Sample records for climate model validation

  1. Global precipitation measurements for validating climate models

    NASA Astrophysics Data System (ADS)

    Tapiador, F. J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G. J.; Kidd, C.; Kucera, P. A.; Kummerow, C. D.; Masunaga, H.; Petersen, W. A.; Roca, R.; Sánchez, J.-L.; Tao, W.-K.; Turk, F. J.

    2017-11-01

    The advent of global precipitation data sets with increasing temporal span has made it possible to use them for validating climate models. In order to fulfill the requirement of global coverage, existing products integrate satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars), which are used as reference for the satellites. While the resulting product can be deemed as the best-available source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on the use of precipitation data sets for climate research, including model validation and verification for improving physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are presented, and a protocol for quality assurance of both observational databases and models is discussed. The paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in precipitation observations for climate model validation.

  2. Cross-validation of an employee safety climate model in Malaysia.

    PubMed

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  3. Stochastic Hourly Weather Generator HOWGH: Validation and its Use in Pest Modelling under Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Hirschi, M.; Spirig, C.

    2014-12-01

    To quantify impact of the climate change on a specific pest (or any weather-dependent process) in a specific site, we may use a site-calibrated pest (or other) model and compare its outputs obtained with site-specific weather data representing present vs. perturbed climates. The input weather data may be produced by the stochastic weather generator. Apart from the quality of the pest model, the reliability of the results obtained in such experiment depend on an ability of the generator to represent the statistical structure of the real world weather series, and on the sensitivity of the pest model to possible imperfections of the generator. This contribution deals with the multivariate HOWGH weather generator, which is based on a combination of parametric and non-parametric statistical methods. Here, HOWGH is used to generate synthetic hourly series of three weather variables (solar radiation, temperature and precipitation) required by a dynamic pest model SOPRA to simulate the development of codling moth. The contribution presents results of the direct and indirect validation of HOWGH. In the direct validation, the synthetic series generated by HOWGH (various settings of its underlying model are assumed) are validated in terms of multiple climatic characteristics, focusing on the subdaily wet/dry and hot/cold spells. In the indirect validation, we assess the generator in terms of characteristics derived from the outputs of SOPRA model fed by the observed vs. synthetic series. The weather generator may be used to produce weather series representing present and future climates. In the latter case, the parameters of the generator may be modified by the climate change scenarios based on Global or Regional Climate Models. To demonstrate this feature, the results of codling moth simulations for future climate will be shown. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).

  4. Demonstration of successful malaria forecasts for Botswana using an operational seasonal climate model

    NASA Astrophysics Data System (ADS)

    MacLeod, Dave A.; Jones, Anne; Di Giuseppe, Francesca; Caminade, Cyril; Morse, Andrew P.

    2015-04-01

    The severity and timing of seasonal malaria epidemics is strongly linked with temperature and rainfall. Advance warning of meteorological conditions from seasonal climate models can therefore potentially anticipate unusually strong epidemic events, building resilience and adapting to possible changes in the frequency of such events. Here we present validation of a process-based, dynamic malaria model driven by hindcasts from a state-of-the-art seasonal climate model from the European Centre for Medium-Range Weather Forecasts. We validate the climate and malaria models against observed meteorological and incidence data for Botswana over the period 1982-2006 the longest record of observed incidence data which has been used to validate a modeling system of this kind. We consider the impact of climate model biases, the relationship between climate and epidemiological predictability and the potential for skillful malaria forecasts. Forecast skill is demonstrated for upper tercile malaria incidence for the Botswana malaria season (January-May), using forecasts issued at the start of November; the forecast system anticipates six out of the seven upper tercile malaria seasons in the observational period. The length of the validation time series gives confidence in the conclusion that it is possible to make reliable forecasts of seasonal malaria risk, forming a key part of a health early warning system for Botswana and contributing to efforts to adapt to climate change.

  5. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.

    PubMed

    Yihdego, Yohannes; Webb, John

    2016-05-01

    Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water resources.

  6. VALUE - A Framework to Validate Downscaling Approaches for Climate Change Studies

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilke, Renate A. I.

    2015-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. Here, we present the key ingredients of this framework. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.

  7. VALUE: A framework to validate downscaling approaches for climate change studies

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilcke, Renate A. I.

    2015-01-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. In this paper, we present the key ingredients of this framework. VALUE's main approach to validation is user- focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.

  8. Detection of Greenhouse-Gas-Induced Climatic Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  9. VALUE - Validating and Integrating Downscaling Methods for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Benestad, Rasmus; Kotlarski, Sven; Huth, Radan; Hertig, Elke; Wibig, Joanna; Gutierrez, Jose

    2013-04-01

    Our understanding of global climate change is mainly based on General Circulation Models (GCMs) with a relatively coarse resolution. Since climate change impacts are mainly experienced on regional scales, high-resolution climate change scenarios need to be derived from GCM simulations by downscaling. Several projects have been carried out over the last years to validate the performance of statistical and dynamical downscaling, yet several aspects have not been systematically addressed: variability on sub-daily, decadal and longer time-scales, extreme events, spatial variability and inter-variable relationships. Different downscaling approaches such as dynamical downscaling, statistical downscaling and bias correction approaches have not been systematically compared. Furthermore, collaboration between different communities, in particular regional climate modellers, statistical downscalers and statisticians has been limited. To address these gaps, the EU Cooperation in Science and Technology (COST) action VALUE (www.value-cost.eu) has been brought into life. VALUE is a research network with participants from currently 23 European countries running from 2012 to 2015. Its main aim is to systematically validate and develop downscaling methods for climate change research in order to improve regional climate change scenarios for use in climate impact studies. Inspired by the co-design idea of the international research initiative "future earth", stakeholders of climate change information have been involved in the definition of research questions to be addressed and are actively participating in the network. The key idea of VALUE is to identify the relevant weather and climate characteristics required as input for a wide range of impact models and to define an open framework to systematically validate these characteristics. Based on a range of benchmark data sets, in principle every downscaling method can be validated and compared with competing methods. The results of this exercise will directly provide end users with important information about the uncertainty of regional climate scenarios, and will furthermore provide the basis for further developing downscaling methods. This presentation will provide background information on VALUE and discuss the identified characteristics and the validation framework.

  10. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    NASA Technical Reports Server (NTRS)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  11. Evaluating the sensitivity of agricultural model performance to different climate inputs

    PubMed Central

    Glotter, Michael J.; Moyer, Elisabeth J.; Ruane, Alex C.; Elliott, Joshua W.

    2017-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled to observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections, but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely-used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources – reanalysis, reanalysis bias-corrected with observed climate, and a control dataset – and compared to observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by un-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. However, some issues persist for all choices of climate inputs: crop yields appear oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves. PMID:29097985

  12. Development and Validation of a Safety Climate Scale for Manufacturing Industry

    PubMed Central

    Ghahramani, Abolfazl; Khalkhali, Hamid R.

    2015-01-01

    Background This paper describes the development of a scale for measuring safety climate. Methods This study was conducted in six manufacturing companies in Iran. The scale developed through conducting a literature review about the safety climate and constructing a question pool. The number of items was reduced to 71 after performing a screening process. Results The result of content validity analysis showed that 59 items had excellent item content validity index (≥ 0.78) and content validity ratio (> 0.38). The exploratory factor analysis resulted in eight safety climate dimensions. The reliability value for the final 45-item scale was 0.96. The result of confirmatory factor analysis showed that the safety climate model is satisfactory. Conclusion This study produced a valid and reliable scale for measuring safety climate in manufacturing companies. PMID:26106508

  13. Climate Change Impacts for Conterminous USA: An Integrated Assessment Part 2. Models and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, R Cesar C.

    As CO{sub 2} and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how a changing climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using a suite of climate change predictions from General Circulation Models (GCMs) as described in Part 1. Here we describe the agriculture model EPIC and the HUMUS water model and validate them with historical crop yields and streamflow data. We compare EPIC simulated grainmore » and forage crop yields with historical crop yields from the US Department of Agriculture and find an acceptable level of agreement for this study. The validation of HUMUS simulated streamflow with estimates of natural streamflow from the US Geological Survey shows that the model is able to reproduce significant relationships and capture major trends.« less

  14. School Climate of Educational Institutions: Design and Validation of a Diagnostic Scale

    ERIC Educational Resources Information Center

    Becerra, Sandra

    2016-01-01

    School climate is recognized as a relevant factor for the improvement of educative processes, favoring the administrative processes and optimum school performance. The present article is the result of a quantitative research model which had the objective of psychometrically designing and validating a scale to diagnose the organizational climate of…

  15. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  16. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    NASA Astrophysics Data System (ADS)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    To analyse the impacts of climate changes, hydrological models are used to project the hydrology responds under future conditions that normally differ from those for which they were calibrated. The challenge is to assess the validity of the projected effects when there is not data to validate it. A framework for testing the ability of models to project climate change was proposed by Refsgaard et al., (2014). The authors recommend the use of the differential-split sample test (DSST) in order to build confidence in the model projections. The method follow three steps: 1. A small number of sub-periods are selected according to one climate characteristics, 2. The calibration - validation test is applied on these periods, 3. The validation performances are compered to evaluate whether they vary significantly when climatic characteristics differ between calibration and validation. DSST rely on the existing records of climate and hydrological variables; and performances are estimated based on indicators of error between observed and simulated variables. Other authors suggest that, since climate models are not able to reproduce single events but rather statistical properties describing the climate, this should be reflected when testing hydrological models. Thus, performance criteria such as RMSE should be replaced by for instance flow duration curves or other distribution functions. Using this type of performance criteria, Van Steenbergen and Willems, (2012) proposed a method to test the validity of hydrological models in a climate changing context. The method is based on the evaluation of peak flow increases due to different levels of rainfall increases. In contrast to DSST, this method use the projected climate variability and it is especially useful to compare different modelling tools. In the framework of a water allocation project for the region of Flanders (Belgium) we calibrated three hydrological models: NAM, PDM and VHM; for 67 gauged sub-catchments with approx. 40 years of records. This paper investigates the capacity of the three hydrological models to project the impacts of climate change scenarios. It is proposed a general testing framework which combine the use of the existing information through an adapted form of DSST with the approach proposed by Van Steenbergen and Willems, (2012) adapted to assess statistical properties of flows useful in the context of water allocation. To assess the model we use robustness criteria based on a Log Nash-Sutcliffe, BIAS on cummulative volumes and relative changes based on Q50/Q90 estimated from the duration curve. The three conceptual rainfall-runoff models yielded different results per sub-catchments. A relation was found between robustness criteria and changes in mean rainfall and changes in mean potential evapotranspiration. Biases are greatly affected by changes in precipitation, especially when the climate scenarios involve changes in precipitation volume beyond the range used for calibration. Using the combine approach we were able to classify the modelling tools per sub-catchments and create an ensemble of best models to project the impacts of climate variability for the catchments of 10 main rivers in Flanders. Thus, managers could understand better the usability of the modelling tools and the credibility of its outputs for water allocation applications. References Refsgaard, J.C., Madsen, H., Andréassian, V., Arnbjerg-Nielsen, K., Davidson, T.A., Drews, M., Hamilton, D.P., Jeppesen, E., Kjellström, E., Olesen, J.E., Sonnenborg, T.O., Trolle, D., Willems, P., Christensen, J.H., 2014. A framework for testing the ability of models to project climate change and its impacts. Clim. Change. Van Steenbergen, N., Willems, P., 2012. Method for testing the accuracy of rainfall - runoff models in predicting peak flow changes due to rainfall changes , in a climate changing context. J. Hydrol. 415, 425-434.

  17. Evaluation of the new EMAC-SWIFT chemistry climate model

    NASA Astrophysics Data System (ADS)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus

    2016-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.

  18. Simulation of Climate Change Impacts on Wheat-Fallow Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    Agricultural system simulation models are predictive tools for assessing climate change impacts on crop production. In this study, RZWQM2 that contains the DSSAT 4.0-CERES model was evaluated for simulating climate change impacts on wheat growth. The model was calibrated and validated using data fro...

  19. Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.D.; Wigley, T.M.L.

    1995-07-21

    The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics.more » To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.« less

  20. Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    USGS Publications Warehouse

    Steen, Valerie; Sofaer, Helen R.; Skagen, Susan K.; Ray, Andrea J.; Noon, Barry R

    2017-01-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.

  1. Projecting species' vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    PubMed

    Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R

    2017-11-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.

  2. The predictive validity of safety climate.

    PubMed

    Johnson, Stephen E

    2007-01-01

    Safety professionals have increasingly turned their attention to social science for insight into the causation of industrial accidents. One social construct, safety climate, has been examined by several researchers [Cooper, M. D., & Phillips, R. A. (2004). Exploratory analysis of the safety climate and safety behavior relationship. Journal of Safety Research, 35(5), 497-512; Gillen, M., Baltz, D., Gassel, M., Kirsch, L., & Vacarro, D. (2002). Perceived safety climate, job Demands, and coworker support among union and nonunion injured construction workers. Journal of Safety Research, 33(1), 33-51; Neal, A., & Griffin, M. A. (2002). Safety climate and safety behaviour. Australian Journal of Management, 27, 66-76; Zohar, D. (2000). A group-level model of safety climate: Testing the effect of group climate on microaccidents in manufacturing jobs. Journal of Applied Psychology, 85(4), 587-596; Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: Cross-level relationships between organization and group-level climates. Journal of Applied Psychology, 90(4), 616-628] who have documented its importance as a factor explaining the variation of safety-related outcomes (e.g., behavior, accidents). Researchers have developed instruments for measuring safety climate and have established some degree of psychometric reliability and validity. The problem, however, is that predictive validity has not been firmly established, which reduces the credibility of safety climate as a meaningful social construct. The research described in this article addresses this problem and provides additional support for safety climate as a viable construct and as a predictive indicator of safety-related outcomes. This study used 292 employees at three locations of a heavy manufacturing organization to complete the 16 item Zohar Safety Climate Questionnaire (ZSCQ) [Zohar, D., & Luria, G. (2005). A multilevel model of safety climate: Cross-level relationships between organization and group-level climates. Journal of Applied Psychology, 90(4), 616-628]. In addition, safety behavior and accident experience data were collected for 5 months following the survey and were statistically analyzed (structural equation modeling, confirmatory factor analysis, exploratory factor analysis, etc.) to identify correlations, associations, internal consistency, and factorial structures. Results revealed that the ZSCQ: (a) was psychometrically reliable and valid, (b) served as an effective predictor of safety-related outcomes (behavior and accident experience), and (c) could be trimmed to an 11 item survey with little loss of explanatory power. Practitioners and researchers can use the ZSCQ with reasonable certainty of the questionnaire's reliability and validity. This provides a solid foundation for the development of meaningful organizational interventions and/or continued research into social factors affecting industrial accident experience.

  3. Using a rule-based envelope model to predict the expansion of habitat suitability within New Zealand for the tick Haemaphysalis longicornis, with future projections based on two climate change scenarios.

