Sample records for climate mitigation potential

  1. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    PubMed

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  2. A Screening Assessment of the Potential Impacts of Climate ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications climate change has had on combined sewer overflow (CSO) mitigation in the Great Lakes and New England Regions. This report describes the potential scope and magnitude of climate change impacts on combined sewer overflow (CSOs) mitigation efforts in the Great Lakes Region and New England Region.

  3. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    PubMed

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  4. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    PubMed Central

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  5. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    PubMed

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  6. Forest environmental investments and implications for climate change mitigation.

    Treesearch

    Ralph J. Alig; Lucas S. Bair

    2006-01-01

    Forest environmental conditions are affected by climate change, but investments in forest environmental quality can be used as part of the climate change mitigation strategy. A key question involving the potential use of forests to store more carbon as part of climate change mitigation is the impact of forest investments on the timing and quantity of forest volumes...

  7. Towards demand-side solutions for mitigating climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Roy, Joyashree; Lamb, William F.; Azevedo, Inês M. L.; Bruine de Bruin, Wändi; Dalkmann, Holger; Edelenbosch, Oreane Y.; Geels, Frank W.; Grubler, Arnulf; Hepburn, Cameron; Hertwich, Edgar G.; Khosla, Radhika; Mattauch, Linus; Minx, Jan C.; Ramakrishnan, Anjali; Rao, Narasimha D.; Steinberger, Julia K.; Tavoni, Massimo; Ürge-Vorsatz, Diana; Weber, Elke U.

    2018-04-01

    Research on climate change mitigation tends to focus on supply-side technology solutions. A better understanding of demand-side solutions is missing. We propose a transdisciplinary approach to identify demand-side climate solutions, investigate their mitigation potential, detail policy measures and assess their implications for well-being.

  8. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    PubMed

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  9. 78 FR 12807 - Call for Expert Reviewers to the U.S. Government Review of the Working Group III Contribution to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... on Climate Change (IPCC), Mitigation of Climate Change SUMMARY: The United States Global Change... Panel on Climate Change (IPCC), Mitigation of Climate Change. The United Nations Environment Programme...-economic information for understanding the scientific basis of climate change, potential impacts, and...

  10. The potential of exceptional climate change education on individual lifetime carbon emissions

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno, D.; Todd, A. M.

    2016-12-01

    Strategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. We investigate the role of education on individual carbon emissions using case studies from an intensive one-year university general education course focused on climate science and solutions. Results from this analysis demonstrate that students who completed the university course had significantly lower carbon emissions compared to a control group. If such an educational experience could be expanded throughout the United States, we estimate that education could be as valuable a climate change mitigation method as improving the fuel efficiency of automobiles. Relatedly, we also report on a new approach to apply real-time cloud based data to track the environmental impact of students during their participation in educational climate change programs. Such a tool would help illustrate the potential of education as a viable carbon mitigation strategy.

  11. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    PubMed

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Global potential of biospheric carbon management for climate mitigation.

    PubMed

    Canadell, Josep G; Schulze, E Detlef

    2014-11-19

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.

  13. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  14. Land use and climate change: A global perspective on mitigation options: discussion

    Treesearch

    R. J. Alig

    2010-01-01

    Land use change can play a very significant role in climate change mitigation and adaptation, as part of efficient portfolios of many land-related activities. Questions involving forestry’s and agriculture’s potential contributions to climate change mitigation are framed within a national context of increased demands for cropland, forage, and wood products to help feed...

  15. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    PubMed Central

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  16. A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions (Final Report)

    EPA Science Inventory

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications...

  17. Bird response to future climate and forest management focused on mitigating climate change

    Treesearch

    Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh

    2016-01-01

    Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...

  18. Strong biotic influences on regional patterns of climate regulation services

    NASA Astrophysics Data System (ADS)

    Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.

    2017-05-01

    Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.

  19. Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States

    USDA-ARS?s Scientific Manuscript database

    Current quantification of Climate Warming Mitigation Potential (CWMP) of biomass-derived energy has focused primarily on its biogeochemical effects. This study used site-level observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate the Community Land Model (CLM...

  20. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  1. Implications of Climate Mitigation for Future Agricultural Production

    NASA Technical Reports Server (NTRS)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.

  2. The economics of abrupt climate change.

    PubMed

    Perrings, Charles

    2003-09-15

    The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.

  3. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  4. Quantification of mitigation potentials of agricultural practices for Europe

    NASA Astrophysics Data System (ADS)

    Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.

    2009-04-01

    Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with the largest positive effect on N2O emissions. Overall the results showed that the additional mitigation potential of each individual measure is limited, but taken together they have a significant mitigation potential of about 10 percent of the current GHG emissions from agriculture. Besides, most of the measures with high mitigation potentials are associated with no or low implementation costs. Although CH4 and N2O are the most important GHG emitted from agricultural activities, it is more difficult to mitigate these emissions than increasing soil organic carbon (SOC) stocks and thus compensate them through carbon sequestration. However, the effect on carbon is only temporary and sequestered SOC stocks can easily be lost again, while for N2O the emission reduction is permanent and non-saturating. Another important implication that follows from our results is the large regional difference with regard to mitigation potential and feasibility of implementation. Policy measures to support agricultural mitigation should therefore be adjusted to regional conditions.

  5. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    PubMed

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  6. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.

    PubMed

    Lin, Yumei; Wu, Wenxiang; Ge, Quansheng

    2015-11-01

    Climate change would cause negative impacts on future agricultural production and food security. Adaptive measures should be taken to mitigate the adverse effects. The objectives of this study were to simulate the potential effects of climate change on maize yields in Heilongjiang Province and to evaluate two selected typical household-level autonomous adaptive measures (cultivar changes and planting time adjustments) for mitigating the risks of climate change based on the CERES-Maize model. The results showed that flowering duration and maturity duration of maize would be shortened in the future climate and thus maize yield would reduce by 11-46% during 2011-2099 relative to 1981-2010. Increased CO2 concentration would not benefit maize production significantly. However, substituting local cultivars with later-maturing ones and delaying the planting date could increase yields as the climate changes. The results provide insight regarding the likely impacts of climate change on maize yields and the efficacy of selected adaptive measures by presenting evidence-based implications and mitigation strategies for the potential negative impacts of future climate change. © 2014 Society of Chemical Industry.

  7. The potential role for management of U.S. public lands in greenhouse gas mitigation and climate policy.

    PubMed

    Olander, Lydia P; Cooley, David M; Galik, Christopher S

    2012-03-01

    Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.

  8. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here, we discuss the most recent advances on the application of soil mapping and modeling to support climate change mitigation and adaptation strategies; and These strategies are a key component of the implementation of sustainable land management policies need to be integrated are critical to. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. Muñoz-Rojas, M., Pereira, P., Brevic, E., Cerda, A., Jordan, A. (2017) Soil mapping and processes models for sustainable land management applied to modern challenges. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006

  9. Bethany Speer | NREL

    Science.gov Websites

    Strategic Energy Analysis Center. Areas of Expertise International economic policy Climate change mitigation Markets Climate change mitigation policies Education M.A. in global finance, trade and economic Keyser, Suzanne Tegen. 2016. Floating Offshore Wind in California: Gross Potential for Jobs and Economic

  10. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  11. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  12. Mitigation, adaptation, and climate change: results from recent research on US timber markets.

    Treesearch

    Brent Sohngen; Ralph Alig

    2000-01-01

    This paper reviews recent studies that have addressed how US timber markets may adapt to climate change, and how US forests could be used to mitigate potential climate change. The studies are discussed in light of the ecological and economic assumptions used to estimate adaptation. Estimates of both economic impacts and carbon sequestration costs depend heavily on the...

  13. Potentials to mitigate climate change using biochar - the Austrian perspective

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar production), each year 0.38 megatons CO2e could potentially be mitigated in Austria, which is 0.4% of total or 5% of all GHG emissions caused by agriculture in Austria in 2010. In order to produce this amount of biochar annually, about 27 medium-scale or 220 small-scale pyrolysis plants would be required. The economic analysis revealed that biochar yield, carbon sequestration and feedstock costs have the highest influence on GHG abatement costs. Further reading: Bruckman, V.J. and Klinglmüller, M. (2014): Potentials to Mitigate Climate Change Using Biochar - the Austrian Perspective. In: Bruckman, V.J., Liu, J., Başak, B.B. and Apaydın-Varol, E. (Eds.) Potentials to Mitigate Climate Change Using Biochar. IUFRO Occasional Papers 27.

  14. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation

    Treesearch

    Matthew W. Warren; Steve Frolking; Zhaohua Dai; Sofyan Kurnianto

    2016-01-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics...

  15. Sensitivity of climate mitigation strategies to natural disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.

    2013-02-19

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because ofmore » potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies« less

  16. Survey data reflecting popular opinions of the causes and mitigation of climate change.

    PubMed

    Thompson, Jonathan E

    2017-10-01

    The data presented within this manuscript reports the results of a 20-question opinion survey concerning popular beliefs regarding the causes of and possible mitigation of climate change. The results and opinions from 746 survey respondents are presented. The data reflects certain misconceptions of climate change, and is useful for investigators to begin forming opinions of the public's knowledge regarding the potentially inflammatory topics of climate change, greenhouse gases, and geo-engineering.

  17. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.

    PubMed

    Li, Li; Xu, Jianhua; Hu, Jianxin; Han, Jiarui

    2014-05-06

    Reducing nitrous oxide (N2O) emissions offers the combined benefits of mitigating climate change and protecting the ozone layer. This study estimates historical and future N2O emissions and explores the mitigation potential for China's chemical industry. The results show that (1) from 1990 to 2012, industrial N2O emissions in China grew by some 37-fold from 5.07 to 174 Gg (N2O), with total accumulated emissions of 1.26 Tg, and (2) from 2012 to 2020, the projected emissions are expected to continue growing rapidly from 174 to 561 Gg under current policies and assuming no additional mitigation measures. The total accumulated mitigation potential for this forecast period is about 1.54 Tg, the equivalent of reducing all the 2011 greenhouse gases from Australia or halocarbon ozone-depleting substances from China. Adipic acid production, the major industrial emission source, contributes nearly 80% of the industrial N2O emissions, and represents about 96.2% of the industrial mitigation potential. However, the mitigation will not happen without implementing effective policies and regulatory programs.

  18. The role of non-CO2 mitigation within the dairy sector in pursuing climate goals

    NASA Astrophysics Data System (ADS)

    Rolph, K.; Forest, C. E.

    2017-12-01

    Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.

  19. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  20. Natural climate solutions

    NASA Astrophysics Data System (ADS)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  1. Natural climate solutions.

    PubMed

    Griscom, Bronson W; Adams, Justin; Ellis, Peter W; Houghton, Richard A; Lomax, Guy; Miteva, Daniela A; Schlesinger, William H; Shoch, David; Siikamäki, Juha V; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-31

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO 2 equivalent (PgCO 2 e) y -1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO 2 e y -1 ) represents cost-effective climate mitigation, assuming the social cost of CO 2 pollution is ≥100 USD MgCO 2 e -1 by 2030. Natural climate solutions can provide 37% of cost-effective CO 2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO 2 -1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  2. Natural climate solutions

    PubMed Central

    Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-01-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change. PMID:29078344

  3. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  4. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickett, Jeffery T., E-mail: J.Spickett@curtin.edu.a; Brown, Helen L., E-mail: h.brown@curtin.edu.a; Katscherian, Dianne, E-mail: Dianne.Katscherian@health.wa.gov.a

    2011-04-15

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location.more » Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to address the potential health impacts of climate change.« less

  5. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE PAGES

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...

    2015-10-28

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  6. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.

    PubMed

    Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad

    2016-04-01

    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  8. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    PubMed

    Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric

    2015-01-01

    Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.

  9. Public perceptions about climate change mitigation in British Columbia's forest sector

    PubMed Central

    Hagerman, Shannon; Kozak, Robert; Hoberg, George

    2018-01-01

    The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041

  10. Public perceptions about climate change mitigation in British Columbia's forest sector.

    PubMed

    Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George

    2018-01-01

    The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.

  11. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  12. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    PubMed

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  13. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds

    PubMed Central

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union. PMID:26681982

  14. Can reducing black carbon emissions counteract global warming?

    PubMed

    Bond, Tami C; Sun, Haolin

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. We review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. We argue that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. We synthesize results from published climate-modeling studies to obtain a global warming potential for black carbon relative to that of CO2 (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. We find that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, we propose a role for black carbon in climate mitigation strategies that is consistent with the apparently conflicting arguments raised during our discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement.

  15. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  16. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers.

    PubMed

    Haines, Andy; McMichael, Anthony J; Smith, Kirk R; Roberts, Ian; Woodcock, James; Markandya, Anil; Armstrong, Ben G; Campbell-Lendrum, Diarmid; Dangour, Alan D; Davies, Michael; Bruce, Nigel; Tonne, Cathryn; Barrett, Mark; Wilkinson, Paul

    2009-12-19

    This Series has examined the health implications of policies aimed at tackling climate change. Assessments of mitigation strategies in four domains-household energy, transport, food and agriculture, and electricity generation-suggest an important message: that actions to reduce greenhouse-gas emissions often, although not always, entail net benefits for health. In some cases, the potential benefits seem to be substantial. This evidence provides an additional and immediate rationale for reductions in greenhouse-gas emissions beyond that of climate change mitigation alone. Climate change is an increasing and evolving threat to the health of populations worldwide. At the same time, major public health burdens remain in many regions. Climate change therefore adds further urgency to the task of addressing international health priorities, such as the UN Millennium Development Goals. Recognition that mitigation strategies can have substantial benefits for both health and climate protection offers the possibility of policy choices that are potentially both more cost effective and socially attractive than are those that address these priorities independently. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Engaging western landowners in climate change mitigation: a guide to carbon-oriented forest and range management and carbon market opportunities

    Treesearch

    David D. Diaz; Susan Charnley; Hannah Gosnell

    2009-01-01

    There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...

  18. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In ordermore » to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.« less

  19. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.

    PubMed

    Rial-Lovera, Karen; Davies, W Paul; Cannon, Nicola D

    2017-01-01

    The UK, like the rest of the world, is confronting the impacts of climate change. Further changes are expected and they will have a profound effect on agriculture. Future crop production will take place against increasing CO 2 levels and temperatures, decreasing water availability, and increasing frequency of extreme weather events. This review contributes to research on agricultural practices for climate change, but with a more regional perspective. The present study explores climate change impacts on UK agriculture, particularly food crop production, and how to mitigate and build resilience to climate change by adopting and/or changing soil management practices, including fertilisation and tillage systems, new crop adoption and variety choice. Some mitigation can be adopted in the shorter term, such as changes in crop type and reduction in fertiliser use, but in other cases the options will need greater investment and longer adaptation period. This is the case for new crop variety development and deployment, and possible changes to soil cultivations. Uncertainty of future weather conditions, particularly extreme weather, also affect decision-making for adoption of practices by farmers to ensure more stable and sustainable production. Even when there is real potential for climate change mitigation, it can sometimes be more difficult to accomplish with certainty on-farm. Better future climate projections and long-term investments will be required to create more resilient agricultural systems in the UK in the face of climate change challenges. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Global health and climate change: moving from denial and catastrophic fatalism to positive action.

    PubMed

    Costello, Anthony; Maslin, Mark; Montgomery, Hugh; Johnson, Anne M; Ekins, Paul

    2011-05-13

    The health effects of climate change have had relatively little attention from climate scientists and governments. Climate change will be a major threat to population health in the current century through its potential effects on communicable disease, heat stress, food and water security, extreme weather events, vulnerable shelter and population migration. This paper addresses three health-sector strategies to manage the health effects of climate change-promotion of mitigation, tackling the pathways that lead to ill-health and strengthening health systems. Mitigation of greenhouse gas (GHG) emissions is affordable, and low-carbon technologies are available now or will be in the near future. Pathways to ill-health can be managed through better information, poverty reduction, technological innovation, social and cultural change and greater coordination of national and international institutions. Strengthening health systems requires increased investment in order to provide effective public health responses to climate-induced threats to health, equitable treatment of illness, promotion of low-carbon lifestyles and renewable energy solutions within health facilities. Mitigation and adaptation strategies will produce substantial benefits for health, such as reductions in obesity and heart disease, diabetes, stress and depression, pneumonia and asthma, as well as potential cost savings within the health sector. The case for mitigating climate change by reducing GHGs is overwhelming. The need to build population resilience to the global health threat from already unavoidable climate change is real and urgent. Action must not be delayed by contrarians, nor by catastrophic fatalists who say it is all too late. © 2011 Royal Society

  1. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    PubMed

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits.

    PubMed

    Ebeling, Johannes; Yasué, Maï

    2008-05-27

    Recent proposals to compensate developing countries for reducing emissions from deforestation (RED) under forthcoming climate change mitigation regimes are receiving increasing attention. Here we demonstrate that if RED credits were traded on international carbon markets, even moderate decreases in deforestation rates could generate billions of Euros annually for tropical forest conservation. We also discuss the main challenges for a RED mechanism that delivers real climatic benefits. These include providing sufficient incentives while only rewarding deforestation reductions beyond business-as-usual scenarios, addressing risks arising from forest degradation and international leakage, and ensuring permanence of emission reductions. Governance may become a formidable challenge for RED because some countries with the highest RED potentials score poorly on governance indices. In addition to climate mitigation, RED funds could help achieve substantial co-benefits for biodiversity conservation and human development. However, this will probably require targeted additional support because the highest biodiversity threats and human development needs may exist in countries that have limited income potentials from RED. In conclusion, how successfully a market-based RED mechanism can contribute to climate change mitigation, conservation and development will strongly depend on accompanying measures and carefully designed incentive structures involving governments, business, as well as the conservation and development communities.

  3. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  4. Long-term climate change mitigation potential with organic matter management on grasslands.

    PubMed

    Ryals, Rebecca; Hartman, Melannie D; Parton, William J; DeLonge, Marcia S; Silver, Whendee L

    2015-03-01

    Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.

  5. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  6. Invasive alien pests threaten the carbon stored in Europe's forests.

    PubMed

    Seidl, Rupert; Klonner, Günther; Rammer, Werner; Essl, Franz; Moreno, Adam; Neumann, Mathias; Dullinger, Stefan

    2018-04-24

    Forests mitigate climate change by sequestering large amounts of carbon (C). However, forest C storage is not permanent, and large pulses of tree mortality can thwart climate mitigation efforts. Forest pests are increasingly redistributed around the globe. Yet, the potential future impact of invasive alien pests on the forest C cycle remains uncertain. Here we show that large parts of Europe could be invaded by five detrimental alien pests already under current climate. Climate change increases the potential range of alien pests particularly in Northern and Eastern Europe. We estimate the live C at risk from a potential future invasion as 1027 Tg C (10% of the European total), with a C recovery time of 34 years. We show that the impact of introduced pests could be as severe as the current natural disturbance regime in Europe, calling for increased efforts to halt the introduction and spread of invasive alien species.

  7. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  8. Early benefits of mitigation in risk of regional climate extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2017-04-01

    Large differences in climate outcomes are projected by the end of this century depending on whether greenhouse gas emissions continue to increase or are reduced sufficiently to limit total warming to below 2 °C (ref. ). However, it is generally thought that benefits of mitigation are hidden by internal climate variability until later in the century. Here we show that if the likelihood of extremely hot seasons is considered, the benefits of mitigation emerge more quickly than previously thought. It takes less than 20 years of emissions reductions in many regions for the likelihood of extreme seasonal warmth to reduce by more than half following initiation of mitigation. Additionally we show that the latest possible date at which the probability of extreme seasonal temperatures will be halved through emissions reductions consistent with the 2 °C target is in the 2040s. Exposure to climate risk is therefore reduced markedly and rapidly with substantial reductions of greenhouse gas emissions, demonstrating that the early mitigation needed to limit eventual warming below potentially dangerous levels benefits societies in the nearer term not just in the longer-term future.

  9. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the economic risks posed to the United States by six categories of climate change impacts: crop yield, energy demand, coastal storm damage, criminal activity, labor productivity, and mortality [1]. At a national level, measured by impact on gross domestic product, increased mortality and decreased labor productivity pose the large risks, followed by increased energy demand and coastal damages. Changes in crop yield and crime have smaller impacts. The ACP was not intended to conduct a benefit-cost analysis of climate change mitigation. It assessed the economic consequences of future impacts on an economy with a structure equivalent to that of the current economy, not accounting for socio-economic development and adaptation, and did not assess the cost of mitigation. One of its primary goals was to inform adaptation decisions that are conventionally considered 'endogenous' in economic analyses of climate change. Nonetheless, its results provide insight into the potential of mitigation to manage climate risk. Differences between RCP 8.5 (moderately-high business-as-usual emissions), RCP 4.5 (moderate mitigation) and RCP 2.6 (extremely strong mitigation) are not apparent until mid-century and become significant only late in the century. For all impacts except coastal damages, mitigation significantly reduces uncertainty in late-century impact estimates. Nationally, mitigation significantly and monotonically reduces median projected labor productivity losses and violent crime. Switching from RCP 8.5 to RCP 4.5 also significantly reduces median projections of mortality and energy demand, but the domestic value to the U.S. of further mitigation to RCP 2.6 is less clear. The marginal benefits decline in part because some regions of the country (especially the Northwest) may experience increased crop yields, reduced mortality, and reduced energy demand under all RCPs. Because of the slow response time of sea level to change in emissions, the coastal risk reduction in the current century from mitigation is least clear. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  10. Integrating U.S. climate, energy, and transportation policies : RAND workshops address challenges and potential solutions

    DOT National Transportation Integrated Search

    2009-01-01

    There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...

  11. Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector: a case study of North East Scotland.

    PubMed

    Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete

    2013-05-15

    The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Climate mitigation and the future of tropical landscapes.

    PubMed

    Thomson, Allison M; Calvin, Katherine V; Chini, Louise P; Hurtt, George; Edmonds, James A; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A; Janetos, Anthony C

    2010-11-16

    Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.

  13. Considering WTO law in the design of climate change regimes beyond Kyoto

    NASA Astrophysics Data System (ADS)

    Gaines, Sanford E.

    2009-11-01

    This article describes the most important provisions of World Trade Organization (WTO) agreements that should be considered in designing laws and regulations under likely post-Kyoto climate change mitigation regimes. The Kyoto Protocol and the expected post-Kyoto international climate agreement depend on national measures to implement market-based mitigation measures. This market strategy promotes international exchanges of goods, investments, and services such as cross-border trading of credits for emissions reductions and transnational financing for projects that avoid emissions through the Clean Development Mechanism. Moreover, the United States and other countries, concerned over "leakage" of greenhouse gas (GHG) emissions through relocation of industry to other countries coupled with political worry over manufacturing competitiveness, have proposed national climate legislation containing border adjustments on imported goods or implicit subsidies for national producers, raising additional WTO considerations. The article assesses the likely effectiveness of such trade-related measures in achieving climate change mitigation goals and the potential trade policy infringements and trade distortions that they might bring about. Alternative strategies for achieving GHG mitigation goals in closer conformity with WTO law and policy will be suggested.

  14. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    NASA Astrophysics Data System (ADS)

    Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.

    2017-11-01

    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.

  15. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    NASA Astrophysics Data System (ADS)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

  16. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    PubMed

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John Wiley & Sons Ltd.

  17. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates of the above will be presented based on recent and earlier meteorological, energy, thermal environmental, emissions, and photochemical modeling studies for California and Texas.

  18. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    NASA Astrophysics Data System (ADS)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  19. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  20. Assessing the Benefits of Global Climate Stabilization Within an Integrated Modeling Framework

    NASA Astrophysics Data System (ADS)

    Beach, R. H.

    2015-12-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been a number of studies of climate change impacts on agriculture or forestry. However, relatively few studies explore climate change impacts on both agriculture and forests simultaneously, including the interactions between alternative land uses and implications for market outcomes. Additionally, there is a lack of detailed analyses of the effects of stabilization scenarios relative to unabated emissions scenarios. Such analyses are important for developing estimates of the benefits of those stabilization scenarios, which can play a vital role in assessing tradeoffs associated with allocating resources across alternative mitigation and adaptation activities. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  1. The idiosyncrasies of streams: local variability mitigates vulnerability of trout to changing conditions

    Treesearch

    Andrea Watts; Brooke Penaluna; Jason Dunham

    2016-01-01

    Land use and climate change are two key factors with the potential to affect stream conditions and fish habitat. Since the 1950s, Washington and Oregon have required forest practices designed to mitigate the effects of timber harvest on streams and fish. Yet questions remain about the extent to which these practices are effective. Add in the effects of climate change—...

  2. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  3. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  4. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices.more » The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.« less

  5. The Land-Potential Knowledge System (LandPKS): mobile apps and collaboration for optimizing climate change investments

    USDA-ARS?s Scientific Manuscript database

    Massive investments in climate change mitigation and adaptation are projected during coming decades. Many of these investments will seek to modify how land is managed. The return on both types of investments can be increased through an understanding of land potential: the potential of the land to s...

  6. Potential Adverse Environmental Impacts of Greenhouse Gas Mitigation Strategies

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge The Fourth Assessment Report released by the Intergovernmental Panel on Cli-mate Change (IPCC) in 2007 was unequivocal in its message that warming of the global climate system is now occurring, and found...

  7. Southwest regional climate hub and California subsidiary hub assessment of climate change vulnerability and adaptation and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    This report describes the potential vulnerability of specialty crops, field crops, forests, and animal agriculture to climate-driven environmental changes. Here, vulnerability is defined as a function of exposure to climate change effects, sensitivity to these effects, and adaptive capacity. The exp...

  8. The underappreciated potential of peatlands in global climate change mitigation strategies.

    PubMed

    Leifeld, J; Menichetti, L

    2018-03-14

    Soil carbon sequestration and avoidable emissions through peatland restoration are both strategies to tackle climate change. Here we compare their potential and environmental costs regarding nitrogen and land demand. In the event that no further areas are exploited, drained peatlands will cumulatively release 80.8 Gt carbon and 2.3 Gt nitrogen. This corresponds to a contemporary annual greenhouse gas emission of 1.91 (0.31-3.38) Gt CO 2 -eq. that could be saved with peatland restoration. Soil carbon sequestration on all agricultural land has comparable mitigation potential. However, additional nitrogen is needed to build up a similar carbon pool in organic matter of mineral soils, equivalent to 30-80% of the global fertilizer nitrogen application annually. Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.

  9. Adaptation of farming practices could buffer effects of climate change on northern prairie wetlands

    USGS Publications Warehouse

    Voldseth, R.A.; Johnson, W.C.; Guntenspergen, G.R.; Gilmanov, T.; Millett, B.V.

    2009-01-01

    Wetlands of the Prairie Pothole Region of North America are vulnerable to climate change. Adaptation of farming practices to mitigate adverse impacts of climate change on wetland water levels is a potential watershed management option. We chose a modeling approach (WETSIM 3.2) to examine the effects of changes in climate and watershed cover on the water levels of a semi-permanent wetland in eastern South Dakota. Land-use practices simulated were unmanaged grassland, grassland managed with moderately heavy grazing, and cultivated crops. Climate scenarios were developed by adjusting the historical climate in combinations of 2??C and 4??C air temperature and ??10% precipitation. For these climate change scenarios, simulations of land use that produced water levels equal to or greater than unmanaged grassland under historical climate were judged to have mitigative potential against a drier climate. Water levels in wetlands surrounded by managed grasslands were significantly greater than those surrounded by unmanaged grassland. Management reduced both the proportion of years the wetland went dry and the frequency of dry periods, producing the most dynamic vegetation cycle for this modeled wetland. Both cultivated crops and managed grassland achieved water levels that were equal or greater than unmanaged grassland under historical climate for the 2??C rise in air temperature, and the 2??C rise plus 10% increase in precipitation scenarios. Managed grassland also produced water levels that were equal or greater than unmanaged grassland under historical climate for the 4??C rise plus 10% increase in precipitation scenario. Although these modeling results stand as hypotheses, they indicate that amelioration potential exists for a change in climate up to an increase of 2??C or 4??C with a concomitant 10% increase in precipitation. Few empirical data exist to verify the results of such land-use simulations; however, adaptation of farming practices is one possible mitigation avenue available for prairie wetlands. ?? 2009, The Society of Wetland Scientists.

  10. Renewable Energy and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less

  11. Early action on HFCs mitigates future atmospheric change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-11-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 K at 80 hPa. The HFC mitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  12. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  13. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  14. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

    PubMed

    Bonan, Gordon B

    2008-06-13

    The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

  15. Rapid emergence of climate change in environmental drivers of marine ecosystems.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L

    2017-03-07

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  16. Rapid emergence of climate change in environmental drivers of marine ecosystems

    PubMed Central

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-01-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a ‘business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike. PMID:28267144

  17. Rapid emergence of climate change in environmental drivers of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  18. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.

  19. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    USDA-ARS?s Scientific Manuscript database

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  20. Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor.

    PubMed

    Pratt, Chris; Tate, Kevin

    2018-06-05

    Methane (CH 4 ) is the second greatest contributor to anthropogenic climate change. Emissions have tripled since preindustrial times and continue to rise rapidly, given the fact that the key sources of food production, energy generation and waste management, are inexorably tied to population growth. Until recently, the pursuit of CH 4 mitigation approaches has tended to align with opportunities for easy energy recovery through gas capture and flaring. Consequently, effective abatement has been largely restricted to confined high-concentration sources such as landfills and anaerobic digesters, which do not represent a major share of CH 4 's emission profile. However, in more recent years we have witnessed a quantum leap in the sophistication, diversity and affordability of CH 4 mitigation technologies on the back of rapid advances in molecular analytical techniques, developments in material sciences and increasingly efficient engineering processes. Here, we present some of the latest concepts, designs and applications in CH 4 mitigation, identifying a number of abatement synergies across multiple industries and sectors. We also propose novel ways to manipulate cutting-edge technology approaches for even more effective mitigation potential. The goal of this review is to stimulate the ongoing quest for and uptake of practicable CH 4 mitigation options; supplementing established and proven approaches with immature yet potentially high-impact technologies. There has arguably never been, and if we do not act soon nor will there be, a better opportunity to combat climate change's second most significant greenhouse gas.

