influenced by climatic effects on water. Thus, understanding changes in the distribution, quantity and quality of, and demand for water in response to climate variability and change is essential to planning for and adapting to future climatic conditions. A central role of the U.S. Geological Survey (USGS) with respect to climate is to document environmental changes currently underway and to develop improved capabilities to predict future changes. Indeed, a centerpiece of the USGS role is a new Climate Effects Network of monitoring sites. Measuring the climatic effects on water is an essential component of such a network (along with corresponding effects on terrestrial ecosystems). The USGS needs to be unambiguous in communicating with its customers and stakeholders, and with officials at the Department of the Interior, that although modeling future impacts of climate change is important, there is no more critical role for the USGS in climate change science than that of measuring and describing the changes that are currently underway. One of the best statements of that mission comes from a short paper by Ralph Keeling (2008) that describes the inspiration and the challenges faced by David Keeling in operating the all-important Mauna Loa Observatory over a period of more than four decades. Ralph Keeling stated: 'The only way to figure out what is happening to our planet is to measure it, and this means tracking changes decade after decade and poring over the records.' There are three key ideas that are important to the USGS in the above-mentioned sentence. First, to understand what is happening requires measurement. While models are a tool for learning and testing our understanding, they are not a substitute for observations. The second key idea is that measurement needs to be done over a period of many decades. When viewing hydrologic records over time scales of a few years to a few decades, trends commonly appear. However, when viewed in the context of many decades to centuries, these short-term trends are recognized as being part of much longer term oscillations. Thus, while we might want to initiate monitoring of important aspects of our natural resources, the data that will prove to be most useful in the next few years are those records that already have long-term continuity. USGS streamflow and groundwater level data are excellent examples of such long-term records. These measured data span many decades, follow standard protocols for collection and quality assurance, and are stored in a database that provides access to the full period of record. The third point from the Keeling quote relates to the notion of ?poring over the records.? Important trends will not generally jump off the computer screen at us. Thoughtful analyses are required to get past a number of important but confounding influences in the record, such as the role of seasonal variation, changes in water management, or influences of quasi-periodic phenomena, such as El Ni?o-Southern Oscillation (ENSO) or the Pacific Decadal Oscillation (PDO). No organization is better situated to pore over the records than the USGS because USGS scientists know the data, quality-assure the data, understand the factors that influence the data, and have the ancillary information on the watersheds within which the data are collected. To fulfill the USGS role in understanding climatic variability and change, we need to continually improve and strengthen two of our key capabilities: (1) preserving continuity of long-term water data collection and (2) analyzing and interpreting water data to determine how the Nation's water resources are changing. Understanding change in water resources
State Wildlife Action Plans as Tools for Adapting to a Continuously Changing Climate
NASA Astrophysics Data System (ADS)
Metivier, D. W.; Yocum, H.; Ray, A. J.
2015-12-01
Public land management plans are potentially powerful policies for building sustainability and adaptive capacity. Land managers are recognizing the need to respond to numerous climate change impacts on natural and human systems. For the first time, in 2015, the federal government required each state to incorporate climate change into their State Wildlife Action Plans (SWAP) as a condition for funding. As important land management tools, SWAPs have the potential to guide state agencies in shaping and implementing practices for climate change adaptation. Intended to be revised every ten years, SWAPs can change as conditions and understanding of climate change evolves. This study asks what practices are states using to integrate climate change, and how does this vary between states? To answer this question, we conducted a broad analysis among seven states (CO, MT, NE, ND, SD, UT, WY) and a more in-depth analysis of four states (CO, ND, SD, WY). We use seven key factors that represent best practices for incorporating climate change identified in the literature. These best practices are species prioritization, key habitats, threats, monitoring, partnerships and participation, identification of management options, and implementation of management options. The in-depth analysis focuses on how states are using climate change information for specific habitats addressed in the plans. We find that states are integrating climate change in many different ways, showing varying degrees of sophistication and preparedness. We summarize different practices and highlight opportunities to improve the effectiveness of plans through: communication tools across state lines and stakeholders, explicit targeting of key habitats, enforcement and monitoring progress and success, and conducting vulnerability analyses that incorporate topics beyond climate and include other drivers, trajectories, and implications of historic and future land-use change.