    PubMed

    Lawrence, K E; Summers, S R; Heath, A C G; McFadden, A M J; Pulford, D J; Tait, A B; Pomroy, W E

    2017-08-30

    Haemaphysalis longicornis is the only species of tick present in New Zealand which infests livestock and is also the only competent vector for Theileria orientalis. Since 2012, New Zealand has suffered from an epidemic of infectious bovine anaemia associated with T. orientalis, an obligate intracellular protozoan parasite of cattle and buffaloes. The aim of this study was to predict the spatial distribution of habitat suitability of New Zealand for the tick H. longicornis using a simple rule-based climate envelope model, to validate the model against published data and use the validated model to project an expansion in habitat suitability for H. longicornis under two alternative climate change scenarios for the periods 2046-2065 and 2081-2100, relative to the climate of 1981-2010. A rule-based climate envelope model was developed based on the environmental requirements for off-host tick survival. The resulting model was validated against a maximum entropy environmental niche model of environmental suitability for T. orientalis transmission and against a H. longicornis occurrence map. Validation was completed using the I-similarity statistic and by linear regression. The H. longicornis climate envelope model predicted that 75% of cattle farms in the North Island, 3% of cattle farms in the South Island and 54% of cattle farms in New Zealand overall have habitats potentially suitable for the establishment of H. longicornis. The validation methods showed an acceptable level of agreement between the envelope model and published data. Both of the climate change scenarios, for each of the time periods, projected only slight to moderate increases in the average farm habitat suitability scores for all the South Island regions. However, only for the West Coast, Marlborough, Tasman, and Nelson regions did these increases in environmental suitability translate into an increased proportion of cattle farms with low or high H. longicornis habitat suitability. These results will have important implications for the geographical progression of Theileria-associated bovine anaemia (TABA) in New Zealand and will also be of interest to Haemaphysalis longicornis researchers in Australia, Japan, Korea and New Zealand. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modelling exploration of non-stationary hydrological system

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2015-04-01

    Traditional hydrological modelling assumes that the catchment does not change with time (i.e., stationary conditions) which means the model calibrated for the historical period is valid for the future period. However, in reality, due to change of climate and catchment conditions this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions that are not observable at the present time. In this study a lumped conceptual rainfall-runoff model called IHACRES was applied to a catchment in southwest England. Long observation data from 1961 to 2008 were used and seasonal calibration (in this study only summer period is further explored because it is more sensitive to climate and land cover change than the other three seasons) has been done since there are significant seasonal rainfall patterns. We expect that the model performance can be improved by calibrating the model based on individual seasons. The data is split into calibration and validation periods with the intention of using the validation period to represent the future unobserved situations. The success of the non-stationary model will depend not only on good performance during the calibration period but also the validation period. Initially, the calibration is based on changing the model parameters with time. Methodology is proposed to adapt the parameters using the step forward and backward selection schemes. However, in the validation both the forward and backward multiple parameter changing models failed. One problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. The second issue is that changing multiple parameters makes the selection process very complex which is time consuming and not effective in the validation period. As a result, two new concepts are explored. First, only one parameter is selected for adjustment while the other parameters are set as constant. Secondly, regression is made against climate condition instead of against time. It has been found that such a new approach is very effective and this non-stationary model worked very well both in the calibration and validation period. Although the catchment is specific in southwest England and the data are for only the summer period, the methodology proposed in this study is general and applicable to other catchments. We hope this study will stimulate the hydrological community to explore a variety of sites so that valuable experiences and knowledge could be gained to improve our understanding of such a complex modelling issue in climate change impact assessment.

  5. Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu

    One of the most important validations for a state-of-art Earth System Model (ESM) with respect to climate changes is the simulation of the climate evolution and abrupt climate change events in the Earth’s history of the last 21,000 years. However, one great challenge for model validation is that ESMs usually do not directly simulate geochemical variables that can be compared directly with past proxy records. In this proposal, we have met this challenge by developing the simulation capability of major isotopes in a state-of-art ESM, the Community Earth System Model (CESM), enabling us to make direct model-data comparison by comparingmore » the model directly against proxy climate records. Our isotope-enabled ESM incorporates the capability of simulating key isotopes and geotracers, notably δ 18O, δD, δ 14C, and δ 13C, Nd and Pa/Th. The isotope-enabled ESM have been used to perform some simulations for the last 21000 years. The direct comparison of these simulations with proxy records has shed light on the mechanisms of important climate change events.« less

  6. A global validation of ERA-Interim integrated water vapor estimates using ground-based GNSS observations

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Dousa, J.; Hunegnaw, A.; Teferle, F. N.; Bingley, R.

    2017-12-01

    Integrated water vapor (IWV) derived from climate reanalysis models, such as the European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis-Interim (ERA-Interim), is widely used in many atmospheric applications. Therefore, it is of interest to assess the quality of this reanalysis product using available observations. Observations from Global Navigation Satellite Systems (GNSS) are, as of now, available for a period of over 2 decades and their global availability makes it possible to validate the IWV obtained from climate reanalysis models in different geographical and climatic regions. In this study, primarily, three 5-year long homogeneously reprocessed GNSS-derived IWV datasets containing over 400 globally distributed ground-based GNSS stations have been used to validate the IWV estimates obtained from the ERA-Interim climate reanalysis model in 25 different climate zones. The IWV from ERA-Interim has been obtained by vertically integrating the specific humidity at all model levels above the locations of GNSS stations. It has been studied how the difference between the ERA-Interim IWV and the GNSS-derived IWV varies with respect to the different climate zones as well as with respect to the difference in the model orography and latitude. The results show a dependence of the ability of ERA-Interim to model the IWV on difference in climate types and latitude. This dependence, however, is dictated by the concentration of water vapor in different climate zones and at different latitudes. Furthermore, as a secondary focus of this study, the weighted mean atmospheric temperature (Tm) obtained from ERA-Interim has been compared to its equivalent obtained using two widely used approximations globally.

  7. UTCI-Fiala multi-node model of human heat transfer and temperature regulation

    NASA Astrophysics Data System (ADS)

    Fiala, Dusan; Havenith, George; Bröde, Peter; Kampmann, Bernhard; Jendritzky, Gerd

    2012-05-01

    The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates.

  8. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.

    PubMed

    Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W Ian; Reid, Neil

    2015-01-01

    Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.

  9. Assessing a Top-Down Modeling Approach for Seasonal Scale Snow Sensitivity

    NASA Astrophysics Data System (ADS)

    Luce, C. H.; Lute, A.

    2017-12-01

    Mechanistic snow models are commonly applied to assess changes to snowpacks in a warming climate. Such assessments involve a number of assumptions about details of weather at daily to sub-seasonal time scales. Models of season-scale behavior can provide contrast for evaluating behavior at time scales more in concordance with climate warming projections. Such top-down models, however, involve a degree of empiricism, with attendant caveats about the potential of a changing climate to affect calibrated relationships. We estimated the sensitivity of snowpacks from 497 Snowpack Telemetry (SNOTEL) stations in the western U.S. based on differences in climate between stations (spatial analog). We examined the sensitivity of April 1 snow water equivalent (SWE) and mean snow residence time (SRT) to variations in Nov-Mar precipitation and average Nov-Mar temperature using multivariate local-fit regressions. We tested the modeling approach using a leave-one-out cross-validation as well as targeted two-fold non-random cross-validations contrasting, for example, warm vs. cold years, dry vs. wet years, and north vs. south stations. Nash-Sutcliffe Efficiency (NSE) values for the validations were strong for April 1 SWE, ranging from 0.71 to 0.90, and still reasonable, but weaker, for SRT, in the range of 0.64 to 0.81. From these ranges, we exclude validations where the training data do not represent the range of target data. A likely reason for differences in validation between the two metrics is that the SWE model reflects the influence of conservation of mass while using temperature as an indicator of the season-scale energy balance; in contrast, SRT depends more strongly on the energy balance aspects of the problem. Model forms with lower numbers of parameters generally validated better than more complex model forms, with the caveat that pseudoreplication could encourage selection of more complex models when validation contrasts were weak. Overall, the split sample validations confirm transferability of the relationships in space and time contingent upon full representation of validation conditions in the calibration data set. The ability of the top-down space-for-time models to predict in new time periods and locations lends confidence to their application for assessments and for improving finer time scale models.

  10. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  11. Expertly Validated Models and Phylogenetically-Controlled Analysis Suggests Responses to Climate Change Are Related to Species Traits in the Order Lagomorpha

    PubMed Central

    Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W. Ian; Reid, Neil

    2015-01-01

    Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions. PMID:25874407

  12. The Community Earth System Model-Polar Climate Working Group and the status of CESM2.

    NASA Astrophysics Data System (ADS)

    Bailey, D. A.; Holland, M. M.; DuVivier, A. K.

    2017-12-01

    The Polar Climate Working Group (PCWG) is a consortium of scientists who are interested in modeling and understanding the climate in the Arctic and the Antarctic, and how polar climate processes interact with and influence climate at lower latitudes. Our members come from universities and laboratories, and our interests span all elements of polar climate, from the ocean depths to the top of the atmosphere. In addition to conducting scientific modeling experiments, we are charged with contributing to the development and maintenance of the state-of-the-art sea ice model component (CICE) used in the Community Earth System Model (CESM). A recent priority for the PCWG has been to come up with innovative ways to bring the observational and modeling communities together. This will allow for more robust validation of climate model simulations, the development and implementation of more physically-based model parameterizations, improved data assimilation capabilities, and the better use of models to design and implement field experiments. These have been informed by topical workshops and scientific visitors that we have hosted in these areas. These activities will be discussed and information on how the better integration of observations and models has influenced the new version of the CESM, which is due to be released in late 2017, will be provided. Additionally, we will address how enhanced interactions with the observational community will contribute to model developments and validation moving forward.

  13. Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change.

    PubMed

    Isaac-Renton, Miriam G; Roberts, David R; Hamann, Andreas; Spiecker, Heinrich

    2014-08-01

    We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe. © 2014 John Wiley & Sons Ltd.

  14. A Field Guide to Extra-Tropical Cyclones: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Bauer, M.

    2008-12-01

    Climate it is said is the accumulation of weather. And weather is not the concern of climate models. Justification for this latter sentiment has long hidden behind coarse model resolutions and blunt validation tools based on climatological maps and the like. The spatial-temporal resolutions of today's models and observations are converging onto meteorological scales however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough, or at least lacks perverting biases, such that its accumulation does in fact result in a robust climate prediction. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from climate model output. These include the usual cyclone distribution statistics (maps, histograms), but also adaptive cyclone- centric composites. We have also created a complementary dataset, The MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid- latitude cyclones based on Reanalysis products. Using this we then extract complimentary composites from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools will be shown. dime.giss.nasa.gov/mcms/mcms.html

  15. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates

    Treesearch

    E. Carol Adair; William J. Parton; Steven J. Del Grosso; Shendee L. Silver; Mark E. Harmon; Sonia A. Hall; Ingrid C. Burke; Stephen C. Hart

    2008-01-01

    As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well-validated mechanistic models, but the same is not true for decomposition, a...

  16. Validation of Nurse Practitioner Primary Care Organizational Climate Questionnaire: A New Tool to Study Nurse Practitioner Practice Settings.

    PubMed

    Poghosyan, Lusine; Chaplin, William F; Shaffer, Jonathan A

    2017-04-01

    Favorable organizational climate in primary care settings is necessary to expand the nurse practitioner (NP) workforce and promote their practice. Only one NP-specific tool, the Nurse Practitioner Primary Care Organizational Climate Questionnaire (NP-PCOCQ), measures NP organizational climate. We confirmed NP-PCOCQ's factor structure and established its predictive validity. A crosssectional survey design was used to collect data from 314 NPs in Massachusetts in 2012. Confirmatory factor analysis and regression models were used. The 4-factor model characterized NP-PCOCQ. The NP-PCOCQ score predicted job satisfaction (beta = .36; p < .001) and intent to leave job (odds ratio = .28; p = .011). NP-PCOCQ can be used by researchers to produce new evidence and by administrators to assess organizational climate in their clinics. Further testing of NP-PCOCQ is needed.

  17. Assessing Forest Carbon Response to Climate Change and Disturbances Using Long-term Hydro-climatic Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Trettin, C.; Dai, Z.; Amatya, D. M.

    2014-12-01

    Long-term climatic and hydrologic observations on the Santee Experimental Forest in the lower coastal plain of South Carolina were used to estimate long-term changes in hydrology and forest carbon dynamics for a pair of first-order watersheds. Over 70 years of climate data indicated that warming in this forest area in the last decades was faster than the global mean; 35+ years of hydrologic records showed that forest ecosystem succession three years following Hurricane Hugo caused a substantial change in the ratio of runoff to precipitation. The change in this relationship between the paired watersheds was attributed to altered evapotranspiration processes caused by greater abundance of pine in the treatment watershed and regeneration of the mixed hardwood-pine forest on the reference watershed. The long-term records and anomalous observations are highly valuable for reliable calibration and validation of hydrological and biogeochemical models capturing the effects of climate variability. We applied the hydrological model MIKESHE that showed that runoff and water table level are sensitive to global warming, and that the sustained warming trends can be expected to decrease stream discharge and lower the mean water table depth. The spatially-explicit biogeochemical model Forest-DNDC, validated using biomass measurements from the watersheds, was used to assess carbon dynamics in response to high resolution hydrologic observation data and simulation results. The simulations showed that the long-term spatiotemporal carbon dynamics, including biomass and fluxes of soil carbon dioxide and methane were highly regulated by disturbance regimes, climatic conditions and water table depth. The utility of linked-modeling framework demonstrated here to assess biogeochemical responses at the watershed scale suggests applications for assessing the consequences of climate change within an urbanizing forested landscape. The approach may also be applicable for validating large-scale models.

  18. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    NASA Astrophysics Data System (ADS)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations Environmental Programme's Intergovernmental Panel on Climate Change, IPCC, reports (1990, 1995 and 2001). Our review highlights only the enormous scientific difficulties facing the calculation of climatic effects of added atmospheric CO2 in a GCM. The purpose of such a limited review of the deficiencies of climate model physics and the use of GCMs is to illuminate areas for improvement. Our review does not disprove a significant anthropogenic influence on global climate.

  19. Potential effect of climate change on malaria transmission in Africa.

    PubMed

    Tanser, Frank C; Sharp, Brian; le Sueur, David

    2003-11-29

    Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.

  20. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin

    USDA-ARS?s Scientific Manuscript database

    Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence t...

  1. Development and initial validation of an Aviation Safety Climate Scale.

    PubMed

    Evans, Bronwyn; Glendon, A Ian; Creed, Peter A

    2007-01-01

    A need was identified for a consistent set of safety climate factors to provide a basis for aviation industry benchmarking. Six broad safety climate themes were identified from the literature and consultations with industry safety experts. Items representing each of the themes were prepared and administered to 940 Australian commercial pilots. Data from half of the sample (N=468) were used in an exploratory factor analysis that produced a 3-factor model of Management commitment and communication, Safety training and equipment, and Maintenance. A confirmatory factor analysis on the remaining half of the sample showed the 3-factor model to be an adequate fit to the data. The results of this study have produced a scale of safety climate for aviation that is both reliable and valid. This study developed a tool to assess the level of perceived safety climate, specifically of pilots, but may also, with minor modifications, be used to assess other groups' perceptions of safety climate.