  1. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities

    PubMed Central

    Reckien, Diana; Flacke, Johannes

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future. PMID:26317420

  2. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans-An Empirical Analysis of European Cities.

    PubMed

    Reckien, Diana; Flacke, Johannes; Olazabal, Marta; Heidrich, Oliver

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.

  3. Climate targets and cost-effective climate stabilization pathways

    NASA Astrophysics Data System (ADS)

    Held, H.

    2015-08-01

    Climate economics has developed two main tools to derive an economically adequate response to the climate problem. Cost benefit analysis weighs in any available information on mitigation costs and benefits and thereby derives an "optimal" global mean temperature. Quite the contrary, cost effectiveness analysis allows deriving costs of potential policy targets and the corresponding cost- minimizing investment paths. The article highlights pros and cons of both approaches and then focusses on the implications of a policy that strives at limiting global warming to 2 °C compared to pre-industrial values. The related mitigation costs and changes in the energy sector are summarized according to the IPCC report of 2014. The article then points to conceptual difficulties when internalizing uncertainty in these types of analyses and suggests pragmatic solutions. Key statements on mitigation economics remain valid under uncertainty when being given the adequate interpretation. Furthermore, the expected economic value of perfect climate information is found to be on the order of hundreds of billions of Euro per year if a 2°-policy were requested. Finally, the prospects of climate policy are sketched.

  4. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-01-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  5. Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Wakelin, Sarah L.; Artioli, Yuri; Butenschön, Momme; Allen, J. Icarus; Holt, Jason T.

    2015-12-01

    The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030-2040) and the far future (2082-2099) are compared to the recent past (1983-2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production (netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.

  6. Enhancing the Global Carbon Sink: A Key Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2016-12-01

    Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more resilient and productive ecosystems, and more carbon-neutral bioenergy. Better scientific understanding of the sink provides more options for policy design, enables mitigation strategies that capture co-benefits, and increases the chances that global mitigation commitments will be met.

  7. Mitigation potential and global health impacts from emissions pricing of food commodities

    NASA Astrophysics Data System (ADS)

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Wiebe, Keith; Godfray, H. Charles J.; Rayner, Mike; Scarborough, Peter

    2017-01-01

    The projected rise in food-related greenhouse gas emissions could seriously impede efforts to limit global warming to acceptable levels. Despite that, food production and consumption have long been excluded from climate policies, in part due to concerns about the potential impact on food security. Using a coupled agriculture and health modelling framework, we show that the global climate change mitigation potential of emissions pricing of food commodities could be substantial, and that levying greenhouse gas taxes on food commodities could, if appropriately designed, be a health-promoting climate policy in high-income countries, as well as in most low- and middle-income countries. Sparing food groups known to be beneficial for health from taxation, selectively compensating for income losses associated with tax-related price increases, and using a portion of tax revenues for health promotion are potential policy options that could help avert most of the negative health impacts experienced by vulnerable groups, whilst still promoting changes towards diets which are more environmentally sustainable.

  8. Climate adaptation as mitigation: the case of agricultural investments

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply with respect to land rents, and the elasticity of substitution between land and non-land inputs. For assessing the mitigation costs, the elasticity of productivity with respect to investments in research and development is also very important. Overall, this study finds that broad-based efforts to adapt agriculture to climate change have mitigation co-benefits that, even when forced to shoulder the entire expense of adaptation, are inexpensive relative to many activities whose main purpose is mitigation. These results therefore challenge the current approach of most climate financing portfolios, which support adaptation from funds completely separate from—and often much smaller than—mitigation ones.

  9. Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems

    NASA Astrophysics Data System (ADS)

    Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.

    2011-12-01

    The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.

  10. Carbon sequestration in managed temperate coniferous forests under climate change

    NASA Astrophysics Data System (ADS)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  11. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    ERIC Educational Resources Information Center

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  12. Long-term forest management and climate effects on streamflow

    Treesearch

    Shelby G. Laird; C.R. Ford; S.H. Laseter; J.M. Vose

    2011-01-01

    Long-term watershed studies are a powerful tool for examining interactions among management activities, streamflow, and climatic variability. Understanding these interactions is critical for exploring the potential of forest management to adapt to or mitigate against the effects of climate change. The Coweeta Hydrologic Laboratory, located in North Carolina, USA, is a...

  13. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    ERIC Educational Resources Information Center

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  14. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by lessening the impact of future land-use activities on biodiversity within hotspots. © 2015 Society for Conservation Biology.

  15. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2017-01-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90 of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  16. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret; Fleming, Eric; Newman, Paul; Li, Feng; Liang, Qing

    2017-04-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  17. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    PubMed

    Korkala, Essi A E; Hugg, Timo T; Jaakkola, Jouni J K

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  18. Voluntary Climate Change Mitigation Actions of Young Adults: A Classification of Mitigators through Latent Class Analysis

    PubMed Central

    Korkala, Essi A. E.; Hugg, Timo T.; Jaakkola, Jouni J. K.

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns. PMID:25054549

  19. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.

  20. Focusing Events and Constrains on Policy Addressing Long-Term Climate Change Risks

    NASA Astrophysics Data System (ADS)

    O'Donovan, K.

    2014-12-01

    When policy makers are aware of immediate and long-term risks to communities, what do they do to plan for and mitigate the effects of climate change? This paper addresses that question in two ways. First, as an organizing framework it presents an overview of the empirical evidence on focusing events. Focusing events are defined as sudden, rare events that reveal harm or the potential for future harm that the general public and policy makers become aware of simultaneously. These large-scale events are typically natural and disasters, crisis, or technological accidents. This paper considers the empirical evidence of the relationship between focusing events, the harm revealed by the event and policy change aimed at reducing future risk of harm. Second, this paper reviews the case of flood mitigation policy in the United States from 1968 to 2008. It considers the ways in which policy makers have and have not integrated future flood risks into mitigation policy and planning, particularly after large-scale floods. It analyzes the political, intergovernmental, demographic and geographic factors that have promoted and constrained long-term flood mitigation policy. This paper concludes with a discussion of the meaning and implications of potential focusing events and constrains on policy for long-term climate change concerns.

  1. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.

  2. Climate-smart soils

    NASA Astrophysics Data System (ADS)

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete

    2016-04-01

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  3. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicatormore » Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.« less

  4. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  5. Wildfire and fuel treatment effects on forest carbon dynamics in the western United States

    Treesearch

    Joseph C. Restiano; David L. Peterson

    2013-01-01

    Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...

  6. Soil organic carbon pool's contribution to climate change mitigation on marginal land of a Mediterranean montane area in Italy.

    PubMed

    Tommaso, Chiti; Emanuele, Blasi; Guido, Pellis; Lucia, Perugini; Vincenza, Chiriacò Maria; Riccardo, Valentini

    2018-07-15

    To evaluate the mitigation potential provided by the SOC pool, we investigated the impact of woody encroachment in the 0-30 cm depth of mineral soil across a natural succession from abandoned pastures and croplands to broadleaves forests on the central Apennine in Italy. In parallel, to assess the effect of the land use change (LUC) from cropland to pasture, a series of pastures established on former agricultural sites, abandoned at different time in the past, were also investigated. Our results show that woody encroachment on former pastures and croplands contributes largely to mitigate climate change, with an increase of the original SOC stock of 45% (40.5 Mg C ha -1 ) and 120% (66.5 Mg C ha -1 ), respectively. Also the LUC from croplands to pastures, greatly contributes to climate change mitigation trough a SOC increase of about 80% of the original SOC (45.9 Mg C ha -1 ). The management of abandoned lands represent a crucial point in the mitigation potential of agriculture and forestry activities, and particularly the role of the SOC pool. A policy effort should focus on minimizing the risk of speculative management options, particularly when the value of woody biomass become convenient to supply new energy systems allowing monetizing a long term forests productivity. In conclusion, despite both the land abandonment and the LUC can have a different impact on the SOC pool under different climatic conditions, these results can be useful to improve the SOC estimates in the National greenhouse gases Inventory at country level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Assessing climate impacts

    PubMed Central

    Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321

  8. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    NASA Astrophysics Data System (ADS)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  9. Global land-use and market interactions between climate and bioenergy policies

    NASA Astrophysics Data System (ADS)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.

  10. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae.

    PubMed

    Gray, Laura K; Clarke, Charles; Wint, G R William; Moran, Jonathan A

    2017-01-01

    Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them.

  11. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae

    PubMed Central

    Gray, Laura K.; Clarke, Charles; Wint, G. R. William

    2017-01-01

    Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them. PMID:28817596

  12. Mitigation of climate change impacts on raptors by behavioural adaptation: ecological buffering mechanisms

    NASA Astrophysics Data System (ADS)

    Wichmann, Matthias C.; Groeneveld, Jürgen; Jeltsch, Florian; Grimm, Volker

    2005-07-01

    The predicted climate change causes deep concerns on the effects of increasing temperatures and changing precipitation patterns on species viability and, in turn, on biodiversity. Models of Population Viability Analysis (PVA) provide a powerful tool to assess the risk of species extinction. However, most PVA models do not take into account the potential effects of behavioural adaptations. Organisms might adapt to new environmental situations and thereby mitigate negative effects of climate change. To demonstrate such mitigation effects, we use an existing PVA model describing a population of the tawny eagle ( Aquila rapax) in the southern Kalahari. This model does not include behavioural adaptations. We develop a new model by assuming that the birds enlarge their average territory size to compensate for lower amounts of precipitation. Here, we found the predicted increase in risk of extinction due to climate change to be much lower than in the original model. However, this "buffering" of climate change by behavioural adaptation is not very effective in coping with increasing interannual variances. We refer to further examples of ecological "buffering mechanisms" from the literature and argue that possible buffering mechanisms should be given due consideration when the effects of climate change on biodiversity are to be predicted.

  13. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved by greenhouse gases in the atmosphere. Mitigation and adaptation are therefore complementary actions. In the long term, climate change without mitigation measures will likely exceed the adaptive capacity of natural, managed and human systems. Early adoption of mitigation measures would break the dependence on carbon-intensive infrastructures and reduce adaptation needs to climate change. It also can save on adaptation cost. Therefore mitigation is the key objective of the global warming problem but little is being done in this field. We will present some proposals of "preventive economically efficient" policies at a global and regional level which will constitute the complement to the adaptation aspect.

  14. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    EPA Science Inventory

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  15. Revaluing unmanaged forests for climate change mitigation.

    PubMed

    Krug, Joachim; Koehl, Michael; Kownatzki, Dierk

    2012-11-14

    Unmanaged or old-growth forests are of paramount importance for carbon sequestration and thus for the mitigation of climate change among further implications, e.g. biodiversity aspects. Still, the importance of those forests for climate change mitigation compared to managed forests is under controversial debate. We evaluate the adequacy of referring to CO2 flux measurements alone and include external impacts on growth (nitrogen immissions, increasing temperatures, CO2 enrichment, changed precipitation patterns) for an evaluation of central European forests in this context. We deduce that the use of CO2 flux measurements alone does not allow conclusions on a superiority of unmanaged to managed forests for mitigation goals. This is based on the critical consideration of uncertainties and the application of system boundaries. Furthermore, the consideration of wood products for material and energetic substitution obviously overrules the mitigation potential of unmanaged forests. Moreover, impacts of nitrogen immissions, CO2 enrichment of the atmosphere, increasing temperatures and changed precipitation patterns obviously lead to a meaningful increase in growth, even in forests of higher age. An impact of unmanaged forests on climate change mitigation cannot be valued by CO2 flux measurements alone. Further research is needed on cause and effect relationships between management practices and carbon stocks in different compartments of forest ecosystems in order to account for human-induced changes. Unexpected growth rates in old-growth forests - managed or not - can obviously be related to external impacts and additionally to management impacts. This should lead to the reconsideration of forest management strategies.

  16. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  17. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  18. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand (population density) and transport infrastructure is used as input data to an engineering model (BeWhere) for optimizing scale and location of waste treatment plants with potential energy and fertilizer co-generation. Finally, this paper quantifies the economic dimension of mitigation through innovative waste treatment while considering the additional business-feasibility and potential benefits from waste treatment co-products such as energy generation, fertilizer and biochar production for counteracting soil degradation.

  19. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. GHG emission mitigation measures and technologies in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  1. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  2. Untangling the confusion around land carbon science and climate change mitigation policy

    NASA Astrophysics Data System (ADS)

    Mackey, Brendan; Prentice, I. Colin; Steffen, Will; House, Joanna I.; Lindenmayer, David; Keith, Heather; Berry, Sandra

    2013-06-01

    Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to 'offset' CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.

  3. The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, Jessica M.; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  4. The value of linking mitigation and adaptation: a case study of Bangladesh.

    PubMed

    Ayers, Jessica M; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  5. Climate change and sugarcane production: potential impact and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. Atmospheric carbon dioxide concentration has increased by about 30% since the mid-18th century. The increasing greenhouse gas emission and global warming during climate change clearly result in the increase ...

  6. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  7. Agriculture and climate change: Potential for mitigation in Spain.

    PubMed

    Albiac, Jose; Kahil, Taher; Notivol, Eduardo; Calvo, Elena

    2017-08-15

    Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO 2 e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO 2 e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The contribution of sectoral climate change mitigation options to national targets: a quantitative assessment of dairy production in Kenya

    NASA Astrophysics Data System (ADS)

    Brandt, Patric; Herold, Martin; Rufino, Mariana C.

    2018-03-01

    Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed intensification and manure management to mitigate GHG emissions and to increase milk yields at sectoral-level and at a high spatial resolution for an SSA country. The scientific evidence is tailored to support actual policy and decision-making processes at the national level, such as ‘Nationally Appropriate Mitigation Actions’. Linking feed intensification and manure management strategies with spatially-explicit estimates of mitigation and food production to national targets may help the sector to access climate financing while contributing to food security.

  9. Climate change and fire management in the mid-Atlantic region

    Treesearch

    Kenneth L. Clark; Nicholas Skowronski; Heidi Renninger; Robert Scheller

    2014-01-01

    In this review, we summarize the potential impacts of climate change on wildfire activity in the mid-Atlantic region, and then consider how the beneficial uses of prescribed fire could conflict with mitigation needs for climate change, focusing on patters of carbon (C) sequestration by forests in the region. We use a synthesis of field studies, eddy flux tower...

  10. Help the climate, change your diet: A cross-sectional study on how to involve consumers in a transition to a low-carbon society.

    PubMed

    de Boer, Joop; de Witt, Annick; Aiking, Harry

    2016-03-01

    This paper explores how the transition to a low-carbon society to mitigate climate change can be better supported by a diet change. As climate mitigation is not the focal goal of consumers who are buying or consuming food, the study highlighted the role of motivational and cognitive background factors, including possible spillover effects. Consumer samples in the Netherlands (n = 527) and the United States (n = 556) were asked to evaluate food-related and energy-related mitigation options in a design that included three food-related options with very different mitigation potentials (i.e. eating less meat, buying local and seasonal food, and buying organic food). They rated each option's effectiveness and their willingness to adopt it. The outstanding effectiveness of the less meat option (as established by climate experts) was recognized by merely 12% of the Dutch and 6% of the American sample. Many more participants gave fairly positive effectiveness ratings and this was correlated with belief in human causation of climate change, personal importance of climate change, and being a moderate meat eater. Willingness to adopt the less meat option increased with its perceived effectiveness and, controlling for that, it was significantly related to various motivationally relevant factors. The local food option appealed to consumer segments with overlapping but partly different motivational orientations. It was concluded that a transition to a low carbon society can significantly benefit from a special focus on the food-related options to involve more consumers and to improve mitigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The international politics of geoengineering: The feasibility of Plan B for tackling climate change

    PubMed Central

    Corry, Olaf

    2017-01-01

    Geoengineering technologies aim to make large-scale and deliberate interventions in the climate system possible. A typical framing is that researchers are exploring a ‘Plan B’ in case mitigation fails to avert dangerous climate change. Some options are thought to have the potential to alter the politics of climate change dramatically, yet in evaluating whether they might ultimately reduce climate risks, their political and security implications have so far not been given adequate prominence. This article puts forward what it calls the ‘security hazard’ and argues that this could be a crucial factor in determining whether a technology is able, ultimately, to reduce climate risks. Ideas about global governance of geoengineering rely on heroic assumptions about state rationality and a generally pacific international system. Moreover, if in a climate engineered world weather events become something certain states can be made directly responsible for, this may also negatively affect prospects for ‘Plan A’, i.e. an effective global agreement on mitigation. PMID:29386754

  12. Climate change : preliminary observations on geoengineering science, federal efforts, and governance issues : testimony before the Committee on Science and Technology, House of Representatives.

    DOT National Transportation Integrated Search

    2010-03-18

    Key scientific assessments have underscored the urgency of reducing emissions of carbon dioxide to help mitigate potentially negative effects of climate change; however, many countries with significant greenhouse gas emissions, including the United S...

  13. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  14. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes.

    PubMed

    Robertson, G Philip; Hamilton, Stephen K; Barham, Bradford L; Dale, Bruce E; Izaurralde, R Cesar; Jackson, Randall D; Landis, Douglas A; Swinton, Scott M; Thelen, Kurt D; Tiedje, James M

    2017-06-30

    Cellulosic crops are projected to provide a large fraction of transportation energy needs by mid-century. However, the anticipated land requirements are substantial, which creates a potential for environmental harm if trade-offs are not sufficiently well understood to create appropriately prescriptive policy. Recent empirical findings show that cellulosic bioenergy concerns related to climate mitigation, biodiversity, reactive nitrogen loss, and crop water use can be addressed with appropriate crop, placement, and management choices. In particular, growing native perennial species on marginal lands not currently farmed provides substantial potential for climate mitigation and other benefits. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Tropical peatland carbon dynamics simulated for scenarios of disturbance and restoration and climate change

    NASA Astrophysics Data System (ADS)

    Frolking, S. E.; Warren, M.; Dai, Z.; Kurnianto, S.; Hagen, S. C.

    2015-12-01

    Tropical peatlands contain a globally significant carbon pool. Southeast Asian peatlands are being deforested, drained and burned at very high rates, mostly for conversion to industrial oil palm or pulp and paper plantations. The climate mitigation potential of tropical peatlands has gained increasing attention in recent years as persistent greenhouse gas emissions can be avoided or decreased if peatlands remain intact or are rehabilitated. In addition, peatland conservation or rehabilitation for climate mitigation also includes multiple co-benefits such as maintenance of ecosystem services, biodiversity, and air quality from reduced fire occurrence. Inventory guidelines and methodologies have only recently become available, and are based on few data from a limited number of sites. Few heuristic tools are available to evaluate the impact of management practices on carbon dynamics in tropical peatlands, and the potential climate mitigation benefits of peatland restoration. We used a process based dynamic tropical peatland model to explore the C dynamics of several peatland management trajectories represented by hypothetical scenarios, within the context of simulated 21st century climate change. All scenarios with land use, including those with optimal restoration, simulate C loss over the 21st century, with C losses ranging from 10% to essentially 100% of pre-disturbance values. Fire, either prescribed as part of a crop rotation cycle, or stochastic occurrences in sub-optimally managed degraded land can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. A single 25-year oil palm rotation, with a prescribed initial burn, lost 40-50 kg C/m2, equivalent to accumulation during the previous 500 years, 10-30% of which was restored in 75 years of optimal restoration. Our results indicate that even under the most optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one-third of the carbon lost to the atmosphere from 25 years of oil palm cultivation can be recovered within the next 75 years. In addition, peat fire suppression is the most effective management tool to maintain peatland carbon stocks, and should be a high priority for climate mitigation efforts on peatlands.

  16. Greenhouse Gas Mitigation in Chinese Eco-Industrial Parks by Targeting Energy Infrastructure: A Vintage Stock Model.

    PubMed

    Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun

    2016-10-03

    Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.

  17. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    NASA Astrophysics Data System (ADS)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.

  18. Emerging Forms of Climate Protection Governance: Urban Initiatives in the European Union

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. K.; Brunner, E.

    2006-12-01

    Changes in climate patterns are expected to pose increasing challenges for cities in the following decades, with adverse impacts on urban populations currently stressed by poverty, health and economic inequities. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities. In the context of these two overarching trends, interdisciplinary research at the city scale is prioritized for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive and mitigative responses to climate change. Urban managers, and transnational networks of municipalities and non-state actors, have taken an increasingly active role in climate protection, through research, policies, programs and agreements on adaptation and mitigation strategies. Concerns for urban impacts of climate change include the potential increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potentially adverse impacts on infrastructure, energy systems, and public health. Higher average summertime temperatures in temperate zone cities are also associated with environmental and public health liabilities such as decreased air quality and increased peak electrical demand. We review municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., use of cooling centers); and improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect). Climate protection initiatives in three European cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Initiatives in Stockholm, London and Milan provide evidence that local actions are inevitable and of central importance to mitigate and adapt to the adverse impacts of climate change, the urban heat island effect, and extreme weather events.

  19. Incorporating Cold-Air Pooling into Downscaled Climate Models Increases Potential Refugia for Snow-Dependent Species within the Sierra Nevada Ecoregion, CA

    PubMed Central

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379

  20. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  1. The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals

    NASA Astrophysics Data System (ADS)

    Zhang, Runsen; Fujimori, Shinichiro; Hanaoka, Tatsuya

    2018-05-01

    The transport sector contributes around a quarter of global CO2 emissions; thus, low-carbon transport policies are required to achieve the 2 °C and 1.5 °C targets. In this paper, representative transport policy scenarios are structured with the aim of achieving a better understanding of the interaction between the transport sector and the macroeconomy. To accomplish this, the Asia–Pacific Integrated Model/Transport (AIM/Transport) model, coupled with a computable general equilibrium model (AIM/CGE), is used to simulate the potential for different transport policy interventions to reduce emissions and cost over the period 2005–2100. The results show that deep decarbonization in the transport sector can be achieved by implementing transport policies such as energy efficiency improvements, vehicle technology innovations particularly the deployment of electric vehicles, public transport developments, and increasing the car occupancy rate. Technological transformations such as vehicle technological innovations and energy efficiency improvements provide the most significant reduction potential. The key finding is that low-carbon transport policies can reduce the carbon price, gross domestic product loss rate, and welfare loss rate generated by climate mitigation policies to limit global warming to 2 °C and 1.5 °C. Interestingly, the contribution of transport policies is more effective for stringent climate change targets in the 1.5 °C scenario, which implies that the stronger the mitigation intensity, the more transport specific policy is required. The transport sector requires attention to achieve the goal of stringent climate change mitigation.

  2. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    NASA Astrophysics Data System (ADS)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  3. Unexpectedly large impact of forest management and grazing on global vegetation biomass.

    PubMed

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-04

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  4. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    PubMed Central

    Erb, K.-H.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; Pongratz, J.; Thurner, M.; Luyssaert, S.

    2017-01-01

    Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement. PMID:29258288

  5. Impact of climate change on the domestic indoor environment and associated health risks in the UK.

    PubMed

    Vardoulakis, Sotiris; Dimitroulopoulou, Chrysanthi; Thornes, John; Lai, Ka-Man; Taylor, Jonathon; Myers, Isabella; Heaviside, Clare; Mavrogianni, Anna; Shrubsole, Clive; Chalabi, Zaid; Davies, Michael; Wilkinson, Paul

    2015-12-01

    There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health. We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination. Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived. A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

  7. Communicating Environmental Risks: Clarifying the Severity Effect in Interpretations of Verbal Probability Expressions

    ERIC Educational Resources Information Center

    Harris, Adam J. L.; Corner, Adam

    2011-01-01

    Verbal probability expressions are frequently used to communicate risk and uncertainty. The Intergovernmental Panel on Climate Change (IPCC), for example, uses them to convey risks associated with climate change. Given the potential for human action to mitigate future environmental risks, it is important to understand how people respond to these…

  8. Quantifying and Monetizing Potential Climate Change Policy Impacts on Terrestrial Ecosystem Carbon Storage and Wildfires in the United States

    EPA Science Inventory

    This paper quantifies and monetizes climate change impacts on carbon stored in terrestrial vegetation and wildfire incidence in the contiguous United States to assess the benefits of alternative mitigation policies. The MC-1 dynamic global vegetation model was used to develop int...

  9. Obesity and climate change mitigation in Australia: overview and analysis of policies with co-benefits.

    PubMed

    Lowe, Melanie

    2014-02-01

    To provide an overview of the shared structural causes of obesity and climate change, and analyse policies that could be implemented in Australia to both equitably reduce obesity rates and contribute to mitigating climate change. Informed by the political economy of health theoretical framework, a review was conducted of the literature on the shared causes of, and solutions to, obesity and climate change. Policies with potential co-benefits for climate change and obesity were then analysed based upon their feasibility and capacity to reduce greenhouse gas emissions and equitably reduce obesity rates in Australia. Policies with potential co-benefits fit within three broad categories: those to replace car use with low-emissions, active modes of transport; those to improve diets and reduce emissions from the food system; and macro-level economic policies to reduce the over-consumption of food and fossil fuel energy. Given the complex causes of both problems, it is argued that a full spectrum of complementary strategies across different sectors should be utilised. Such an approach would have significant public health, social and environmental benefits. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  10. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs.

    PubMed

    Crabbe, M J C

    2009-12-01

    Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.

  11. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  12. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  13. Outreach programs, peer pressure, and common sense: What motivates homeowners to mitigate wildfire risk?

    Treesearch

    Sarah M. McCaffrey; Melanie Stidham; Eric Toman; Bruce Shindler

    2011-01-01

    In recent years, altered forest conditions, climate change, and the increasing numbers of homes built in fire prone areas has meant that wildfires are affecting more people. An important part of minimizing the potential negative impacts of wildfire is engaging homeowners in mitigating the fire hazard on their land. It is therefore important to understand what makes...

  14. The radiative forcing potential of different climate geoengineering options

    NASA Astrophysics Data System (ADS)

    Lenton, T. M.; Vaughan, N. E.

    2009-01-01

    Climate geoengineering proposals seek to rectify the Earth's current radiative imbalance, either by reducing the absorption of incoming solar (shortwave) radiation, or by removing CO2 from the atmosphere and transferring it to long-lived reservoirs, thus increasing outgoing longwave radiation. A fundamental criterion for evaluating geoengineering options is their climate cooling effectiveness, which we quantify here in terms of radiative forcing potential. We use a simple analytical approach, based on the global energy balance and pulse response functions for the decay of CO2 perturbations. This aids transparency compared to calculations with complex numerical models, but is not intended to be definitive. Already it reveals some significant errors in existing calculations, and it allows us to compare the relative effectiveness of a range of proposals. By 2050, only stratospheric aerosol injections or sunshades in space have the potential to cool the climate back toward its pre-industrial state, but some land carbon cycle geoengineering options are of comparable magnitude to mitigation "wedges". Strong mitigation, i.e. large reductions in CO2 emissions, combined with global-scale air capture and storage, afforestation, and bio-char production, i.e. enhanced CO2 sinks, might be able to bring CO2 back to its pre-industrial level by 2100, thus removing the need for other geoengineering. Alternatively, strong mitigation stabilising CO2 at 500 ppm, combined with geoengineered increases in the albedo of marine stratiform clouds, grasslands, croplands and human settlements might achieve a patchy cancellation of radiative forcing. Ocean fertilisation options are only worthwhile if sustained on a millennial timescale and phosphorus addition probably has greater long-term potential than iron or nitrogen fertilisation. Enhancing ocean upwelling or downwelling have trivial effects on any meaningful timescale. Our approach provides a common framework for the evaluation of climate geoengineering proposals, and our results should help inform the prioritisation of further research into them.

  15. Communicating the Urgency of Climate Change to Local Government Policy Makers

    NASA Astrophysics Data System (ADS)

    Young, A.

    2004-12-01

    What are the challenges and obstacles in conveying scientific research and uncertainties about climate change to local government policy makers? What information do scientists need from local government practitioners to guide research efforts into producing more relevant information for the local government audience? What works and what doesn't in terms of communicating climate change science to non-technical audiences? Based on over a decade of experience working with local governments around the world on greenhouse gas mitigation, ICLEI - Local Governments for Sustainability has developed a unique perspective and valuable insight into effective communication on climate science that motivates policy action. In the United States practical actions necessary to mitigate global climate change occur largely at the local level. As the level of government closest to individual energy consumers, local governments play a large role in determining the energy intensity of communities. How can local governments be persuaded to make greenhouse gas mitigation a policy priority over the long-term? Access to relevant information is critical to achieving that commitment. Information that will persuade local officials to pursue climate protection commitments includes specific impacts of global warming to communities, the costs of adaptation versus mitigation, and the potential benefits of implementing greenhouse gas-reducing initiatives. The manner in which information is conveyed is also critically important. The scientific community is loath to advocate for specific policies, or to make determinate statements on topics for which research is ongoing. These communication hurdles can be overcome if the needs of local policy practitioners can be understood by the scientific community, and research goals can be cooperatively defined.

  16. Assessments of species' vulnerability to climate change: From pseudo to science

    USGS Publications Warehouse

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, Gordon

    2017-01-01

    Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of CCVAs and either validate their findings or improve assessment of CCVA uncertainty and sensitivity to methodological assumptions.

  17. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    Treesearch

    S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang

    2015-01-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...

  18. Preface

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia (Editor); Hillel, Daniel (Editor)

    2015-01-01

    The potential effects of climate change on the food production system are raising concern both globally and regionally. The system is already challenged to deliver sufficient and healthy sustenance to all people, and is certain to be even further challenged as world population grows and price shocks loom. The prospect of climate change intensifies these challenges, raising the risk that more frequent and intense extreme weather events threaten the stability of agricultural production in regions around the globe. This two-part set is an important contribution to the ongoing Imperial College Press (ICP) Series on Climate Change Impacts, Adaptation, and Mitigation. This series aims to provide the know ledge base necessary for understanding and responding to climate change, in both its current form and future manifestations. In these volumes, ·leading agricultural researchers have come together to contribute their expertise on actual and potential climate change impacts, adaptation strategies, and mitigation efforts. This ongoing series is jointly published by The American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Soil Science Society of America (SSSA), together with ICP. We hope that this fruitful cooperation will continue for many years to come, as it spurs the global effort to define and meet the great food security and climate change challenges of our time.