Actor groups, related needs, and challenges at the climate downscaling interface
NASA Astrophysics Data System (ADS)
Rössler, Ole; Benestad, Rasmus; Diamando, Vlachogannis; Heike, Hübener; Kanamaru, Hideki; Pagé, Christian; Margarida Cardoso, Rita; Soares, Pedro; Maraun, Douglas; Kreienkamp, Frank; Christodoulides, Paul; Fischer, Andreas; Szabo, Peter
2016-04-01
At the climate downscaling interface, numerous downscaling techniques and different philosophies compete on being the best method in their specific terms. Thereby, it remains unclear to what extent and for which purpose these downscaling techniques are valid or even the most appropriate choice. A common validation framework that compares all the different available methods was missing so far. The initiative VALUE closes this gap with such a common validation framework. An essential part of a validation framework for downscaling techniques is the definition of appropriate validation measures. The selection of validation measures should consider the needs of the stakeholder: some might need a temporal or spatial average of a certain variable, others might need temporal or spatial distributions of some variables, still others might need extremes for the variables of interest or even inter-variable dependencies. Hence, a close interaction of climate data providers and climate data users is necessary. Thus, the challenge in formulating a common validation framework mirrors also the challenges between the climate data providers and the impact assessment community. This poster elaborates the issues and challenges at the downscaling interface as it is seen within the VALUE community. It suggests three different actor groups: one group consisting of the climate data providers, the other two groups being climate data users (impact modellers and societal users). Hence, the downscaling interface faces classical transdisciplinary challenges. We depict a graphical illustration of actors involved and their interactions. In addition, we identified four different types of issues that need to be considered: i.e. data based, knowledge based, communication based, and structural issues. They all may, individually or jointly, hinder an optimal exchange of data and information between the actor groups at the downscaling interface. Finally, some possible ways to tackle these issues are discussed.
NASA Astrophysics Data System (ADS)
Wolfe, B. B.; Brock, B. E.; Yi, Y.; Turner, K. W.; Dobson, E. M.; Farquharson, N. M.; Edwards, T. W.; Hall, R. I.
2010-12-01
The impact of climate change and variability on water resources is a pressing issue for northern boreal freshwater landscapes in Canada. Water in this region plays a central role in maintaining the ecological integrity of ecosystems, economic development and prosperity, and traditional use of the land and its resources by indigenous communities. In the Peace-Athabasca-Slave River Corridor in western Canada, shrinking headwater glaciers, decreasing alpine snowmelt runoff, and declining river discharges impact sustainability of hydroelectric and oil sands production and the vitality of floodplain ecosystems of the Peace-Athabasca and Slave river deltas. In the Old Crow Flats of northern Yukon Territory, declining lake and river water levels threaten wildlife populations and cultural activities of the Vuntut Gwitchin First Nation. In Wapusk National Park in northeastern Manitoba, over 10,000 lakes provide key habitat for large populations of wildlife, but their hydrological fate under conditions of continued warming is uncertain. Inadequate short- and long-term understanding of hydrological variability and its relationship to climate change hamper informed stewardship of water resources in these remote landscapes and presents a significant challenge to managers and policy-makers. Over the past decade, our research has targeted these critical water-related issues. Investigations have focused on integrating contemporary hydroecological studies with long-term (past centuries to millennia) records of hydroecological changes derived from analyses of lake sediment cores using multi-proxy techniques. Spearheaded by the use of water isotope tracers, these leading-edge approaches to water science have provided critical new knowledge to inform stewardship of these important landscapes to contemporary conditions and in light of projected future scenarios. For example, water isotope tracers were used to map the spatial extent of river flooding in the Slave River Delta over a three-year period. Analyses identifed that a positive relationship exists between the spatial extent of spring flooding in the delta and discharge on the Slave River and upstream tributaries, suggesting that upstream flow generation plays a key role in spring flooding and water replenishment of the delta. Results are particularly timely for the Government of the Northwest Territories as they prepare to negotiate with upstream jurisdictions over appropriate water resource allocation. In a milestone study, isotope-based paleohydrological reconstructions from the Peace-Athabasca Delta contributed to defining the effects of climate change over the past ~1000 years on the quantity and seasonality of river discharge in the upper Mackenzie River system. For water resource managers, a key feature that emerged from these results is that the river hydrograph of the 21st century in this region is likely evolving towards low-flow conditions that are unprecedented over the past millennium. These and other examples will be highlighted in this presentation.