  2. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  3. Validation of catchment models for predicting land-use and climate change impacts. 1. Method

    NASA Astrophysics Data System (ADS)

    Ewen, J.; Parkin, G.

    1996-02-01

    Computer simulation models are increasingly being proposed as tools capable of giving water resource managers accurate predictions of the impact of changes in land-use and climate. Previous validation testing of catchment models is reviewed, and it is concluded that the methods used do not clearly test a model's fitness for such a purpose. A new generally applicable method is proposed. This involves the direct testing of fitness for purpose, uses established scientific techniques, and may be implemented within a quality assured programme of work. The new method is applied in Part 2 of this study (Parkin et al., J. Hydrol., 175:595-613, 1996).

  4. Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation

    NASA Technical Reports Server (NTRS)

    Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)

    2002-01-01

    The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.

  5. Factorial validity and internal consistency of the motivational climate in physical education scale.

    PubMed

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors.

  6. Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale

    PubMed Central

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617

  7. A user-targeted synthesis of the VALUE perfect predictor experiment

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Gutierrez, Jose; Kotlarski, Sven; Hertig, Elke; Wibig, Joanna; Rössler, Ole; Huth, Radan

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. We consider different aspects: (1) marginal aspects such as mean, variance and extremes; (2) temporal aspects such as spell length characteristics; (3) spatial aspects such as the de-correlation length of precipitation extremes; and multi-variate aspects such as the interplay of temperature and precipitation or scale-interactions. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur. Experiment 1 (perfect predictors): what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Experiment 2 (Global climate model predictors): how is the overall representation of regional climate, including errors inherited from global climate models? Experiment 3 (pseudo reality): do methods fail in representing regional climate change? Here, we present a user-targeted synthesis of the results of the first VALUE experiment. In this experiment, downscaling methods are driven with ERA-Interim reanalysis data to eliminate global climate model errors, over the period 1979-2008. As reference data we use, depending on the question addressed, (1) observations from 86 meteorological stations distributed across Europe; (2) gridded observations at the corresponding 86 locations or (3) gridded spatially extended observations for selected European regions. With more than 40 contributing methods, this study is the most comprehensive downscaling inter-comparison project so far. The results clearly indicate that for several aspects, the downscaling skill varies considerably between different methods. For specific purposes, some methods can therefore clearly be excluded.

  8. Comparative Assessment of a New Hydrological Modelling Approach for Prediction of Runoff in Gauged and Ungauged Basins, and Climate Change Impacts Assessment: A Case Study from Benin.

    NASA Astrophysics Data System (ADS)

    GABA, C. O. U.; Alamou, E.; Afouda, A.; Diekkrüger, B.

    2016-12-01

    Assessing water resources is still an important challenge especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we investigate a new modelling approach based on the Physics Principle of Least Action which was first applied to the Bétérou catchment in Benin and gave very good results. The study presents new hypotheses to go further in the model development with a view of widening its application. The improved version of the model MODHYPMA was applied to sixteen (16) subcatchments in Bénin, West Africa. Its performance was compared to two well-known lumped conceptual models, the GR4J and HBV models. The model was successfully calibrated and validated and showed a good performance in most catchments. The analysis revealed that the three models have similar performance and timing errors. But in contrary to other models, MODHYMA is subject to a less loss of performance from calibration to validation. In order to evaluate the usefulness of our model for the prediction of runoff in ungauged basins, model parameters were estimated from the physical catchments characteristics. We relied on statistical methods applied on calibrated model parameters to deduce relationships between parameters and physical catchments characteristics. These relationships were further tested and validated on gauged basins that were considered ungauged. This regionalization was also performed for GR4J model.We obtained NSE values greater than 0.7 for MODHYPMA while the NSE values for GR4J were inferior to 0.5. In the presented study, the effects of climate change on water resources in the Ouémé catchment at the outlet of Savè (about 23 500 km2) are quantified. The output of a regional climate model was used as input to the hydrological models.Computed within the GLOWA-IMPETUS project, the future climate projections (describing a rainfall reduction of up to 15%) are derived from the regional climate model REMO driven by the global ECHAM model.The results reveal a significant decrease in future water resources (of -66% to -53% for MODHYPMA and of -59% to -46% for GR4J) for the IPCC climate scenarios A1B and B1.

  9. Assessment of bias correction under transient climate change

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2015-04-01

    Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.

  10. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  11. Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin

    2017-03-01

    We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.

  12. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    USDA-ARS?s Scientific Manuscript database

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  13. Evaluation of global climate model on performances of precipitation simulation and prediction in the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi

    2017-06-01

    Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.

  14. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  15. Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik

    2018-05-01

    Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.

  16. Psychometric support of the school climate measure in a large, diverse sample of adolescents: a replication and extension.

    PubMed

    Zullig, Keith J; Collins, Rani; Ghani, Nadia; Patton, Jon M; Scott Huebner, E; Ajamie, Jean

    2014-02-01

    The School Climate Measure (SCM) was developed and validated in 2010 in response to a dearth of psychometrically sound school climate instruments. This study sought to further validate the SCM on a large, diverse sample of Arizona public school adolescents (N = 20,953). Four SCM domains (positive student-teacher relationships, academic support, order and discipline, and physical environment) were available for the analysis. Confirmatory factor analysis and structural equation modeling were established to construct validity, and criterion-related validity was assessed via selected Youth Risk Behavior Survey (YRBS) school safety items and self-reported grade (GPA) point average. Analyses confirmed the 4 SCM school climate domains explained approximately 63% of the variance (factor loading range .45-.92). Structural equation models fit the data well χ(2) = 14,325 (df = 293, p < .001), comparative fit index (CFI) = .951, Tuker-Lewis index (TLI) = .952, root mean square error of approximation (RMSEA) = .05). The goodness-of-fit index was .940. Coefficient alphas ranged from .82 to .93. Analyses of variance with post hoc comparisons suggested the SCM domains related in hypothesized directions with the school safety items and GPA. Additional evidence supports the validity and reliability of the SCM. Measures, such as the SCM, can facilitate data-driven decisions and may be incorporated into evidenced-based processes designed to improve student outcomes. © 2014, American School Health Association.

  17. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques

    NASA Astrophysics Data System (ADS)

    Mullan, Donal; Chen, Jie; Zhang, Xunchang John

    2016-02-01

    Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.

  18. Actor groups, related needs, and challenges at the climate downscaling interface

    NASA Astrophysics Data System (ADS)

    Rössler, Ole; Benestad, Rasmus; Diamando, Vlachogannis; Heike, Hübener; Kanamaru, Hideki; Pagé, Christian; Margarida Cardoso, Rita; Soares, Pedro; Maraun, Douglas; Kreienkamp, Frank; Christodoulides, Paul; Fischer, Andreas; Szabo, Peter

    2016-04-01

    At the climate downscaling interface, numerous downscaling techniques and different philosophies compete on being the best method in their specific terms. Thereby, it remains unclear to what extent and for which purpose these downscaling techniques are valid or even the most appropriate choice. A common validation framework that compares all the different available methods was missing so far. The initiative VALUE closes this gap with such a common validation framework. An essential part of a validation framework for downscaling techniques is the definition of appropriate validation measures. The selection of validation measures should consider the needs of the stakeholder: some might need a temporal or spatial average of a certain variable, others might need temporal or spatial distributions of some variables, still others might need extremes for the variables of interest or even inter-variable dependencies. Hence, a close interaction of climate data providers and climate data users is necessary. Thus, the challenge in formulating a common validation framework mirrors also the challenges between the climate data providers and the impact assessment community. This poster elaborates the issues and challenges at the downscaling interface as it is seen within the VALUE community. It suggests three different actor groups: one group consisting of the climate data providers, the other two groups being climate data users (impact modellers and societal users). Hence, the downscaling interface faces classical transdisciplinary challenges. We depict a graphical illustration of actors involved and their interactions. In addition, we identified four different types of issues that need to be considered: i.e. data based, knowledge based, communication based, and structural issues. They all may, individually or jointly, hinder an optimal exchange of data and information between the actor groups at the downscaling interface. Finally, some possible ways to tackle these issues are discussed.

  19. Graphical approach to assess the soil fertility evaluation model validity for rice (case study: southern area of Merapi Mountain, Indonesia)

    NASA Astrophysics Data System (ADS)

    Julianto, E. A.; Suntoro, W. A.; Dewi, W. S.; Partoyo

    2018-03-01

    Climate change has been reported to exacerbate land resources degradation including soil fertility decline. The appropriate validity use on soil fertility evaluation could reduce the risk of climate change effect on plant cultivation. This study aims to assess the validity of a Soil Fertility Evaluation Model using a graphical approach. The models evaluated were the Indonesian Soil Research Center (PPT) version model, the FAO Unesco version model, and the Kyuma version model. Each model was then correlated with rice production (dry grain weight/GKP). The goodness of fit of each model can be tested to evaluate the quality and validity of a model, as well as the regression coefficient (R2). This research used the Eviews 9 programme by a graphical approach. The results obtained three curves, namely actual, fitted, and residual curves. If the actual and fitted curves are widely apart or irregular, this means that the quality of the model is not good, or there are many other factors that are still not included in the model (large residual) and conversely. Indeed, if the actual and fitted curves show exactly the same shape, it means that all factors have already been included in the model. Modification of the standard soil fertility evaluation models can improve the quality and validity of a model.

  20. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  1. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  2. Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Drobinski, Philippe; Borga, Marco; Calvet, Jean-Christophe; Delrieu, Guy; Morin, Efrat; Tartari, Gianni; Toffolon, Roberta

    2012-06-01

    This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA&D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean region.

  3. External validity of a generic safety climate scale for lone workers across different industries and companies.

    PubMed

    Lee, Jin; Huang, Yueng-hsiang; Robertson, Michelle M; Murphy, Lauren A; Garabet, Angela; Chang, Wen-Ruey

    2014-02-01

    The goal of this study was to examine the external validity of a 12-item generic safety climate scale for lone workers in order to evaluate the appropriateness of generalized use of the scale in the measurement of safety climate across various lone work settings. External validity evidence was established by investigating the measurement equivalence (ME) across different industries and companies. Confirmatory factor analysis (CFA)-based and item response theory (IRT)-based perspectives were adopted to examine the ME of the generic safety climate scale for lone workers across 11 companies from the trucking, electrical utility, and cable television industries. Fairly strong evidence of ME was observed for both organization- and group-level generic safety climate sub-scales. Although significant invariance was observed in the item intercepts across the different lone work settings, absolute model fit indices remained satisfactory in the most robust step of CFA-based ME testing. IRT-based ME testing identified only one differentially functioning item from the organization-level generic safety climate sub-scale, but its impact was minimal and strong ME was supported. The generic safety climate scale for lone workers reported good external validity and supported the presence of a common feature of safety climate among lone workers. The scale can be used as an effective safety evaluation tool in various lone work situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Precipitation projections under GCMs perspective and Turkish Water Foundation (TWF) statistical downscaling model procedures

    NASA Astrophysics Data System (ADS)

    Dabanlı, İsmail; Şen, Zekai

    2018-04-01

    The statistical climate downscaling model by the Turkish Water Foundation (TWF) is further developed and applied to a set of monthly precipitation records. The model is structured by two phases as spatial (regional) and temporal downscaling of global circulation model (GCM) scenarios. The TWF model takes into consideration the regional dependence function (RDF) for spatial structure and Markov whitening process (MWP) for temporal characteristics of the records to set projections. The impact of climate change on monthly precipitations is studied by downscaling Intergovernmental Panel on Climate Change-Special Report on Emission Scenarios (IPCC-SRES) A2 and B2 emission scenarios from Max Plank Institute (EH40PYC) and Hadley Center (HadCM3). The main purposes are to explain the TWF statistical climate downscaling model procedures and to expose the validation tests, which are rewarded in same specifications as "very good" for all stations except one (Suhut) station in the Akarcay basin that is in the west central part of Turkey. Eventhough, the validation score is just a bit lower at the Suhut station, the results are "satisfactory." It is, therefore, possible to say that the TWF model has reasonably acceptable skill for highly accurate estimation regarding standard deviation ratio (SDR), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) criteria. Based on the validated model, precipitation predictions are generated from 2011 to 2100 by using 30-year reference observation period (1981-2010). Precipitation arithmetic average and standard deviation have less than 5% error for EH40PYC and HadCM3 SRES (A2 and B2) scenarios.

  5. [CLIMATE CHANGE AND ALLERGIC AIRWAY DISEASE] OBSERVATIONAL,LABORATORY, AND MODELING STUDIES OF THE IMPACTS OF CLIMATE CHANGE ONALLERGIC AIRWAY DISEASE

    EPA Science Inventory

    Based on these data and preliminary studies, this proposal will be composed of a multiscale source-to-dose analysis approach for assessing the exposure interactions of environmental and biological systems. Once the entire modeling system is validated, it will run f...

  6. Aeolian Dunes: New High-Resolution Archives of Past Wind-Intensity and -Direction

    NASA Astrophysics Data System (ADS)

    Lindhorst, S.; Betzler, C.

    2017-12-01

    The understanding of the long-term variability of local wind-fields is most relevant for calibrating climate models and for the prediction of the socio-economic consequences of climate change. Continuous instrumental-based weather observations go back less than two centuries; aeolian dunes, however, contain an archive of past wind-field fluctuations which is basically unread. We present new ways to reconstruct annual to seasonal changes of wind intensity and predominant wind direction from dune-sediment composition and -geometries based on ground-penetrating radar (GPR) data, grain-size analyses and different age-dating approaches. Resulting proxy-based data series on wind are validated against instrumental based weather observations. Our approach can be applied to both recent as well as fossil dunes. Potential applications include the validation of climate models, the reconstruction of past supra-regional wind systems and the monitoring of future shifts in the climate system.

  7. Validation of an organizational communication climate assessment toolkit.

    PubMed

    Wynia, Matthew K; Johnson, Megan; McCoy, Thomas P; Griffin, Leah Passmore; Osborn, Chandra Y

    2010-01-01

    Effective communication is critical to providing quality health care and can be affected by a number of modifiable organizational factors. The authors performed a prospective multisite validation study of an organizational communication climate assessment tool in 13 geographically and ethnically diverse health care organizations. Communication climate was measured across 9 discrete domains. Patient and staff surveys with matched items in each domain were developed using a national consensus process, which then underwent psychometric field testing and assessment of domain coherence. The authors found meaningful within-site and between-site performance score variability in all domains. In multivariable models, most communication domains were significant predictors of patient-reported quality of care and trust. The authors conclude that these assessment tools provide a valid empirical assessment of organizational communication climate in 9 domains. Assessment results may be useful to track organizational performance, to benchmark, and to inform tailored quality improvement interventions.