  19. 2012 NEHA/UL sabbatical report: vulnerability to potential impacts of climate change: adaptation and risk communication strategies for environmental health practitioners in the United Kingdom.

    PubMed

    Ratnapradipa, Dhitinut

    2014-04-01

    Climate change risk assessment, adaptation, and mitigation planning have become increasingly important to environmental health practitioners (EHPs). The NEHA/UL Sabbatical Exchange Award allowed me to investigate how EHPs in the UK are incorporating climate change planning and communication strategies into their work. Projected climate change risks in the UK include flooding, extreme heat, water shortages, severe weather, decreased air quality, and changes in vectors. Despite public perception and funding challenges, all the local government representatives with whom I met incorporated climate change risk assessment, adaptation, and mitigation planning into their work. The mandated Community Risk Register serves as a key planning document developed by each local government authority and is a meaningful way to look at potential climate change health risks. Adaptation and sustainability were common threads in my meetings. These often took the form of "going green" with transportation, energy efficiency, conserving resources, and building design because the efforts made sense monetarily as future cost savings. Communication strategies targeted a variety of audiences (EHPs, non-EHP government employees, politicians, and the general public) using a broad range of communication channels (professional training, lobbying, conferences and fairs, publications, print materials, Internet resources, social media, billboards, etc).

  20. Ethical aspects of the mitigation obstruction argument against climate engineering research.

    PubMed

    Morrow, David R

    2014-12-28

    Many commentators fear that climate engineering research might lead policy-makers to reduce mitigation efforts. Most of the literature on this so-called 'moral hazard' problem focuses on the prediction that climate engineering research would reduce mitigation efforts. This paper focuses on a related ethical question: Why would it be a bad thing if climate engineering research obstructed mitigation? If climate engineering promises to be effective enough, it might justify some reduction in mitigation. Climate policy portfolios involving sufficiently large or poorly planned reductions in mitigation, however, could lead to an outcome that would be worse than the portfolio that would be chosen in the absence of further climate engineering research. This paper applies three ethical perspectives to describe the kinds of portfolios that would be worse than that 'baseline portfolio'. The literature on climate engineering identifies various mechanisms that might cause policy-makers to choose these inferior portfolios, but it is difficult to know in advance whether the existence of these mechanisms means that climate engineering research really would lead to a worse outcome. In the light of that uncertainty, a precautionary approach suggests that researchers should take measures to reduce the risk of mitigation obstruction. Several such measures are suggested. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM < or = 2.5 microns in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

  2. Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls

    PubMed Central

    Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-01-01

    Background: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20–40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration–response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23–34% and 7–17% and avoid 0.6–4.4 and 0.04–0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration–response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution. PMID:22418651

  3. Soil water management practices (terraces) helped to mitigate the 2015 drought in Ethiopia.

    PubMed

    Kosmowski, Frédéric

    2018-05-31

    While the benefits of soil water management practices relative to soil erosion have been extensively documented, evidence regarding their effect on yields is inconclusive. Following a strong El-Niño, some regions of Ethiopia experienced major droughts during the 2015/16 agricultural season. Using the propensity scores method on a nationally representative survey in Ethiopia, this study investigates the effect of two widely adopted soil water management practices - terraces and contour bunds - on yields and assesses their potential to mitigate the effects of climate change. It is shown that at the national level, terraced plots have slightly lower yields than non-terraced plots. However, data support the hypothesis that terraced plots acted as a buffer against the 2015 Ethiopian drought, while contour bunds did not. This study provides evidence that terraces have the potential to help farmer deal with current climate risks. These results can inform the design of climate change adaptation policies and improve targeting of soil water management practices in Ethiopia.

  4. Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity

    NASA Astrophysics Data System (ADS)

    Séférian, Roland; Rocher, Matthias; Guivarch, Céline; Colin, Jeanne

    2018-05-01

    To limit global warming to well below 2 ° most of the IPCC-WGIII future stringent mitigation pathways feature a massive global-scale deployment of negative emissions technologies (NETs) before the end of the century. The global-scale deployment of NETs like Biomass Energy with Carbon Capture and Storage (BECCS) can be hampered by climate constraints that are not taken into account by Integrated assessment models (IAMs) used to produce those pathways. Among the various climate constraints, water scarcity appears as a potential bottleneck for future land-based mitigation strategies and remains largely unexplored. Here, we assess climate constraints relative to water scarcity in response to the global deployment of BECCS. To this end, we confront results from an Earth system model (ESM) and an IAM under an array of 25 stringent mitigation pathways. These pathways are compatible with the Paris Agreement long-term temperature goal and with cumulative carbon emissions ranging from 230 Pg C and 300 Pg C from January 1st onwards. We show that all stylized mitigation pathways studied in this work limit warming below 2 °C or even 1.5 °C by 2100 but all exhibit a temperature overshoot exceeding 2 °C after 2050. According to the IAM, a subset of 17 emission pathways are feasible when evaluated in terms of socio-economic and technological constraints. The ESM however shows that water scarcity would limit the deployment of BECCS in all the mitigation pathways assessed in this work. Our findings suggest that the evolution of the water resources under climate change can exert a significant constraint on BECCS deployment before 2050. In 2100, the BECCS water needs could represent more than 30% of the total precipitation in several regions like Europe or Asia.

  5. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    NASA Astrophysics Data System (ADS)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  6. ARC3.2 Summary for City Leaders Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Bowman, T.; Ibrahim, S. Ali

    2015-01-01

    ARC3.2 presents a broad synthesis of the latest scientific research on climate change and cities. Mitigation and adaptation climate actions of 100 cities are documented throughout the 16 chapters, as well as online through the ARC3.2 Case Study Docking Station. Pathways to Urban Transformation, Major Findings, and Key Messages are highlighted here in the ARC3.2 Summary for City Leaders. These sections lay out what cities need to do achieve their potential as leaders of climate change solutions. UCCRN Regional Hubs in Europe, Latin America, Africa, Australia and Asia will share ARC3.2 findings with local city leaders and researchers. The ARC3.2 Summary for City Leaders synthesizes Major Findings and Key Messages on urban climate science, disasters and risks, urban planning and design, mitigation and adaptation, equity and environmental justice, economics and finance, the private sector, urban ecosystems, urban coastal zones, public health, housing and informal settlements, energy, water, transportation, solid waste, and governance. These were based on climate trends and future projections for 100 cities around the world.

  7. Early Action on Hfcs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-01-01

    As countries take action to mitigate global warming, both by ratifying theUNFCCCParis Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid- 21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 Kat 80 hPa. The HFCmitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  8. Global climate change and international security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less

  9. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike

    PubMed Central

    Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R.

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species. PMID:27732622

  10. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike.

    PubMed

    Estrada-Contreras, Israel; Equihua, Miguel; Laborde, Javier; Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species.

  11. On the global limits of bioenergy and land use for climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  12. On the global limits of bioenergy and land use for climate change mitigation

    DOE PAGES

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena; ...

    2017-05-24

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  13. Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.

    PubMed

    Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc

    2018-01-10

    European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.

  14. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan

    2017-03-01

    Given climate change can potentially influence crop phenology and subsequent yield, an investigation of relevant adaptation measures could increase the understanding and mitigation of these responses in the future. In this study, field observations at 10 stations in the Huang-Huai-Hai Plain of China (HHHP) are used in combination with the Agricultural Production Systems Simulator (APSIM)-Wheat model to determine the effect of thermal time shift on the phenology and potential yield of wheat from 1981-2009. Warming climate speeds up winter wheat development and thereby decreases the duration of the wheat growth period. However, APSIM-Wheat model simulation suggests prolongation of the period from flowering to maturity (Gr) of winter wheat by 0.2-0.8 d•10yr-1 as the number of days by which maturity advances, which is less than that by which flowering advances. Based on computed thermal time of the two critical growth phases of wheat, total thermal time from floral initiation to flowering (TT_floral_initiation) increasesd in seven out of the 10 investigated stations. Alternatively, total thermal time from the start of grainfilling to maturity (TT_start_ grain_fill) increased in all investigated stations, except Laiyang. It is thus concluded that thermal time shift during the past three decades (1981-2009) prolongs Gr by 0.2-3.0 d•10yr-1 in the study area. This suggests that an increase in thermal time (TT) of the wheat growth period is critical for mitigating the effect of growth period reduction due to warming climatic condition. Furthermore, climate change reduces potential yield of winter wheat in 80% of the stations by 2.3-58.8 kg•yr-1. However, thermal time shift (TTS) increases potential yield of winter wheat in most of the stations by 3.0-51.0 kg•yr-1. It is concluded that wheat cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production in the study area.

  15. 76 FR 17123 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Advisory Council on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... comprehensive report to Congress on the climate effects of black carbon. Black carbon, or soot, results from incomplete combustion of organic matter such as fossil fuels and biomass. The report to Congress will... and regional climate, and the potential utility and cost-effectiveness of mitigation options for...

  16. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with rangeland conservation practices

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to impact runoff and soil erosion on rangelands in the southwestern United States. This study was done to evaluate the potential impacts of precipitation changes on soil erosion and surface runoff in southeastern Arizona using seven GCM models with three emission scenarios...

  17. Climate Change Communication by a Research Institute: Experiences, Successes, and Challenges from a North European Perspective

    ERIC Educational Resources Information Center

    Lyytimäki, Jari; Nygrén, Nina A.; Ala-Ketola, Ulla; Pellinen, Sirpa; Ruohomäki, Virpi; Inkinen, Aino

    2013-01-01

    Communicating about climate change is challenging not only because of the multidisciplinary and complex nature of the issue itself and multiple policy options related to mitigation and adaptation, but also because of the plenitude of potential communication methods coupled with limited resources for communication. This article explores climate…

  18. Early forest thinning changes aboveground carbon distribution among pools, but not total amount

    Treesearch

    Michael S. Schaedel; Andrew J. Larson; David L. R. Affleck; Travis Belote; John M. Goodburn; Deborah S. Page-Dumroese

    2017-01-01

    Mounting concerns about global climate change have increased interest in the potential to use common forest management practices, such as forest density management with thinning, in climate change mitigation and adaptation efforts. Long-term effects of forest density management on total aboveground C are not well understood, especially for precommercial thinning (PCT)...

  19. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    PubMed

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  20. Potentials for sustainable transportation in cities to alleviate climate change impacts.

    PubMed

    Mashayekh, Yeganeh; Jaramillo, Paulina; Samaras, Constantine; Hendrickson, Chris T; Blackhurst, Michael; MacLean, Heather L; Matthews, H Scott

    2012-03-06

    Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.

  1. Wireless sensors linked to climate financing for globally affordable clean cooking

    NASA Astrophysics Data System (ADS)

    Ramanathan, Tara; Ramanathan, Nithya; Mohanty, Jeevan; Rehman, Ibrahim H.; Graham, Eric; Ramanathan, Veerabhadran

    2017-01-01

    Three billion of the world’s poorest people mostly rely on solid biomass for cooking, with major consequences to health and environment. We demonstrate the untapped potential of wireless sensors connected to the `internet of things’ to make clean energy solutions affordable for those at the bottom of the energy pyramid. This breakthrough approach is demonstrated by a 17-month field study with 4,038 households in India. Major findings include: self-reported data on cooking duration have little correlation with actual usage data from sensors; sensor data revealed that the distribution of high and low users varied over time, and the actual mitigation of climate pollution was only 25% of the projected mitigation; climate credits were shown to significantly incentivize the use of cleaner technologies.

  2. Climate Change Effects on Respiratory Health: Implications for Nursing.

    PubMed

    George, Maureen; Bruzzese, Jean-Marie; Matura, Lea Ann

    2017-11-01

    Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action. © 2017 Sigma Theta Tau International.

  3. Climate Change Adaptation: DOD Can Improve Infrastructure Planning and Processes to Better Account for Potential Impacts

    DTIC Science & Technology

    2014-05-01

    changes in ocean temperature, circulation, salinity, and acidity with potential climate change impacts such as coral reef losses that may negatively...Corps installation we visited states that increases in ocean temperature could lead to degradation of coral reefs in the waters offshore of the... coral - reef losses that may undermine the reef’s ability to mitigate the effects of storm surge on the installation and may lead to associated mission

  4. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    PubMed

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  5. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa

    PubMed Central

    Palm, Cheryl A.; Smukler, Sean M.; Sullivan, Clare C.; Mutuo, Patrick K.; Nyadzi, Gerson I.; Walsh, Markus G.

    2010-01-01

    Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops—green manures—and agroforestry—legume improved tree fallows) are compared to baseline food production, land requirements to meet basic caloric requirements, and greenhouse gas emissions. At low population densities and high land availability, food security and climate mitigation goals are met with all intensification scenarios, resulting in surplus crop area for reforestation. In contrast, for high population density and small farm sizes, attaining food security and reducing greenhouse gas emissions require mineral fertilizers to make land available for reforestation; green manure or improved tree fallows do not provide sufficient increases in yields to permit reforestation. Tree fallows sequester significant carbon on cropland, but green manures result in net carbon dioxide equivalent emissions because of nitrogen additions. Although these results are encouraging, agricultural intensification in sub-Saharan Africa with mineral fertilizers, green manures, or improved tree fallows will remain low without policies that address access, costs, and lack of incentives. Carbon financing for small-holder agriculture could increase the likelihood of success of Reducing Emissions from Deforestation and Forest Degradation in Developing Countries programs and climate change mitigation but also promote food security in the region. PMID:20453198

  6. Designing climate change mitigation plans that add up.

    PubMed

    Bajželj, Bojana; Allwood, Julian M; Cullen, Jonathan M

    2013-07-16

    Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.

  7. Integrating uncertainties for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical, future energy demand, and mitigation technology uncertainties. This information provides central information for policy making, since it helps to understand the relationship between mitigation costs and their potential to reduce the risk of exceeding 2°C, or other temperature limits like 3°C or 1.5°C, under a wide range of scenarios.

  8. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties

    DOE PAGES

    Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn; ...

    2017-01-27

    There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less

  9. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn

    There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less

  10. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less

  11. Ninth Graders and Climate Change: Attitudes towards Consequences, Views on Mitigation, and Predictors of Willingness to Act

    ERIC Educational Resources Information Center

    Hermans, Mikaela; Korhonen, Johan

    2017-01-01

    The aim of this study is to examine Finnish ninth graders' attitudes towards the consequences of climate change, their views on climate change mitigation and the impact of a set of selected predictors on their willingness to act in climate change mitigation. Students (N = 549) from 11 secondary schools participated in the questionnaire-based…

  12. A Framework for the Cross-Sectoral Integration of Multi-Model Impact Projections: Land Use Decisions Under Climate Impacts Uncertainties

    NASA Technical Reports Server (NTRS)

    Frieler, K.; Elliott, Joshua; Levermann, A.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Doll, P.; hide

    2015-01-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

  13. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.

    2015-07-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.

  14. The future of fishes and fisheries in the changing oceans.

    PubMed

    Cheung, W W L

    2018-03-01

    This paper aims to highlight the risk of climate change on coupled marine human and natural systems and explore possible solutions to reduce such risk. Specifically, it explores some of the key responses of marine fish stocks and fisheries to climate change and their implications for human society. It highlights the importance of mitigating carbon emission and achieving the Paris Agreement in reducing climate risk on marine fish stocks and fisheries. Finally, it discusses potential opportunities for helping fisheries to reduce climate threats, through local adaptation. A research direction in fish biology and ecology is proposed that would help support the development of these potential solutions. © 2018 The Fisheries Society of the British Isles.

  15. Essays on agricultural adaptation to climate change and ethanol market integration in the U.S

    NASA Astrophysics Data System (ADS)

    Aisabokhae, Ruth Ada

    Climate factors like precipitation and temperature, being closely intertwined with agriculture, make a changing climate a big concern for the entire human race and its basic survival. Adaptation to climate is a long-running characteristic of agriculture evidenced by the varying types and forms of agricultural enterprises associated with differing climatic conditions. Nevertheless climate change poses a substantial, additional adaptation challenge for agriculture. Mitigation encompasses efforts to reduce the current and future extent of climate change. Biofuels production, for instance, expands agriculture's role in climate change mitigation. This dissertation encompasses adaptation and mitigation strategies as a response to climate change in the U.S. by examining comprehensively scientific findings on agricultural adaptation to climate change; developing information on the costs and benefits of select adaptations to examine what adaptations are most desirable, for which society can further devote its resources; and studying how ethanol prices are interrelated across, and transmitted within the U.S., and the markets that play an important role in these dynamics. Quantitative analysis using the Forestry and Agricultural Sector Optimization Model (FASOM) shows adaptation to be highly beneficial to agriculture. On-farm varietal and other adaptations contributions outweigh a mix shift northwards significantly, implying progressive technical change and significant returns to adaptation research and investment focused on farm management and varietal adaptations could be quite beneficial over time. Northward shift of corn-acre weighted centroids observed indicates that substantial production potential may shift across regions with the possibility of less production in the South, and more in the North, and thereby, potential redistribution of income. Time series techniques employed to study ethanol price dynamics show that the markets studied are co-integrated and strongly related, with the observable high levels of interaction between all nine cities. Information is transmitted rapidly between these markets. Price seems to be discovered (where shocks originate from) in regions of high demand and perhaps shortages, like Los Angeles and Chicago (metropolitan population centers). The Maximum Likelihood approach following Spiller and Huang's model however shows cities may not belong to the same economic market and the possibility of arbitrage does not exist between all markets.

  16. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    NASA Astrophysics Data System (ADS)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  17. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    DOE PAGES

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-04-26

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less

  18. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-05-01

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Finally, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.

  19. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less

  20. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    PubMed

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  1. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  2. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  3. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of a protocol for compost amendments, which is being used by stakeholders in C markets and by government agencies in climate action planning. In summary, we hope that our research and related activities will serve as a "call to arms" to the scientific community by highlighting a new and much needed arena for rigorous scientific research.

  4. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    PubMed Central

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  5. Vegetation Fires in the Coupled Human-Earth System Under Future Environmental and Policy Perspectives

    NASA Astrophysics Data System (ADS)

    le page, Y.; Morton, D. C.; Hurtt, G. C.

    2013-12-01

    Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.

  6. Species and media effects on soil carbon dynamics in the landscape: opportunities for climate change mitigation from urban landscape plantings

    USDA-ARS?s Scientific Manuscript database

    Most scientists now agree that climate change is occurring as a direct result of human activities. Agricultural production has been shown to be a major emitter of greenhouse gas (GHG) emissions; however, horticulture production is unique in that it also has the potential to serve as a major carbon (...

  7. The Nanchang communication about the potential for the implementation of conservation practices for climate change mitigation and adaptation to achieve food security in the 21st century

    USDA-ARS?s Scientific Manuscript database

    Several recent peer reviewed manuscripts have reported on the great challenges humanity is confronting during the XXI century, including a changing climate, depletion of water resources from groundwater and/or snow caps sources that are needed for agricultural production, deforestation, desertificat...

  8. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Treesearch

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  9. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions.

    PubMed

    Molina, Mario; Zaelke, Durwood; Sarma, K Madhava; Andersen, Stephen O; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-12-08

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions.

  10. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    PubMed

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  11. Special Issue From the 4th USDA Greenhouse Gas Symposium

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  12. A wedge strategy for mitigation of urban warming in future climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  13. REPORT TO CONGRESS ON BLACK CARBON | Science ...

    EPA Pesticide Factsheets

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and their potential for protecting climate, public health, and the environment. The EPA Advisory Council on Clean Air Compliance Analysis has peer-reviewed the report. In the October 2009 Interior Appropriations bill, Congress requested that EPA, in consultation with other Federal agencies, study the emissions and impacts of black carbon in the US and internationally. To fulfill this charge, EPA has conducted an intensive effort to compile, assess, and summarize available scientific information on the current and future impacts of black carbon, and to evaluate the effectiveness of available mitigation approaches and technologies for protecting climate, public health, and the environment.

  14. Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall; Muratori, Matteo; Kyle, Page

    Although the aviation sector is a relatively small contributor to total greenhouse gas emissions, it is a fast-growing, fossil fuel-intensive transportation mode. Because aviation is a mode for which liquid fuels currently have no practical substitute, biofuels are gaining attention as a promising cleaner alternative. In this paper, we use the GCAM integrated assessment model to develop scenarios that explore the potential impact of biojet fuels for use in aviation in the context of broader climate change mitigation. We show that a carbon price would have a significant impact on the aviation sector. In the absence of alternatives to jetmore » fuel from petroleum, mitigation potential is limited and would be at the expense of aviation service demand growth. However, mitigation efforts through the increased use of biojet fuels show potential to reduce the carbon intensity of aviation, and may not have a significant impact on carbon mitigation and bioenergy use in the rest of the energy system. The potential of biofuel to decarbonize air transport is significantly enhanced when carbon dioxide capture and storage (CCS) is used in the conversion process to produce jet fuels from biomass feedstock.« less

  15. Agriculture, forestry, and other land-use emissions in Latin America

    DOE PAGES

    Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo; ...

    2016-04-07

    Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less

  16. How Green is 'Green' Energy?

    PubMed

    Gibson, Luke; Wilman, Elspeth N; Laurance, William F

    2017-12-01

    Renewable energy is an important piece of the puzzle in meeting growing energy demands and mitigating climate change, but the potentially adverse effects of such technologies are often overlooked. Given that climate and ecology are inextricably linked, assessing the effects of energy technologies requires one to consider their full suite of global environmental concerns. We review here the ecological impacts of three major types of renewable energy - hydro, solar, and wind energy - and highlight some strategies for mitigating their negative effects. All three types can have significant environmental consequences in certain contexts. Wind power has the fewest and most easily mitigated impacts; solar energy is comparably benign if designed and managed carefully. Hydropower clearly has the greatest risks, particularly in certain ecological and geographical settings. More research is needed to assess the environmental impacts of these 'green' energy technologies, given that all are rapidly expanding globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Agriculture, forestry, and other land-use emissions in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo

    Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less

  18. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.

    PubMed

    Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave

    2017-04-18

    Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.

  19. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional-scale mitigation capacity considering wide-scale deployment and potential wildfire feedback effects of harvest, highlighting the relative importance of supply chain, conversion technology, ecological, and epistemological uncertainties in realizing wide-scale negative emissions in this region.

  20. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  1. Adaptation and Mitigation in Agriculture: A Review of Synergies and Tradeoffs and How EO Could Improve Understanding and Outcomes

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Wollenberg, E.

    2017-12-01

    We present a review of the published literature on agricultural adaptation and mitigation, and report on the current evidence as to whether changes in agricultural practices meant to achieve mitigation or adaptation goals can be dual purpose: simultaneously reducing greenhouse gas (GHG) emissions and helping to facilitate adaptation. We characterize the spatio-temporal and system trends in how adaptation and mitigation outcomes are being achieved, and report on the current technical and knowledge gaps that exist and where Earth observations (EO) could improve our understanding. Agriculture contributes 12% GHG emissions globally, roughly one third from the developing world. Nearly 70% of the technical mitigation potential in agriculture sector occurs in these countries, however, while the mitigation potential is high, agricultural productivity also relies heavily on climate factors. With climate change, agricultural systems already, and will increasingly, need to adapt to extreme events and variability in temperatures and precipitation. This underscores the importance of implementing agricultural practices that can both reduce GHG emissions and help facilitate adaptation. Until recently, these objectives have been treated separately, but policy makers are increasingly calling for a joint approach to improve synergies, and avoid tradeoffs. There remain many complications in considering a joint approach: lack of clear conceptual frameworks, knowledge gaps in scientific understanding and evidence associated with adaptation and mitigation outcomes, and the abilities and motivations of stakeholders to consider both objectives. We review 56 peer-reviewed publications and present results from an in-depth analysis to answer two major concerns: to what extent is evidence provided for claims of synergistic outcomes, and what uncertainty surrounds this evidence. Our results show that only 21% of studies empirically measured both mitigation and adaptation outcomes, and claims of synergies are not well substantiated, and evidence is provided at questionable spatio-temporal scales. We highlight information that could be provided by coordinated, comprehensive and sustained EO which could benefit this critical goal of simultaneously achieving agricultural adaptation and mitigation.

  2. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  3. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  4. Applying a Systems Approach to Monitoring and Assessing Climate Change Mitigation Potential in Mexico's Forest Sector

    NASA Astrophysics Data System (ADS)

    Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.

    2017-12-01

    Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).

  5. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.

    PubMed

    Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F

    2018-03-13

    The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.

  6. The Guanajuato Communication about the Potential for Implementation of Conservation Practices for Climate Change Mitigation and Adaptation to Achieve Food Security in Mexico During the 21st Century

    USDA-ARS?s Scientific Manuscript database

    The scientific literature reports that climate change will impact weather in North America, with projections for a drier and hotter southeastern United States and northwestern Mexico. The areas of Mexico that are projected to be impacted cover important grain areas of the country. Additionally, seve...

  7. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in the Chesapeake Bay Watershed

    USDA-ARS?s Scientific Manuscript database

    Diffuse nutrient pollution from agricultural landscapes is a priority water quality concern and the cause of mitigation activities worldwide. Climate change and climate variability impact hydrology, nutrient cycling, and ultimately water quality, which can complicate mitigation measures. Climate cha...

  8. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    ERIC Educational Resources Information Center

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  9. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    PubMed

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  10. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  11. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  12. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  13. Climate Benefits of Potential Avoided Emissions from Forest Conversion Diminished by Albedo Warming: Comprehensive, Data-Driven Assessment for the US and Beyond

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Gu, H.; Jiao, T.

    2017-12-01

    Avoided deforestation is a leading pathway for climate change mitigation, featuring prominently in many country's Intended Nationally Determined Contributions, but its climate benefits remain contested, in part because of reports of large offsetting effects in some regions of the world. It is well known that avoiding forest to non-forest conversion prevents forest carbon release, and sustains forest carbon uptake, but also increases albedo thus diminishing the potency of this mitigation strategy. While the mechanisms are known, their relative importance and the resulting climate benefit remain unclear. This is in part due to a lack of quantitative assessments documenting geographic variation in rates of forest conversion, associated carbon emissions, resulting radiative forcing, and the magnitude of simultaneous albedo offsets. This study (i) quantifies the current rate of forest conversion and carbon release in the United States with Landsat remote sensing and a carbon assessment framework, and (ii) compares this to quantitative estimates of the radiative forcing from the corresponding albedo change. Albedo radiative forcing is assessed with a recently-generated, global atlas of land-cover-specific albedos derived from a fusion of MODIS and Landsat reflectances, combined with snow cover and solar radiation datasets. We document the degree to which albedo warming offsets carbon cooling from contemporary forest conversions taking place in different regions of the United States and identify the underlying drivers of spatial variability. We then extend this to other regions of the world where forests are under threat and where avoided deforestation is viewed as a primary tool for climate mitigation. Results shed light on the, at times contentious, debate about the efficacy of forest protection as a mitigation mechanism.

  14. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    PubMed

    Haden, Van R; Niles, Meredith T; Lubell, Mark; Perlman, Joshua; Jackson, Louise E

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  15. Climate change and health: impacts, vulnerability, adaptation and mitigation.

    PubMed

    Kjellstrom, Tord; Weaver, Haylee J

    2009-01-01

    Global climate change is progressing and health impacts have been observed in a number of countries, including Australia. The main health impacts will be due to direct heat exposure, extreme weather, air pollution, reduced local food production, food- and vectorborne infectious diseases and mental stress. The issue is one of major public health importance. Adaptation to reduce the effects of climate change involves many different sectors to minimise negative health outcomes. Wide-scale mitigation is also required, in order to reduce the effects of climate change. In addition, future urban design must be modified to mitigate and adapt to the effects of climate change. Strategies for mitigation and adaptation can create co-benefits for both individual and community health, by reducing non-climate-related health hazard exposures and by encouraging health promoting behaviours and lifestyles.

  16. Mass support for global climate agreements depends on institutional design.

    PubMed

    Bechtel, Michael M; Scheve, Kenneth F

    2013-08-20

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.

  17. Mode, load, and specific climate impact from passenger trips.

    PubMed

    Borken-Kleefeld, Jens; Fuglestvedt, Jan; Berntsen, Terje

    2013-07-16

    The climate impact from a long-distance trip can easily vary by a factor of 10 per passenger depending on mode choice, vehicle efficiency, and occupancy. In this paper we compare the specific climate impact of long-distance car travel with coach, train, or air trips. We account for both, CO2 emissions and short-lived climate forcers. This particularly affects the ranking of aircraft's climate impact relative to other modes. We calculate the specific impact for the Global Warming Potential and the Global Temperature Change Potential, considering time horizons between 20 and 100 years, and compare with results accounting only for CO2 emissions. The car's fuel efficiency and occupancy are central whether the impact from a trip is as high as from air travel or as low as from train travel. These results can be used for carbon-offsetting schemes, mode choice and transportation planning for climate mitigation.

  18. Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Mei; Liang, Qiao-Mei; Liu, Li-Jing; Diaz Anadon, Laura

    2017-12-01

    The perceived inability of climate change mitigation goals alone to mobilize sufficient climate change mitigation efforts has, among other factors, led to growing research on the co-benefits of reducing greenhouse gas (GHG) emissions. This study conducts a systematic review (SR) of the literature on the co-benefits of mitigating GHG emissions resulting in 1554 papers. We analyze these papers using bibliometric analysis, including a keyword co-occurrence analysis. We then iteratively develop and present a typology of co-benefits, mitigation sectors, geographic scope, and methods based on the manual double coding of the papers resulting from the SR. We find that the co-benefits from GHG mitigation that have received the largest attention of researchers are impacts on ecosystems, economic activity, health, air pollution, and resource efficiency. The co-benefits that have received the least attention include the impacts on conflict and disaster resilience, poverty alleviation (or exacerbation), energy security, technological spillovers and innovation, and food security. Most research has investigated co-benefits from GHG mitigation in the agriculture, forestry and other land use (AFOLU), electricity, transport, and residential sectors, with the industrial sector being the subject of significantly less research. The largest number of co-benefits publications provide analysis at a global level, with relatively few studies providing local (city) level analysis or studying co-benefits in Oceanian or African contexts. Finally, science and engineering methods, in contrast to economic or social science methods, are the methods most commonly employed in co-benefits papers. We conclude that given the potential mobilizing power of understudied co-benefits (e.g. poverty alleviation) and local impacts, the magnitude of GHG emissions from the industrial sector, and the fact that Africa and South America are likely to be severely affected by climate change, there is an opportunity for the research community to fill these gaps.