NASA Astrophysics Data System (ADS)
Power, Scott; Sadler, Brian; Nicholls, Neville
2005-06-01
Water flow into dams that supply Perth in Western Australia (WA) has fallen by 50% since the mid-1970s, and this has severely tested water managers. Climate change scenarios available since the 1980s have suggested that global warming will reduce rainfall over southern Australia, including Perth. Water managers recognize the uncertainties associated with the projections, including the significant differences that exist between the timing and magnitude of the observed changes and modeled projections. The information has, nevertheless, influenced their decision making.To understand why, we need to consider the broader environment in which the water managers operate. One key factor is that the imposition of severe water restrictions can lead to significant economic loss and increased unemployment. Prolonged restrictions can therefore create strong debate in the wider community. In recognition of this, state government policy requires that water managers ensure that the chance of having severe restrictions is kept low. Severe restrictions have not been imposed since 1979, but moderate restrictions are more common, and were imposed as recently as 2002. Scrutiny of water management can become intense even after moderate restrictions are imposed, and at these times it is unacceptable to many people if a known risk—even if very uncertain—is perceived to have been ignored in earlier planning. Climate science has established regional drying driven by global warming as a risk, and so global warming has to be addressed in planning. Water managers also need climate science to reassure the public that the restrictions imposed were necessary because of unprecedented changes in rainfall, not because of poor management.In recent years much of the influence that climate science has had on water managers can be attributed to the Indian Ocean Climate Initiative (IOCI). IOCI is a research partnership between the Western Australia Water Corporation, other state government agencies, and two national meteorological research organizations. Water managers saw their participation in IOCI as one strand of a broader risk management plan. They did not have the luxury of deferring important decision making for certainty that climate science might never bring, but were very interested in what climate science might provide “now.”The participation of water managers in IOCI enabled them to influence research planning to better meet their needs. Water managers did not just want predictions or technical explanations of an individual scientist's latest work. They wanted reliable and balanced advice on broader issues, explanations, clarification, realistic expectations, and an appreciation of uncertainty. They wanted climate information related to water management issues in a form relevant to the region. “Localized” information is more suitable for inclusion in their decision making, and of more use to them for both informing, and stimulating discussion within, the wider community.
Climate change and coastal vulnerability assessment: Scenarios for integrated assessment
Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.
2008-01-01
Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.
Quantifying uncertainty in climate change science through empirical information theory.
Majda, Andrew J; Gershgorin, Boris
2010-08-24
Quantifying the uncertainty for the present climate and the predictions of climate change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models is a central issue in climate change science. Here, a systematic approach to these issues with firm mathematical underpinning is developed through empirical information theory. An information metric to quantify AOS model errors in the climate is proposed here which incorporates both coarse-grained mean model errors as well as covariance ratios in a transformation invariant fashion. The subtle behavior of model errors with this information metric is quantified in an instructive statistically exactly solvable test model with direct relevance to climate change science including the prototype behavior of tracer gases such as CO(2). Formulas for identifying the most sensitive climate change directions using statistics of the present climate or an AOS model approximation are developed here; these formulas just involve finding the eigenvector associated with the largest eigenvalue of a quadratic form computed through suitable unperturbed climate statistics. These climate change concepts are illustrated on a statistically exactly solvable one-dimensional stochastic model with relevance for low frequency variability of the atmosphere. Viable algorithms for implementation of these concepts are discussed throughout the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter
2012-03-01
This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.