  8. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  9. Climate downscaling over South America for 1971-2000: application in SMAP rainfall-runoff model for Grande River Basin

    NASA Astrophysics Data System (ADS)

    da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio

    2018-03-01

    This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.

  10. A transient stochastic weather generator incorporating climate model uncertainty

    NASA Astrophysics Data System (ADS)

    Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.

    2015-11-01

    Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.

  11. Impact of Climate Change on Water Resources in the Guadalquivir River Basin

    NASA Astrophysics Data System (ADS)

    Yeste Donaire, P.; García-Valdecasas-Ojeda, M.; Góngora García, T. M.; Gámiz-Fortis, S. R.; Castro-Diez, Y.; Esteban-Parra, M. J.

    2017-12-01

    Climate change has lead to a decrease of precipitation and an increase of temperature in the Mediterranean Basin during the last fifty years. These changes will be more intense over the course of the 21thcentury according to global climate projections. As a consequence, water resources are expected to decrease, particularly in the Guadalquivir River Basin. This study focuses on the hydrological response of the Guadalquivir River Basin to the climate change. For this end, firstly, the implementation of the Variable Infiltration Capacity (VIC) model in the Basin was carried out. The VIC model was calibrated with a dataset of daily precipitation, temperature and streamflow for the period 1990-2000. Precipitation and temperature data were extracted from SPAIN02, a dataset that covers the Peninsular Spain at 0.11º of spatial resolution. Streamflow data were gathered for a representative subset of gauging stations in the basin. These data were provided by the Spanish Center for Public Work Experimentation and Study (CEDEX). Subsequently, the VIC model was validated for the period 2000-2005 in order to verify that the model outputs fit well with the observational data. After the validation of the VIC model for present climate, secondly, the effect of climate change on the Guadalquivir River Basin will be analyzed by developing several simulations of the streamflow for future climate. Precipitation and temperature data will be obtained in this case from future projections coming from high resolution (at 0.088º) simulations carried out with the Weather Research and Forecasting (WRF) model for the Iberian Peninsula. These last simulations will be driven under two different Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5 for the periods 2021-50 and 2071-2100. The first results of this work show that the VIC model outputs are in good agreement with the observed streamflow for both the calibration and validation periods. In the context of climate change, a generalized decrease in surface and subsurface water resources is expected in the Guadalquivir River Basin. All these results will be of interest for water policy makers and practitioners in the next decades. ACKNOWLEDGEMENTS: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía) and CGL2013-48539-R (MINECO-Spain, FEDER).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.

    This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 Californiamore » climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.« less

  13. Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busuioc, A.; Storch, H. von; Schnur, R.

    Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). Themore » climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in time-slice mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 x CO{sub 2} GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.« less

  14. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  15. Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Manh, Cuong Do

    2015-01-01

    The Mekong Delta is highly vulnerable to climate change and a dengue endemic area in Vietnam. This study aims to examine the association between climate factors and dengue incidence and to identify the best climate prediction model for dengue incidence in Can Tho city, the Mekong Delta area in Vietnam. We used three different regression models comprising: standard multiple regression model (SMR), seasonal autoregressive integrated moving average model (SARIMA), and Poisson distributed lag model (PDLM) to examine the association between climate factors and dengue incidence over the period 2003-2010. We validated the models by forecasting dengue cases for the period of January-December, 2011 using the mean absolute percentage error (MAPE). Receiver operating characteristics curves were used to analyze the sensitivity of the forecast of a dengue outbreak. The results indicate that temperature and relative humidity are significantly associated with changes in dengue incidence consistently across the model methods used, but not cumulative rainfall. The Poisson distributed lag model (PDLM) performs the best prediction of dengue incidence for a 6, 9, and 12-month period and diagnosis of an outbreak however the SARIMA model performs a better prediction of dengue incidence for a 3-month period. The simple or standard multiple regression performed highly imprecise prediction of dengue incidence. We recommend a follow-up study to validate the model on a larger scale in the Mekong Delta region and to analyze the possibility of incorporating a climate-based dengue early warning method into the national dengue surveillance system. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Multilevel model of safety climate for furniture industries.

    PubMed

    Rodrigues, Matilde A; Arezes, Pedro M; Leão, Celina P

    2015-01-01

    Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies' safety conditions were also analyzed. Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies' safety conditions; the organizational scale is the one that best reflects the actual safety conditions. The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups' safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

  17. Cross-cultural adaptation and validation of the teamwork climate scale

    PubMed Central

    Silva, Mariana Charantola; Peduzzi, Marina; Sangaleti, Carine Teles; da Silva, Dirceu; Agreli, Heloise Fernandes; West, Michael A; Anderson, Neil R

    2016-01-01

    ABSTRACT OBJECTIVE To adapt and validate the Team Climate Inventory scale, of teamwork climate measurement, for the Portuguese language, in the context of primary health care in Brazil. METHODS Methodological study with quantitative approach of cross-cultural adaptation (translation, back-translation, synthesis, expert committee, and pretest) and validation with 497 employees from 72 teams of the Family Health Strategy in the city of Campinas, SP, Southeastern Brazil. We verified reliability by the Cronbach’s alpha, construct validity by the confirmatory factor analysis with SmartPLS software, and correlation by the job satisfaction scale. RESULTS We problematized the overlap of items 9, 11, and 12 of the “participation in the team” factor and the “team goals” factor regarding its definition. The validation showed no overlapping of items and the reliability ranged from 0.92 to 0.93. The confirmatory factor analysis indicated suitability of the proposed model with distribution of the 38 items in the four factors. The correlation between teamwork climate and job satisfaction was significant. CONCLUSIONS The version of the scale in Brazilian Portuguese was validated and can be used in the context of primary health care in the Country, constituting an adequate tool for the assessment and diagnosis of teamwork. PMID:27556966

  18. Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM

    NASA Astrophysics Data System (ADS)

    Tahir, T.; Hashim, A. M.; Yusof, K. W.

    2018-04-01

    Climate change is a global phenomenon that has affected hundreds of people around the globe. In transitional climatic patterns, it is essential to compute the severity of rainfall in the regions prone to hydro-meteorological disasters. Therefore, the main aim of this study is to assess the severity of rainfall under three Representative Concentration Pathways (RCPs) from Global Climate Model data of CanESM2 in Limbang River basin. Furthermore, the objective is to check the capability of Statistical Downscaling Model (SDSM) in the tropical region. The historical data of nine weather stations were used for the period of 30 years (1976 - 2005) and Global Climate Model data of CanESM2 under RCPs of RCP2.6, RCP4.5 and RCP8.5 for the period of 2071-2100. The model was calibrated for the period of 1976-1995 and validated for the period of 1996-2005. After successful calibration and validation of SDSM, the future rainfall was simulated separately for all the three scenarios of RCPs. The obtained results have shown the values of R2 and RMSE for the model calibration and validation ranged between 0.58 – 0.86 and between 1.49 and 4.7, respectively for all stations. The obtained future rainfall data from 2071 – 2100 was then compared with the base period rainfall from 1976 - 2005. It was shown that under RCP2.6 scenario there will be an increase of 8.13%, while 14.7% rise in the RCP4.5 scenario during the period of 2071- 2100. An abrupt increase of about 40.6% was observed under the robust scenario of RCP8.5. Therefore, it is concluded that future pattern of rainfall in Limbang River basin under all the scenarios is constantly increasing due to the climate change.

  19. Towards process-informed bias correction of climate change simulations

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.

    2017-11-01

    Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.

  20. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This study also indicated that model calibration in not necessary to determine the direction of change in streamflow due to LULC and climate change.

  1. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    USGS Publications Warehouse

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  2. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Trachsel, Mathias; Telford, Richard J.; Laepple, Thomas

    2016-12-01

    Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that in our model experiments the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We furthermore show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable, such as summer temperatures in the model's Arctic, are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution. Expert knowledge on the ecophysiological drivers of the proxies, as well as statistical methods that go beyond the cross validation on modern calibration datasets, are crucial to avoid misinterpretation.

  3. Validation of China-wide interpolated daily climate variables from 1960 to 2011

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang

    2015-02-01

    Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.

  4. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed hydrology. However, a thorough validation and a comparison with other methods are recommended before using the JBC method, since it may perform worse than the IBC method for some cases due to bias nonstationarity of climate model outputs.

  5. Can species distribution models really predict the expansion of invasive species?

    PubMed

    Barbet-Massin, Morgane; Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies-with independent data-are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be-at least partially-climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.

  6. Can species distribution models really predict the expansion of invasive species?

    PubMed Central

    Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies–with independent data–are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be—at least partially–climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology. PMID:29509789

  7. Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission

    NASA Technical Reports Server (NTRS)

    Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.

    2011-01-01

    Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.

  8. Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina

    Treesearch

    Zhaohua Dai; Carl C. Trettin; Changsheng Li; Ge Sun; Devendra M. Amatya; Harbin Li

    2013-01-01

    The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest-DNDC...

  9. Validation of two (parametric vs non-parametric) daily weather generators

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).

  10. North Atlantic observations sharpen meridional overturning projections

    NASA Astrophysics Data System (ADS)

    Olson, R.; An, S.-I.; Fan, Y.; Evans, J. P.; Caesar, L.

    2018-06-01

    Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960-1999 and 2060-2099 of -4.0 Sv and -6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [-7.2, -1.2] and [-10.5, -3.7] Sv respectively for the two scenarios.

  11. Parametric vs. non-parametric daily weather generator: validation and comparison

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin

    2016-04-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series from several European stations available from the ECA&D database.

  12. Long-term potential and actual evapotranspiration of two different forests on the Atlantic Coastal Plain

    Treesearch

    Devendra Amatya; S. Tian; Z. Dai; Ge Sun

    2016-01-01

    A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies...

  13. Multilevel multi-informant structure of the authoritative school climate survey.

    PubMed

    Konold, Timothy; Cornell, Dewey; Huang, Francis; Meyer, Patrick; Lacey, Anna; Nekvasil, Erin; Heilbrun, Anna; Shukla, Kathan

    2014-09-01

    The Authoritative School Climate Survey was designed to provide schools with a brief assessment of 2 key characteristics of school climate--disciplinary structure and student support--that are hypothesized to influence 2 important school climate outcomes--student engagement and prevalence of teasing and bullying in school. The factor structure of these 4 constructs was examined with exploratory and confirmatory factor analyses in a statewide sample of 39,364 students (Grades 7 and 8) attending 423 schools. Notably, the analyses used a multilevel structural approach to model the nesting of students in schools for purposes of evaluating factor structure, demonstrating convergent and concurrent validity and gauging the structural invariance of concurrent validity coefficients across gender. These findings provide schools with a core group of school climate measures guided by authoritative discipline theory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Climate projections of the ALARO-0 model on the EURO-CORDEX domain

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Berckmans, Julie; Caluwaerts, Steven; De Troch, Rozemien; De Cruz, Lesley; Duchêne, François; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2016-04-01

    Results of the future scenario runs are presented within the EURO-CORDEX framework using the regional climate model ALARO-0. This model has been primarily developed for operational numerical weather predictions and is therefore not tuned specifically for climate purposes. It features a new microphysics scheme called 3MT, which allows for a more sophisticated representation of convective precipitation. In Giot et al. (2015) validation results were presented for the 12.5-km and 50-km resolution runs forced by ERA-Interim reanalysis. It was shown that ALARO-0 is well capable of representing the European climate. More specifically, most of the ALARO-0 scores were within the existing EURO-CORDEX ensemble. For precipitation, due to the 3MT scheme, the ALARO-0 model produces some of the best scores within the ensemble. The comparison of the historical run with the climate scenarios runs (RCP8.5, RCP4.5) allows the determination of the ALARO-0 climate changes. These runs are all coupled to the GCM of Météo-France, namely CNRM-CM5. The climate-change signals are investigated with a focus on heavy precipitation and heat wave changes and the signals are put against the ones of the other EURO-CORDEX models (Jacob et al., 2013). Giot, O., Termonia, P., Degrauwe, D., De Troch, R., Caluwaerts, S., Smet, G., Berckmans, J., Deckmyn, A., De Cruz, L., De Meutter, P., Duerinckx, A., Gerard, L., Hamdi, R., Van den Bergh, J., Van Ginderachter, M., and Van Schaeybroeck, B.: Validation of the ALARO-0 model within the EURO-CORDEX framework, Geosci. Model Dev. Discuss., 8, 8387-8409, 2015. Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., et al., 2014. EURO-CORDEX: new high-resolution climate change projections for european impact research. Regional Environmental Change 14 (2), 563-578.

  15. Development and validation of a measure of workplace climate for healthy weight maintenance.

    PubMed

    Sliter, Katherine A

    2013-07-01

    Due to the obesity epidemic, an increasing amount of research is being conducted to better understand the antecedents and consequences of excess employee weight. One construct often of interest to researchers in this area is organizational climate. Unfortunately, a viable measure of climate, as related to employee weight, does not exist. The purpose of this study was to remedy this by developing and validating a concise, psychometrically sound measure of climate for healthy weight. An item pool was developed based on surveys of full-time employees, and a sorting task was used to eliminate ambiguous items. Items were pilot tested by a sample of 338 full-time employees, and the item pool was reduced through item response theory (IRT) and reliability analyses. Finally, the retained 14 items, comprising 3 subscales, were completed by a sample of 360 full-time employees, representing 26 different organizations from across the United States. Multilevel modeling indicated that sufficient variance was explained by group membership to support aggregation, and confirmatory factor analysis (CFA) supported the hypothesized model of 3 subscale factors and an overall climate factor. Nine hypotheses specific to construct validation were tested. Scores on the new scale correlated significantly with individual-level reports of psychological constructs (e.g., health motivation, general leadership support for health) and physiological phenomena (e.g., body mass index [BMI], physical health problems) to which they should theoretically relate, supporting construct validity. Implications for the use of this scale in both applied and research settings are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.

    1996-02-01

    Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.

  17. Development and testing of transfer functions for generating quantitative climatic estimates from Australian pollen data

    NASA Astrophysics Data System (ADS)

    Cook, Ellyn J.; van der Kaars, Sander

    2006-10-01

    We review attempts to derive quantitative climatic estimates from Australian pollen data, including the climatic envelope, climatic indicator and modern analogue approaches, and outline the need to pursue alternatives for use as input to, or validation of, simulations by models of past, present and future climate patterns. To this end, we have constructed and tested modern pollen-climate transfer functions for mainland southeastern Australia and Tasmania using the existing southeastern Australian pollen database and for northern Australia using a new pollen database we are developing. After testing for statistical significance, 11 parameters were selected for mainland southeastern Australia, seven for Tasmania and six for northern Australia. The functions are based on weighted-averaging partial least squares regression and their predictive ability evaluated against modern observational climate data using leave-one-out cross-validation. Functions for summer, annual and winter rainfall and temperatures are most robust for southeastern Australia, while in Tasmania functions for minimum temperature of the coldest period, mean winter and mean annual temperature are the most reliable. In northern Australia, annual and summer rainfall and annual and summer moisture indexes are the strongest. The validation of all functions means all can be applied to Quaternary pollen records from these three areas with confidence. Copyright

  18. Quantifying climate feedbacks in polar regions.

    PubMed

    Goosse, Hugues; Kay, Jennifer E; Armour, Kyle C; Bodas-Salcedo, Alejandro; Chepfer, Helene; Docquier, David; Jonko, Alexandra; Kushner, Paul J; Lecomte, Olivier; Massonnet, François; Park, Hyo-Seok; Pithan, Felix; Svensson, Gunilla; Vancoppenolle, Martin

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.