  19. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions

    PubMed Central

    Molina, Mario; Zaelke, Durwood; Sarma, K. Madhava; Andersen, Stephen O.; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-01-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions. PMID:19822751

  20. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    PubMed Central

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J. J.; Pagé, Christian; De Baets, Sarah; Quine, Timothy A.

    2016-01-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils. PMID:27808169

  1. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France.

    PubMed

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J J; Pagé, Christian; De Baets, Sarah; Quine, Timothy A

    2016-11-03

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO 2 emissions will be crucial to prevent further loss of carbon from our soils.

  2. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.

    2015-07-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.

  3. Climate responses to anthropogenic emissions of short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.; Samset, B. H.

    2015-02-01

    Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.

  4. Consequence of climate mitigation on the risk of hunger.

    PubMed

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Tanaka, Akemi; Takahashi, Kiyoshi; Masui, Toshihiko

    2015-06-16

    Climate change and mitigation measures have three major impacts on food consumption and the risk of hunger: (1) changes in crop yields caused by climate change; (2) competition for land between food crops and energy crops driven by the use of bioenergy; and (3) costs associated with mitigation measures taken to meet an emissions reduction target that keeps the global average temperature increase to 2 °C. In this study, we combined a global computable general equilibrium model and a crop model (M-GAEZ), and we quantified the three impacts on risk of hunger through 2050 based on the uncertainty range associated with 12 climate models and one economic and demographic scenario. The strong mitigation measures aimed at attaining the 2 °C target reduce the negative effects of climate change on yields but have large negative impacts on the risk of hunger due to mitigation costs in the low-income countries. We also found that in a strongly carbon-constrained world, the change in food consumption resulting from mitigation measures depends more strongly on the change in incomes than the change in food prices.

  5. Eye Disease Resulting From Increased Use of Fluorescent Lighting as a Climate Change Mitigation Strategy

    PubMed Central

    Walls, Kelvin L.; Benke, Geza

    2011-01-01

    Increased use of fluorescent lighting as a climate change mitigation strategy may increase eye disease. The safe range of light to avoid exposing the eye to potentially damaging ultraviolet (UV) radiation is 2000 to 3500K and greater than 500 nanometers. Some fluorescent lights fall outside this safe range. Fluorescent lighting may increase UV-related eye diseases by up to 12% and, according to our calculations, may cause an additional 3000 cases of cataracts and 7500 cases of pterygia annually in Australia. Greater control of UV exposure from fluorescent lights is required. This may be of particular concern for aging populations in developed countries and countries in northern latitudes where there is a greater dependence on artificial lighting. PMID:22021286

  6. Short-lived climate pollutant mitigation and the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Haines, Andy; Amann, Markus; Borgford-Parnell, Nathan; Leonard, Sunday; Kuylenstierna, Johan; Shindell, Drew

    2017-12-01

    The post-2015 development agenda is dominated by a set of Sustainable Development Goals (SDGs) that arose from the 2012 Rio+20 United Nations Conference on Sustainable Development. The 17 goals and 169 targets address diverse and intersecting aspects of human and environmental needs and challenges. Achieving the SDGs by 2030 requires implementing coordinated and concerted strategies and actions that minimize potential trade-offs and conflicts and maximize synergies to contribute to multiple SDGs. Measures to mitigate emissions of short-lived climate pollutants are an example of actions that contribute to multiple outcomes relevant to development. This Perspective highlights the interlinkages between these pollutants and the SDGs, and shows that implementing emissions reduction measures can contribute to achieving many of the SDGs.

  7. Modification of land-atmosphere interactions by CO2 effects

    NASA Astrophysics Data System (ADS)

    Lemordant, Leo; Gentine, Pierre

    2017-04-01

    Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.

  8. Service Center for Climate Change Adaptation in Agriculture - an initiative of the University of West Hungary

    NASA Astrophysics Data System (ADS)

    Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.

    2012-04-01

    In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry

  9. Regional-scale carbon and greenhouse gas dynamics of organic matter amendments on grassland soils

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2017-12-01

    While progress is being made toward emissions reductions, achieving the international warming target of no more than 2 °C by 2100 will require active removal of carbon dioxide from the atmosphere. This research explores the potential for grassland ecosystems to sequester soil carbon (C) and mitigate climate change over time. We parameterized a site-level biogeochemical model (DayCent) to predict the effect of compost applications on grassland net primary productivity, greenhouse gas emissions, and soil C storage and loss. We compare the results of the DayCent model from seven grassland regions across a broad climate gradient in CA. We also modeled the impact of climate change under a high emissions scenario (RCP 8.5) and reduced emissions scenario (RCP 4.5). Model results show that a single application of compost leads to a large net increase in soil C over several decades across all sites. Maximum soil C sequestration relative to control simulations occurred approximately 15 years after a ¼ inch compost was applied to the land, resulting in a maximum net C drawdown of approximately 6.6 Mg C/ha (Mendocino) by 2030 and a continued climate benefit from enhanced C storage through the end of the century. Compost application resulted in enhanced soil C in both climate scenarios, but the reduced emissions climate scenario resulted in greater net C storage than the high emissions scenario by 2100. This points to a virtuous cycle of simultaneous emissions reductions leading to enhanced climate change mitigation potential from land management strategies.

  10. Global Climate Change:A Monumental Mitigation Challenge

    EPA Science Inventory

    A holistic view of long-term sustainability cannot ignore humanity’s ever-growing demands on fossil fuels, water, and other finite geological resources. Figure 1 (Princiotta et. al., 2014) illustrates the key factors that are responsible for potentially unsustainable global impac...

  11. Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India

    NASA Astrophysics Data System (ADS)

    Singh, N.; Mishra, T.; Banerjee, R.

    2017-12-01

    India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.

  12. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2015-01-01

    New hydrological insights for the region: Basin average annual ET was found to be sensitive to changes in CO2 concentration and temperature, while total water yield, streamflow, and groundwater recharge were sensitive to changes in precipitation. The basin hydrological components were predicted to increase with seasonal variability in response to climate and land use change scenarios. Strong increasing trends were predicted for total water yield, streamflow, and groundwater recharge, indicating exacerbation of flooding potential during August–October, but strong decreasing trends were predicted, indicating exacerbation of drought potential during May–July of the 21st century. The model has potential to facilitate strategic decision making through scenario generation integrating climate change adaptation and hazard mitigation policies to ensure optimized allocation of water resources under a variable and changing climate.

  13. Marginalization of end-use technologies in energy innovation for climate protection

    NASA Astrophysics Data System (ADS)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  14. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  15. Implications of climate change mitigation for sustainable development

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Steckel, Jan Christoph

    2016-10-01

    Evaluating the trade-offs between the risks related to climate change, climate change mitigation as well as co-benefits requires an integrated scenarios approach to sustainable development. We outline a conceptual multi-objective framework to assess climate policies that takes into account climate impacts, mitigation costs, water and food availability, technological risks of nuclear energy and carbon capture and sequestration as well as co-benefits of reducing local air pollution and increasing energy security. This framework is then employed as an example to different climate change mitigation scenarios generated with integrated assessment models. Even though some scenarios encompass considerable challenges for sustainability, no scenario performs better or worse than others in all dimensions, pointing to trade-offs between different dimensions of sustainable development. For this reason, we argue that these trade-offs need to be evaluated in a process of public deliberation that includes all relevant social actors.

  16. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    PubMed

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. USDA southwest regional hub for adaptation to and mitigation of climate change

    USDA-ARS?s Scientific Manuscript database

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made ...

  18. Modeling Fire Emissions across Central and Southern Italy: Implications for Land and Fire Management

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Spano, D.

    2015-12-01

    Fires play a relevant role in the global and regional carbon cycle, representing a remarkable source of CO2 and other greenhouse gases (GHG) that influence atmosphere budgets and climate. In addition, the wildfire increase projected in Southern Europe due to climate change (CC) and concurrent exacerbation of extreme weather conditions could also lead to a significant rise in GHG. Recently, in the context of the Italian National Adaptation Strategy to Climate Change (SNAC), several approaches were identified as valuable tools to adapt and mitigate the impacts of CC on wildfires, in order to reduce landscape susceptibility and to contribute to the efforts of carbon emission mitigation proposed within the Kyoto protocol. Active forest and fuel management (such as prescribed burning, fuel reduction and removal, weed and flammable shrub control, creation of fuel discontinuity) is recognised to be a key element to adapt and mitigate the impacts of CC on wildfires. Despite this, overall there is a lack of studies about the effectiveness of fire emission mitigation strategies. The current work aims to analyse the potential of a combination of fuel management practices in mitigating emissions from forest fires and evaluate valuable and viable options across Central and Southern Italy. These objectives were achieved throughout a retrospective application of an integrated approach combining a fire emission model (FOFEM - First Order Fire Effect Model) with spatially explicit, comprehensive, and accurate fire, vegetation and weather data for the period 2004-2012. Furthermore, a number of silvicultural techniques were combined to develop several fuel management scenarios and then tested to evaluate their potential in mitigating fire emissions.The preliminary results showed the crucial role of appropriate fuel, fire behavior, and weather data to reduce bias in quantifying the source and the composition of fire emissions and to attain reasonable estimations. Also, the current study highlighted that balanced combination of fuel management techniques could not only be a viable mean to reduce fire emissions but at the same time prevent future wildfires and the related threat to human lives and activities.

  19. Economics of nuclear power and climate change mitigation policies.

    PubMed

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  20. Economics of nuclear power and climate change mitigation policies

    PubMed Central

    Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar

    2012-01-01

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  1. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  2. Improved representation of investment decisions in assessments of CO2 mitigation

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; Flannery, Brian P.; Hultman, Nathan E.; McJeon, Haewon C.; Victor, David G.

    2015-05-01

    Assessments of emissions mitigation patterns have largely ignored the huge variation in real-world factors--in particular, institutions--that affect where, how and at what costs firms deploy capital. We investigate one such factor--how national institutions affect investment risks and thus the cost of financing. We use an integrated assessment model (IAM; ref. ) to represent the variation in investment risks across technologies and regions in the electricity generation sector--a pivotally important sector in most assessments of climate change mitigation--and compute the impact on the magnitude and distribution of mitigation costs. This modified representation of investment risks has two major effects. First, achieving an emissions mitigation goal is more expensive than it would be in a world with uniform investment risks. Second, industrialized countries mitigate more, and developing countries mitigate less. Here, we introduce a new front in the research on how real-world factors influence climate mitigation. We also suggest that institutional reforms aimed at lowering investment risks could be an important element of cost-effective climate mitigation strategies.

  3. Reducing greenhouse gas emissions in agriculture without compromising food security?

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-Francois; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-04-01

    To keep global warming possibly below 1.5 C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price could substantially affect other Sustainable Development Goals. Here, we assess the implications of climate change mitigation in agriculture for agricultural production and food security using an integrated modelling framework and explore ways of relaxing the competition between climate change mitigation and food availability. Using a scenario that limits global warming to 1.5 C, results indicate a food calorie loss in 2050 of up to 330 kcal per capita in food insecure countries. If only developed countries participated in the mitigation effort, the calorie loss would be 40 kcal per capita, however the climate target would not be achieved. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land using a comprehensive set of management options, would allow achieving a 1.5 C target while reducing the implied calorie loss by up to 70% and storing up to 3.5 GtCO2 in soils. Hence, the promotion of so called "win-win" mitigation options i.e. soil carbon sequestration, and ensuring successful mitigation of land use change emissions are crucial to stabilize the climate without deteriorating food security.

  4. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries.

    PubMed

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production's effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species.

  5. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    PubMed Central

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species. PMID:25767477

  6. Farm Simulation: a tool for evaluating the mitigation of greenhouse gas emissions and the adaptation of dairy production to climate change

    USDA-ARS?s Scientific Manuscript database

    Farms both produce greenhouse gas emissions that drive human-induced climate change and are impacted by that climate change. Whole farm and global climate models provide useful tools for studying the benefits and costs of greenhouse gas mitigation and the adaptation of farms to changing climate. The...

  7. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    NASA Astrophysics Data System (ADS)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  8. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    PubMed

    Smith, Pete; Haberl, Helmut; Popp, Alexander; Erb, Karl-Heinz; Lauk, Christian; Harper, Richard; Tubiello, Francesco N; de Siqueira Pinto, Alexandre; Jafari, Mostafa; Sohi, Saran; Masera, Omar; Böttcher, Hannes; Berndes, Göran; Bustamante, Mercedes; Ahammad, Helal; Clark, Harry; Dong, Hongmin; Elsiddig, Elnour A; Mbow, Cheikh; Ravindranath, Nijavalli H; Rice, Charles W; Robledo Abad, Carmenza; Romanovskaya, Anna; Sperling, Frank; Herrero, Mario; House, Joanna I; Rose, Steven

    2013-08-01

    Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever. © 2013 John Wiley & Sons Ltd.

  9. Allocating a 2 °C cumulative carbon budget to countries

    NASA Astrophysics Data System (ADS)

    Gignac, Renaud; Damon Matthews, H.

    2015-07-01

    Recent estimates of the global carbon budget, or allowable cumulative CO2 emissions consistent with a given level of climate warming, have the potential to inform climate mitigation policy discussions aimed at maintaining global temperatures below 2 °C. This raises difficult questions, however, about how best to share this carbon budget amongst nations in a way that both respects the need for a finite cap on total allowable emissions, and also addresses the fundamental disparities amongst nations with respect to their historical and potential future emissions. Here we show how the contraction and convergence (C&C) framework can be applied to the division of a global carbon budget among nations, in a manner that both maintains total emissions below a level consistent with 2 °C, and also adheres to the principle of attaining equal per capita CO2 emissions within the coming decades. We show further that historical differences in responsibility for climate warming can be quantified via a cumulative carbon debt (or credit), which represents the amount by which a given country’s historical emissions have exceeded (or fallen short of) the emissions that would have been consistent with their share of world population over time. This carbon debt/credit calculation enhances the potential utility of C&C, therefore providing a simple method to frame national climate mitigation targets in a way that both accounts for historical responsibility, and also respects the principle of international equity in determining future emissions allowances.

  10. Looking to nature for solutions

    NASA Astrophysics Data System (ADS)

    Turner, Will R.

    2018-01-01

    Completely stopping fossil fuel use may not be enough to avoid dangerous climate change. Recent research on the mitigation potential of conservation, restoration, and improved land management demonstrates that natural solutions can reduce emissions and remove atmospheric CO2 while safeguarding food security and biodiversity.

  11. Mitigation and Adaptation within a Climate Policy Portfolio

    EPA Science Inventory

    An effective policy response to climate change will include, among other things, investments in lowering greenhouse gas emissions (mitigation), as well as short-term temporary (flow) and long-lived capital-intensive (stock) adaptation to climate change. A critical near-term ques...

  12. Climate Change and Health: A Position Paper of the American College of Physicians.

    PubMed

    Crowley, Ryan A

    2016-05-03

    Climate change could have a devastating effect on human and environmental health. Potential effects of climate change on human health include higher rates of respiratory and heat-related illness, increased prevalence of vector-borne and waterborne diseases, food and water insecurity, and malnutrition. Persons who are elderly, sick, or poor are especially vulnerable to these potential consequences. Addressing climate change could have substantial benefits to human health. In this position paper, the American College of Physicians (ACP) recommends that physicians and the broader health care community throughout the world engage in environmentally sustainable practices that reduce carbon emissions; support efforts to mitigate and adapt to the effects of climate change; and educate the public, their colleagues, their community, and lawmakers about the health risks posed by climate change. Tackling climate change is an opportunity to dramatically improve human health and avert dire environmental outcomes, and ACP believes that physicians can play a role in achieving this goal.

  13. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    NASA Astrophysics Data System (ADS)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  14. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  15. Alleviating inequality in climate policy costs: an integrated perspective on mitigation, damage and adaptation

    NASA Astrophysics Data System (ADS)

    De Cian, E.; Hof, A. F.; Marangoni, G.; Tavoni, M.; van Vuuren, D. P.

    2016-07-01

    Equity considerations play an important role in international climate negotiations. While policy analysis has often focused on equity as it relates to mitigation costs, there are large regional differences in adaptation costs and the level of residual damage. This paper illustrates the relevance of including adaptation and residual damage in equity considerations by determining how the allocation of emission allowances would change to counteract regional differences in total climate costs, defined as the costs of mitigation, adaptation, and residual damage. We compare emission levels resulting from a global carbon tax with two allocations of emission allowances under a global cap-and-trade system: one equating mitigation costs and one equating total climate costs as share of GDP. To account for uncertainties in both mitigation and adaptation, we use a model-comparison approach employing two alternative modeling frameworks with different damage, adaptation cost, and mitigation cost estimates, and look at two different climate goals. Despite the identified model uncertainties, we derive unambiguous results on the change in emission allowance allocation that could lessen the unequal distribution of adaptation costs and residual damages through the financial transfers associated with emission trading.

  16. Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators

    NASA Astrophysics Data System (ADS)

    Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut

    2017-11-01

    Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.

  17. The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda.

    PubMed

    Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J; Karoly, David J; Wiseman, John

    2018-04-04

    A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda.

  18. Hand in hand: public endorsement of climate change mitigation and adaptation.

    PubMed

    Brügger, Adrian; Morton, Thomas A; Dessai, Suraje

    2015-01-01

    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  19. The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda

    PubMed Central

    Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J.; Karoly, David J.; Wiseman, John

    2018-01-01

    A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda. PMID:29617317

  20. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  1. Impact of socio-demographic factors on the mitigating actions for climate change: a path analysis with mediating effects of attitudinal variables.

    PubMed

    Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed

    2017-12-01

    Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.

  2. Poverty eradication in a carbon constrained world.

    PubMed

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Patwardhan, Anand

    2017-10-24

    The UN Framework Convention on Climate Change aims to keep warming below 2 °C while recognizing developing countries' right to eradicate extreme poverty. Poverty eradication is also the first of the Sustainable Development Goals. This paper investigates potential consequences for climate targets of achieving poverty eradication. We find that eradicating extreme poverty, i.e., moving people to an income above $1.9 purchasing power parity (PPP) a day, does not jeopardize the climate target even in the absence of climate policies and with current technologies. On the other hand, bringing everybody to a still modest expenditure level of at least $2.97 PPP would have long-term consequences on achieving emission targets. Compared to the reference mitigation pathway, eradicating extreme poverty increases the effort by 2.8% whereas bringing everybody to at least $2.97 PPP would increase the required mitigation rate by 27%. Given that the top 10% global income earners are responsible for 36% of the current carbon footprint of households; the discourse should address income distribution and the carbon intensity of lifestyles.

  3. A School Uniform Program That Works.

    ERIC Educational Resources Information Center

    Loesch, Paul C.

    1995-01-01

    According to advocates, school uniforms reduce gang influence, decrease families' clothing expenditures, and help mitigate potentially divisive cultural and economic differences. Aiming to improve school climate, a California elementary school adopted uniforms as a source of pride and affiliation. This article describes the development of the…

  4. SUMMARY OF EPA'S RADON REDUCTION RESEARCH IN SCHOOLS DURING 1989-90

    EPA Science Inventory

    The report details radon mitigation research in schools conducted by EPA during 1989 and part of 1990. The major objective was to evaluate the potential of active subslab depressurization (ASD) in various geologic and climatic regions. The different geographic regions also pres...

  5. SUMMARY OF EPA'S RADON REDUCTION RESEARCH IN SCHOOLS DURING 1989-90

    EPA Science Inventory

    The report details radon mitigation research in schools conducted by EPA during 1989 and part of 1990. he major objective was to evaluate the potential of active subslab depressurization (ASD) in various geologic and climatic regions. he different geographic regions also presente...

  6. Social acceptability of bioenergy in the U.S

    Treesearch

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  7. The effect of climate policy on the impacts of climate change on river flows in the UK

    NASA Astrophysics Data System (ADS)

    Arnell, Nigel W.; Charlton, Matthew B.; Lowe, Jason A.

    2014-03-01

    This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2 °C temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4 °C by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4 °C pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.

  8. Buildings: Mitigation Opportunities with a Focus on Health Implications

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Addressing building energy use is the critical first step in any strategic plan for mitigating climate change. Buildings have a direct impact on estimated global climate change due to their large carbon ...

  9. Improving Decision-Making Activities for Meningitis and Malaria

    NASA Astrophysics Data System (ADS)

    Ceccato, P.; Trzaska, S.; Perez, C.; Kalashnikova, O. V.; del Corral, J.; Cousin, R.; Blumenthal, M. B.; Connor, S.; Thomson, M. C.

    2012-12-01

    Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI) is developing new products to increase the public health community's capacity to understand, use, and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on infectious disease, in particular Meningitis and Malaria. In this paper we present the new and improved products that have been developed for monitoring dust, temperature, rainfall and vectorial capacity model for monitoring and forecasting risks of Meningitis and Malaria epidemics. We also present how the products have been integrated into a knowledge system (IRI Data Library Map room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making.

  10. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  11. Farming for a Better Climate by Improving Nitrogen Use Efficiency and Reducing Greenhouse Gas Emissions (FarmClim)

    NASA Astrophysics Data System (ADS)

    Amon, Barbara; Winiwarter, Wilfried; Schröck, Andrea; Zechmeister-Boltenstern, Sophie; Kasper, Martina; Sigmund, Elisabeth; Schaller, Lena; Moser, Tobias; Baumgarten, Andreas; Dersch, Georg; Zethner, Gerhard; Anderl, Michael; Kitzler, Barbara

    2014-05-01

    The project FarmClim (Farming for a better climate) assesses impacts of agriculture on N and GHG fluxes in Austria and proposes measures for improving N efficiency and mitigating emissions, including their economic assessment. This paper focuses on animal husbandry and crop production measures, and on N2O emissions from soils. FarmClim applies national inventory reporting methods to assess Austrian NH3 and GHG fluxes in order to develop flux estimates with implementation of mitigation measures. Based on scientific literature and on the outcome of the Austrian working group agriculture and climate protection a list of potential mitigation measures has been produced: phase feeding, dairy cattle diet, biogas production. Data cover resulting production levels as well as GHG mitigation. In crop production, an optimisation potential remains with respect to N fertilization and nutrient uptake efficiency. Projected regional yield data and information on the N content of arable crops have been delivered from field experiments. These data complement official statistics and allow assessing the effect of increasing proportions of legume crops in crop rotations and reducing fertilizer input on a regional scale. Economic efficiency of measures is a crucial factor for their future implementation on commercial farms. The economic model evaluates investment costs as well as changes in direct costs, labour costs and economic yield. Biophysical modelling with Landscape DNDC allows establishing a framework to move from the current approach of applying the IPCC default emission factor for N2O emissions from soils. We select two Austrian model regions to calculate N fluxes taking into account region and management practices. Hot spots and hot moments as well as mitigation strategies are identified. Two test regions have been identified for soil emission modelling. The Marchfeld is an intensively used agricultural area in North-East Austria with very fertile soils and dry climate. The area of central Upper-Austria is characterized by heavy gley soils and higher annual precipitation (890mm). Based on site parameters, vegetation characteristics, management and meteorology, the model is able to predict C and N bio-geo-chemistry in agricultural ecosystems at site and regional scale. This is the basis for assessing further mitigation specifically focussing on the hot spots and hot moments of N emissions on a regional scale. The list of mitigation measures resulting from the project activities has been tailored to fit Austrian conditions in order to be attractive to stakeholders and farmers. Providing information on economic impacts to farms adds to the transparency of the approach taken. We expect that understanding the interest and the worries of farmers from the beginning supports creation of realistic output that can provide a strong incentive to urgently needed actions on improving farm N efficiencies.

  12. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.

    2015-01-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  13. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Caldwell, Jamie M; Fisher, Micah R; Genco, Brandon M; Running, Steven W

    2015-06-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  14. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Climate change mitigation policies and poverty in developing countries

    NASA Astrophysics Data System (ADS)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  16. Mitigation and adaptation within a climate change policy portfolio: A research program

    EPA Science Inventory

    It is now recognized that optimal global climate policy is a portfolio of the two key responses for reducing the risks of climate change: mitigation and adaptation. Significant differences between the two responses have inhibited understanding of how to appropriately view these...

  17. Climate mitigation: sustainable preferences and cumulative carbon

    NASA Astrophysics Data System (ADS)

    Buckle, Simon

    2010-05-01

    We develop a stylized AK growth model with both climate damages to ecosystem goods and services and sustainable preferences that allow trade-offs between present discounted utility and long-run climate damages. The simplicity of the model permits analytical solutions. Concern for the long-term provides a strong driver for mitigation action. One plausible specification of sustainable preferences leads to the result that, for a range of initial parameter values, an optimizing agent would choose a level of cumulative carbon dioxide (CO2) emissions independent of initial production capital endowment and CO2 levels. There is no technological change so, for economies with sufficiently high initial capital and CO2 endowments, optimal mitigation will lead to disinvestment. For lower values of initial capital and/or CO2 levels, positive investment can be optimal, but still within the same overall level of cumulative emissions. One striking aspect of the model is the complexity of possible outcomes, in addition to these optimal solutions. We also identify a resource constrained region and several regions where climate damages exceed resources available for consumption. Other specifications of sustainable preferences are discussed, as is the case of a hard constraint on long-run damages. Scientists are currently highlighting the potential importance of the cumulative carbon emissions concept as a robust yet flexible target for climate policymakers. This paper shows that it also has an ethical interpretation: it embodies an implicit trade off in global welfare between present discounted welfare and long-term climate damages. We hope that further development of the ideas presented here might contribute to the research and policy debate on the critical areas of intra- and intergenerational welfare.

  18. Reducing The Risk Of Abrupt Climate Change: Emission Corridors Preserving The Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.

    Paleo-reconstructions have shown that large and abrupt climate changes have occurred throughout the last ice-age cycles. This evidence, supplemented by insights into the complex and nonlinear nature of the climate system, gives raise to the concern that anthropogenic forcing may trigger such events in the future. A prominent example for such a potential climatic shift is the collapse of the North Atlantic thermohaline circu- lation (THC), which would cause a major cooling of the northern North Atlantic and north-western Europe and considerable regional sea level rise, with possibly severe consequences on, e.g., fisheries, agriculture and ecosystems. In this paper we present emission corridors for the 21st century preserving the THC. Emission corridors embrace the range of future emissions beyond which either the THC collapses or the mitigation burden becomes intolerable. They are calculated along the conceptual and methodological lines of the tolerable windows approach. We investigate the sensitivity of the emission corridors to the main uncertain parame- ters (climate and North Atlantic hydrological sensitivities as well as emissions of non CO_2 greenhouse gases). Results show a high dependence of the size of the emis- sion corridors on hydrological and climate sensitivities. For the best-guess values of both parameters we find that the emission corridors are wider than the range spanned by the SRES emissions scenarios. Thus, no immediate mitigation seems necessary in order to preserve the THC. For high but still realistic values of the sensitivities, however, even the low SRES emissions scenarios transgress the corridor boundaries. These findings imply that under 'business as usual' a non-negligible risk of either a THC collapse or an intolerable mitigation burden exists.

  19. Burden Sharing with Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Tavoni, M.; van Vuuren, D.; De Cian, E.; Marangoni, G.; Hof, A.

    2014-12-01

    Efficiency and equity have been at the center of the climate change policy making since the very first international environmental agreements on climate change, though over time how to implement these principles has taken different forms. Studies based on Integrated Assessment Models have also shown that the economic effort of achieving a 2 degree target in a cost-effective way would differ widely across regions (Tavoni et al. 2013) because of diverse economic and energy structure, baseline emissions, energy and carbon intensity. Policy instruments, such as a fully-fledged, global emission trading schemes can be used to pursuing efficiency and equity at the same time but the literature has analyzed the compensations required to redistribute only mitigation costs. However, most of these studies have neglected the potential impacts of climate change. In this paper we use two integrated assessment models -FAIR and WITCH- to explore the 2°C policy space when accounting for climate change impacts. Impacts are represented via two different reduced forms equations, which despite their simplicity allows us exploring the key sensitivities- Our results show that in a 2 degree stabilization scenarios residual damages remain significant (see Figure 1) and that if you would like to compensate those as part of an equal effort scheme - this would lead to a different allocation than focusing on a mitigation based perspective only. The residual damages and adaptation costs are not equally distributed - and while we do not cover the full uncertainty space - with 2 different models and 2 sets of damage curves we are still able to show quite similar results in terms of vulnerable regions and the relative position of the different scenarios. Therefore, accounting for the residual damages and the associated adaptation costs on top of the mitigation burden increases and redistributes the full burden of total climate change.

  20. Climatic influence on anthrax suitability in warming northern latitudes.

    PubMed

    Walsh, Michael G; de Smalen, Allard W; Mor, Siobhan M

    2018-06-18

    Climate change is impacting ecosystem structure and function, with potentially drastic downstream effects on human and animal health. Emerging zoonotic diseases are expected to be particularly vulnerable to climate and biodiversity disturbance. Anthrax is an archetypal zoonosis that manifests its most significant burden on vulnerable pastoralist communities. The current study sought to investigate the influence of temperature increases on geographic anthrax suitability in the temperate, boreal, and arctic North, where observed climate impact has been rapid. This study also explored the influence of climate relative to more traditional factors, such as livestock distribution, ungulate biodiversity, and soil-water balance, in demarcating risk. Machine learning was used to model anthrax suitability in northern latitudes. The model identified climate, livestock density and wild ungulate species richness as the most influential features in predicting suitability. These findings highlight the significance of warming temperatures for anthrax ecology in northern latitudes, and suggest potential mitigating effects of interventions targeting megafauna biodiversity conservation in grassland ecosystems, and animal health promotion among small to midsize livestock herds.