Peer Victimization and Authoritative School Climate: A Multilevel Approach
ERIC Educational Resources Information Center
Cornell, Dewey; Shukla, Kathan; Konold, Timothy
2015-01-01
School climate is widely recognized as an important influence on peer victimization in schools. The purpose of this study is to examine how authoritative school climate theory provides a framework for conceptualizing 2 key features of school climate--disciplinary structure and student support--that are associated with 3 measures of peer…
Multilevel Multi-Informant Structure of the Authoritative School Climate Survey
ERIC Educational Resources Information Center
Konold, Timothy; Cornell, Dewey; Huang, Francis; Meyer, Patrick; Lacey, Anna; Nekvasil, Erin; Heilbrun, Anna; Shukla, Kathan
2014-01-01
The Authoritative School Climate Survey was designed to provide schools with a brief assessment of 2 key characteristics of school climate--disciplinary structure and student support--that are hypothesized to influence 2 important school climate outcomes--student engagement and prevalence of teasing and bullying in school. The factor structure of…
Expanding the Foundation: Climate Change and Opportunities for Educational Research
ERIC Educational Resources Information Center
Henderson, Joseph; Long, David; Berger, Paul; Russell, Constance; Drewes, Andrea
2017-01-01
Human-caused climate change is a dominant global challenge. Unlike other disciplines and fields, there has as yet been only limited attention to climate change in educational research generally, and in educational foundations in particular. Education is key to assisting humanity in mitigating and adapting to climate change, and educational…
ERIC Educational Resources Information Center
Martin, Angela; Kennedy, Barbara; Stocks, Belinda
2006-01-01
The psychological climate literature examines links between facets of climate, such as service orientation and a range of individual and organisational outcomes including work attitudes and performance. This study investigated the relationship between the service climate of an Australian university and outcomes important to its key stakeholders. A…
NASA Astrophysics Data System (ADS)
Miller, M. K.; MacKenzie, S.
2011-12-01
Many aquariums, zoos, museums, and other informal science education (ISE) centers across the country want to connect their visitors with the important issue of climate change. Communicating climate change and the science it embodies is no easy task though, and ISE institutions are seeking creative and collaborative ways to best interpret the issue with their audiences. Some of these institutions, particularly aquariums and zoos, have live specimens on exhibit that stand to be severely impacted by climate change. Others see it as an educational and moral imperative to address such an important issue affecting the world today, especially one so close to the core mission of their institution. Regardless, informal science educators have noticed that the public is increasingly coming to them with questions related to climate change, and they want to be able to respond as effectively as they can. The Monterey Bay Aquarium is one partner in a coalition of aquariums, zoos, museums and informal science education institutions that are working together to present climate change to its visitors. These institutions hold enormous public trust as sources of sound scientific information. Whether it is through exhibitions like the Aquarium's Hot Pink Flamingos: Stories of Hope in a Changing Sea, interpretive and communication techniques to navigate challenging climate change discussions, or with sustainability planning and operational greening efforts, there is a concerted movement to improve the capacity of these institutions to respond to the issue. Ultimately, their goal is to inspire visitors in a way that positively impacts the country's discourse surrounding climate change, and helps steer our dialog toward a focus on solutions. In addition to the Hot Pink Flamingos exhibit, the Aquarium is also working with the coalition to build a website, www.climateinterpreter.org, that can serve as an online platform for sharing the experiences of what different partners have learned at their respective locations, and a clearinghouse for resources related to effectively communicating climate change. While the website was built for informal science educators, its content and information will be a valuable resource for everyone in the science and education community. There is a broad need for a better way to present climate change to a variety of audiences, whether it is the public, students, or just a colleague and peer.