  19. Evaluation of MuSyQ land surface albedo based on LAnd surface Parameters VAlidation System (LAPVAS)

    NASA Astrophysics Data System (ADS)

    Dou, B.; Wen, J.; Xinwen, L.; Zhiming, F.; Wu, S.; Zhang, Y.

    2016-12-01

    satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. However, the accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. A new comprehensive and systemic project of china, called the Remote Sensing Application Network (CRSAN), has been launched recent years. Two subjects of this project is developing a Multi-source data Synergized Quantitative Remote Sensin g Production System ( MuSyQ ) and a Web-based validation system named LAnd surface remote sensing Product VAlidation System (LAPVAS) , which aims to generate a quantitative remote sensing product for ecosystem and environmental monitoring and validate them with a reference validation data and a standard validation system, respectively. Land surface BRDF/albedo is one of product datasets of MuSyQ which has a pentad period with 1km spatial resolution and is derived by Multi-sensor Combined BRDF Inversion ( MCBI ) Model. In this MuSyQ albedo evaluation, a multi-validation strategy is implemented by LAPVAS, including directly and multi-scale validation with field measured albedo and cross validation with MODIS albedo product with different land cover. The results reveal that MuSyQ albedo data with a 5-day temporal resolution is in higher sensibility and accuracy during land cover change period, e.g. snowing. But results without regard to snow or changed land cover, MuSyQ albedo generally is in similar accuracy with MODIS albedo and meet the climate modeling requirement of an absolute accuracy of 0.05.

  20. Comparative Synthesis of Current and Future Urban Stormwater Runoff Scenarios in Tampa Bay Basin under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2016-12-01

    Changes in climatic regimes and basin characteristics such as imperviousness, roughness and land use types would lead to potential changes in stormwater budget. In this study we quantified reference sensitivities of stormwater runoff to the potential climatic and land use/cover changes by developing a large-scale, mechanistic rainfall-runoff model for the Tampa Bay Basin of Florida using the US EPA Storm Water Management Model (SWMM 5.1). Key processes of urban hydrology, its dynamic interactions with groundwater and sea level, hydro-climatic variables and land use/cover characteristics were incorporated within the model. The model was calibrated and validated with historical streamflow data. We then computed the historical (1970-2000) and potential 2050s stormwater budgets for the Tampa Bay Basin. Climatic scenario projected by the global climate models (GCMs) and the regional climate models (RCMs), along with sea level and land use/cover projections, were utilized to anticipate the future stormwater budget. The comparative assessment of current and future stormwater scenario will aid a proactive management of stormwater runoff under a changing climate in the Tampa Bay Basin and similar urban basins around the world.

  1. Modelling of labour productivity loss due to climate change: HEAT-SHIELD

    NASA Astrophysics Data System (ADS)

    Kjellstrom, Tord; Daanen, Hein

    2016-04-01

    Climate change will bring higher heat levels (temperature and humidity combined) to large parts of the world. When these levels reach above thresholds well defined by human physiology, the ability to maintain physical activity levels decrease and labour productivity is reduced. This impact is of particular importance in work situations in areas with long high intensity hot seasons, but also affects cooler areas during heat waves. Our modelling of labour productivity loss includes climate model data of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP), calculations of heat stress indexes during different months, estimations of work capacity loss and its annual impacts in different parts of the world. Different climate models will be compared for the Representative Concentration Pathways (RCPs) and the outcomes of the 2015 Paris Climate Conference (COP21) agreements. The validation includes comparisons of modelling outputs with actual field studies using historical heat data. These modelling approaches are a first stage contribution to the European Commission funded HEAT-SHIELD project.

  2. Hydrological Dynamics of Central America: Time-of-Emergence of the Global Warming Signal

    NASA Astrophysics Data System (ADS)

    Imbach, P. A.; Georgiou, S.; Calderer, L.; Coto, A.; Nakaegawa, T.; Chou, S. C.; Lyra, A. A.; Hidalgo, H. G.; Ciais, P.

    2016-12-01

    Central America is among the world's most vulnerable regions to climate variability and change. Country economies are highly dependent on the agricultural sector and over 40 million people's rural livelihoods directly depend on the use of natural resources. Future climate scenarios show a drier outlook (higher temperatures and lower precipitation) over a region where rural livelihoods are already compromised by water availability and climate variability. Previous efforts to validate modelling of the regional hydrology have been based on high resolution (1 km2) equilibrium models (Imbach et al., 2010) or using dynamic models (Variable Infiltration Capacity) with coarse climate forcing (0.5°) (Hidalgo et al., 2013; Maurer et al., 2009). We present here: (i) validation of the hydrological outputs from high-resolution simulations (10 km2) of a dynamic vegetation model (Orchidee), using 7 different sets of model input forcing data, with monthly runoff observations from 182 catchments across Central America; (ii) the first assessments of the region's hydrological variability using the historical simulations (iii) an estimation of the time of emergence of the climate change signal (under the SRES emission scenarios) on the water balance. We found model performance to be comparable with that from studies in other world regions (Yang et al. 2016) when forced with high resolution precipitation data (monthly values at 5 km2, Funk et al. (2015)) and the Climate Research Unit (CRU 3.2, Harris et al. (2014)) dataset of meteorological parameters. Validation results showed a Pearson correlation coefficient ≈ 0.6, general underestimation of runoff of ≈ 60% and variability close to observed values (ratio of standard deviations of ≈ 0.7). Maps of historical runoff are presented to show areas where high runoff variability follows high mean annual runoff, with opposite trends over the Caribbean. Future scenarios show large areas where future maximum water availability will always fall below minus-one standard deviation of the historical values by mid-century. Additionally, our results highlight the time horizon left to develop adaptation strategies to cope with future reductions in water availability.

  3. Marine ARM GPCI Investigation of Clouds Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R. Michael; Long, Charles N.

    Sea surface temperature (SST) is one of the most appropriate and important climate parameters: a widespread increase is an indicator of global warming and modifications of the geographical distribution of SST are an extremely sensitive indicator of climate change. There is high demand for accurate, reliable, high-spatial-and-temporal-resolution SST measurements for the parameterization of ocean-atmosphere heat, momentum, and gas (SST is therefore critical to understanding the processes controlling the global carbon dioxide budget) fluxes, for detailed diagnostic and process-orientated studies to better understand the behavior of the climate system, as model boundary conditions, for assimilation into climate models, and for themore » rigorous validation of climate model output. In order to achieve an overall net flux uncertainty < 10 W/m 2 (Bradley and Fairall, 2006), the sea surface (skin) temperature (SSST) must be measured to an error < 0.1 C and a precision of 0.05 C. Anyone experienced in shipboard meteorological measurements will recognize this is a tough specification. These demands require complete confidence in the content, interpretation, accuracy, reliability, and continuity of observational SST data—criteria that can only be fulfilled by the successful implementation of an ongoing data product validation strategy.« less

  4. Robustness and Uncertainty: Applications for Policy in Climate and Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Fields, A. L., III

    2015-12-01

    Policymakers must often decide how to proceed when presented with conflicting simulation data from hydrological, climatological, and geological models. While laboratory sciences often appeal to the reproducibility of results to argue for the validity of their conclusions, simulations cannot use this strategy for a number of pragmatic and methodological reasons. However, robustness of predictions and causal structures can serve the same function for simulations as reproducibility does for laboratory experiments and field observations in either adjudicating between conflicting results or showing that there is insufficient justification to externally validate the results. Additionally, an interpretation of the argument from robustness is presented that involves appealing to the convergence of many well-built and diverse models rather than the more common version which involves appealing to the probability that one of a set of models is likely to be true. This interpretation strengthens the case for taking robustness as an additional requirement for the validation of simulation results and ultimately supports the idea that computer simulations can provide information about the world that is just as trustworthy as data from more traditional laboratory studies and field observations. Understanding the importance of robust results for the validation of simulation data is especially important for policymakers making decisions on the basis of potentially conflicting models. Applications will span climate, hydrological, and hydroclimatological models.

  5. Analysis and prediction of agricultural pest dynamics with Tiko'n, a generic tool to develop agroecological food web models

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Anandaraja, N.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    While several well-validated crop growth models are currently widely used, very few crop pest models of the same caliber have been developed or applied, and pest models that take trophic interactions into account are even rarer. This may be due to several factors, including 1) the difficulty of representing complex agroecological food webs in a quantifiable model, and 2) the general belief that pesticides effectively remove insect pests from immediate concern. However, pests currently claim a substantial amount of harvests every year (and account for additional control costs), and the impact of insects and of their trophic interactions on agricultural crops cannot be ignored, especially in the context of changing climates and increasing pressures on crops across the globe. Unfortunately, most integrated pest management frameworks rely on very simple models (if at all), and most examples of successful agroecological management remain more anecdotal than scientifically replicable. In light of this, there is a need for validated and robust agroecological food web models that allow users to predict the response of these webs to changes in management, crops or climate, both in order to predict future pest problems under a changing climate as well as to develop effective integrated management plans. Here we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web agroecological models that predict pest dynamics in the field. The programme uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. We apply the model to the cononut black-headed caterpillar (Opisina arenosella) and associated parasitoid data from Sri Lanka, showing how the modeling framework can be used to rapidly develop, calibrate and validate models that elucidate how the internal structures of food webs determine their behaviour and allow users to evaluate different integrated management options.

  6. The computational future for climate and Earth system models: on the path to petaflop and beyond.

    PubMed

    Washington, Warren M; Buja, Lawrence; Craig, Anthony

    2009-03-13

    The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.

  7. Misleading prioritizations from modelling range shifts under climate change

    USGS Publications Warehouse

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and frameworks continue to be refined, performance assessments and validation efforts should focus on the measures of risk and vulnerability useful for decision-making.

  8. Projected climate change impacts on winter recreation in the ...

    EPA Pesticide Factsheets

    A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. The present-day simulations from the snow model without snowmaking are validated with observations of snow-water-equivalent from snow monitoring sites. Projected season lengths are combined with baseline estimates of winter recreation activity to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Estimate the physical and economic impact of climate change on winter recreation in the contiguous U.S.

  9. Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods

    NASA Astrophysics Data System (ADS)

    Werner, A. T.; Cannon, A. J.

    2015-06-01

    Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e., correlation tests) and distributional properties (i.e., tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3 day peak flow and 7 day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational datasets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational dataset. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7 day low flow events, regardless of reanalysis or observational dataset. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis datasets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical datasets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.

  10. Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods

    NASA Astrophysics Data System (ADS)

    Werner, Arelia T.; Cannon, Alex J.

    2016-04-01

    Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.

  11. Resilience landscapes for Congo basin rainforests vs. climate and management impacts

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Gautam, Sishir; Elias Bednar, Johannes; Stanzl, Patrick; Mosnier, Aline; Obersteiner, Michael

    2015-04-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, and construct resilience landscapes for current day conditions vs. climate and management impacts.

  12. Describing the Climate of Student Organizations: The Student Organization Environment Scales.

    ERIC Educational Resources Information Center

    Winston, Roger B., Jr.; Bledsoe, Tyrone; Goldstein, Adam R.; Wisbey, Martha E.; Street, James L.; Brown, Steven R.; Goyen, Kenneth D.; Rounds, Linda E.

    1997-01-01

    Using M. R. Weisbord's model of organizational diagnosis, researchers developed the Student Organization Environment Scales to measure students' perceptions of the psychosocial environment or climate of college student organizations. Development of the instrument is described and estimates of its reliability and validity are reported. Describes…

  13. Utilizing the social media data to validate 'climate change' indices

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.; Stepchenkova, S.

    2013-12-01

    Reporting the observed and modeled changes in climate to public requires the measures understandable by the general audience. E.g., the NASA GISS Common Sense Climate Index (Hansen et al., 1998) reports the change in climate based on six practically observable parameters such as the air temperature exceeding the norm by one standard deviation. The utility of the constructed indices for reporting climate change depends, however, on an assumption that the selected parameters are felt and connected with the changing climate by a non-expert, which needs to be validated. Dynamic discussion of climate change issues in social media may provide data for this validation. We connected the intensity of public discussion of climate change in social networks with regional weather variations for the territory of the USA. We collected the entire 2012 population of Twitter microblogging activity on climate change topic, accumulating over 1.8 million separate records (tweets) globally. We identified the geographic location of the tweets and associated the daily and weekly intensity of twitting with the following parameters of weather for these locations: temperature anomalies, 'hot' temperature anomalies, 'cold' temperature anomalies, heavy rain/snow events. To account for non-weather related events we included the articles on climate change from the 'prestige press', a collection of major newspapers. We found that the regional changes in parameters of weather significantly affect the number of tweets published on climate change. This effect, however, is short-lived and varies throughout the country. We found that in different locations different weather parameters had the most significant effect on climate change microblogging activity. Overall 'hot' temperature anomalies had significant influence on climate change twitting intensity.

  14. A climate-driven mechanistic population model of Aedes albopictus with diapause.

    PubMed

    Jia, Pengfei; Lu, Liang; Chen, Xiang; Chen, Jin; Guo, Li; Yu, Xiao; Liu, Qiyong

    2016-03-24

    The mosquito Aedes albopitus is a competent vector for the transmission of many blood-borne pathogens. An important factor that affects the mosquitoes' development and spreading is climate, such as temperature, precipitation and photoperiod. Existing climate-driven mechanistic models overlook the seasonal pattern of diapause, referred to as the survival strategy of mosquito eggs being dormant and unable to hatch under extreme weather. With respect to diapause, several issues remain unaddressed, including identifying the time when diapause eggs are laid and hatched under different climatic conditions, demarcating the thresholds of diapause and non-diapause periods, and considering the mortality rate of diapause eggs. Here we propose a generic climate-driven mechanistic population model of Ae. albopitus applicable to most Ae. albopictus-colonized areas. The new model is an improvement over the previous work by incorporating the diapause behaviors with many modifications to the stage-specific mechanism of the mosquitoes' life-cycle. monthly Container Index (CI) of Ae. albopitus collected in two Chinese cities, Guangzhou and Shanghai is used for model validation. The simulation results by the proposed model is validated with entomological field data by the Pearson correlation coefficient r (2) in Guangzhou (r (2) = 0.84) and in Shanghai (r (2) = 0.90). In addition, by consolidating the effect of diapause-related adjustments and temperature-related parameters in the model, the improvement is significant over the basic model. The model highlights the importance of considering diapause in simulating Ae. albopitus population. It also corroborates that temperature and photoperiod are significant in affecting the population dynamics of the mosquito. By refining the relationship between Ae. albopitus population and climatic factors, the model serves to establish a mechanistic relation to the growth and decline of the species. Understanding this relationship in a better way will benefit studying the transmission and the spatiotemporal distribution of mosquito-borne epidemics and eventually facilitating the early warning and control of the diseases.