  1. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    Climate change is expected to affect food security globally and increase the variability in food supply. At the same time, agricultural practices offer a great potential for mitigating and adapting to climate change. In China, food security has increased in the last decades with the number of undernourished people declining from 21% in 1990 to 12% today. However, the limited relative amount of arable land and scarce water supplies will remain a challenge. The Loess Plateau of China, located in the mid-upper reaches of the Yellow River and has an area of some 630000 km2 with a high agricultural potential. However, due to heavy summer rainstorms, steep slopes, low vegetation cover, and highly erodible soils, the Loess Plateau has become one of the most severely eroded areas in the world. Up to 70% of arable land is affected by an annual soil loss of 20-25 ton ha-1, far exceeding the threshold for sustainable use (10 ton ha-1). Rainfed farming systems are dominant on the Loess Plateau, and the farmers in this area have been exposed to a steadily increasing temperature as well as an erratic, but slightly decreasing rainfall since 1970. Therefore, adaptation of the regional agriculture is required to adapt to climate change and may be even engaged in mitigation. This study analyzed the potential contribution of conservation tillage to adaptation and mitigation of climate change on the Loess Plateau. In total, 15 papers published in English were reviewed, comparing two tillage practices, conventional tillage (CT) and conservation tillage typically represented by no-tillage (NT). Soil organic carbon (SOC) stock across soil depths as well yields and the inter-annual variations with regards to and their annual rainfall precipitation were compared for NT and CT. Our results show that: 1) The benefit of NT compared to CT in terms of increasing total SOC stocks diminishes with soil depth, questioning the use of average SOC stocks observed in topsoil to estimate the potential of NT in increasing SOC stocks to reduce net CO2 emissions. 2) In each soil layer, the total SOC stocks also declined over time. Such a decreasing trend suggests that the SOC sink was approaching its maximum capacity. This implies that the overall potential of NT in improving SOC stocks is apt to be over-estimated, if annual increases derived from short-term observation are linearly extrapolated to a long-term estimation. 3) Yields of NT increased evidently by 11.07% compared to CT. In particular, during years with precipitation <500 mm, NT yields are 18% higher than for conventional tillage. Such greater yields reduce the probability of food production falling below minimum thresholds to meet subsistence requirements, thereby increasing resilience to famine. Overall, conservation tillage (no-till) has great potential in stabilizing crop yield and thus ensuring local subsistence requirements on the China Loess Plateau. However, the potential of NT to sequestrate SOC is limited than often reported and has maximum capacity, and thus cannot be linearly extrapolated to estimate its effects on mitigating climate change.

  2. A horizon scan of future threats and opportunities for pollinators and pollination.

    PubMed

    Brown, Mark J F; Dicks, Lynn V; Paxton, Robert J; Baldock, Katherine C R; Barron, Andrew B; Chauzat, Marie-Pierre; Freitas, Breno M; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E; Potts, Simon G; Schweiger, Oliver; Seymour, Colleen L; Stout, Jane C

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

  3. A horizon scan of future threats and opportunities for pollinators and pollination

    PubMed Central

    Dicks, Lynn V.; Paxton, Robert J.; Baldock, Katherine C.R.; Barron, Andrew B.; Chauzat, Marie-Pierre; Freitas, Breno M.; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E.; Potts, Simon G.; Schweiger, Oliver; Seymour, Colleen L.; Stout, Jane C.

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations. PMID:27602260

  4. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    PubMed

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  5. Development and application of earth system models.

    PubMed

    Prinn, Ronald G

    2013-02-26

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  6. Development and application of earth system models

    PubMed Central

    Prinn, Ronald G.

    2013-01-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645

  7. Hydropower licensing and evolving climate: climate knowledge to support risk assessment for long-term infrastructure decisions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Walker, S. H.; Trainor, S. F.; Cherry, J. E.

    2014-12-01

    This presentation focuses on linking climate knowledge to the complicated decision process for hydropower dam licensing, and the affected parties involved in that process. The U.S. Federal Energy Regulatory Commission issues of licenses for nonfederal hydroelectric operations, typically 30-50 year licenses, and longer infrastructure lifespan, a similar time frame as the anticipated risks of changing climate and hydrology. Resources managed by other federal and state agencies such as the NOAA National Marine Fisheries Service may be affected by new or re-licensed projects. The federal Integrated Licensing Process gives the opportunity for affected parties to recommend issues for consultative investigation and possible mitigation, such as impacts to downstream fisheries. New or re-licensed projects have the potential to "pre-adapt" by considering and incorporating risks of climate change into their planned operations as license terms and conditions. Hundreds of hydropower facilities will be up for relicensing in the coming years (over 100 in the western Sierra Nevada alone, and large-scale water projects such as the proposed Lake Powell Pipeline), as well as proposed new dams such as the Susitna project in Alaska. Therefore, there is a need for comprehensive guidance on delivering climate analysis to support understanding of risks of hydropower projects to other affected resources, and decisions on licensing. While each project will have a specific context, many of the questions will be similar. We also will discuss best practices for the use of climate science in water project planning and management, and how creating the best and most appropriate science is also still a developing art. We will discuss the potential reliability of that science for consideration in long term planning, licensing, and mitigation planning for those projects. For science to be "actionable," that science must be understood and accepted by the potential users. This process is a negotiation, with climate scientists needing to understand the concerns of users and respond, and users developing a better understanding of the state of climate science in order to make an informed choice. We will also discuss what is needed to streamline providing that analysis for the many re-licensing decisions expected in the upcoming years.

  8. Comparing the Climate Agendas of the Parties to the UN Framework Convention on Climate Change

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Oculi, N.

    2016-12-01

    Effective mitigation of and adaptation to climate change requires multilateral coordination of numerous political and scientific activities and priorities. Since its inception in 1992, the UN Framework Convention on Climate Change (UNFCCC) has sought a comprehensive international response to the climate threat, culminating most recently in December 2015 at COP 21. The Paris Agreement was lauded as a landmark step toward global climate action as it represented a consensus of 196 countries to limit global warming to 2° C above pre-industrial levels with an additional stated goal to "pursue efforts" to limit the increase to 1.5° C. However, taken in a vacuum, the global Agreement masks important differences among its signatory countries in capabilities and priorities for tackling climate change, and obscures pathways for place-specific scientific research and intervention. Here we present a quantitative content analysis of official UNFCCC documents including COP transcripts, meeting agendas, and mitigation commitments outlined in pledged Intended Nationally Determined Contributions (INDC) to reveal areas of alignment and divergence among UNFCCC stakeholders. Textual cluster analysis illustrates the relative salience of key climate-related discourses (e.g. vulnerability; loss and damage; decarbonization; technology transfer) in the agendas of negotiating parties, and the degree to which the interests of some parties are over- or under-represented in the final "consensus" agreement. Understanding these disparities, and their potential to promote cooperation and/or disagreement among stakeholders, will be critical to scientists' efforts to develop equitable and sustainable long-term climate solutions.

  9. 75 FR 63147 - Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...] Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global Climate Change... Program; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. To enhance the...; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. EDA will publish separate...

  10. Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community

    NASA Astrophysics Data System (ADS)

    Carpenter, Steven Michael

    This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or dimensions. Much of this new knowledge has come from the analysis and understanding of the Tier 1, Tier 2 and Emergent traits of the transdisciplinarian.

  11. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  12. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications.

    PubMed

    Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong

    2018-09-01

    To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Albedo impact on the suitability of biochar systems to mitigate global warming.

    PubMed

    Meyer, Sebastian; Bright, Ryan M; Fischer, Daniel; Schulz, Hardy; Glaser, Bruno

    2012-11-20

    Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.

  14. A wedge strategy for mitigation of urban warming in future climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2016-12-01

    Heat stress is one of the most severe climate threats to the human society in a future warmer world. The situation is further compounded in urban areas by the urban heat island (UHI). Because the majority of the world's population is projected to live in cities, there is a pressing need to find effective solutions for the high temperature problem. It is now recognized that in addition to the traditional emphasis on preparedness to cope with heat stress, these solutions should include active modifications of urban land form to reduce urban temperatures. Here we use an urban climate model to investigate the effectiveness of these active methods in mitigating the urban heat, both individually and collectively. By adopting highly reflective roofs citywide, almost all the cities in the USA and in southern Canada are transformed into cold islands or "white oases" where the daytime surface temperatures are lower than those in the surrounding rural land. The average oasis effect is -3.4 ± 0.3 K (mean ± 1 standard error) for the period 2071-2100 under the RCP4.5 scenario. A UHI mitigation wedge strategy consisting of cool roof, street vegetation and reflective pavement has the potential to eliminate the daytime UHI plus the greenhouse gas induced warming.

  15. Hand in Hand: Public Endorsement of Climate Change Mitigation and Adaptation

    PubMed Central

    Brügger, Adrian; Morton, Thomas A.; Dessai, Suraje

    2015-01-01

    This research investigated how an individual’s endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that “localising” climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research. PMID:25922938

  16. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  17. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  18. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    PubMed

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    NASA Astrophysics Data System (ADS)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  20. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.

  1. Mitigation options for the industrial sector in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelil, I.A.; El-Touny, S.; Korkor, H.

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available inmore » Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.« less

  2. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    PubMed Central

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  3. Climate mitigation and the future of tropical landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons

    2010-11-16

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less

  4. Delayed detection of climate mitigation benefits due to climate inertia and variability.

    PubMed

    Tebaldi, Claudia; Friedlingstein, Pierre

    2013-10-22

    Climate change mitigation acts by reducing greenhouse gas emissions, and thus curbing, or even reversing, the increase in their atmospheric concentration. This reduces the associated anthropogenic radiative forcing, and hence the size of the warming. Because of the inertia and internal variability affecting the climate system and the global carbon cycle, it is unlikely that a reduction in warming would be immediately discernible. Here we use 21st century simulations from the latest ensemble of Earth System Model experiments to investigate and quantify when mitigation becomes clearly discernible. We use one of the scenarios as a reference for a strong mitigation strategy, Representative Concentration Pathway (RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5, both of which are less severe mitigation pathways. We analyze global mean atmospheric CO2, and changes in annually and seasonally averaged surface temperature at global and regional scales. For global mean surface temperature, the median detection time of mitigation is about 25-30 y after RCP2.6 emissions depart from the higher emission trajectories. This translates into detection of a mitigation signal by 2035 or 2045, depending on whether the comparison is with RCP8.5 or RCP4.5, respectively. The detection of climate benefits of emission mitigation occurs later at regional scales, with a median detection time between 30 and 45 y after emission paths separate. Requiring a 95% confidence level induces a delay of several decades, bringing detection time toward the end of the 21st century.

  5. Distributed Generation to Support Development-Focused Climate Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie; Gagnon, Pieter; Stout, Sherry

    2016-09-01

    This paper explores the role of distributed generation, with a high renewable energy contribution, in supporting low emission climate-resilient development. The paper presents potential impacts on development (via energy access), greenhouse gas emission mitigation, and climate resilience directly associated with distributed generation, as well as specific actions that may enhance or increase the likelihood of climate and development benefits. This paper also seeks to provide practical and timely insights to support distributed generation policymaking and planning within the context of common climate and development goals as the distributed generation landscape rapidly evolves globally. Country-specific distributed generation policy and program examples,more » as well as analytical tools that can inform efforts internationally, are also highlighted throughout the paper.« less

  6. Emission reduction of 1,3-dichloropropene by soil amendment with biochar

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. Biochar as soil amendments has the potential of mitigating climate change effects. In addition, its high surface area and porosity enable it to adsorb or retain nutrients,...

  7. Never Let the Opportunity to Prepare for a Crisis Go to Waste: The Need for Proactive Measures in the Asia-Pacific Region to Mitigate the Impacts of Climate Change

    DTIC Science & Technology

    2015-05-21

    mitigation plan in place. In the long term, it is likely that the Filipinos will contend with both rising sea levels and acidification of the ocean . The... acidification of the oceans will likely have a deleterious effect on fisheries, increasing the potential for food...Persian Gulf to both the South China Sea and the Pacific Ocean . 34 With such enormous economic value, it should come as no surprise that nations

  8. Trying not to get burned: understanding homeowners' wildfire risk-mitigation behaviors.

    PubMed

    Brenkert-Smith, Hannah; Champ, Patricia A; Flores, Nicholas

    2012-12-01

    Three causes have been identified for the spiraling cost of wildfire suppression in the United States: climate change, fuel accumulation from past wildfire suppression, and development in fire-prone areas. Because little is likely to be performed to halt the effects of climate on wildfire risk, and because fuel-management budgets cannot keep pace with fuel accumulation let alone reverse it, changing the behaviors of existing and potential homeowners in fire-prone areas is the most promising approach to decreasing the cost of suppressing wildfires in the wildland-urban interface and increasing the odds of homes surviving wildfire events. Wildfire education efforts encourage homeowners to manage their property to decrease wildfire risk. Such programs may be more effective with a better understanding of the factors related to homeowners' decisions to undertake wildfire risk-reduction actions. In this study, we measured whether homeowners had implemented 12 wildfire risk-mitigation measures in 2 Colorado Front Range counties. We found that wildfire information received from local volunteer fire departments and county wildfire specialists, as well as talking with neighbors about wildfire, were positively associated with higher levels of mitigation. Firsthand experience in the form of preparing for or undertaking an evacuation was also associated with a higher level of mitigation. Finally, homeowners who perceived higher levels of wildfire risk on their property had undertaken higher levels of wildfire-risk mitigation on their property.

  9. Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health

    PubMed Central

    Garland, Rebecca M.; Matooane, Mamopeli; Engelbrecht, Francois A.; Bopape, Mary-Jane M.; Landman, Willem A.; Naidoo, Mogesh; van der Merwe, Jacobus; Wright, Caradee Y.

    2015-01-01

    Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change. PMID:26473895

  10. Climate Change Adaptation Challenges and EO Business Opportunities

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos

    Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique global view of planet Earth, providing us -with better data- with consistent and frequent information on the state of our environment at the regional and global scale, also in important but remote areas. Climate Knowledge and Innovation Communities (Climate-KIC), a relatively new initiative from the European Institute of Innovation & Technology (EIT), provides the innovations, entrepreneurship, education and expert guidance needed to shape Europe's climate change agenda. This paper shows some initiatives that the University of Valencia Climate-KIC Education Group is carrying out in collaboration with the Climate-KIC Central Education Lead in the field of space education to foster and encourage students and entrepreneurs to endevour in these new space business opportunities offered by this step forward towards climate change adaptation challenges.

  11. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  12. Global Gathering Addresses PV Role in Energy Prosperity and Climate Change

    Science.gov Websites

    Mitigation | News | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation News Release: Global Gathering Addresses PV Role in Energy Prosperity and Climate Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan

  13. Climate-Change Science and Policy: What Do We Know? What Should We Do

    DTIC Science & Technology

    2010-09-06

    These briefing charts discuss climate change science and policy including: the essence of the challenge, five myths and their refutations, climate ... change risks and impact going forward, available options, how much mitigation, how soon?, mitigation supply curve and its implications, and the Obama Administration’s strategy.

  14. Household preferences for reducing greenhouse gas emissions in four European high-income countries: Does health information matter? A mixed-methods study protocol.

    PubMed

    Herrmann, Alina; Fischer, Helen; Amelung, Dorothee; Litvine, Dorian; Aall, Carlo; Andersson, Camilla; Baltruszewicz, Marta; Barbier, Carine; Bruyère, Sébastien; Bénévise, Françoise; Dubois, Ghislain; Louis, Valérie R; Nilsson, Maria; Richardsen Moberg, Karen; Sköld, Bore; Sauerborn, Rainer

    2017-08-01

    It is now universally acknowledged that climate change constitutes a major threat to human health. At the same time, some of the measures to reduce greenhouse gas emissions, so-called climate change mitigation measures, have significant health co-benefits (e.g., walking or cycling more; eating less meat). The goal of limiting global warming to 1,5° Celsius set by the Conference of the Parties to the United Nations Framework Convention on Climate Change in Paris in 2015 can only be reached if all stakeholders, including households, take actions to mitigate climate change. Results on whether framing mitigation measures in terms of their health co-benefits increases the likelihood of their implementation are inconsistent. The present study protocol describes the transdisciplinary project HOPE (HOuseholds' Preferences for reducing greenhouse gas emissions in four European high-income countries) that investigates the role of health co-benefits in households' decision making on climate change mitigation measures in urban households in France, Germany, Norway and Sweden. HOPE employs a mixed-methods approach combining status-quo carbon footprint assessments, simulations of the reduction of households' carbon footprints, and qualitative in-depth interviews with a subgroup of households. Furthermore, a policy analysis of current household oriented climate policies is conducted. In the simulation of the reduction of households' carbon footprints, half of the households are provided with information on health co-benefits of climate change mitigation measures, the other half is not. Households' willingness to implement the measures is assessed and compared in between-group analyses of variance. This is one of the first comprehensive mixed-methods approaches to investigate which mitigation measures households are most willing to implement in order to reach the 1,5° target set by the Paris Agreement, and whether health co-benefits can serve as a motivator for households to implement these measures. The comparison of the empirical data with current climate policies will provide knowledge for tailoring effective climate change mitigation and health policies.

  15. Vulnerability of the Great Barrier Reef to climate change and local pressures.

    PubMed

    Wolff, Nicholas H; Mumby, Peter J; Devlin, Michelle; Anthony, Kenneth R N

    2018-05-01

    Australia's Great Barrier Reef (GBR) is under pressure from a suite of stressors including cyclones, crown-of-thorns starfish (COTS), nutrients from river run-off and warming events that drive mass coral bleaching. Two key questions are: how vulnerable will the GBR be to future environmental scenarios, and to what extent can local management actions lower vulnerability in the face of climate change? To address these questions, we use a simple empirical and mechanistic coral model to explore six scenarios that represent plausible combinations of climate change projections (from four Representative Concentration Pathways, RCPs), cyclones and local stressors. Projections (2017-2050) indicate significant potential for coral recovery in the near-term, relative to current state, followed by climate-driven decline. Under a scenario of unmitigated emissions (RCP8.5) and business-as-usual management of local stressors, mean coral cover on the GBR is predicted to recover over the next decade and then rapidly decline to only 3% by year 2050. In contrast, a scenario of strong carbon mitigation (RCP2.6) and improved water quality, predicts significant coral recovery over the next two decades, followed by a relatively modest climate-driven decline that sustained coral cover above 26% by 2050. In an analysis of the impacts of cumulative stressors on coral cover relative to potential coral cover in the absence of such impacts, we found that GBR-wide reef performance will decline 27%-74% depending on the scenario. Up to 66% of performance loss is attributable to local stressors. The potential for management to reduce vulnerability, measured here as the mean number of years coral cover can be kept above 30%, is spatially variable. Management strategies that alleviate cumulative impacts have the potential to reduce the vulnerability of some midshelf reefs in the central GBR by 83%, but only if combined with strong mitigation of carbon emissions. © 2018 John Wiley & Sons Ltd.

  16. Role of Biochar in Mitigation of Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Johannes C.; Amonette, James E.; Roberts, Kelli G.

    2010-09-30

    By virtue of the large fraction of the terrestrial carbon (C) cycle controlled by human activities, agroecosystems are both sources and sinks for greenhouse gases. Their potential role in mitigation of climate change thus depends on a dual strategy of decreasing greenhouse gas emissions while increasing sinks so that the net impact on climate warming is less than at present. Emissions of carbon dioxide, methane and nitrous oxide arise from various agricultural activities, ranging from land clearing to ploughing, fertilization, and animal husbandry. Reductions in these emissions can be achieved by decreasing the heterotrophic conversion of organic C to carbonmore » dioxide, and by better management of agricultural waste streams to minimize release of methane and nitrous oxide. Current sinks include C stored in standing biomass and soil organic matter, and the oxidation of atmospheric methane by soil bacteria. These sinks can be enhanced by increasing net primary productivity, thereby actively withdrawing more carbon dioxide from the atmosphere, and by promoting more oxidation of methane by soils. Judicious biochar management may contribute to both strategies, reductions of emissions by agriculture and active withdrawal of atmospheric carbon dioxide, as part of a comprehensive scheme in agricultural and forestry watersheds. Biochar is a carbon-rich organic material generated by heating biomass in the absence, or under a limited supply, of oxygen. This so-called charring or pyrolysis process has been used to produce charcoal as a source of fuel for millennia. Recently, interest has grown in understanding the potential of this process to improve soil health by adding biochar as an amendment to soil, to manage agricultural and forestry wastes, to generate energy, to decrease net emissions of nitrous oxide and methane, and to store carbon (C). The main incentive of biochar systems for mitigation of climate change is to increase the stability of organic matter or biomass. This stability is achieved by the conversion of fresh organic materials, which mineralize comparatively quickly, into biochar, which mineralizes much more slowly. The difference between the mineralization of uncharred and charred material results in a greater amount of carbon storage in soils and a lower amount of carbon dioxide, the major greenhouse gas, in the atmosphere. The principle of creating and managing biochar systems may address multiple environmental constraints. Biochar may help not only in mitigating climate change, but also fulfill a role in management of agricultural and forestry wastes, enhancement of soil sustainability, and generation of energy. Pyrolysis is a comparatively low-technology intervention. Deployment on a global scale, however, must be done carefully if the full mitigation potential is to be reached. Critical aspects of a successful implementation are that: 1) the biochar is sufficiently stable to reduce greenhouse gases in the atmosphere for an appropriate length of time. 2) the storage of carbon as biochar in soil is not offset by greenhouse gas emissions along the value chain of the system, such as mineralization of soil carbon or emissions of other greenhouse gases (e.g., methane and nitrous oxide). 3) net emission reductions are achieved for the entire life cycle of the system including indirect land use. 4) the biochar product does not cause unwanted side effects in soil. 5) the handling and production of biochar are in compliance with health and safety standards and do not pose hurdles to implementation. and 6) the biochar system is financially viable. This chapter discusses these issues in separate sections, identifies knowledge gaps, and proposes a road map to fully evaluate an environmentally and socially safe exploration of the biochar potential to mitigate climate change if adopted widely around the world.« less

  17. Impact of Global Climate on Rift Valley Fever and other Vector-borne Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Linthicum, K. J.

    2017-12-01

    Rift Valley fever is a viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. Since the virus was first isolated in Kenya in 1930 it has caused significant impact to animal and human health and national economies, and it is of concern to the international agricultural and public health community. In this presentation we will describe the (1) ecology of disease transmission as it relates to climate, (2) the impact of climate and other environmental conditions on outbreaks, (3) the ability to use global climate information to predict outbreaks, (4) effective response activities, and (4) the potential to mitigate globalization.

  18. Interactions of Climate Change and Nitrogen Management for Optimizing Crop Productivity and Food Security while Minimizing Nitrogen Pollution and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Suddick, E. C.

    2012-12-01

    Producing food, transportation, and energy for seven billion people has led to huge increases in use of synthetic nitrogen (N) fertilizers and fossil fuels, resulting in large releases of N as air and water pollution. In its numerous chemical forms, N plays a critical role in all aspects of climate change, including mitigation, adaptation, and impacts. Here we report on a multi-authored, interdisciplinary technical report on climate-nitrogen interactions submitted to the US National Climate Assessment as part of a Research Coordination Network activity. Management of the N cycle not only affects emissions of nitrous oxide (N2O) and nitrogen oxides (NOX), but also impacts carbon dioxide (CO2) and methane (CH4), through effects on carbon cycling processes in forests and soils and the effects on atmospheric reactions of ozone (O3) and CH4. While some of these direct and indirect N effects have a short-term cooling effect, the warming effects of N2O dominate at long time scales. The challenges of mitigating N2O emissions are substantially different from those for CO2 and CH4, because N is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. On one hand, improved agricultural nutrient management can confer some adaptive capacity of crops to climatic variability, but, on the other hand, increased climatic variability will render the task more difficult to manage nutrients for the optimization of crop productivity while minimizing N losses to the environment. Higher air temperatures will result in a "climate penalty" for air quality mitigation efforts, because larger NOX emissions reductions will be needed to achieve the same reductions of O3 pollution under higher temperatures, thus imposing further challenges to avoid harmful impacts on human health and crop productivity. Changes in river discharge, due to summer drought and to extreme precipitation events, will affect the transport of N from agricultural fields to rivers and estuaries, potentially resulting in more eutrophication, including harmful algal blooms. Both climate change and N inputs from N deposition can provoke biodiversity loss in aquatic and terrestrial ecosystems, because nutrient enrichment of native ecosystems often favors fast-growing, often non-native species. Policies aimed at improving N-use efficiencies in agriculture and reducing emissions from transportation and energy sectors would have multiple interacting benefits for climate mitigation and adaptation and for minimizing climate change impacts on crop productivity, air and water quality, biodiversity, human health risks, and food security.

  19. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    PubMed

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Landscape Hazards in Yukon Communities: Geological Mapping for Climate Change Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Kennedy, K.; Kinnear, L.

    2010-12-01

    Climate change is considered to be a significant challenge for northern communities where the effects of increased temperature and climate variability are beginning to affect infrastructure and livelihoods (Arctic Climate Impact Assessment, 2004). Planning for and adapting to ongoing and future changes in climate will require the identification and characterization of social, economic, cultural, political and biophysical vulnerabilities. This pilot project addresses physical landscape vulnerabilities in two communities in the Yukon Territory through community-scale landscape hazard mapping and focused investigations of community permafrost conditions. Landscape hazards are identified by combining pre-existing data from public utilities and private-sector consultants with new geophysical techniques (ground penetrating radar and electrical resistivity), shallow drilling, surficial geological mapping, and permafrost characterization. Existing landscape vulnerabilities are evaluated based on their potential for hazard (low, medium or high) under current climate conditions, as well as under future climate scenarios. Detailed hazard maps and landscape characterizations for both communities will contribute to overall adaptation plans and allow for informed development, planning and mitigation of potentially threatening hazards in and around the communities.

  1. Ecological Limits to Terrestrial Carbon Dioxide Removal Strategies

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Torn, M. S.; Jones, A. D.

    2011-12-01

    Carbon dioxide removal from the atmosphere through terrestrial carbon sequestration and bioenergy (biological CDR) is a proposed climate change mitigation strategy. Biological CDR increases the carbon storage capacity of soils and biomass through changes in land cover and use, including reforestation, afforestation, conversion of land to agriculture for biofuels, conversion of degraded land to grassland, and alternative management practices such as conservation tillage. While biological CDR may play a valuable role in future climate change mitigation, many of its proponents fail to account for the full range of biological, biophysical, hydrologic, and economic complexities associated with proposed land use changes. In this analysis, we identify and discuss a set of ecological limits and impacts associated with terrestrial CDR. The capacity of biofuels, soils, and other living biomass to sequester carbon may be constrained by nutrient and water availability, soil dynamics, and local climate effects, all of which can change spatially and temporally in unpredictable ways. Even if CDR is effective at sequestering CO2, its associated land use and land cover changes may negatively impact ecological resources by compromising water quality and availability, degrading soils, reducing biodiversity, displacing agriculture, and altering local climate through albedo and evapotranspiration changes. Measures taken to overcome ecological limitations, such as fertilizer addition and irrigation, may exacerbate these impacts even further. The ecological considerations and quantitative analyses that we present highlight uncertainties introduced by ecological complexity, disagreements between models, perverse economic incentives, and changing environmental factors. We do not reject CDR as a potentially valuable strategy for climate change mitigation; ecosystem protection, restoration, and improved management practices could enhance soil fertility and protect biodiversity while reducing increases in atmospheric CO2. Rather, we emphasize the importance of evaluating the full set of biological, physical, economic, and political realities that accompany land-use changes and manipulations to the carbon cycle. While the immediate goal of biological CDR is to reduce atmospheric CO2 concentrations, its ultimate goal in mitigating climate change is to reduce the threats to ecosystems and society. Sequestering carbon at the cost of ecosystem health would not be a sensible approach.

  2. Agriculture in the climate change negotiations; ensuring that food production is not threatened.

    PubMed

    Muldowney, J; Mounsey, J; Kinsella, L

    2013-06-01

    With the human population predicted to reach nine billion by 2050, demand for food is predicted to more than double over this time period, a trend which will lead to increased greenhouse gas (GHG) emissions from agriculture. Furthermore, expansion in food production is predicted to occur primarily in the developing world, where adaptation to climate change may be more difficult and opportunities to mitigate emissions limited. In the establishment of the United Nations Framework Convention on Climate Change (UNFCCC), 'ensuring that food production is not threatened' is explicitly mentioned in the objective of the Convention. However, the focus of negotiations under the Convention has largely been on reducing GHG emissions from energy, and industrial activities and realizing the potential of forestry as a carbon sink. There has been little attention by the UNFCCC to address the challenges and opportunities for the agriculture sector. Since 2006, concerted efforts have been made to raise the prominence of agriculture within the negotiations. The most recent The Intergovernmental Panel on Climate Change report and 'The Emissions Gap Report' by the UNEP highlighted the significant mitigation potential of agriculture, which can help contribute towards keeping global temperature rises below the 2°C limit agreed in Cancun. Agriculture has to be a part of the solution to address climate change, but this will also require a focus on how agriculture systems can adapt to climate change in order to continue to increase food output. However, to effectively realize this potential, systematic and dedicated discussion and decisions within the UNFCCC are needed. UNFCCC discussions on a specific agriculture agenda item started in 2012, but are currently inconclusive. However, Parties are generally in agreement on the importance of agriculture in contributing to food security and employment as well as the need to improve understanding of agriculture and how it can contribute to realizing climate objectives. Discussions on agriculture are continuing with a view to finding an acceptable approach to address the climate change related challenges faced by agriculture worldwide and to ensure that 'food production is not threatened'.

  3. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.

  4. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE PAGES

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-15

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  5. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  6. Modeling the Potential Impacts of Climate Change on Pacific Salmon Culture Programs: An Example at Winthrop National Fish Hatchery

    NASA Astrophysics Data System (ADS)

    Hanson, Kyle C.; Peterson, Douglas P.

    2014-09-01

    Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon ( Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service's Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.