NASA Astrophysics Data System (ADS)
Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.
2013-12-01
Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.
Impact of knowledge and misconceptions on benefit and risk perception of CCS.
Wallquist, Lasse; Visschers, Vivianne H M; Siegrist, Michael
2010-09-01
Carbon Dioxide Capture and Storage (CCS) is assumed to be one of the key technologies in the mitigation of climate change. Public acceptance may have a strong impact on the progress of this technology. Benefit perception and risk perception are known to be important determinants of public acceptance of CCS. In this study, the prevalence and effect of cognitive concepts underlying laypeople's risk perception and benefit perception of CCS were examined in a representative survey (N=654) in Switzerland. Results confirm findings from previous qualitative studies and show a quantification of a variety of widespread intuitive concepts that laypeople hold about storage mechanisms as well as about leakage and socioeconomic issues, which all appeared to influence risk perception and benefit perception. The perception of an overpressurized reservoir and concerns about diffuse impacts furthermore amplified risk perception. Appropriate images about storage mechanisms and climate change awareness were increasing the perception of benefits. Knowledge about CO2 seemed to lower both perceived benefits and perceived risks. Implications for risk communication and management are discussed.
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Kurths, Jürgen
2013-04-01
Statistical analysis of dependencies amongst paleoclimate data helps to infer on the climatic processes they reflect. Three key challenges have to be addressed, however: the datasets are heterogeneous in time (i) and space (ii), and furthermore time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. To address these issues in a flexible way we developed the paleoclimate network framework, inspired by the increasing application of complex networks in climate research. Nodes in the paleoclimate network represent a paleoclimate archive, and an associated time series. Links between these nodes are assigned, if these time series are significantly similar. Therefore, the base of the paleoclimate network is formed by linear and nonlinear estimators for Pearson correlation, mutual information and event synchronization, which quantify similarity from irregularly sampled time series. Age uncertainties are propagated into the final network analysis using time series ensembles which reflect the uncertainty. We discuss how spatial heterogeneity influences the results obtained from network measures, and demonstrate the power of the approach by inferring teleconnection variability of the Asian summer monsoon for the past 1000 years.
Exploring emotional climate in preservice science teacher education
NASA Astrophysics Data System (ADS)
Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; Sandhu, Maryam; Sandhu, Satwant
2013-09-01
Classroom emotional climates (ECs) are interrelated with students' engagement with university courses. Despite growing interest in emotions and EC research, little is known about the ways in which social interactions and different subject matter mediate ECs in preservice science teacher education classes. In this study we investigated the EC and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the EC during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the EC. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented EC data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral EC. The structure of these interactions can inform the practice of other science educators who wish to produce positive ECs in their classes. The study also extends and explicates the construct of intensity of EC.
Finding a Way out of a Corner: Reply to Comments on “Climate Science in a Postmodern World”
NASA Astrophysics Data System (ADS)
Verosub, Kenneth L.
2011-04-01
It was never my intention to claim that postmodernism was the explanation for the climate change debate. Rather, I was trying to provide a somewhat different perspective on this controversial topic in hopes of broadening the discussion and lowering the volume. I am well aware of the scenario that Hapke lays out; in fact, one could describe similar scenarios for other issues where science intersects with public policy and where people hold strong opinions, such as evolution and creationism, the development of new energy resources, and the safety of genetically modified organisms. The key statement in Hapke's comment is that “similar messages are being heard daily by millions of people, and…[apparently] many believe them.” What we as scientists have not done but need to do is gain a better understanding of why so many people believe these messages. Only then will we be able to figure out an effective response to them. My observation about the pervasiveness of postmodernism in modern society was meant to be a small contribution toward gaining that understanding.