  15. The Development and Validation of a New Land Surface Model for Regional and Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, Marc

    1995-11-01

    A new land-surface scheme intended for use in mesoscale and global climate models has been developed and validated. The ground scheme consists of 6 soil layers. Diffusion and a modified tipping bucket model govern heat and water flow respectively. A 3 layer snow model has been incorporated into a modified BEST vegetation scheme. TOPMODEL equations and Digital Elevation Model data are used to generate baseflow which supports lowland saturated zones. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts watershed evapotranspiration, the partitioning of surface fluxes, and the development of the storm hydrograph. Five years of meteorological and hydrological data from the Sleepers river watershed located in the eastern highlands of Vermont where winter snow cover is significant were then used to drive and validate the new scheme. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture. By including topographic effects, not only are the main spring hydrographs and individual storm hydrographs adequately resolved, but the mechanisms generating runoff are consistent with current views of hydrologic processes. The seasonal movement of the mean water table depth and the saturated area of the watershed are consistent with site data and the overall model hydroclimatology, including the surface fluxes, seems reasonable.

  16. Estimation of future flow regime for a spatially varied Himalayan watershed using improved multi-site calibration method of SWAT model.

    NASA Astrophysics Data System (ADS)

    Pradhanang, S. M.; Hasan, M. A.; Booth, P.; Fallatah, O.

    2016-12-01

    The monsoon and snow driven regime in the Himalayan region has received increasing attention in the recent decade regarding the effects of climate change on hydrologic regimes. Modeling streamflow in such spatially varied catchment requires proper calibration and validation in hydrologic modeling. While calibration and validation are time consuming and computationally intensive, an effective regionalized approach with multi-site information is crucial for flow estimation, especially in daily scale. In this study, we adopted a multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Karnali river catchment, which is characterized as being the most vulnerable catchment to climate change in the Himalayan region. APHRODITE's (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) daily gridded precipitation data, one of the accurate and reliable weather date over this region were utilized in this study. The model evaluation of the entire catchment divided into four sub-catchments, utilizing discharge records from 1963 to 2010. In previous studies, multi-site calibration used only a single set of calibration parameters for all sub-catchment of a large watershed. In this study, we introduced a technique that can incorporate different sets of calibration parameters for each sub-basin, which eventually ameliorate the flow of the whole watershed. Results show that the calibrated model with new method can capture almost identical pattern of flow over the region. The predicted daily streamflow matched the observed values, with a Nash-Sutcliffe coefficient of 0.73 during calibration and 0.71 during validation period. The method perfumed better than existing multi-site calibration methods. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using precipitation and temperature changes for two Representative Concentration Pathways (RCPs) scenarios, RCP 4.5 and 8.5. Climate simulation for RCP scenarios were conducted from 1981-2100, where 1981-2005 was considered as baseline and 2006-2100 was considered as the future projection. The result shows that probability of flooding will eventually increase in future years due to increased flow in both scenarios.

  17. Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model

    NASA Astrophysics Data System (ADS)

    Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.

    2016-12-01

    In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.

  18. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  19. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Treesearch

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  20. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models

    PubMed Central

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-01-01

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182

  1. Quantifying climate feedbacks in polar regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less

  2. Quantifying climate feedbacks in polar regions

    DOE PAGES

    Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.; ...

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less

  3. Hysteresis in the Central African Rainforest

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Elias Bednar, Johannes; Gautam, Sishir; Petritsch, Richard; Schier, Franziska; Stanzl, Patrick

    2014-05-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, analyse the relationship between resilience, standing C-stocks and change in climate and finally provide evidence of hysteresis.

  4. Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fuyao; Yu, Yan; Notaro, Michael

    This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less

  5. Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)

    DOE PAGES

    Wang, Fuyao; Yu, Yan; Notaro, Michael; ...

    2017-09-27

    This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less

  6. On validation of the rain climatic zone designations for Nigeria

    NASA Astrophysics Data System (ADS)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2017-07-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  7. Extending the Confrontation of Weather and Climate Models from Soil Moisture to Surface Flux Data

    NASA Astrophysics Data System (ADS)

    Dirmeyer, P.; Chen, L.; Wu, J.

    2016-12-01

    The atmosphere and land components of weather and climate models are typically developed separately and coupled as a last step before new model versions are released. Separate testing of land surface models (LSMs) and atmospheric models is often quite extensive in the development phase, but validation of coupled land-atmosphere behavior is often minimal if performed at all. This is partly because of this piecemeal model development approach and partly because the necessary in situ data to confront coupled land-atmosphere models (LAMs) has been meager until quite recently. Over the past 10-20 years there has been a growing number of networks of measurements of land surface states, surface fluxes, radiation and near-surface meteorology, although they have been largely uncoordinated and frequently incomplete across the range of variables necessary to validate LAMs. We extend recent work "confronting" a variety of LSMs and LAMs with in situ observations of soil moisture from cross-standardized networks to comparisons with measurements of surface latent and sensible heat fluxes at FLUXNET sites in a variety of climate regimes around the world. The motivation is to determine how well LSMs represent observed statistics of variability and co-variability, how much models differ from one another, and how those statistics change when the LSMs are coupled to atmospheric models. Furthermore, comparisons are made to several LAMs in both open-loop (free running) and reanalysis configurations. This shows to what extent data assimilation can constrain the processes involved in flux variability, and helps illuminate model development pathways to improve coupled land-atmosphere interactions in weather and climate models.

  8. Impact of lakes and wetlands on present and future boreal climate

    NASA Astrophysics Data System (ADS)

    Poutou, E.; Krinner, G.; Genthon, C.

    2002-12-01

    Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.

  9. Susceptibility of the Batoka Gorge hydroelectric scheme to climate change

    NASA Astrophysics Data System (ADS)

    Harrison, Gareth P.; Whittington, H.(Bert) W.

    2002-07-01

    The continuing and increased use of renewable energy sources, including hydropower, is a key strategy to limit the extent of future climate change. Paradoxically, climate change itself may alter the availability of this natural resource, adversely affecting the financial viability of both existing and potential schemes. Here, a model is described that enables the assessment of the relationship between changes in climate and the viability, technical and financial, of hydro development. The planned Batoka Gorge scheme on the Zambezi River is used as a case study to validate the model and to predict the impact of climate change on river flows, electricity production and scheme financial performance. The model was found to perform well, given the inherent difficulties in the task, although there is concern regarding the ability of the hydrological model to reproduce the historic flow conditions of the upper Zambezi Basin. Simulations with climate change scenarios illustrate the sensitivity of the Batoka Gorge scheme to changes in climate. They suggest significant reductions in river flows, declining power production, reductions in electricity sales revenue and consequently an adverse impact on a range of investment measures.

  10. Validating the Implementation Climate Scale (ICS) in Child Welfare Organizations

    PubMed Central

    Ehrhart, Mark G.; Torres, Elisa M.; Wright, Lisa A.; Martinez, Sandra Y.; Aarons, Gregory A.

    2015-01-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization’s climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. PMID:26563643

  11. Validating the Implementation Climate Scale (ICS) in child welfare organizations.

    PubMed

    Ehrhart, Mark G; Torres, Elisa M; Wright, Lisa A; Martinez, Sandra Y; Aarons, Gregory A

    2016-03-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization's climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Climate change and heat-related mortality in six cities Part 1: model construction and validation

    NASA Astrophysics Data System (ADS)

    Gosling, Simon N.; McGregor, Glenn R.; Páldy, Anna

    2007-08-01

    Heat waves are expected to increase in frequency and magnitude with climate change. The first part of a study to produce projections of the effect of future climate change on heat-related mortality is presented. Separate city-specific empirical statistical models that quantify significant relationships between summer daily maximum temperature ( T max) and daily heat-related deaths are constructed from historical data for six cities: Boston, Budapest, Dallas, Lisbon, London, and Sydney. ‘Threshold temperatures’ above which heat-related deaths begin to occur are identified. The results demonstrate significantly lower thresholds in ‘cooler’ cities exhibiting lower mean summer temperatures than in ‘warmer’ cities exhibiting higher mean summer temperatures. Analysis of individual ‘heat waves’ illustrates that a greater proportion of mortality is due to mortality displacement in cities with less sensitive temperature-mortality relationships than in those with more sensitive relationships, and that mortality displacement is no longer a feature more than 12 days after the end of the heat wave. Validation techniques through residual and correlation analyses of modelled and observed values and comparisons with other studies indicate that the observed temperature-mortality relationships are represented well by each of the models. The models can therefore be used with confidence to examine future heat-related deaths under various climate change scenarios for the respective cities (presented in Part 2).

  13. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to be confidently detected. Some of these activities are focussed to develop and deploy instrumentation suitable for the collection of precise in situ measurements of the SSST which can be used to improve the accuracy of satellite measurements, while others develop techniques to generate improved global analyses of sea surface temperature using historical data.

  14. Validation of non-stationary precipitation series for site-specific impact assessment: Comparison of two statistical downscaling techniques

    USDA-ARS?s Scientific Manuscript database

    The generation of realistic future precipitation scenarios is crucial for assessing their impacts on a range of environmental and socio-economic impact sectors. A scale mismatch exists, however, between the coarse spatial resolution at which global climate models (GCMs) output future climate scenari...

  15. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment.

    PubMed

    Bröde, Peter; Błazejczyk, Krzysztof; Fiala, Dusan; Havenith, George; Holmér, Ingvar; Jendritzky, Gerd; Kuklane, Kalev; Kampmann, Bernhard

    2013-01-01

    The growing need for valid assessment procedures of the outdoor thermal environment in the fields of public weather services, public health systems, urban planning, tourism & recreation and climate impact research raised the idea to develop the Universal Thermal Climate Index UTCI based on the most recent scientific progress both in thermo-physiology and in heat exchange theory. Following extensive validation of accessible models of human thermoregulation, the advanced multi-node 'Fiala' model was selected to form the basis of UTCI. This model was coupled with an adaptive clothing model which considers clothing habits by the general urban population and behavioral changes in clothing insulation related to actual environmental temperature. UTCI was developed conceptually as an equivalent temperature. Thus, for any combination of air temperature, wind, radiation, and humidity, UTCI is defined as the air temperature in the reference condition which would elicit the same dynamic response of the physiological model. This review analyses the sensitivity of UTCI to humidity and radiation in the heat and to wind in the cold and compares the results with observational studies and internationally standardized assessment procedures. The capabilities, restrictions and potential future extensions of UTCI are discussed.

  16. The evaluation of the climate change effects on maize and fennel cultivation by means of an hydrological physically based model: the case study of an irrigated district of southern Italy

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Alfieri, M. S.; Basile, A.; De Lorenzi, F.; Fiorentino, N.; Menenti, M.

    2012-04-01

    The effect of climate change on irrigated agricultural systems will be different from area to area depending on some factors as: (i) water availability, (ii) crop water demand (iii) soil hydrological behavior and (iv) irrigation management strategy. The adaptation of irrigated crop systems to future climate change can be supported by physically based model which simulate the water and heat fluxes in the soil-vegetation-atmosphere system. The aim of this work is to evaluate the effects of climate change on the heat and water balance of a maize-fennel rotation. This was applied to a on-demand irrigation district of Southern Italy ("Destra Sele", Campania Region, 22.645 ha). Two climate scenarios were considered, current climate (1961-1990) and future climate (2021-2050), the latter constructed by applying statistical downscaling to GCMs scenarios. For each climate scenario the soil moisture regime of the selected study area was calculated by means of a simulation model of the soil-water-atmosphere system (SWAP). Synthetic indicators of the soil water regimes (e.g., crop water stress index - CWSI, available water content) have been calculated and impacts evaluated taking into account the yield response functions to water availability of different cultivars. Different irrigation delivering strategies were also simulated. The hydrological model SWAP was applied to the representative soils of the whole area (20 soil units) for which the soil hydraulic properties were derived by means of pedo-transfer function (HYPRES) tested and validated on the typical soils in the study area. Upper boundary conditions were derived from two climate scenarios, i.e. current and future. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were derived from field experiments, in the same area, where the SWAP model was calibrated and validated. The results obtained have shown a significant increase of CWSI in the future climate scenario, and some spatial patterns strongly influenced by the soils characteristics. Adaptability of different maize cultivars has been evaluated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: Plant Adaptative capacity, SWAP, Climate changes, Maize, Fennel

  17. Exploring the possibility of a common structural model measuring associations between safety climate factors and safety behaviour in health care and the petroleum sectors.

    PubMed

    Olsen, Espen

    2010-09-01

    The aim of the present study was to explore the possibility of identifying general safety climate concepts in health care and petroleum sectors, as well as develop and test the possibility of a common cross-industrial structural model. Self-completion questionnaire surveys were administered in two organisations and sectors: (1) a large regional hospital in Norway that offers a wide range of hospital services, and (2) a large petroleum company that produces oil and gas worldwide. In total, 1919 and 1806 questionnaires were returned from the hospital and petroleum organisation, with response rates of 55 percent and 52 percent, respectively. Using a split sample procedure principal factor analysis and confirmatory factor analysis revealed six identical cross-industrial measurement concepts in independent samples-five measures of safety climate and one of safety behaviour. The factors' psychometric properties were explored with satisfactory internal consistency and concept validity. Thus, a common cross-industrial structural model was developed and tested using structural equation modelling (SEM). SEM revealed that a cross-industrial structural model could be identified among health care workers and offshore workers in the North Sea. The most significant contributing variables in the model testing stemmed from organisational management support for safety and supervisor/manager expectations and actions promoting safety. These variables indirectly enhanced safety behaviour (stop working in dangerous situations) through transitions and teamwork across units, and teamwork within units as well as learning, feedback, and improvement. Two new safety climate instruments were validated as part of the study: (1) Short Safety Climate Survey (SSCS) and (2) Hospital Survey on Patient Safety Culture-short (HSOPSC-short). Based on development of measurements and structural model assessment, this study supports the possibility of a common safety climate structural model across health care and the offshore petroleum industry. 2010 Elsevier Ltd. All rights reserved.

  18. A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai

    2010-05-01

    Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.