  7. A Survey of Registered Dietitians’ Concern and Actions Regarding Climate Change in the United States

    PubMed Central

    Hawkins, Irana W.; Balsam, Alan L.; Goldman, Robert

    2015-01-01

    Dietary choices are a tool to reduce greenhouse gas emissions. While registered dietitians are on the front lines of food and nutrition recommendations, it is unclear how many are concerned with climate change and take action in practice in the United States. We explored concern about climate change among registered dietitians, and identified factors that may influence practice-related behaviors. Our study population included a random sample of all registered dietitians credentialed in the United States. Primary data were gathered using a cross-sectional survey. Of the 570 survey responses, 75% strongly agreed or agreed that climate change is an important issue while 34% strongly agreed or agreed that dietitians should play a major role in climate change mitigation strategies. Thirty-eight percent engaged in activities that promoted diet as a climate change mitigation strategy. Vegetarian (p = 0.002) and vegan dietitians (p = 0.007) were significantly more likely than non-vegetarian and non-vegan dietitians to engage in activities that promoted diet as a climate change mitigation strategy. Overall, concern for climate change among dietitians varied significantly by the region of the country in which the dietitian resided, and awareness that animal products are implicated in climate change. Registered dietitians in the United States are concerned with climate change. However, there is a discrepancy between concern and practice-based actions. These results suggest the need for educational and experiential opportunities connecting climate change mitigation to dietetics practice. PMID:26217666

  8. Quantifying the effectiveness of conservation measures to control the spread of anthropogenic hybridization in stream salmonids: a climate adaptation case study

    USGS Publications Warehouse

    Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Boyer, Matthew; Jones, Leslie A.; Steed, Amber; Kershner, Jeffrey L.

    2014-01-01

    Quantifying the effectiveness of management actions to mitigate the effects of changing climatic conditions (i.e., climate adaptation) can be difficult, yet critical for conservation. We used population genetic data from 1984 to 2011 to assess the degree to which ambient climatic conditions and targeted suppression of sources of nonnative Rainbow Trout Oncorhynchus mykiss have influenced the spread of introgressive hybridization in native populations of Westslope Cutthroat Trout O. clarkii lewisi. We found rapid expansion in the spatial distribution and proportion of nonnative genetic admixture in hybridized populations from 1984 to 2004, but minimal change since 2004. The spread of hybridization was negatively correlated with the number of streamflow events in May that exceeded the 75th percentile of historic flows (r = −0.98) and positively correlated with August stream temperatures (r = 0.89). Concomitantly, suppression data showed a 60% decline in catch per unit effort for fish with a high proportion of Rainbow Trout admixture, rendering some uncertainty as to the relative strength of factors controlling the spread of hybridization. Our results illustrate the importance of initiating management actions to mitigate the potential effects of climate change, even where data describing the effectiveness of such actions are initially limited but the risks are severe.

  9. Seawater intrusion risk analysis under climate change conditions for the Gaza Strip aquifer (Palestine)

    NASA Astrophysics Data System (ADS)

    Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Marrocu, Marino; Lecca, Giuditta

    2014-05-01

    Seawater intrusion (SWI) has become a major threat to coastal freshwater resources, particularly in the Mediterranean basin, where this problem is exacerbated by the lack of appropriate groundwater resources management and with serious potential impacts from projected climate changes. A proper analysis and risk assessment that includes climate scenarios is essential for the design of water management measures to mitigate the environmental and socio-economic impacts of SWI. In this study a methodology for SWI risk analysis in coastal aquifers is developed and applied to the Gaza Strip coastal aquifer in Palestine. The method is based on the origin-pathway-target model, evaluating the final value of SWI risk by applying the overlay principle to the hazard map (representing the origin of SWI), the vulnerability map (representing the pathway of groundwater flow) and the elements map (representing the target of SWI). Results indicate the important role of groundwater simulation in SWI risk assessment and illustrate how mitigation measures can be developed according to predefined criteria to arrive at quantifiable expected benefits. Keywords: Climate change, coastal aquifer, seawater intrusion, risk analysis, simulation/optimization model. Acknowledgements. The study is partially funded by the project "Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB)", FP7-ENV-2009-1, GA 244151.

  10. Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study

    USGS Publications Warehouse

    Mu, Jianhong E.; Wein, Anne; McCarl, Bruce

    2015-01-01

    We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.

  11. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  12. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  13. Soot effects on clouds and solar absorption: Understanding the differences in recently published soot mitigation experiments. (Invited)

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.

    2010-12-01

    Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.

  14. Links between the built environment, climate and population health: interdisciplinary environmental change research in New York City.

    PubMed

    Rosenthal, Joyce Klein; Sclar, Elliott D; Kinney, Patrick L; Knowlton, Kim; Crauderueff, Robert; Brandt-Rauf, Paul W

    2007-10-01

    Global climate change is expected to pose increasing challenges for cities in the following decades, placing greater stress and impacts on multiple social and biophysical systems, including population health, coastal development, urban infrastructure, energy demand, and water supplies. Simultaneously, a strong global trend towards urbanisation of poverty exists, with increased challenges for urban populations and local governance to protect and sustain the wellbeing of growing cities. In the context of these 2 overarching trends, interdisciplinary research at the city scale is prioritised for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive responses to climate change. This article discusses 2 recent initiatives of The Earth Institute at Columbia University (EI) as examples of research that integrates the methods and objectives of several disciplines, including environmental health science and urban planning, to understand the potential public health impacts of global climate change and mitigative measures for the more localised effects of the urban heat island in the New York City metropolitan region. These efforts embody 2 distinct research approaches. The New York Climate & Health Project created a new integrated modeling system to assess the public health impacts of climate and land use change in the metropolitan region. The Cool City Project aims for more applied policy-oriented research that incorporates the local knowledge of community residents to understand the costs and benefits of interventions in the built environment that might serve to mitigate the harmful impacts of climate change and variability, and protect urban populations from health stressors associated with summertime heat. Both types of research are potentially useful for understanding the impacts of environmental change at the urban scale, the policies needed to address these challenges, and to train scholars capable of collaborative approaches across the social and biophysical sciences.

  15. Climate change mitigation effect of harvested wood products in regions of Japan.

    PubMed

    Kayo, Chihiro; Tsunetsugu, Yuko; Tonosaki, Mario

    2015-12-01

    Harvested wood products (HWPs) mitigate climate change through carbon storage, material substitution, and energy substitution. We construct a model to assess the overall climate change mitigation effect (comprising the carbon storage, material substitution, and energy substitution effects) resulting from HWPs in regions of Japan. The model allows for projections to 2050 based on future scenarios relating to the domestic forestry industry, HWP use, and energy use. Using the production approach, a nationwide maximum figure of 2.9 MtC year -1 for the HWP carbon storage effect is determined for 2030. The maximum nationwide material substitution effect is 2.9 MtC year -1 in 2050. For the energy substitution effect, a nationwide maximum projection of 4.3 MtC year -1 in 2050 is established, with at least 50 % of this figure derived from east and west Japan, where a large volume of logging residue is generated. For the overall climate change mitigation effect, a nationwide maximum projection of 8.4 MtC year -1 in 2050 is established, equivalent to 2.4 % of Japan's current carbon dioxide emissions. When domestic roundwood production and HWP usage is promoted, an overall climate change mitigation effect is consistently expected to be attributable to HWPs until 2050. A significant factor in obtaining the material substitution effect will be substituting non-wooden buildings with wooden ones. The policy of promoting the use of logging residue will have a significant impact on the energy substitution effect. An important future study is an integrated investigation of the climate change mitigation effect for both HWPs and forests.

  16. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  17. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  18. Future energy system challenges for Africa: Insights from Integrated Assessment Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Paul; Nielsen, Jens; Calvin, Katherine V.

    Although Africa’s share in the global energy system is only small today, the ongoing population growth and economic development imply that this can change significantly. In this paper, we discuss long-term energy developments in Africa using the results of the LIMITS model inter-comparison study. The analysis focusses on the position of Africa in the wider global energy system and climate mitigation. The results show a considerable spread in model outcomes. Without specific climate policy, Africa’s share in global CO 2 emissions is projected to increase from around 1-4% today to 3-23% by 2100. In all models, emissions only start tomore » become really significant on a global scale after 2050. Furthermore, by 2030 still around 50% of total household energy use is supplied through traditional bio-energy, in contrast to existing ambitions from international organisations to provide access to modern energy for all. After 2050, the energy mix is projected to converge towards a global average energy mix with high shares of fossil fuels and electricity use. Finally, although the continent is now a large net exporter of oil and gas, towards 2050 it most likely needs most of its resources to meet its rapidly growing domestic demand. With respect to climate policy, the rapid expansion of the industrial and the power sector also create large mitigation potential and thereby the possibility to align the investment peak in the energy system with climate policy and potential revenues from international carbon trading.« less

  19. Transportation Energy Security and Climate Change Mitigation Act of 2007

    DOT National Transportation Integrated Search

    2008-09-29

    The Committee on Transportation and Infrastructure, to whom was referred the bill (H.R. 2701) to strengthen our Nations energy security and mitigate the effects of climate change by promoting energy efficient transportation and public buildings, c...

  20. A terrain-attribute based approach to assessing soil carbon sequestration in the Oregon Coast range mountains

    EPA Science Inventory

    Determining how to best mitigate Global Climate Change through the sequestration of atmospheric CO2 requires developing an understanding of potential ecosystem C sinks and the rates at which C can be sequestered in soils and vegetation under a variety of land uses. The largest g...

  1. The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture

    USDA-ARS?s Scientific Manuscript database

    Over the past three decades, one issue which has received significant attention from the scientific community is climate change and the possible impacts on the global environment. Increased atmospheric carbon dioxide (CO2) concentration, along with other trace gases [i.e., methane (CH4) and nitrous ...

  2. Soil organic carbon stability across a Mediterranean oak agroecosystem

    Treesearch

    Leslie M. Roche; James F. Chang; Johan Six; Anthony T. O' Geen; Kenneth W. Tate

    2015-01-01

    Rangelands are estimated to cover 30 to 50 percent of the world's land surface and have significant belowground carbon (C) storage potential. Given their geographical extent, many have suggested that even modest changes in C storage via management practices could alter the global C cycle, creating climate change mitigation opportunities. Our objective was to...

  3. Carbon sequestration potential of grazed pasture depends on prior management history

    USDA-ARS?s Scientific Manuscript database

    Grazed pastures are often assumed to be net sinks for removing carbon dioxide from the atmosphere and thus, are promoted as a management practice that can help mitigate climate change. The ability to serve as a C sink is especially pronounced following a history of tillage and row crop production. I...

  4. Estimation of wildfire size and risk changes due to fuels treatments

    Treesearch

    M. A. Cochrane; C. J. Moran; M. C. Wimberly; A. D. Baer; M. A. Finney; K. L. Beckendorf; J. Eidenshink; Z. Zhu

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of...

  5. Hurricane Impacts on Ecological Services and Economic Values of Coastal Urban Forest: A Case Study of Pensacola, Florida

    EPA Science Inventory

    As urbanized areas continue to grow and green spaces dwindle, the importance of urban forests increases for both ecologically derived health benefits and for their potential to mitigate climate change. This study examined pre- and post- hurricane conditions of Pensacola's urban f...

  6. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM atmore » the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.« less

  7. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095, particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase, driven by higher water demands for bio-energy crops.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.« less

  9. Health Impacts of Climate Change in Vanuatu: An Assessment and Adaptation Action Plan

    PubMed Central

    Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan

    2013-01-01

    Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change. PMID:23618474

  10. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  11. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.

  12. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, P.; Sun, F.; Hall, A.

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  13. Evaluation of additional biogeochemical impacts on mitigation pathways in an energy sytem integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, O.

    2017-12-01

    Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this level of decarbonisation. In extreme condition (positive correlation between the 3 issues discussed) the integrated assessment model TIAM-UCL creates pathways requiring additional negative emission technologies at the end of this century to keep temperature change well below 2°C.

  14. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    PubMed Central

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  15. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies.

    PubMed

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-09-20

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies.

  16. A megaregion-scale approach for assessing the impacts of climate change and strategic management decisions in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Stewart, R. J.; Miara, A.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Wollheim, W. M.; Melillo, J. M.; Fekete, B. M.; Dilekli, N.; Duchin, F.; Gross, B.; Bhatt, V.

    2014-12-01

    'Megaregions' have been identified as an important new scale of geography for policy decision-making in the United States. These regions extend beyond local boundaries (ie. cities, states) to incorporate areas with linked economies, infrastructure and land-use patterns and shared climate and environmental systems, such as watersheds. The corridor of densely connected metropolitan areas and surrounding hinterlands along the U.S. east coast from Maine to Virginia is the archetype of this type of unit: The Northeast Megaregion. The Northeast faces a unique set of policy challenges including: projections of a wetter, more extreme climate, aging and underfunded infrastructure and economically distressed rural areas. Megaregion-scale policy efforts such as the Regional Greenhouse Gas Initiative (RGGI) and support for a regional food system have been recognized as strategic tools for climate change mitigation and adaptation, but decision-makers have limited information on the potential consequences of these strategies on the complex natural-human system of the Northeast, under various scenarios of global climate change. We have developed a Northeast Regional Earth System Model (NE-RESM) as a framework to provide this type of information. We integrate terrestrial ecosystem, hydrologic, energy system and economic models to investigate scenarios of paired regional socioeconomic pathways and global climate projections. Our initial results suggest that megaregion-scale strategic decisions in the Northeast may have important consequences for both local water management and global climate change mitigation.

  17. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.

    PubMed

    Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E

    2015-07-07

    We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.

  18. Improving Decision-Making Activities for Meningitis and Malaria

    NASA Technical Reports Server (NTRS)

    Ceccato, Pietro; Trzaska, Sylwia; Garcia-Pando, Carlos Perez; Kalashnikova, Olga; del Corral, John; Cousin, Remi; Blumenthal, M. Benno; Bell, Michael; Connor, Stephen J.; Thomson, Madeleine C.

    2013-01-01

    Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI) is developing new products to increase the public health community's capacity to understand, use and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on infectious disease, in particular meningitis and malaria. In this paper, we present the new and improved products that have been developed for: (i) estimating dust aerosol for forecasting risks of meningitis and (ii) for monitoring temperature and rainfall and integrating them into a vectorial capacity model for forecasting risks of malaria epidemics. We also present how the products have been integrated into a knowledge system (IRI Data Library Map Room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making.

  19. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vammen Larsen, Sanne, E-mail: sannevl@plan.aau.dk; Kornov, Lone, E-mail: lonek@plan.aau.dk; Wejs, Anja, E-mail: wejs@plan.aau.dk

    2012-02-15

    This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations asmore » to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural-cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments in a more systematic and integrated manner. - Highlights: Black-Right-Pointing-Pointer Synergies between climate change mitigation, adaptation and other environmental concerns are not addressed in Danish SEA. Black-Right-Pointing-Pointer Institutional explanations relate to organisational set-ups and understandings of climate change as a new planning issue. Black-Right-Pointing-Pointer The paper points to a need for developing SEA to include climate change in a more systematic and integrated manner.« less

  20. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process. © 2014 John Wiley & Sons Ltd.

  1. Impact of Real-world Factors Influencing Investment Decisions on the Costs and Distribution of Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.

    2015-12-01

    Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment risks could be an important element in lowering the cost of climate change mitigation solutions.

  2. Scenarios of global mercury emissions from anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.

    2013-11-01

    This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.

  3. Geoengineering to Avoid Overshoot: An Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Tanaka, K.

    2009-04-01

    Geoengineering (or climate engineering) using stratospheric sulfur injections (Crutzen, 2006) has been called for research in case of an urgent need for stopping global warming when other mitigation efforts were exhausted. Although there are a number of concerns over this idea (e.g. Robock, 2008), it is still useful to consider geoengineering as a possible method to limit warming caused by overshoot. Overshoot is a feature accompanied by low stabilizations scenarios aiming for a stringent target (Rao et al., 2008) in which total radiative forcing temporarily exceeds the target before reaching there. Scenarios achieving a 50% emission reduction by 2050 produces overshoot. Overshoot could cause sustained warming for decades due to the inertia of the climate system. If stratospheric sulfur injections were to be used as a "last resort" to avoid overshoot, what would be the suitable start-year and injection profile of such an intervention? Wigley (2006) examined climate response to combined mitigation/geoengineering scenarios with the intent to avert overshoot. Wigley's analysis demonstrated a basic potential of such a combined mitigation/geoengineering approach to avoid temperature overshoot - however it considered only simplistic sulfur injection profiles (all started in 2010), just one mitigation scenario, and did not examine the sensitivity of the climate response to any underlying uncertainties. This study builds upon Wigley's premise of the combined mitigation/geoengineering approach and brings associated uncertainty into the analysis. First, this study addresses the question as to how much geoengineering intervention would be needed to avoid overshoot by considering associated uncertainty? Then, would a geoengineering intervention of such a magnitude including uncertainty be permissible in considering all the other side effects? This study begins from the supposition that geoengineering could be employed to cap warming at 2.0°C since preindustrial. A few mitigation scenarios having overshoot are formulated. Optimal injection profiles (start-year and magnitude) for capping temperature rise at 2.0°C are calculated for each mitigation scenario. The sensitivity of such results to the uncertain parameters (climate sensitivity, tropospheric aerosol forcing, and ocean diffusivity) is then examined - in particular, I account for the inter-dependency of the estimates of these parameters such that they are consistent with historical observations (e.g. temperature records) by using an inverse estimation approach. I use the simple climate model ACC2 (Tanaka and Kriegler et al., 2007; Tanaka, 2008) - which (unlike Wigley's MAGICC model (Wigley and Raper, 2001)) includes an inversion setup that allows for the exploration of parameter inter-dependency based on historical observational constraints. References Crutzen, P. J. (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climatic Change, 77, 211-219. Rao, S., K. Riahi, E. Stehfest, D. van Vuuren, C. Cho, M. den Elzen, M. Isaac, J. van Vliet (2008) IMAGE and MESSAGE scenarios limiting GHG concentration to low levels. Interim Report at International Institute for Applied Systems Analysis (IIASA) IR-08-020. 57 pp. http://www.iiasa.ac.at/Admin/PUB/Documents/IR-08-020.pdf Robock, A. (2008) 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64, 14-18. Tanaka, K., E. Kriegler, T. Bruckner, G. Hooss, W. Knorr, T. Raddatz (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2): description of the forward and inverse modes. Reports on Earth System Science No. 40. Max Planck Institute for Meteorology, Hamburg, Germany. 188 pp. http://www.mpimet.mpg.de/wissenschaft/publikationen/erdsystemforschung.html Tanaka, K. (2008) Inverse estimation for the simple Earth system model ACC2 and its applications. Ph.D. dissertation. Hamburg, Germany: Hamburg Universität, International Max Planck Research School on Earth System Modelling, 296 pp. http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/ Wigley, T. M. L., S. C. B. Raper (2001) Interpretation of high projections for global-mean warming. Science, 293, 451-454. Wigley, T. M. L. (2006) A combined mitigation/geoengineering approach to climate stabilization. Science, 314, 452-454.

  4. Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment

    NASA Astrophysics Data System (ADS)

    Vrontisi, Zoi; Luderer, Gunnar; Saveyn, Bert; Keramidas, Kimon; Reis Lara, Aleluia; Baumstark, Lavinia; Bertram, Christoph; Sytze de Boer, Harmen; Drouet, Laurent; Fragkiadakis, Kostas; Fricko, Oliver; Fujimori, Shinichiro; Guivarch, Celine; Kitous, Alban; Krey, Volker; Kriegler, Elmar; Broin, Eoin Ó.; Paroussos, Leonidas; van Vuuren, Detlef

    2018-04-01

    The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.

  5. Projecting Age-Stratified Risk of Exposure to Inland Flooding and Wildfire Smoke in the United States under Two Climate Scenarios.

    PubMed

    Mills, David; Jones, Russell; Wobus, Cameron; Ekstrom, Julia; Jantarasami, Lesley; St Juliana, Alexis; Crimmins, Allison

    2018-04-17

    The public health community readily recognizes flooding and wildfires as climate-related health hazards, but few studies quantify changes in risk of exposure, particularly for vulnerable children and older adults. This study quantifies future populations potentially exposed to inland flooding and wildfire smoke under two climate scenarios, highlighting the populations in particularly vulnerable age groups (≤4 y old and ≥65 y old). Spatially explicit projections of inland flooding and wildfire under two representative concentration pathways (RCP8.5 and RCP4.5) are integrated with static (2010) and dynamic (2050 and 2090) age-stratified projections of future contiguous U.S. populations at the county level. In both 2050 and 2090, an additional one-third of the population will live in areas affected by larger and more frequent inland flooding under RCP8.5 than under RCP4.5. Approximately 15 million children and 25 million older adults could avoid this increased risk of flood exposure each year by 2090 under a moderate mitigation scenario (RCP4.5 compared with RCP8.5). We also find reduced exposure to wildfire smoke under the moderate mitigation scenario. Nearly 1 million young children and 1.7 million older adults would avoid exposure to wildfire smoke each year under RCP4.5 than under RCP8.5 by the end of the century. By integrating climate-driven hazard and population projections, newly created county-level exposure maps identify locations of potential significant future public health risk. These potential exposure results can help inform actions to prevent and prepare for associated future adverse health outcomes, particularly for vulnerable children and older adults. https://doi.org/10.1289/EHP2594.

  6. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    NASA Astrophysics Data System (ADS)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate impact analyses and build an important basis of the future adaptation strategies in forestry, agriculture and water management. Funding: The research is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 (ZENFE) joint EU-national research projects. Keywords: climate indices, climate change impacts, forestry, regional climate modelling

  7. A Framework for Using Rural Markets to Analyze Local Food Shortage Resilience and Mitigation Potential in sub-Saharan Africa based on Evidence from Zambia

    NASA Astrophysics Data System (ADS)

    Montgomery, M. J.; Baylis, K.; Evans, T. P.

    2016-12-01

    Climate change is predicted to have negative impacts on agriculture and food security in many parts of sub-Saharan Africa. Regional and temporal climate variability will disburse these effects, creating opportunities to mitigate food shortages through well-studied international, regional, and national food flows and associated food prices. However, most food products consumed and traded by rural smallhold farmers rely on local market exchanges that take place outside the scope of prevalent regional and national market analysis. There is little empirical evidence on these rural markets outside of their potential for smallholder agribusiness. However, they offer an unopened window into local food supply and the nuances of food movements in rural areas. Our research explores how to analyze the cost and availability of food products in rural markets and their connection with each other, as well as with nearby households' food security. This new approach of using food markets as a unit of analysis necessitates a new framework that groups markets based on a hierarchy of variables relevant to their role as food movers and suppliers. In our research, we collected price and source data for 22 commodities bought and sold within 52 rural markets in 12 districts spatially distributed throughout Zambia. We continue to collect data via phone interviews with 206 traders and market managers within these markets each month. We used this data to develop a typology of stationary rural food markets based on their size in terms of traders and buyers, the diversity of commodities available year-round and seasonally, their price transmission with other markets, and their trading scheme and governance. The result is a dynamic framework with varying weights on each variable that classifies which characteristic of markets under which conditions increase their potential for local food shortage resilience and mitigation. We also allocate for commodity-specific scenarios to allow for modeling under climate conditions conducive to different crops.

  8. The planetary water drama: Dual task of feeding humanity and curbing climate change

    NASA Astrophysics Data System (ADS)

    Rockström, J.; Falkenmark, M.; Lannerstad, M.; Karlberg, L.

    2012-08-01

    This paper analyses the potential conflict between resilience of the Earth system and global freshwater requirements for the dual task of carbon sequestration to reduce CO2 in the atmosphere, and food production to feed humanity by 2050. It makes an attempt to assess the order of magnitude of the increased consumptive water use involved and analyses the implications as seen from two parallel perspectives; the global perspective of human development within a “safe operating space” with regard to the definition of the Planetary Boundary for freshwater; and the social-ecological implications at the regional river basin scale in terms of sharpening water shortages and threats to aquatic ecosystems. The paper shows that the consumptive water use involved in the dual task would both transgress the proposed planetary boundary range for global consumptive freshwater use and would further exacerbate already severe river depletion, causing societal problems related to water shortage and water allocation. Thus, strategies to rely on sequestration of CO2 as a mitigation strategy must recognize the high freshwater costs involved, implying that the key climate mitigation strategy must be to reduce emissions. The paper finally highlights the need to analyze both water and carbon tradeoffs from anticipated large scale biofuel production climate change mitigation strategy, to reveal gains and impact of this in contrast to carbon sequestration strategies.

  9. The potential of Indonesian mangrove forests for global climate change mitigation

    NASA Astrophysics Data System (ADS)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  10. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.

    PubMed

    Boysen, Lena R; Lucht, Wolfgang; Gerten, Dieter

    2017-10-01

    Large-scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass-derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ̶ but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR. © 2017 John Wiley & Sons Ltd.

  11. Implementing climate change mitigation in health services: the importance of context.

    PubMed

    Desmond, Sharon

    2016-10-01

    Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies. © The Author(s) 2016.

  12. Dangerous Climate Velocities from Geoengineering Termination: Potential Biodiversity Impacts

    NASA Astrophysics Data System (ADS)

    Trisos, C.; Gurevitch, J.; Zambri, B.; Xia, L.; Amatulli, G.; Robock, A.

    2016-12-01

    Geoengineering has been suggested as a potential societal response to the impacts of ongoing global warming. If ongoing mitigation and adaptation measures do not prevent the most dangerous consequences of climate change, it is important to study whether solar radiation management would make the world less dangerous. While impacts of albedo modification on temperature, precipitation, and agriculture have been studied before, here for the first time we investigate its potential ecological impacts. We estimate the speeds marine and terrestrial ecosystems will need to move to remain in their current climate conditions (i.e., climate velocities) in response to the implementation and subsequent termination of geoengineering. We take advantage of climate model simulations conducted using the G4 scenario of the Geoengineering Model Intercomparison Project, in which increased radiative forcing from the RCP4.5 scenario is balanced by a stratospheric aerosol cloud produced by an injection of 5 Tg of SO2 per year into the lower stratosphere for 50 years, and then stopped. The termination of geoengineering is projected to produce a very rapid warming of the climate, resulting in climate velocities much faster than those that will be produced from anthropogenic global warming. Should ongoing geoengineering be terminated abruptly due to society losing the means or will to continue, the resulting ecological impacts, as measured by climate velocities, could be severe for many terrestrial and marine biodiversity hotspots. Thus, the implementation of solar geoengineering represents a potential danger not just to humans, but also to biodiversity globally.

  13. Geographical limits to species-range shifts are suggested by climate velocity.

    PubMed

    Burrows, Michael T; Schoeman, David S; Richardson, Anthony J; Molinos, Jorge García; Hoffmann, Ary; Buckley, Lauren B; Moore, Pippa J; Brown, Christopher J; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Sydeman, William J; Ferrier, Simon; Williams, Kristen J; Poloczanska, Elvira S

    2014-03-27

    The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.

  14. Climate change and the effects of dengue upon Australia: An analysis of health impacts and costs

    NASA Astrophysics Data System (ADS)

    Newth, D.; Gunasekera, D.

    2010-08-01

    Projected regional warming and climate change analysis and health impact studies suggest that Australia is potentially vulnerable to increased occurrence of vector borne diseases such as dengue fever. Expansion of the dengue fever host, Aedes aegypti could potentially pose a significant public health risk. To manage such health risks, there is a growing need to focus on adaptive risk management strategies. In this paper, we combine analyses from climate, biophysical and economic models with a high resolution population model for disease spread, the EpiCast model to analyse the health impacts and costs of spread of dengue fever. We demonstrate the applicability of EpiCast as a decision support tool to evaluate mitigation strategies to manage the public health risks associated with shifts in the distribution of dengue fever in Australia.

  15. Implications of Abundant Gas and Oil for Climate Forcing

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2015-12-01

    Perhaps the most important development in the field of energy over the past decade has been the advent of technologies that enable the production of larger volumes of natural gas and oil at lower cost. The availability of more abundant gas and oil is reshaping the global energy system, with implications for both evolving emissions of CO2 and other climate forcers. More abundant gas and oil will also transform the character of greenhouse gas emissions mitigation. We review recent findings regarding the impact of abundant gas and oil for climate forcing and the challenge of emissions mitigation. We find strong evidence that, absent policies to limits its penetration against renewable energy, abundant gas has little observable impact on CO2 emissions, and tends to increase overall climate forcing, though the latter finding is subject to substantial uncertainty. The presence of abundant gas also affects emissions mitigation. There is relatively little literature exploring the implication of expanded gas availability on the difficulty in meeting emissions mitigation goals. However, preliminary results indicate that on global scales abundant gas does not substantially affect the cost of emissions mitigation, even though natural gas could have an expanded role in emissions mitigation scenarios as compared with scenarios in which natural gas is less abundant.

  16. Bio-Energy Retains Its Mitigation Potential Under Elevated CO2

    PubMed Central

    Bellassen, Valentin; Njakou Djomo, Sylvestre; Lukac, Martin; Calfapietra, Carlo; Janssens, Ivan A.; Hoosbeek, Marcel R.; Viovy, Nicolas; Churkina, Galina; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2010-01-01

    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main Findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/Significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink. PMID:20657833

  17. Interactions of Climate Change, Air Pollution, and Human Health.

    PubMed

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  18. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  19. Climate risks to agriculture in Amazon arc-of-deforestation create incentives to conserve local forests

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Fleck, L. C.; Cohn, A.; Abrahão, G. M.; Brando, P. M.; Coe, M. T.; Fu, R.; Lawrence, D.; Pires, G. F.; Pousa, R.; Soares, B. Filh

    2017-12-01

    Intensification of agriculture is a necessary condition for sustainably meeting global food demands without increasing deforestation. In southern Amazonia, a region that produces 7% of the world's soybeans, double cropping has become the preferred system for the intensification of agriculture, which is essentially rainfed. Rainy season is shortening in the region, due to climate change, and is predicted to become shorter in the future. The climate risks are worsened by the region's land use change. This increases the climate risk and even threat the intensive double-cropping agriculture that is currently practiced in that region, with potential perverse consequences to everyone. Repeated or widespread climate-driven crop failure could prompt a return to the single cropping system or even cropland abandonment. A shift to single cropping could decrease the agriculture output in this critical region, push up global food prices and heighten incentives to convert regional ecosystems to agricultural land. Further agricultural expansion into ecosystems would increase climate change. The more forest lost, the higher the climate risk will be, due to climate feedbacks from deforestation itself, triggering a spiraling decline of the rainforests and rainfall over southern Amazonia and other critical agricultural regions known to depend on the forests of Amazonia for rainfall. We show that there are economic and social reasons to preserve the forests, and it is in the best interest of the agribusiness, local governments and people, to conserve the remaining forests. The adaptation and mitigation needs, and policies to reconcile production and protection while mitigating supply chains risks are also discussed.

  20. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level.

    PubMed

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-04-27

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  1. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.

  2. The community resource management area mechanism: a strategy to manage African forest resources for REDD+.

    PubMed

    Asare, Rebecca A; Kyei, Andrew; Mason, John J

    2013-01-01

    Climate change poses a significant threat to Africa, and deforestation rates have increased in recent years. Mitigation initiatives such as REDD+ are widely considered as potentially efficient ways to generate emission reductions (or removals), conserve or sustainably manage forests, and bring benefits to communities, but effective implementation models are lacking. This paper presents the case of Ghana's Community Resource Management Area (CREMA) mechanism, an innovative natural resource governance and landscape-level planning tool that authorizes communities to manage their natural resources for economic and livelihood benefits. This paper argues that while the CREMA was originally developed to facilitate community-based wildlife management and habitat protection, it offers a promising community-based structure and process for managing African forest resources for REDD+. At a theoretical level, it conforms to the ecological, socio-cultural and economic factors that drive resource-users' decision process and practices. And from a practical mitigation standpoint, the CREMA has the potential to help solve many of the key challenges for REDD+ in Africa, including definition of boundaries, smallholder aggregation, free prior and informed consent, ensuring permanence, preventing leakage, clarifying land tenure and carbon rights, as well as enabling equitable benefit-sharing arrangements. Ultimately, CREMA's potential as a forest management and climate change mitigation strategy that generates livelihood benefits for smallholder farmers and forest users will depend upon the willingness of African governments to support the mechanism and give it full legislative backing, and the motivation of communities to adopt the CREMA and integrate democratic decision-making and planning with their traditional values and natural resource management systems.

  3. The community resource management area mechanism: a strategy to manage African forest resources for REDD+

    PubMed Central

    Asare, Rebecca A.; Kyei, Andrew; Mason, John J.

    2013-01-01

    Climate change poses a significant threat to Africa, and deforestation rates have increased in recent years. Mitigation initiatives such as REDD+ are widely considered as potentially efficient ways to generate emission reductions (or removals), conserve or sustainably manage forests, and bring benefits to communities, but effective implementation models are lacking. This paper presents the case of Ghana's Community Resource Management Area (CREMA) mechanism, an innovative natural resource governance and landscape-level planning tool that authorizes communities to manage their natural resources for economic and livelihood benefits. This paper argues that while the CREMA was originally developed to facilitate community-based wildlife management and habitat protection, it offers a promising community-based structure and process for managing African forest resources for REDD+. At a theoretical level, it conforms to the ecological, socio-cultural and economic factors that drive resource-users’ decision process and practices. And from a practical mitigation standpoint, the CREMA has the potential to help solve many of the key challenges for REDD+ in Africa, including definition of boundaries, smallholder aggregation, free prior and informed consent, ensuring permanence, preventing leakage, clarifying land tenure and carbon rights, as well as enabling equitable benefit-sharing arrangements. Ultimately, CREMA's potential as a forest management and climate change mitigation strategy that generates livelihood benefits for smallholder farmers and forest users will depend upon the willingness of African governments to support the mechanism and give it full legislative backing, and the motivation of communities to adopt the CREMA and integrate democratic decision-making and planning with their traditional values and natural resource management systems. PMID:23878338

  4. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climat...

  5. Realizing the electric-vehicle revolution

    NASA Astrophysics Data System (ADS)

    Tran, Martino; Banister, David; Bishop, Justin D. K.; McCulloch, Malcolm D.

    2012-05-01

    Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

  6. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  7. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2013-01-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are comparedmore » to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.« less

  8. Feeling bogged down about climate change mitigation? Insights from a new high resolution peatland-bog model validated at two Dutch monitoring sites.

    NASA Astrophysics Data System (ADS)

    Lippmann, Tanya; van Huissteden, Ko; Hendriks, Dimmie

    2017-04-01

    Increasing the global carbon sink is one of two options to mitigate CO2 and CH4 increases in the atmosphere (the other is emissions reductions at the source). Peatlands release carbon to the atmosphere when disturbed by natural or human causes and absorb carbon when vegetation and soil organic matter accumulate after rewetting or natural revegetation. However, rewetting of drained peatlands is frequently not considered as a climate mitigation strategy due to the enhanced methane emissions that accompany newly formed anaerobic peatland environments. We hypothesise that at most sites, this trend will be temporal but long-term, lasting for tens of years post re-wetting before stabilisation takes place. This study investigates the ability of rewetted peatland sites to act as either a source or sink for atmospheric methane and carbon dioxide under climate change. The hydrology of a peatland is fundamental to its functioning. Therefore, the use of a full water balance table has the potential to simulate greenhouse gas fluxes to a greater degree of certainty. MODFLOW is the internationally most widely used ground and surface water model and is freely available to the scientific community. This is the first time that a gridded peatland process based model has been constructed at a spatial resolution as high as 25m x 25m. This new high-resolution model allows for investigation into the complex biophysical and hydrological factors that are necessary to reliably estimate atmospheric greenhouse gas fluxes in a peatland ecosystem. We assess the model's skill against observations collected at two monitoring sites of differing soil properties and vegetation in the Netherlands. These results discuss site-specific suitability of peatland regeneration, useful for climate change mitigation activities. Aside from the insight into transient atmosphere-peatland carbon fluxes, this work is a stepping stone towards more robust model coupling and greater spatial coverage.

  9. Workshop summary: 'Integrating air quality and climate mitigation - is there a need for new metrics to support decision making?'

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Schmale, J.; Van Aardenne, J.

    2013-12-01

    Air pollution and climate change are often treated at national and international level as separate problems under different regulatory or thematic frameworks and different policy departments. With air pollution and climate change being strongly linked with regard to their causes, effects and mitigation options, the integration of policies that steer air pollutant and greenhouse gas emission reductions might result in cost-efficient, more effective and thus more sustainable tackling of the two problems. To support informed decision making and to work towards an integrated air quality and climate change mitigation policy requires the identification, quantification and communication of present-day and potential future co-benefits and trade-offs. The identification of co-benefits and trade-offs requires the application of appropriate metrics that are well rooted in science, easy to understand and reflect the needs of policy, industry and the public for informed decision making. For the purpose of this workshop, metrics were loosely defined as a quantified measure of effect or impact used to inform decision-making and to evaluate mitigation measures. The workshop held on October 9 and 10 and co-organized between the European Environment Agency and the Institute for Advanced Sustainability Studies brought together representatives from science, policy, NGOs, and industry to discuss whether current available metrics are 'fit for purpose' or whether there is a need to develop alternative metrics or reassess the way current metrics are used and communicated. Based on the workshop outcome the presentation will (a) summarize the informational needs and current application of metrics by the end-users, who, depending on their field and area of operation might require health, policy, and/or economically relevant parameters at different scales, (b) provide an overview of the state of the science of currently used and newly developed metrics, and the scientific validity of these metrics, (c) identify gaps in the current information base, whether from the scientific development of metrics or their application by different users.

  10. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States

    NASA Astrophysics Data System (ADS)

    Taylor, P. C.

    2017-12-01

    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  11. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzepek, K.; Neumann, Jim; Smith, Joel

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  12. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE PAGES

    Strzepek, K.; Neumann, Jim; Smith, Joel; ...

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  13. Multiple Adaptation Types with Mitigation: A Framework for Policy Analysis

    EPA Science Inventory

    Effective climate policy will consist of mitigation and adaptation implemented simultaneously in a policy portfolio to reduce the risks of climate change. The relative share of these responses will vary over time and will be adjusted in response to new information. Furthermore,...

  14. Uncertainty as Impetus for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Lewandowsky, S.; Oreskes, N.; Risbey, J.

    2015-12-01

    For decades, the scientific community has called for actions to be taken to mitigate the adverse consequences of climate change. To date, those calls have found little substantial traction, and politicians and the general public are instead engaged in a debate about the causes and effects of climate change that bears little resemblance to the state of scientific knowledge. Uncertainty plays a pivotal role in that public debate, and arguments against mitigation are frequently couched in terms of uncertainty. We show that the rhetorical uses of scientific uncertainty in public debate by some actors (often with vested interests or political agendas) contrast with the mathematical result that greater uncertainty about the extent of warming is virtually always associated with an increased risk: The expected damage costs increase as a function of uncertainty about future warming. We suggest ways in which the actual implications of scientific uncertainty can be better communicated and how scientific uncertainty should be understood as an impetus, rather than a barrier, for climate mitigation.

  15. Mexican forest inventory expands continental carbon monitoring

    Treesearch

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  16. Grazing lands in Sub-Saharan Africa and their potential role in climate change mitigation: What we do and don’t know

    USDA-ARS?s Scientific Manuscript database

    Grazinglands cover much of sub-Saharan Africa. When well-managed, these lands provide a wide variety of ecosystem services, many of which are positively correlated with increase in soil carbon. Pastoralists and other land managers are currently rewarded primarily for the production of animal product...

  17. Tree planting: not a simple solution

    Treesearch

    Constance I. Millar; William J. Libby

    1991-01-01

    There's no doubt about it. Planting trees has caught the attention of the American public. In his 1990 State of the Union address, President Bush proposed planting a billion Fees annually for the next ten years. Inspired by the potential for trees to reduce greenhouse gases and mitigate global climate change, tree-planting programs such as Treepeople and Global...

  18. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  19. Carbon sequestration potential of poplar energy crops in the Midwest, USA

    Treesearch

    R.S. Jr. Zalesny; W.L. Headlee; R.B. Hall; D.R. Coyle

    2010-01-01

    Energy use and climate change mitigation are closely linked via ecological, social, and economic factors, including carbon management. Energy supply is a key 21st century National security issue for the United States; identifying and developing woody feedstocks for transportation fuels and combined heat and power operations are a crucial component of the future...

  20. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian Country in the Northern Plains; (4) strengthen our partnerships in the scientific community in addressing climate change issues that will impact our reservations; and (5) utilize NASA resources and instrumentation through LPDAAC (Landsat TM and ETM +, MODIS, ASTER and other remotely sensed data) to educate our TCU students about appropriate research and modeling applications. Few of the TCU STEM faculty have read and comprehend the “Summaries for Policy Makers” published by the IPCC working groups, the Global Climate Change Impacts in the United States, or the ACIA report. Many of these same faculty have little or no experience with remote sensing applications. Through this project we will empower our colleges and students to fully understand the threats posed by this important phenomenon. We will provide training for our TCU faculty, who, in turn, will prepare our students with the knowledge to implement the diverse and comprehensive mitigation strategies needed to sustain our resources and tribal communities.

  1. Two-Basket Approach and Emission Metrics

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Schmale, J.; von Schneidemesser, E.

    2013-12-01

    Cutting the emissions of Short-Lived Climate-Forcing Air Pollutants (SLCPs) gains increasing global attention as a mitigation policy option because of direct benefits for climate and co-benefits such as improvements in air quality. Including SLCPs as target components to abate within a single basket (e.g. the Kyoto Protocol) would, however, face issues with regard to: i) additional assumptions that are required to compare SLCP emissions and CO2 emissions within a basket in terms of climatic effects, especially because of the difference in lifetimes, ii) the accountability of non-climatic effects in the emission trading between SLCPs and CO2. The idea of a two-basket approach was originally proposed as a climatic analogue to the Montreal Protocol dealing with ozone depleting substances (Jackson 2009; Daniel et al. 2012; Smith et al. 2013). In a two-basket approach, emissions are allowed to be traded within a basket but not across the baskets. While this approach potentially ensures scientifically supported emission trading (e.g. (Smith et al. 2013)), this approach leaves open the important issue of how to determine the relative weight between two baskets. Determining the weight cannot be answered by science alone, as the question involves a value judgment as stressed in metric studies (e.g. (Tanaka et al. 2010; Tanaka et al. 2013)). We discuss emission metrics in the context of a two-basket approach and present policy implications of such an approach. In a two-basket approach, the weight between two baskets needs to be determined a priori or exogenously. Here, an opportunity arises to present synergetic policy options targeted at mitigating climate change and air pollution simultaneously. In other words, this could be a strategy to encourage policymakers to consider cross-cutting issues. Under a two-basket climate policy, policymakers would be exposed to questions such as: - What type of damages caused by climate change does one choose to avoid? - To what extent does one wish to prioritize climate change issues over air pollution issues? - What is the time perspective one is most concerned with in a given policy? Because climate change and air pollution are closely linked via emission sources, their impacts and mitigation options, it would be beneficial for the two sets of policies to be dealt with together to make the best of synergies and to avoid trade-offs between them. References Daniel J, Solomon S, Sanford T, McFarland M, Fuglestvedt J, Friedlingstein P (2012) Limitations of single-basket trading: Lessons from the montreal protocol for climate policy. Clim Change 111:241-248 Jackson SC (2009) Parallel pursuit of near-term and long-term climate mitigation. Science 326:526-527 Smith S, Karas J, Edmonds J, Eom J, Mizrahi A (2013) Sensitivity of multi-gas climate policy to emission metrics. Clim Change 117:663-675 Tanaka K, Johansson DJA, O'Neill BC, Fuglestvedt JS (2013) Emission metrics under the 2°c climate stabilization target. Climatic Change Letters 117:933-941 Tanaka K, Peters GP, Fuglestvedt JS (2010) Policy update: Multicomponent climate policy: Why do emission metrics matter? Carbon Management 1:191-197

  2. Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Cao, Long; Jiang, Jiu

    2017-12-01

    Most modeling studies investigate climate effects of solar geoengineering under prescribed atmospheric CO2, thereby neglecting potential climate feedbacks from the carbon cycle. Here we use an Earth system model to investigate interactive feedbacks between solar geoengineering, global carbon cycle, and climate change. We design idealized sunshade geoengineering simulations to prevent global warming from exceeding 2°C above preindustrial under a CO2 emission scenario with emission mitigation starting from middle of century. By year 2100, solar geoengineering reduces the burden of atmospheric CO2 by 47 PgC with enhanced carbon storage in the terrestrial biosphere. As a result of reduced atmospheric CO2, consideration of the carbon cycle feedback reduces required insolation reduction in 2100 from 2.0 to 1.7 W m-2. With higher climate sensitivity the effect from carbon cycle feedback becomes more important. Our study demonstrates the importance of carbon cycle feedback in climate response to solar geoengineering.

  3. Influences of climate change on the potential distribution of Lutzomyia longipalpis sensu lato (Psychodidae: Phlebotominae).

    PubMed

    Peterson, A Townsend; Campbell, Lindsay P; Moo-Llanes, David A; Travi, Bruno; González, Camila; Ferro, María Cristina; Ferreira, Gabriel Eduardo Melim; Brandão-Filho, Sinval P; Cupolillo, Elisa; Ramsey, Janine; Leffer, Andreia Mauruto Chernaki; Pech-May, Angélica; Shaw, Jeffrey J

    2017-09-01

    This study explores the present day distribution of Lutzomyia longipalpis in relation to climate, and transfers the knowledge gained to likely future climatic conditions to predict changes in the species' potential distribution. We used ecological niche models calibrated based on occurrences of the species complex from across its known geographic range. Anticipated distributional changes varied by region, from stability to expansion or decline. Overall, models indicated no significant north-south expansion beyond present boundaries. However, some areas suitable both at present and in the future (e.g., Pacific coast of Ecuador and Peru) may offer opportunities for distributional expansion. Our models anticipated potential range expansion in southern Brazil and Argentina, but were variably successful in anticipating specific cases. The most significant climate-related change anticipated in the species' range was with regard to range continuity in the Amazon Basin, which is likely to increase in coming decades. Rather than making detailed forecasts of actual locations where Lu. longipalpis will appear in coming years, our models make interesting and potentially important predictions of broader-scale distributional tendencies that can inform heath policy and mitigation efforts. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  4. Wind power: Addressing wildlife impacts, assessing effects on tourism, and examining the link between climate change perceptions and support

    NASA Astrophysics Data System (ADS)

    Lilley, Meredith Blaydes

    As the world's most rapidly growing source of energy, wind power has vast potential for mitigating climate change and advancing global environmental sustainability. Yet, the challenges facing wind energy remain both complex and substantial. Two such challenges are: 1) wildlife impacts; and 2) perceived negative effects on tourism. This dissertation examines these challenges in a multi-paper format, and also investigates the role that climate change perceptions play in garnering public support for wind power. The first paper assesses optimal approaches for addressing wind power's wildlife impacts. Comparative analysis reveals that avian mortality from turbines ranks far behind avian mortality from a number of other anthropogenic sources. Additionally, although bats have recently emerged as more vulnerable to wind turbines than birds, they are generally less federally protected. The Migratory Bird Treaty Act (MBTA) protects over 800 bird species, regardless of their threatened or endangered status. Moreover, it criminalizes the incidental take of birds without a permit and simultaneously grants no permits for such incidental take, thereby creating a legal conundrum for the wind industry. An examination of the legislative and case history of the MBTA, however, reveals that wind operators are not likely to be prosecuted for incidental take if they cooperate with the U.S. Fish & Wildlife Service (FWS) and take reasonable steps to reduce siting and operational impacts. Furthermore, this study's analysis reveals modest wildlife impacts from wind power, in comparison with numerous other energy sources. Scientific-research, legal, and policy recommendations are provided to update the present legal and regulatory regime under the MBTA and to minimize avian and bat impacts. For instance, FWS should: establish comprehensive federal guidelines for wind facility siting, permitting, monitoring, and mitigation; and promulgate regulations under the MBTA for the issuance of incidental take permits at wind facilities. Equal protections for bats are also recommended. In examining the potential effect of offshore wind power on coastal tourism, the second paper reports the findings of a summer 2007 survey of over 1,000 out-of-state tourists at Delaware beaches. Randomly sampled beachgoers were shown photo-simulations of wind turbines at increasing distances from shore and asked how each simulation would affect visitation. With wind turbines located six miles offshore, approximately one-quarter would switch to a different beach. This stated avoidance, however, diminishes with increasing wind project distance from shore. Additionally, stated avoidance of a beach with turbines six miles offshore is exceeded by: avoidance of a beach with an equidistant, inland, fossil fuel power plant; attraction to a beach in order to see turbines six miles offshore; and the likelihood of paying for an offshore wind boat tour. Further, logistic regression modeling reveals that neither trip cost nor income significantly influences the likelihood of visiting a beach with offshore wind. These findings suggest that to limit beach avoidance, offshore wind developers could site wind facilities further from shore, particularly in areas with high recreational use. Moreover, with wind turbines six miles offshore serving more as an attraction than as a deterrent, offshore wind development may, in fact, bolster local tourism revenues. The third study examines public perceptions of climate change and the link between those perceptions and support for wind power, both in general and with respect to specific offshore sites. Analyzing data from five surveys, this research uncovers low climate awareness and concern levels overall. Respondents demonstrate a poor understanding of climate change impacts and of how to effectively address climate change. In accordance with the New Ecological Paradigm, still fewer are concerned about climate change. The issue ranks 6th in Delaware and 8th in Cape Cod as a reason for local project support, behind such issues as energy independence, electricity rates, air quality, and fishing and boating. Although disproportionately high percentages in Delaware and Cape Cod support taking climate action now - regardless of significant economic costs - this support appears to stem from the desire for climate mitigation's co-benefits, rather than from the desire to mitigate climate change itself. Furthermore, strong support for taking gradual or no climate action steps reveals evidence for an inaccurate conceptualization of greenhouse gas accumulation in the atmosphere and of long-term climate change impacts. Nevertheless, those aware of, and concerned about, climate change, exhibit significantly stronger support for wind power. Climate communicators should therefore: focus on correcting faulty cultural models of climate change, while continuing to provide accurate climate information to the public; and consider discussing the co-benefits of addressing climate change, in addition to the direct, climate mitigation benefits. Through this improved understanding, enhanced political will for addressing climate change through wind energy may be at hand.

  5. Embracing uncertainty in climate change policy

    NASA Astrophysics Data System (ADS)

    Otto, Friederike E. L.; Frame, David J.; Otto, Alexander; Allen, Myles R.

    2015-10-01

    The 'pledge and review' approach to reducing greenhouse-gas emissions presents an opportunity to link mitigation goals explicitly to the evolving climate response. This seems desirable because the progression from the Intergovernmental Panel on Climate Change's fourth to fifth assessment reports has seen little reduction in uncertainty. A common reaction to persistent uncertainties is to advocate mitigation policies that are robust even under worst-case scenarios, thereby focusing attention on upper extremes of both the climate response and the costs of impacts and mitigation, all of which are highly contestable. Here we ask whether those contributing to the formation of climate policies can learn from 'adaptive management' techniques. Recognizing that long-lived greenhouse gas emissions have to be net zero by the time temperatures reach a target stabilization level, such as 2 °C above pre-industrial levels, and anchoring commitments to an agreed index of attributable anthropogenic warming would provide a transparent approach to meeting such a temperature goal without prior consensus on the climate response.

  6. Climate Change Could Increase the Geographic Extent of Hendra Virus Spillover Risk.

    PubMed

    Martin, Gerardo; Yanez-Arenas, Carlos; Chen, Carla; Plowright, Raina K; Webb, Rebecca J; Skerratt, Lee F

    2018-03-19

    Disease risk mapping is important for predicting and mitigating impacts of bat-borne viruses, including Hendra virus (Paramyxoviridae:Henipavirus), that can spillover to domestic animals and thence to humans. We produced two models to estimate areas at potential risk of HeV spillover explained by the climatic suitability for its flying fox reservoir hosts, Pteropus alecto and P. conspicillatus. We included additional climatic variables that might affect spillover risk through other biological processes (such as bat or horse behaviour, plant phenology and bat foraging habitat). Models were fit with a Poisson point process model and a log-Gaussian Cox process. In response to climate change, risk expanded southwards due to an expansion of P. alecto suitable habitat, which increased the number of horses at risk by 175-260% (110,000-165,000). In the northern limits of the current distribution, spillover risk was highly uncertain because of model extrapolation to novel climatic conditions. The extent of areas at risk of spillover from P. conspicillatus was predicted shrink. Due to a likely expansion of P. alecto into these areas, it could replace P. conspicillatus as the main HeV reservoir. We recommend: (1) HeV monitoring in bats, (2) enhancing HeV prevention in horses in areas predicted to be at risk, (3) investigate and develop mitigation strategies for areas that could experience reservoir host replacements.

  7. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    PubMed

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.

  8. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  9. Geoengineering to Avoid Overshoot: An Analysis of Uncertainty

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Cho, Cheolhung; Krey, Volker; Patt, Anthony; Rafaj, Peter; Rao-Skirbekk, Shilpa; Wagner, Fabian

    2010-05-01

    Even if a drastic 50% CO2-equivalent emissions reduction is achieved by year 2050, the chances of exceeding a 2°C warming are still substantial due to the uncertainty in the climate system (Meinshausen et al., 2009). Moreover, a strong mitigation is accompanied by overshoot, in which the global-mean temperature temporarily exceeds the target before arriving there. We are motivated by the question as to how much geoengineering would be considered if it were to be used to avoid overshoot even combined with a strong mitigation? How serious would the side effects be expected? This study focuses on stratospheric sulfur injections among other geoengineering proposals, the idea of which has been put forward by Crutzen (2006) and reviewed by Rasch et al. (2008). There are a number of concerns over geoengineering (e.g. Robock, 2008). But the concept of geoengineering requires further research (AMS, 2009). Studying geoengineering may be instructive to revisit the importance of mainstream mitigation strategies. The motivations above led to the following two closely linked studies: 1) Mitigation and Geoengineering The first study investigates the magnitude and start year of geoengineering intervention with the intent to avoid overshoot. This study explores the sensitivity of geoengineering profile to associated uncertainties in the climate system (climate sensitivity, tropospheric aerosol forcing, and ocean diffusivity) and in mitigation scenarios (target uncertainty (450ppm CO2-eq and 400ppm CO2-eq) and baseline uncertainty (A2, B1, and B2)). This study builds on Wigley's premise that demonstrated a basic potential of such a combined mitigation/geoengineering approach (Wigley, 2006) - however it did not examine the sensitivity of the climate response to any underlying uncertainties. This study uses a set of GGI low mitigation scenarios generated from the MESSAGE model (Riahi et al., 2007). The reduced-complexity climate and carbon cycle model ACC2 (Tanaka, 2008; Tanaka et al., 2009) is employed to calculate climate responses including associated uncertainty and to estimate geoengineering profiles to cap the warming at 2°C since preindustrial. The inversion setup for the model ACC2 is used to estimate the uncertain parameters (e.g. climate sensitivity) against associated historical observations (e.g. global-mean surface air temperature). Our preliminary results show that under climate and scenario uncertainties, a geoengineering intervention to avoid an overshoot would be with medium intensity in the latter half of this century (≈ 1 Mt. Pinatubo eruption every 4 years in terms of stratospheric sulfur injections). The start year of geoengineering intervention does not significantly influence the long-term geoengineering profile. However, a geoengineering intervention of the medium intensity could bring about substantial environmental side effects such as the destruction of stratospheric ozone. Our results point to the necessity to pursue persistently mainstream mitigation efforts. 2) Pollution Abatement and Geoengineering The second study examines the potential of geoengineering combined with air clean policy. A drastic air pollution abatement might result in an abrupt warming because it would suddenly remove the tropospheric aerosols which partly offset the background global warming (e.g. Andreae et al, 2005, Raddatz and Tanaka, 2010). This study investigates the magnitude of unrealized warming under a range of policy assumptions and associated uncertainties. Then the profile of geoengineering is estimated to suppress the warming that would be accompanied by clean air policy. This study is the first attempt to explore uncertainty in the warming caused by clean air policy - Kloster et al. (2009), which assess regional changes in climate and hydrological cycle, has not however included associated uncertainties in the analysis. A variety of policy assumptions will be devised to represent various degrees of air pollution abatement. These assumptions are used in the GAINS model to generate pollutants emissions scenarios. Such scenarios are combined with a set of GGI low mitigation scenarios and prescribed to the climate and carbon cycle model ACC2. ACC2 is employed to quantify the warming due to air pollution abatement and the geoengineering profile to avoid such a warming. Furthermore, the implications of such geoengineering interventions (e.g. ecosystem impact and adaptation capacity) are examined. References AMS (Americal Meteorological Society) (2009) A Policy Statement on 20 July 2009. http://www.ametsoc.org/policy/2009geoengineeringclimate_amsstatement.pdf Andreae (2005) Nature, 435, 1187-1190, doi:10.1038/nature03671. Crutzen (2006) Climatic Change, 77, 211-219. Kloster et al. (2009) Climate Dynamics, 33, doi:10.1007/s00382-009-0573-0. Meinshausen et al. (2009) Nature, 458, 1158-1162, doi:10.1038/nature08017. Raddatz and Tanaka (2010) Prepared for a re-submission to Geophysical Research Letters. Rasch et al. (2008) Philosophical Transactions of The Royal Society A, 366, 4007-4037, doi:10.1098/rsta.2008.0131. Riahi et al. (2007) Technological Forecasting and Social Change, 74, 887-935, doi:10.1016/j.techfore.2006.05.026. Robock (2008) Bulletin of the Atomic Scientists, 64, 14-18, doi: 10.2968/064002006. Tanaka (2008) Ph.D. thesis. International Max Planck Research School on Earth System Modelling, Hamburg, Germany. http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/ Tanaka et al. (2009) Geophysical Research Letters, 36, L16709, doi:10.1029/2009GL039642. Wigley (2008) Science, 314, 452-454, doi:10.1126/science.1131728.

  10. Comparative risk assessment of the burden of disease from climate change.

    PubMed

    Campbell-Lendrum, Diarmid; Woodruff, Rosalie

    2006-12-01

    The World Health Organization has developed standardized comparative risk assessment methods for estimating aggregate disease burdens attributable to different risk factors. These have been applied to existing and new models for a range of climate-sensitive diseases in order to estimate the effect of global climate change on current disease burdens and likely proportional changes in the future. The comparative risk assessment approach has been used to assess the health consequences of climate change worldwide, to inform decisions on mitigating greenhouse gas emissions, and in a regional assessment of the Oceania region in the Pacific Ocean to provide more location-specific information relevant to local mitigation and adaptation decisions. The approach places climate change within the same criteria for epidemiologic assessment as other health risks and accounts for the size of the burden of climate-sensitive diseases rather than just proportional change, which highlights the importance of small proportional changes in diseases such as diarrhea and malnutrition that cause a large burden. These exercises help clarify important knowledge gaps such as a relatively poor understanding of the role of nonclimatic factors (socioeconomic and other) that may modify future climatic influences and a lack of empiric evidence and methods for quantifying more complex climate-health relationships, which consequently are often excluded from consideration. These exercises highlight the need for risk assessment frameworks that make the best use of traditional epidemiologic methods and that also fully consider the specific characteristics of climate change. These include the longterm and uncertain nature of the exposure and the effects on multiple physical and biotic systems that have the potential for diverse and widespread effects, including high-impact events.

  11. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less

  12. In Brief: Geoengineering draft statement

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-04-01

    The American Meteorological Society (AMS) has prepared a draft policy statement on geoengineering the climate system, which the AMS Council is considering for approval. The statement notes, “Geoengineering will not substitute for either aggressive mitigation or proactive adaptation. It could contribute to a comprehensive risk management strategy to slow climate change and alleviate its negative impacts, but the potential for adverse and unintended consequences implies a need for adequate research, appropriate regulation, and transparent consideration.” The statement, if adopted, indicates that AMS recommends enhanced research on the scientific and technological potential for geoengineering the climate system; additional study of the historical, ethical, legal, political, and societal aspects of the geoengineering issues; and the development and analysis of policy options to promote transparency and international cooperation in exploring geoengineering options along with restrictions on reckless efforts to manipulate the climate system. AMS is accepting comments on the draft statement until 23 April. For more information, visit http://ametsoc.org/policy/draftstatements/index.html#draft.