  19. Defining metrics of the Quasi-Biennial Oscillation in global climate models

    NASA Astrophysics Data System (ADS)

    Schenzinger, Verena; Osprey, Scott; Gray, Lesley; Butchart, Neal

    2017-06-01

    As the dominant mode of variability in the tropical stratosphere, the Quasi-Biennial Oscillation (QBO) has been subject to extensive research. Though there is a well-developed theory of this phenomenon being forced by wave-mean flow interaction, simulating the QBO adequately in global climate models still remains difficult. This paper presents a set of metrics to characterize the morphology of the QBO using a number of different reanalysis datasets and the FU Berlin radiosonde observation dataset. The same metrics are then calculated from Coupled Model Intercomparison Project 5 and Chemistry-Climate Model Validation Activity 2 simulations which included a representation of QBO-like behaviour to evaluate which aspects of the QBO are well captured by the models and which ones remain a challenge for future model development.

  20. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  1. Uncertainty quantification and validation of combined hydrological and macroeconomic analyses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Jacquelynne; Parks, Mancel Jordan; Jennings, Barbara Joan

    2010-09-01

    Changes in climate can lead to instabilities in physical and economic systems, particularly in regions with marginal resources. Global climate models indicate increasing global mean temperatures over the decades to come and uncertainty in the local to national impacts means perceived risks will drive planning decisions. Agent-based models provide one of the few ways to evaluate the potential changes in behavior in coupled social-physical systems and to quantify and compare risks. The current generation of climate impact analyses provides estimates of the economic cost of climate change for a limited set of climate scenarios that account for a small subsetmore » of the dynamics and uncertainties. To better understand the risk to national security, the next generation of risk assessment models must represent global stresses, population vulnerability to those stresses, and the uncertainty in population responses and outcomes that could have a significant impact on U.S. national security.« less

  2. Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Mohr, K. I.

    2014-12-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).

  3. Assessment of 1.5°C and 2°C climate change scenarios impact on wheat production in Tunisia

    NASA Astrophysics Data System (ADS)

    Bergaoui, karim; Belhaj Fraj, Makram; Zaaboul, Rashyd; Allen, Myles; Mitchell, Dann; Schleussner, Carl-Friedrich; Saeed, Fahad; Mc Donnell, Rachael

    2017-04-01

    Wheat is the main staple crop in North Africa region and contributes the most to food security. It is almost entirely grown under rainfed conditions and its yield is highly impacted by the climate variability, e. g. dry winters, a late autumn or late spring. Irregular rainfall or drought events particularly at key stages of the growing season, lead to both early and terminal wheat stresses and high inter-year variation in yield. The goal of this study was to explore the impacts of future climate on wheat production in Tunisia using an ensemble of regional bias corrected climate models outputs for the 1.5°C and 2°C warming above the pre-industrial levels. By examining the outputs on wheat yield levels the study would help answer the question of whether the ambitious climate change mitigation efforts involved in stabilizing temperatures at 1.5°C would bring the cereal yields needed in North Africa. Tunisia was chosen as the focus country because its wheat systems are found across a wide diversity in biophysical and farming conditions so giving insight on more localized effects. Data availability across a wide range of wheat management systems from subsistence farming systems to highly mechanized agribusinesses also supported work here as model results could be readily validated for the historical period. Two scenarios were obtained using the RCP2.6 as boundary conditions for 1.5 scenario and a weighted combination of RCP2.6 and RCP4.5 for the 2°C scenario using their respective CO2 levels in the future. We calibrated and validated a dynamical crop model, DSSAT, to simulate the national wheat production and to understand the impact of drought on growth and development that causes yield variation. DSSAT simulations were driven by CHIRPS and ERA-Interim reanalysis data as daily climate forcings. The simulations were validated in a set of farmer fields which were representative of the dominant cropping systems in the country. Then, the model was validated with 10 years' state-level production data. Finally, we forced the crop model with HAPPI bias corrected outputs using ISI-MIP approach where the trend and the long-term mean are well represented and we assessed the impact of each scenario on the wheat production at the national level. The results highlighted a difference in wheat yield in some biophysical areas and farming systems. This insight is important as countries develop mitigation and adaptation strategies as the impact costs can be included.

  4. Observed SWE trends and climate analysis for Northwest Pacific North America: validation for future projection of SWE using the CRCM and VIC

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Bronaugh, D.; Rodenhuis, D.

    2008-12-01

    Observational databases of snow water equivalent (SWE) have been collected from Alaska, western US states and the Canadian provinces of British Columbia, Alberta, Saskatchewan, and territories of NWT, and the Yukon. These databases were initially validated to remove inconsistencies and errors in the station records, dates or the geographic co-ordinates of the station. The cleaned data was then analysed for historical (1950 to 2006) trend using emerging techniques for trend detection based on (first of the month) estimates for January to June. Analysis of SWE showed spatial variability in the count of records across the six month time period, and this study illustrated differences between Canadian and US (or the north and south) collection. Two different data sets (one gridded and one station) were then used to analyse April 1st records, for which there was the greatest spatial spread of station records for analysis with climate information. Initial results show spatial variability (in both magnitude and direction of trend) for trend results, and climate correlations and principal components indicate different drivers of change in SWE across the western US, Canada and north to Alaska. These results will be used to validate future predictions of SWE that are being undertaken using the Canadian Regional Climate Model (CRCM) and the Variable Infiltration Capacity (VIC) hydrologic model for Western Northern America (CRCM) and British Columbia (VIC).

  5. Linking the Weather Generator with Regional Climate Model: Effect of Higher Resolution

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Huth, Radan; Farda, Ales; Skalak, Petr

    2014-05-01

    This contribution builds on our last year EGU contribution, which followed two aims: (i) validation of the simulations of the present climate made by the ALADIN-Climate Regional Climate Model (RCM) at 25 km resolution, and (ii) presenting a methodology for linking the parametric weather generator (WG) with RCM output (aiming to calibrate a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations). Now we have available new higher-resolution (6.25 km) simulations with the same RCM. The main topic of this contribution is an anser to a following question: What is an effect of using a higher spatial resolution on a quality of simulating the surface weather characteristics? In the first part, the high resolution RCM simulation of the present climate will be validated in terms of selected WG parameters, which are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series. When comparing the WG parameters from the two sources (RCM vs observations), we interpolate the RCM-based parameters into the station locations while accounting for the effect of altitude. In the second part, we will discuss an effect of using the higher resolution: the results of the validation tests will be compared with those obtained with the lower-resolution RCM. Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  6. Reliability of regional climate simulations

    NASA Astrophysics Data System (ADS)

    Ahrens, W.; Block, A.; Böhm, U.; Hauffe, D.; Keuler, K.; Kücken, M.; Nocke, Th.

    2003-04-01

    Quantification of uncertainty becomes more and more a key issue for assessing the trustability of future climate scenarios. In addition to the mean conditions, climate impact modelers focus in particular on extremes. Before generating such scenarios using e.g. dynamic regional climate models, a careful validation of present-day simulations should be performed to determine the range of errors for the quantities of interest under recent conditions as a raw estimate of their uncertainty in the future. Often, multiple aspects shall be covered together, and the required simulation accuracy depends on the user's demand. In our approach, a massive parallel regional climate model shall be used on the one hand to generate "long-term" high-resolution climate scenarios for several decades, and on the other hand to provide very high-resolution ensemble simulations of future dry spells or heavy rainfall events. To diagnosis the model's performance for present-day simulations, we have recently developed and tested a first version of a validation and visualization chain for this model. It is, however, applicable in a much more general sense and could be used as a common test bed for any regional climate model aiming at this type of simulations. Depending on the user's interest, integrated quality measures can be derived for near-surface parameters using multivariate techniques and multidimensional distance measures in a first step. At this point, advanced visualization techniques have been developed and included to allow for visual data mining and to qualitatively identify dominating aspects and regularities. Univariate techniques that are especially designed to assess climatic aspects in terms of statistical properties can then be used to quantitatively diagnose the error contributions of the individual used parameters. Finally, a comprehensive in-depth diagnosis tool allows to investigate, why the model produces the obtained near-surface results to answer the question if the model performs well from the modeler's point of view. Examples will be presented for results obtained using this approach for assessing the risk of potential total agricultural yield loss under drought conditions in Northeast Brazil and for evaluating simulation results for a 10-year period for Europe. To support multi-run simulations and result evaluation, the model will be embedded into an already existing simulation environment that provides further postprocessing tools for sensitivity studies, behavioral analysis and Monte-Carlo simulations, but also for ensemble scenario analysis in one of the next steps.

  7. Predicting the Impacts of Climate Change on Runoff and Sediment Processes in Agricultural Watersheds: A Case Study from the Sunflower Watershed in the Lower Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.

    2017-12-01

    Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.

  8. Validation of Salinity Data from the Soil Moisture and Ocean Salinity (SMOS) and Aquarius Satellites in the Agulhas Current System

    NASA Astrophysics Data System (ADS)

    Button, N.

    2016-02-01

    The Agulhas Current System is an important western boundary current, particularly due to its vital role in the transport of heat and salt from the Indian Ocean to the Atlantic Ocean, such as through Agulhas rings. Accurate measurements of salinity are necessary for assessing the role of the Agulhas Current System and these rings in the global climate system are necessary. With ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius/SAC-D satellites, we now have complete spatial and temporal (since 2009 and 2011, respectively) coverage of salinity data. To use this data to understand the role of the Agulhas Current System in the context of salinity within the global climate system, we must first understand validate the satellite data using in situ and model comparisons. In situ comparisons are important because of the accuracy, but they lack in the spatial and temporal coverage to validate the satellite data. For example, there are approximately 100 floats in the Agulhas Return Current. Therefore, model comparisons, such as the Hybrid Coordinate Ocean Model (HYCOM), are used along with the in situ data for the validation. For the validation, the satellite data, Argo float data, and HYCOM simulations were compared within box regions both inside and outside of the Agulhas Current. These boxed regions include the main Agulhas Current, Agulhas Return Current, Agulhas Retroflection, and Agulhas rings, as well as a low salinity and high salinity region outside of the current system. This analysis reveals the accuracy of the salinity measurements from the Aquarius/SAC-D and SMOS satellites within the Agulhas Current, which then provides accurate salinity data that can then be used to understand the role of the Agulhas Current System in the global climate system.

  9. Measuring Microaggression and Organizational Climate Factors in Military Units

    DTIC Science & Technology

    2011-04-01

    i.e., items) to accurately assess what we intend for them to measure. To assess construct and convergent validity, the author assessed the statistical ...sample indicated both convergent and construct validity of the microaggression scale. Table 5 presents these statistics . Measuring Microaggressions...models. As shown in Table 7, the measurement models had acceptable fit indices. That is, the Chi-square statistics were at their minimum; although the

  10. HESS Opinions "Should we apply bias correction to global and regional climate model data?"

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J.

    2012-04-01

    Despite considerable progress in recent years, output of both Global and Regional Circulation Models is still afflicted with biases to a degree that precludes its direct use, especially in climate change impact studies. This is well known, and to overcome this problem bias correction (BC), i.e. the correction of model output towards observations in a post processing step for its subsequent application in climate change impact studies has now become a standard procedure. In this paper we argue that bias correction, which has a considerable influence on the results of impact studies, is not a valid procedure in the way it is currently used: it impairs the advantages of Circulation Models which are based on established physical laws by altering spatiotemporal field consistency, relations among variables and by violating conservation principles. Bias correction largely neglects feedback mechanisms and it is unclear whether bias correction methods are time-invariant under climate change conditions. Applying bias correction increases agreement of Climate Model output with observations in hind casts and hence narrows the uncertainty range of simulations and predictions without, however, providing a satisfactory physical justification. This is in most cases not transparent to the end user. We argue that this masks rather than reduces uncertainty, which may lead to avoidable forejudging of end users and decision makers. We present here a brief overview of state-of-the-art bias correction methods, discuss the related assumptions and implications, draw conclusions on the validity of bias correction and propose ways to cope with biased output of Circulation Models in the short term and how to reduce the bias in the long term. The most promising strategy for improved future Global and Regional Circulation Model simulations is the increase in model resolution to the convection-permitting scale in combination with ensemble predictions based on sophisticated approaches for ensemble perturbation. With this article, we advocate communicating the entire uncertainty range associated with climate change predictions openly and hope to stimulate a lively discussion on bias correction among the atmospheric and hydrological community and end users of climate change impact studies.

  11. The Safety Culture Enactment Questionnaire (SCEQ): Theoretical model and empirical validation.

    PubMed

    de Castro, Borja López; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2017-06-01

    This paper presents the Safety Culture Enactment Questionnaire (SCEQ), designed to assess the degree to which safety is an enacted value in the day-to-day running of nuclear power plants (NPPs). The SCEQ is based on a theoretical safety culture model that is manifested in three fundamental components of the functioning and operation of any organization: strategic decisions, human resources practices, and daily activities and behaviors. The extent to which the importance of safety is enacted in each of these three components provides information about the pervasiveness of the safety culture in the NPP. To validate the SCEQ and the model on which it is based, two separate studies were carried out with data collection in 2008 and 2014, respectively. In Study 1, the SCEQ was administered to the employees of two Spanish NPPs (N=533) belonging to the same company. Participants in Study 2 included 598 employees from the same NPPs, who completed the SCEQ and other questionnaires measuring different safety outcomes (safety climate, safety satisfaction, job satisfaction and risky behaviors). Study 1 comprised item formulation and examination of the factorial structure and reliability of the SCEQ. Study 2 tested internal consistency and provided evidence of factorial validity, validity based on relationships with other variables, and discriminant validity between the SCEQ and safety climate. Exploratory Factor Analysis (EFA) carried out in Study 1 revealed a three-factor solution corresponding to the three components of the theoretical model. Reliability analyses showed strong internal consistency for the three scales of the SCEQ, and each of the 21 items on the questionnaire contributed to the homogeneity of its theoretically developed scale. Confirmatory Factor Analysis (CFA) carried out in Study 2 supported the internal structure of the SCEQ; internal consistency of the scales was also supported. Furthermore, the three scales of the SCEQ showed the expected correlation patterns with the measured safety outcomes. Finally, results provided evidence of discriminant validity between the SCEQ and safety climate. We conclude that the SCEQ is a valid, reliable instrument supported by a theoretical framework, and it is useful to measure the enactment of safety culture in NPPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The transparency, reliability and utility of tropical rainforest land-use and land-cover change models.

    PubMed

    Rosa, Isabel M D; Ahmed, Sadia E; Ewers, Robert M

    2014-06-01

    Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the discipline. © 2014 John Wiley & Sons Ltd.

  13. Assessment of Satellite Radiometry in the Visible Domain

    NASA Technical Reports Server (NTRS)

    Melin, Frederick; Franz, Bryan A.

    2014-01-01

    Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.