  13. Providing rapid climate risk assessments to support cities (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W.; Horton, R. M.; Bader, D.; Ali, S.

    2013-12-01

    Hurricane Sandy struck the East Coast of the United States on October 29, 2012 and brought the issue of urban resilience to the forefront of public discussion not only in New York City, but in cities around the world. While Hurricane Sandy as an individual extreme climate event cannot be attributed to climate change, it can serve as a warning for cities regarding disaster risks, focus attention on the importance of reducing climate vulnerability, and the need to include increasing climate risks and resilience into rebuilding programs. As severe as Sandy was, the the storm could have been much worse. The science behind potential impacts was ';in place' and ';in time,' i.e., climate risks were well understood before the storm, due to work by scientists in the region starting in the late 1990s. In the wake of this transformative storm, the rebuilding process in New York is being informed by the potential for a changing climate. The $20 billion Special Initiative for Rebuilding and Resiliency (SIRR) Plan for New York is grounded upon climate risk information provided by the New York City Panel on Climate Change (NPCC). This expert panel, tasked with advising on the City on climate-related issues, completed a 'rapid response' climate assessment with updated climate projections and coastal flood maps. Cities are emerging as the ';first responders' to climate change in both adaptation and mitigation. Their efforts are playing a role in catalyzing national and international responses as well. New York City's actions in the wake of Hurricane Sandy are an example of a positive tipping-point response. The Urban Climate Change Research Network, a consortium of over 450 scholars and practitioners in developing and developed country cities around the world, was established in 2007 to enhance science-based decision-making on climate and other sustainability related issues in urban areas around the world. The UCCRN's first major publication is the First UCCRN Assessment Report on Climate Change and Cities (ARC3), which represents a four-year effort by 110 authors from 50+ cities around the world, and is the first ever global, interdisciplinary, science-based assessment to address climate risks, adaptation, mitigation, and policy mechanisms relevant to cities. The UCCRN has initiated the process of developing the Second UCCRN Report on Climate Change and Cities (ARC3-2), to facilitate ongoing and active learning and to continue providing practical, evidence-based guidance for city decision-makers.

  14. Integrated analysis considered mitigation cost, damage cost and adaptation cost in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Lee, D. K.; Kim, H. G.; Sung, S.; Jung, T. Y.

    2015-12-01

    Various studies show that raising the temperature as well as storms, cold snap, raining and drought caused by climate change. And variety disasters have had a damage to mankind. The world risk report(2012, The Nature Conservancy) and UNU-EHS (the United Nations University Institute for Environment and Human Security) reported that more and more people are exposed to abnormal weather such as floods, drought, earthquakes, typhoons and hurricanes over the world. In particular, the case of Korea, we influenced by various pollutants which are occurred in Northeast Asian countries, China and Japan, due to geographical meteorological characteristics. These contaminants have had a significant impact on air quality with the pollutants generated in Korea. Recently, around the world continued their effort to reduce greenhouse gas and to improve air quality in conjunction with the national or regional development goals priority. China is also working on various efforts in accordance with the international flows to cope with climate change and air pollution. In the future, effect of climate change and air quality in Korea and Northeast Asia will be change greatly according to China's growth and mitigation policies. The purpose of this study is to minimize the damage caused by climate change on the Korean peninsula through an integrated approach taking into account the mitigation and adaptation plan. This study will suggest a climate change strategy at the national level by means of a comprehensive economic analysis of the impacts and mitigation of climate change. In order to quantify the impact and damage cost caused by climate change scenarios in a regional scale, it should be priority variables selected in accordance with impact assessment of climate change. The sectoral impact assessment was carried out on the basis of selected variables and through this, to derive the methodology how to estimate damage cost and adaptation cost. And then, the methodology was applied in Korea. Finally, we build an integrated analysis considered mitigation cost, damage cost, and adaptation cost by climate change

  15. Advance strategy for climate change adaptation and mitigation in cities

    NASA Astrophysics Data System (ADS)

    Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.

    2017-12-01

    An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize parameters that can be readily modified to suit certain countermeasures, adaptation and mitigation strategies can be evaluated using thermal comfort and other social indicators. With the approaches introduced through this project, a deeper understanding of urban-climate interactions in the changing global climate can be achieved.

  16. Cumulative biological impacts framework for solar energy projects in the California Desert

    USGS Publications Warehouse

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  17. The urgency of the development of CO2 capture from ambient air

    PubMed Central

    Lackner, Klaus S.; Brennan, Sarah; Matter, Jürg M.; Park, A.-H. Alissa; Wright, Allen; van der Zwaan, Bob

    2012-01-01

    CO2 capture and storage (CCS) has the potential to develop into an important tool to address climate change. Given society’s present reliance on fossil fuels, widespread adoption of CCS appears indispensable for meeting stringent climate targets. We argue that for conventional CCS to become a successful climate mitigation technology—which by necessity has to operate on a large scale—it may need to be complemented with air capture, removing CO2 directly from the atmosphere. Air capture of CO2 could act as insurance against CO2 leaking from storage and furthermore may provide an option for dealing with emissions from mobile dispersed sources such as automobiles and airplanes. PMID:22843674

  18. Public health co-benefits of greenhouse gas emissions reduction: A systematic review.

    PubMed

    Gao, Jinghong; Kovats, Sari; Vardoulakis, Sotiris; Wilkinson, Paul; Woodward, Alistair; Li, Jing; Gu, Shaohua; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Song, Xiaoqin; Zhai, Yunkai; Zhao, Jie; Liu, Qiyong

    2018-06-15

    Public health co-benefits from curbing climate change can make greenhouse gas (GHG) mitigation strategies more attractive and increase their implementation. The purpose of this systematic review is to summarize the evidence of these health co-benefits to improve our understanding of the mitigation measures involved, potential mechanisms, and relevant uncertainties. A comprehensive search for peer-reviewed studies published in English was conducted using the primary electronic databases. Reference lists from these articles were reviewed and manual searches were performed to supplement relevant studies. The identified records were screened based on inclusion criteria. We extracted data from the final retrieved papers using a pre-designed data extraction form and a quality assessment was conducted. The studies were heterogeneities, so meta-analysis was not possible and instead evidence was synthesized using narrative summaries. Thirty-six studies were identified. We identified GHG mitigation strategies in five domains - energy generation, transportation, food and agriculture, households, and industry and economy - which usually, although not always, bring co-benefits for public health. These health gains are likely to be multiplied by comprehensive measures that include more than one sectors. GHG mitigation strategies can bring about substantial and possibly cost-effective public health co-benefits. These findings are highly relevant to policy makers and other stakeholders since they point to the compounding value of taking concerted action against climate change and air pollution. Copyright © 2018. Published by Elsevier B.V.

  19. Contributions of internal climate variability to mitigation of projected future regional sea level rise

    NASA Astrophysics Data System (ADS)

    Hu, A.; Bates, S. C.

    2017-12-01

    Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.

  20. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level

    PubMed Central

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-01-01

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico. PMID:27128933

  1. Inclusion of climate change strategies in municipal Integrated Development Plans: A case from seven municipalities in Limpopo Province, South Africa

    PubMed Central

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has made it clear that anthropogenic greenhouse gasses are the main cause of observed global warming that leads to climate change. Climate change is now a global reality. In the South African political set-up, local municipalities are the structures that are in direct contact with communities and they draw up Integrated Development Plans (IDPs), which are reviewed and upgraded annually. The article seeks to investigate the extent to which climate change adaptation and mitigation strategies are embedded IDPs in seven vulnerable municipalities in the Limpopo Province. The article conducted an in-depth content analysis of the IDPs of the seven municipalities and the results have revealed that these municipalities have not included adaptation and mitigation strategies adequately in their IDPs despite being the most vulnerable municipalities in the province. The article concludes that these municipalities have not as yet institutionalised climate change in their daily operations, planning and decision making. To this end, the paper recommends that local municipalities should include climate change adaptation and mitigation strategies in their IDPs.

  2. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  3. Meeting the Radiative Forcing Targets of the Representative Concentration Pathways with Agricultural Climate Impacts

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Müller, C.; Calvin, K. V.; Thomson, A. M.

    2013-12-01

    The Representative Concentration Pathways (RCPs) have formed the basis for much of the current scientific understanding of future climate change impacts and mitigation. However, the emissions scenarios underlying the RCPs were produced by integrated assessment models that did not include impacts of future climate change on the modeled evolution of the agricultural and energy systems. Given the prominent role of bioenergy in greenhouse gas emissions mitigation, and given the importance of land-use-related emissions in determining future atmospheric CO2 concentrations, it is possible that agricultural climate impacts may cause significant changes to the means and costs of mitigating greenhouse gas emissions. This study builds on several international modeling exercises aimed at improving understanding of climate change impacts--CMIP-5 and ISI-MIP--that have generated global gridded climate impacts on yields of major agricultural crops in each of the four RCPs. We use the climate outcomes from the HadGEM2-ES climate model, and the agricultural yield outcomes from the LPJmL crop growth model to inform inputs to the GCAM integrated assessment model, allowing analysis of how agricultural climate impacts may affect the long-term global and regional strategies for achieving the greenhouse gas concentration pathways of the RCPs. Our results indicate that for this combination of models and emissions scenarios, strongly negative climate impacts on several major commodity classes--prominently cereals and oil seeds, and particularly in the high-radiative-forcing RCPs--lead to a long-term increase in cropland and therefore land-use-related CO2 emissions. All else equal, this increases the emissions mitigation burden on the rest of the system, and therefore increases total net costs of emissions mitigation. However, the future climate change impacts on C4 bioenergy crops tend to be positive, limiting the shock of agricultural climate impacts on the modeled energy supply and demand systems. As well, endogenous adaptation in the agricultural sector--mostly through inter-regional shifting in production and changes in trade patterns--limits the shock of climate impacts to consumers. Global average climate impacts on wheat yields for the four emissions scenarios, using base-year weights (asterisks) and using the endogenous land allocations in GCAM (filled diamonds)

  4. Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change.

    PubMed

    Kaky, Emad; Gilbert, Francis

    2017-01-01

    Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.

  5. Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Katja; Sands, Ronald D.

    2009-01-05

    In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less

  6. Regional climate engineering by radiation management: Prerequisites and prospects

    NASA Astrophysics Data System (ADS)

    Quaas, Johannes; Quaas, Martin F.; Boucher, Olivier; Rickels, Wilfried

    2016-12-01

    Radiation management (RM), as an option to engineer the climate, is highly controversial and suffers from a number of ethical and regulatory concerns, usually studied in the context of the objective to mitigate the global mean temperature. In this article, we discuss the idea that RM can be differentiated and scaled in several dimensions with potential objectives being to influence a certain climate parameter in a specific region. Some short-lived climate forcers (e.g., tropospheric aerosols) exhibit strong geographical and temporal variability, potentially leading to limited-area climate responses. Marine cloud brightening and thinning or dissolution of cirrus clouds could be operated at a rather local scale. It is therefore conceivable that such schemes could be applied with the objective to influence the climate at a regional scale. From a governance perspective, it is desirable to avoid any substantial climate effects of regional RM outside the target region. This, however, could prove impossible for a sustained, long-term RM. In turn, regional RM during limited time periods could prove more feasible without effects beyond the target area. It may be attractive as it potentially provides the opportunity to target the suppression of some extreme events such as heat waves. Research is needed on the traceability of regional RM, for example, using detection and attribution methods. Incentives and implications of regional RM need to be examined, and new governance options have to be conceived.

  7. Cumulative carbon as a policy framework for achieving climate stabilization

    PubMed Central

    Matthews, H. Damon; Solomon, Susan; Pierrehumbert, Raymond

    2012-01-01

    The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO2 concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO2 emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO2 relative to other major climate forcing agents. PMID:22869803

  8. The climate mitigation gap: education and government recommendations miss the most effective individual actions

    NASA Astrophysics Data System (ADS)

    Wynes, Seth; Nicholas, Kimberly A.

    2017-07-01

    Current anthropogenic climate change is the result of greenhouse gas accumulation in the atmosphere, which records the aggregation of billions of individual decisions. Here we consider a broad range of individual lifestyle choices and calculate their potential to reduce greenhouse gas emissions in developed countries, based on 148 scenarios from 39 sources. We recommend four widely applicable high-impact (i.e. low emissions) actions with the potential to contribute to systemic change and substantially reduce annual personal emissions: having one fewer child (an average for developed countries of 58.6 tonnes CO2-equivalent (tCO2e) emission reductions per year), living car-free (2.4 tCO2e saved per year), avoiding airplane travel (1.6 tCO2e saved per roundtrip transatlantic flight) and eating a plant-based diet (0.8 tCO2e saved per year). These actions have much greater potential to reduce emissions than commonly promoted strategies like comprehensive recycling (four times less effective than a plant-based diet) or changing household lightbulbs (eight times less). Though adolescents poised to establish lifelong patterns are an important target group for promoting high-impact actions, we find that ten high school science textbooks from Canada largely fail to mention these actions (they account for 4% of their recommended actions), instead focusing on incremental changes with much smaller potential emissions reductions. Government resources on climate change from the EU, USA, Canada, and Australia also focus recommendations on lower-impact actions. We conclude that there are opportunities to improve existing educational and communication structures to promote the most effective emission-reduction strategies and close this mitigation gap.

  9. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.

  10. IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Sokona, Youba

    2014-05-01

    The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.

  11. Sustainable biochar to mitigate global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmentalmore » and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained sustainably, with minimal carbon debt incurred from land-use change.« less

  12. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.

    PubMed

    Falloon, Pete; Betts, Richard

    2010-11-01

    We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "moderate" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. Crown Copyright © 2009. Published by Elsevier B.V. All rights reserved.

  13. Potential economic losses to the USA corn industry from aflatoxin contamination

    PubMed Central

    Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F.

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonize food crops, can pose a heavy economic burden to the United States corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the US and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (FDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from $52.1 million to $1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606

  14. Potential economic losses to the US corn industry from aflatoxin contamination.

    PubMed

    Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years.

  15. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.

  16. Data of a willingness to pay survey for national climate change mitigation policies in Germany.

    PubMed

    Uehleke, Reinhard

    2016-06-01

    The dataset includes responses from a contingent valuation study about the national climate change mitigation policies in Germany. The online survey was carried out in the spring of 2014. It assesses the willingness to pay for an increase of the national CO2 reduction target by 10 percentage points, which closely represents Germany׳s climate change mitigation strategy. Respondents were randomly allocated to one of the following three question formats: The dichotomous choice referendum, the dissonance minimizing referendum and the two-sided payment ladder. The data can be used to investigate the influence of alternative statistical approaches on the willingness to pay measures and their comparison across question formats.

  17. Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2014-01-01

    The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.

  18. Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Mevin B.; DeVink, Jean-Michel; Koons, David N.

    2015-01-01

    An understanding of species relationships is critical in the management and conservation of populations facing climate change, yet few studies address how climate alters species interactions and other population drivers. We use a long-term, broad-scale data set of relative abundance to examine the influence of climate, predators, and density dependence on the population dynamics of declining scaup (Aythya) species within the core of their breeding range. The state-space modeling approach we use applies to a wide range of wildlife species, especially populations monitored over broad spatiotemporal extents. Using this approach, we found that immediate snow cover extent in the preceding winter and spring had the strongest effects, with increases in mean snow cover extent having a positive effect on the local surveyed abundance of scaup. The direct effects of mesopredator abundance on scaup population dynamics were weaker, but the results still indicated a potential interactive process between climate and food web dynamics (mesopredators, alternative prey, and scaup). By considering climate variables and other potential effects on population dynamics, and using a rigorous estimation framework, we provide insight into complex ecological processes for guiding conservation and policy actions aimed at mitigating and reversing the decline of scaup.

  19. Potential economic value of drought information to support early warning in Africa

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Iglesias, A.; Diz, A.; Garrote, L.

    2012-04-01

    We present a methodology to estimate the economic value of advanced climate information for food production in Africa under climate change scenarios. The results aim to facilitate better choices in water resources management. The methodology includes 4 sequential steps. First two contrasting management strategies (with and without early warning) are defined. Second, the associated impacts of the management actions are estimated by calculating the effect of drought in crop productivity under climate change scenarios. Third, the optimal management option is calculated as a function of the drought information and risk aversion of potential information users. Finally we use these optimal management simulations to compute the economic value of enhanced water allocation rules to support stable food production in Africa. Our results show how a timely response to climate variations can help reduce loses in food production. The proposed framework is developed within the Dewfora project (Early warning and forecasting systems to predict climate related drought vulnerability and risk in Africa) that aims to improve the knowledge on drought forecasting, warning and mitigation, and advance the understanding of climate related vulnerability to drought and to develop a prototype operational forecasting.

  20. Life-cycle GHG emissions of electricity from syngas produced by pyrolyzing woody biomass

    Treesearch

    Hongmei Gu; Richard Bergman

    2015-01-01

    Low-value residues from forest restoration activities in the western United States intended to mitigate effects from wildfire, climate change, and pests and disease need a sustainable market to improve the economic viability of treatment. Converting biomass into bioenergy is a potential solution. Life-cycle assessment (LCA) as a sustainable metric tool can assess the...

  1. Public land, timber harvests, and climate mitigation: quantifying carbon sequestration potential on U.S. public timberlands

    Treesearch

    Brooks M. Depro; Brian C. Murray; Ralph J. Alig; Alyssa Shanks

    2008-01-01

    Scientists and policymakers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (C02), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11 percent of all GHG emissions from all sectors of the economy annually....

  2. Climate mitigation potential of the San Pedro River riparian zone

    Treesearch

    Dean A. Martens; Jean E. T. McLain

    2005-01-01

    Carbon (C) and nitrogen (N) cycling within an open brush site, a sacaton (Sporobolus wrightii) grass and a mesquite (Prosopis velutina) grove, in the riparian zone was closely linked to the yearly litter N inputs. Yearly mesquite litter fall for 2 yr was remarkably similar and averaged 4.0 g N m-2 and 65 g C m...

  3. Estimated values of carbon sequestration resulting from forest management scenarios

    Treesearch

    R. Bluffstone; J. Coulston; R.G. Haight; J. Kline; S. Polasky; D.N. Wear; K. Zook

    2017-01-01

    Recent USDA policies, such as the Building Blocks for Climate Smart Agriculture and Forestry, aim to sequester and mitigate greenhouse gases in the forestry and agriculture sectors in the United States. To make informed decisions, the USDA will need to evaluate the carbon benefits of various potential policies. In this paper, we use detailed forest inventory data to...

  4. Effects of climate on emerald ash borer mortality and the potential for ash survival in North America

    Treesearch

    Ryan D. DeSantis; W. Keith Moser; Dale D. Gormanson; Marshall G. Bartlett; Bradley Vermunt

    2013-01-01

    Non-native invasive insects such as the emerald ash borer (Agrilus planipennis Fairmaire; EAB) cause billions of dollars; worth of economic damage and unquantifiable but substantial ecological damage in North America each year. There are methods to mitigate, contain, control, or even eradicate some non-native invasive insects, but so far the spread...

  5. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion

    Treesearch

    Matthew Warren; Kristell Hergoualc' h; J. Boone Kauffman; Daniel Murdiyarso; Randall Kolka

    2017-01-01

    Background: A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth...

  6. A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (Cso) Mitigation in the Great Lakes and New England Regions (External Review Draft)

    EPA Science Inventory

    EPA has released this draft document solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. This document has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency policy ...

  7. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics

    Treesearch

    J.B. Kauffman; R.F. Hughes; C. Heider

    2009-01-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential...

  8. Social and cultural influences on management for carbon sequestration on US family forestlands: a literature synthesis

    Treesearch

    A. Paige Fischer; Susan Charnley

    2010-01-01

    Nonindustrial private—or "family"—forests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented...

  9. Climate Forcing by Particles from Specific Sources, With Implications for No-regrets Scenarios

    NASA Astrophysics Data System (ADS)

    Bond, T. C.; Roden, C. A.; Subramanian, R.; Rasch, P. J.

    2006-12-01

    Mitigation-- the act of reducing human effects on climate and atmosphere by changing practices-- occurs one source at a time, one country at a time. Examining climate forcing produced by individual sources could be instructive. Two sectors contribute the largest fraction of black carbon aerosols from energy-related combustion: diesel engines and residential biofuel. We examine direct climate forcing by aerosols from these sources in four locations. Because source characterization is lacking, global emission inventories that include chemical composition of particles have often relied on expert judgment. We are gaining information on emission rates and climate- relevant properties through partnerships with projects related to air quality and health in Thailand and Honduras. Despite the presence of organic carbon, black carbon's constant companion, particles from both diesel and biofuel exert net climate warming. In particular, solid-fuel combustion produces material with weak light absorption and strong absorption spectral dependence. We discuss the expected emissions and properties of this material. Revised emission rates and properties are implemented in the Community Atmosphere Model, housed at the National Center for Atmospheric Research, and we tag particles emitted from individual sources. Which sources feed high-forcing regions, such as the area above the low-cloud deck in the North Pacific? Which particles might have been scavenged, and how does uncertainty in removal rates affect single-source forcing? Using model experiments, we estimate central values and uncertainties of direct radiative forcing from each source. Finally, we discuss the potential for reducing climate forcing by mitigating these individual sources. What is the range of benefits expected by addressing these sources, and what are the costs and obstacles? Only by representing uncertainty can we determine the likelihood that reducing these emissions represents a "no- regret" scenario for climate.

  10. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Wade, T. G.; Riitters, K. H.

    2014-09-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.

  11. Importance of food-demand management for climate mitigation

    NASA Astrophysics Data System (ADS)

    Bajželj, Bojana; Richards, Keith S.; Allwood, Julian M.; Smith, Pete; Dennis, John S.; Curmi, Elizabeth; Gilligan, Christopher A.

    2014-10-01

    Recent studies show that current trends in yield improvement will not be sufficient to meet projected global food demand in 2050, and suggest that a further expansion of agricultural area will be required. However, agriculture is the main driver of losses of biodiversity and a major contributor to climate change and pollution, and so further expansion is undesirable. The usual proposed alternative--intensification with increased resource use--also has negative effects. It is therefore imperative to find ways to achieve global food security without expanding crop or pastureland and without increasing greenhouse gas emissions. Some authors have emphasized a role for sustainable intensification in closing global `yield gaps' between the currently realized and potentially achievable yields. However, in this paper we use a transparent, data-driven model, to show that even if yield gaps are closed, the projected demand will drive further agricultural expansion. There are, however, options for reduction on the demand side that are rarely considered. In the second part of this paper we quantify the potential for demand-side mitigation options, and show that improved diets and decreases in food waste are essential to deliver emissions reductions, and to provide global food security in 2050.

  12. Summary for Policymakers IPCC Fourth Assessment Report, WorkingGroup III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Terry; Bashmakov, Igor; Bernstein, Lenny

    2007-04-30

    A. Introduction 1. The Working Group III contribution to theIPCC Fourth Assessment Report (AR4) focuses on new literature on thescientific, technological, environmental, economic and social aspects ofmitigation of climate change, published since the IPCC Third AssessmentReport (TAR) and the Special Reports on COB2B Capture and Storage (SRCCS)and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The following summary is organised into six sections after thisintroduction: - Greenhouse gas (GHG) emission trends, - Mitigation in theshort and medium term, across different economic sectors (until 2030), -Mitigation in the long-term (beyond 2030), - Policies, measures andinstruments to mitigate climate change,more » - Sustainable development andclimate change mitigation, - Gaps in knowledge. References to thecorresponding chapter sections are indicated at each paragraph in squarebrackets. An explanation of terms, acronyms and chemical symbols used inthis SPM can be found in the glossary to the main report.« less

  13. Dynamic Agroecological Zones for the Inland Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Huggins, D. R.; Rupp, R.; Gessler, P.; Pan, W.; Brown, D. J.; Machado, S.; Walden, V. P.; Eigenbrode, S.; Abatzoglou, J. T.

    2011-12-01

    Agroecological zones (AEZ's) have traditionally been defined by integrating multiple layers of biophysical (e.g. climate, soil, terrain) and occasionally socioeconomic data to create unique zones with specific ranges of land use constraints and potentials. Our approach to defining AEZ's assumes that current agricultural land uses have emerged as a consequence of biophysical and socioeconomic drivers. Therefore, we explore the concept that AEZ's can be derived from classifying the geographic distribution of current agricultural systems (e.g. the wheat-fallow cropping system zone) based on spatially geo-referenced annual cropland use data that is currently available through the National Agricultural Statistical Service (NASS). By defining AEZ's in this way, we expect to: (1) provide baseline information that geographically delineates the boundaries of current AEZ's and subzones and therefore the capacity to evaluate shifts in AEZ boundaries over time; (2) assess the biophysical (e.g. climate, soils, terrain) and socioeconomic factors (e.g. commodity prices) that are most useful for predicting and correctly classifying current AEZ's, subzones or future shifts in AEZ boundaries; (3) identify and develop AEZ-relevant climate mitigation and adaptation strategies; and (4) integrate biophysical and socioeconomic data sources to pursue a transdisciplinary examination of climate-driven AEZ futures. Achieving these goals will aid in realizing major objectives for a USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative, Cooperative Agricultural Project entitled "Regional Approaches to Climate Change (REACCH) for Pacific Northwest Agriculture". REACCH is a research, education and extension project under the leadership of the University of Idaho with significant collaboration from Washington State University, Oregon State University and the USDA Agricultural Research Service that is working towards increasing the capacity of Inland Pacific Northwest cereal production systems to adapt to and mitigate climate change. The AEZ concept is central to project-wide integration that will enable researchers, stakeholders, students, the public, and policymakers to acquire a more holistic understanding of the interrelationships of agriculture, climate change and the development of mitigation and adaptation strategies. Therefore AEZ's are part of a prescription for land management, given climate change that will enable the incorporation of information from climate models, economic models, crop models, pest disease and weed vulnerabilities, and other data sources. Specific to this presentation, we address the AEZ-related objective of developing methodology for defining major AEZ's within the Inland Pacific Northwest REACCH study area based on annual NASS cropland data.

  14. Cost-Risk Trade-off of Solar Radiation Management and Mitigation under Probabilistic Information on Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Khabbazan, Mohammad Mohammadi; Roshan, Elnaz; Held, Hermann

    2017-04-01

    In principle solar radiation management (SRM) offers an option to ameliorate anthropogenic temperature rise. However we cannot expect it to simultaneously compensate for anthropogenic changes in further climate variables in a perfect manner. Here, we ask to what extent a proponent of the 2°C-temperature target would apply SRM in conjunction with mitigation in view of global or regional disparities in precipitation changes. We apply cost-risk analysis (CRA), which is a decision analytic framework that makes a trade-off between the expected welfare-loss from climate policy costs and the climate risks from transgressing a climate target. Here, in both global-scale and 'Giorgi'-regional-scale analyses, we evaluate the optimal mixture of SRM and mitigation under probabilistic information about climate sensitivity. To do so, we generalize CRA for the sake of including not only temperature risk, but also globally aggregated and regionally disaggregated precipitation risks. Social welfare is maximized for the following three valuation scenarios: temperature-risk-only, precipitation-risk-only, and equally weighted both-risks. For now, the Giorgi regions are treated by equal weight. We find that for regionally differentiated precipitation targets, the usage of SRM will be comparably more restricted. In the course of time, a cooling of up to 1.3°C can be attributed to SRM for the latter scenario and for a median climate sensitivity of 3°C (for a global target only, this number reduces by 0.5°C). Our results indicate that although SRM would almost completely substitute for mitigation in the globally aggregated analysis, it only saves 70% to 75% of the welfare-loss compared to a purely mitigation-based analysis (from economic costs and climate risks, approximately 4% in terms of BGE) when considering regional precipitation risks in precipitation-risk-only and both-risks scenarios. It remains to be shown how the inclusion of further risks or different regional weights would change that picture.

  15. Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation

    NASA Astrophysics Data System (ADS)

    Takakura, Jun'ya; Fujimori, Shinichiro; Takahashi, Kiyoshi; Hijioka, Yasuaki; Hasegawa, Tomoko; Honda, Yasushi; Masui, Toshihiko

    2017-06-01

    The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change mitigation targets.

  16. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    PubMed

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  17. Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.

    2016-12-01

    The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive workshops to bring diverse city staff into the climate action process. We will share outcomes from the development of the integrated climate scenarios vulnerability assessment and adaptation planning. Lastly we will share key lessons learned that will be valuable to other cities and jurisdictions engaging in similar climate action.

  18. The next generation of scenarios for climate change research and assessment.

    PubMed

    Moss, Richard H; Edmonds, Jae A; Hibbard, Kathy A; Manning, Martin R; Rose, Steven K; van Vuuren, Detlef P; Carter, Timothy R; Emori, Seita; Kainuma, Mikiko; Kram, Tom; Meehl, Gerald A; Mitchell, John F B; Nakicenovic, Nebojsa; Riahi, Keywan; Smith, Steven J; Stouffer, Ronald J; Thomson, Allison M; Weyant, John P; Wilbanks, Thomas J

    2010-02-11

    Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

  19. University Leadership in Island Climate Change Mitigation

    ERIC Educational Resources Information Center

    Coffman, Makena

    2009-01-01

    Purpose: The purpose of this paper is to present the University of Hawaii at Manoa's (UHM's) initiatives in achieving greenhouse gas (GHG) emissions reductions on campus and at the state level. Design/methodology/approach: UHM has taken a "lead by example" approach to climate change mitigation in terms of working to meet the American…

  20. Carbon stocks of mangroves within the Zambezi River Delta, Mozambique

    Treesearch

    Christina E. Stringer; Carl C. Trettin; Stanley J. Zarnoch; Wenwu Tang

    2015-01-01

    Mangroves are well-known for their numerous ecosystem services, including storing a globally significant C pool. There is increasing interest in the inclusion of mangroves in national climate change mitigation and adaptation plans in developing nations as they become involved with incentive programs for climate change mitigation. The quality and precision of data...

Top