  14. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  15. Climate change and spring frost damages for sweet cherries in Germany

    NASA Astrophysics Data System (ADS)

    Chmielewski, Frank-M.; Götz, Klaus-P.; Weber, Katharina C.; Moryson, Susanne

    2018-02-01

    Spring frost can be a limiting factor in sweet cherry ( Prunus avium L.) production. Rising temperatures in spring force the development of buds, whereby their vulnerability to freezing temperatures continuously increases. With the beginning of blossom, flowers can resist only light frosts without any significant damage. In this study, we investigated the risk of spring frost damages during cherry blossom for historical and future climate conditions at two different sites in NE (Berlin) and SW Germany (Geisenheim). Two phenological models, developed on the basis of phenological observations at the experimental sweet cherry orchard in Berlin-Dahlem and validated for endodormancy release and for warmer climate conditions (already published), were used to calculate the beginning of cherry blossom in Geisenheim, 1951-2015 (external model validation). Afterwards, on the basis of a statistical regionalisation model WETTREG (RCP 8.5), the frequency of frost during cherry blossom was calculated at both sites for historical (1971-2000) and future climate conditions (2011-2100). From these data, we derived the final flower damage, defined as the percentage of frozen flowers due to single or multiple frost events during blossom. The results showed that rising temperatures in this century can premature the beginning of cherry blossom up to 17 days at both sites, independent of the used phenological model. The frequency and strength of frost was characterised by a high temporal and local variability. For both sites, no significant increase in frost frequency and frost damage during blossom was found. In Geisenheim, frost damages significantly decreased from the middle of the twenty-first century. This study additionally emphasises the importance of reliable phenological models which not only work for current but also for changed climate conditions and at different sites. The date of endodormancy release should always be a known parameter in chilling/forcing models.

  16. Climate change and spring frost damages for sweet cherries in Germany.

    PubMed

    Chmielewski, Frank-M; Götz, Klaus-P; Weber, Katharina C; Moryson, Susanne

    2018-02-01

    Spring frost can be a limiting factor in sweet cherry (Prunus avium L.) production. Rising temperatures in spring force the development of buds, whereby their vulnerability to freezing temperatures continuously increases. With the beginning of blossom, flowers can resist only light frosts without any significant damage. In this study, we investigated the risk of spring frost damages during cherry blossom for historical and future climate conditions at two different sites in NE (Berlin) and SW Germany (Geisenheim). Two phenological models, developed on the basis of phenological observations at the experimental sweet cherry orchard in Berlin-Dahlem and validated for endodormancy release and for warmer climate conditions (already published), were used to calculate the beginning of cherry blossom in Geisenheim, 1951-2015 (external model validation). Afterwards, on the basis of a statistical regionalisation model WETTREG (RCP 8.5), the frequency of frost during cherry blossom was calculated at both sites for historical (1971-2000) and future climate conditions (2011-2100). From these data, we derived the final flower damage, defined as the percentage of frozen flowers due to single or multiple frost events during blossom. The results showed that rising temperatures in this century can premature the beginning of cherry blossom up to 17 days at both sites, independent of the used phenological model. The frequency and strength of frost was characterised by a high temporal and local variability. For both sites, no significant increase in frost frequency and frost damage during blossom was found. In Geisenheim, frost damages significantly decreased from the middle of the twenty-first century. This study additionally emphasises the importance of reliable phenological models which not only work for current but also for changed climate conditions and at different sites. The date of endodormancy release should always be a known parameter in chilling/forcing models.

  17. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  18. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

    PubMed Central

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879

  19. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

    PubMed

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

  20. Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Tong, S.; Yang, J.

    2011-12-01

    Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.

  1. Validation and application of a forest gap model to the southern Rocky Mountains

    Treesearch

    Adrianna C. Foster; Jacquelyn K. Shuman; Herman H. Shugart; Kathleen A. Dwire; Paula J. Fornwalt; Jason Sibold; Jose Negron

    2017-01-01

    Rocky Mountain forests are highly important for their part in carbon cycling and carbon storage as well as ecosystem services such as water retention and storage and recreational values. These forests are shaped by complex interactions among vegetation, climate, and disturbances. Thus, climate change and shifting disturbances may lead to significant changes in species...

  2. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  3. Climate simulations and projections with a super-parameterized climate model

    DOE PAGES

    Stan, Cristiana; Xu, Li

    2014-07-01

    The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less

  4. Assessment of regional climate change and development of climate adaptation decision aids in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Darmenova, K.; Higgins, G.; Kiley, H.; Apling, D.

    2010-12-01

    Current General Circulation Models (GCMs) provide a valuable estimate of both natural and anthropogenic climate changes and variability on global scales. At the same time, future climate projections calculated with GCMs are not of sufficient spatial resolution to address regional needs. Many climate impact models require information at scales of 50 km or less, so dynamical downscaling is often used to estimate the smaller-scale information based on larger scale GCM output. To address current deficiencies in local planning and decision making with respect to regional climate change, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model and developing decision aids that translate the regional climate data into actionable information for users. Our methodology involves development of climatological indices of extreme weather and heating/cooling degree days based on WRF ensemble runs initialized with the NCEP-NCAR reanalysis and the European Center/Hamburg Model (ECHAM5). Results indicate that the downscale simulations provide the necessary detailed output required by state and local governments and the private sector to develop climate adaptation plans. In addition we evaluated the WRF performance in long-term climate simulations over the Southwestern US and validated against observational datasets.

  5. Use of a Weather Generator for analysis of projections of future daily temperature and its validation with climate change indices

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Cordano, E.; Eccel, E.

    2012-04-01

    The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices selected from the list recommended by the World Meteorological Organization Commission for Climatology (WMO-CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) project's Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Each index was applied to both observed (and processed) data and to synthetic time series produced by the Weather Generator, over the thirty year reference period 1981-2010, in order to validate the procedure. Climate projections were statistically downscaled for a selection of sites for the two 30-year periods 2021-2050 and 2071-2099 of the European project "Ensembles" multi-model output (scenario A1B). The use of several climatic indices strengthens the trend analysis of both the generated synthetic series and future climate projections.

  6. Hydrological processes and model representation: impact of soft data on calibration

    Treesearch

    J.G. Arnold; M.A. Youssef; H. Yen; M.J. White; A.Y. Sheshukov; A.M. Sadeghi; D.N. Moriasi; J.L. Steiner; Devendra Amatya; R.W. Skaggs; E.B. Haney; J. Jeong; M. Arabi; P.H. Gowda

    2015-01-01

    Hydrologic and water quality models are increasingly used to determine the environmental impacts of climate variability and land management. Due to differing model objectives and differences in monitored data, there are currently no universally accepted procedures for model calibration and validation in the literature. In an effort to develop accepted model calibration...

  7. Implementing microscopic charcoal in a global climate-aerosol model

    NASA Astrophysics Data System (ADS)

    Gilgen, Anina; Lohmann, Ulrike; Brügger, Sandra; Adolf, Carole; Ickes, Luisa

    2017-04-01

    Information about past fire activity is crucial to validate fire models and to better understand their deficiencies. Several paleofire records exist, among them ice cores and sediments, which preserve fire tracers like levoglucosan, vanillic acid, or charcoal particles. In this work, we implement microscopic charcoal particles (maximum dimension 10-100 μm) into the global climate-aerosol model ECHAM6.3HAM2.3. Since we are not aware of any reliable estimates of microscopic charcoal emissions, we scaled black carbon emissions from GFAS to capture the charcoal fluxes from a calibration dataset. After that, model results were compared with a validation dataset. The coarse model resolution (T63L31; 1.9°x1.9°) impedes the model to capture local variability of charcoal fluxes. However, variability on the global scale is pronounced due to highly-variable fire emissions. In future, we plan to model charcoal fluxes in the past 1-2 centuries using fire emissions provided from fire models. Furthermore, we intend to compare modelled charcoal fluxes from prescribed fire emissions with those calculated by an interactive fire model.

  8. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study

    PubMed Central

    Zahoor, Hafiz; Chan, Albert P. C.; Utama, Wahyudi P.; Gao, Ran; Zafar, Irfan

    2017-01-01

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation, and negative impact on number of self-reported accidents/injuries. However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation, safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries. PMID:28350366

  9. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study.

    PubMed

    Zahoor, Hafiz; Chan, Albert P C; Utama, Wahyudi P; Gao, Ran; Zafar, Irfan

    2017-03-28

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation , and negative impact on number of self-reported accidents/injuries . However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation , safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.

  10. Detection and Attribution of Regional Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and oceanmore » circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.« less

  11. A global food demand model for the assessment of complex human-earth systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EDMONDS, JAMES A.; LINK, ROBERT; WALDHOFF, STEPHANIE T.

    Demand for agricultural products is an important problem in climate change economics. Food consumption will shape and shaped by climate change and emissions mitigation policies through interactions with bioenergy and afforestation, two critical issues in meeting international climate goals such as two-degrees. We develop a model of food demand for staple and nonstaple commodities that evolves with changing incomes and prices. The model addresses a long-standing issue in estimating food demands, the evolution of demand relationships across large changes in income and prices. We discuss the model, some of its properties and limitations. We estimate parameter values using pooled cross-sectional-time-seriesmore » observations and the Metropolis Monte Carlo method and cross-validate the model by estimating parameters using a subset of the observations and test its ability to project into the unused observations. Finally, we apply bias correction techniques borrowed from the climate-modeling community and report results.« less

  12. Physically-based distributed mass balance modeling of a tropical glacier: An application to backward modeling of past climate

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Winkler, M.; Kaser, G.

    2009-04-01

    The use of spatially distributed (2-D) mass balance models has increased in recent years, but mostly focuses on extratropical glacier surfaces. Here we present the first application of a process-based 2-D model to an African glacier: Kersten Glacier on Kilimanjaro. Multi-year data from an automatic weather station (AWS) at 5873 m a.s.l. (500 hPa) serve to force the model. Validation variables comprise surface temperature, surface height change, snow depth, and incoming radiation - all of which indicate a good model performance. Analyses of the interannual variability in the most significant total mass budget terms (surface accumulation, melt, and sublimation), as well as in the related energy fluxes, exhibit a strong link to atmospheric moisture of a particular year. This is because net shortwave radiation (a result of both cloudiness and surface albedo) is the most variable energy flux on monthly to annual time scales. Internal accumulation (refreezing of melt water), however, shows a time lag and is strongest after a very wet year. Due to the limited validation data at lower elevations, we also perform a detailed sensitivity study by varying 17 model parameters - which yields a total mass loss estimate of 522 +/- 105 kg/m2/year under present climate conditions. Moreover, the verified model allows us to perform backward modeling of the last maximum extent of Kersten Glacier in the 1880s, which is indicated by a well preserved terminal moraine. This step reveals decreases in precipitation (30-45%), water vapor pressure (0.1-0.3 hPa) and cloud cover (2-4 percentage units) as the most likely local climate change between late 19th century and present. Thus, the study also demonstrates how 2-D modeling can help reconstruct past climate for a remote place prior to the availability of measurements. In our case these findings have great relevance for the debate of surface versus mid-tropospheric climate change in the tropics.

  13. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism

    PubMed Central

    Gao, Ran; Chan, Albert P.C.; Utama, Wahyudi P.; Zahoor, Hafiz

    2016-01-01

    The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors’ expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers’ caring and communication (CCC) and coworkers’ role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry. PMID:27834823

  14. Multilevel Safety Climate and Safety Performance in the Construction Industry: Development and Validation of a Top-Down Mechanism.

    PubMed

    Gao, Ran; Chan, Albert P C; Utama, Wahyudi P; Zahoor, Hafiz

    2016-11-08

    The character of construction projects exposes front-line workers to dangers and accidents. Safety climate has been confirmed to be a predictor of safety performance in the construction industry. This study aims to explore the underlying mechanisms of the relationship between multilevel safety climate and safety performance. An integrated model was developed to study how particular safety climate factors of one level affect those of other levels, and then affect safety performance from the top down. A questionnaire survey was administered on six construction sites in Vietnam. A total of 1030 valid questionnaires were collected from this survey. Approximately half of the data were used to conduct exploratory factor analysis (EFA) and the remaining data were submitted to structural equation modeling (SEM). Top management commitment (TMC) and supervisors' expectation (SE) were identified as factors to represent organizational safety climate (OSC) and supervisor safety climate (SSC), respectively, and coworkers' caring and communication (CCC) and coworkers' role models (CRM) were identified as factors to denote coworker safety climate (CSC). SEM results show that OSC factor is positively related to SSC factor and CSC factors significantly. SSC factor could partially mediate the relationship between OSC factor and CSC factors, as well as the relationship between OSC factor and safety performance. CSC factors partially mediate the relationship between OSC factor and safety performance, and the relationship between SSC factor and safety performance. The findings imply that a positive safety culture should be established both at the organizational level and the group level. Efforts from all top management, supervisors, and coworkers should be provided to improve safety performance in the construction industry.

  15. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    NASA Astrophysics Data System (ADS)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise sustainable management options for given climate change scenarios with the aim to balance water availability and water use for the basin as a whole and specifically for the riparian ecology.

  16. Determing Credibility of Regional Simulations of Future Climate

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2009-12-01

    Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.

  17. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  18. Physiological time model of Scirpophaga incertulas (Lepidoptera: Pyralidae) in rice in Guandong Province, People's Republic of China.

    PubMed

    Stevenson, Douglass E; Feng, Ge; Zhang, Runjie; Harris, Marvin K

    2005-08-01

    Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) is autochthonous and monophagous on rice, Oryza spp., which favors the development of a physiological time model using degree-days (degrees C) to establish a well defined window during which adults will be present in fields. Model development of S. incertulas adult flight phenology used climatic data and historical field observations of S. incertulas from 1962 through 1988. Analysis of variance was used to evaluate 5,203 prospective models with starting dates ranging from 1 January (day 1) to 30 April (day 121) and base temperatures ranging from -3 through 18.5 degrees C. From six candidate models, which shared the lowest standard deviation of prediction error, a model with a base temperature of 10 degrees C starting on 19 January was selected for validation. Validation with linear regression evaluated the differences between predicted and observed events and showed the model consistently predicted phenological events of 10 to 90% cumulative flight activity within a 3.5-d prediction interval regarded as acceptable for pest management decision making. The degree-day phenology model developed here is expected to find field application in Guandong Province. Expansion to other areas of rice production will require field validation. We expect the degree-day characterization of the activity period will remain essentially intact, but the start day may vary based on climate and geographic location. The development and validation of the phenology model of the S. incertulas by using procedures originally developed for pecan nut casebearer, Acrobasis nuxvorella Neunzig, shows the fungibility of this approach to developing prediction models for other insects.

  19. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.

    2016-02-01

    Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.

  1. The role of observational reference data for climate downscaling: Insights from the VALUE COST Action

    NASA Astrophysics Data System (ADS)

    Kotlarski, Sven; Gutiérrez, José M.; Boberg, Fredrik; Bosshard, Thomas; Cardoso, Rita M.; Herrera, Sixto; Maraun, Douglas; Mezghani, Abdelkader; Pagé, Christian; Räty, Olle; Stepanek, Petr; Soares, Pedro M. M.; Szabo, Peter

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research (http://www.value-cost.eu). A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of downscaling methods. Such assessments can be expected to crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling, observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. We here present a comprehensive assessment of the influence of uncertainties in observational reference data and of scale-related issues on several of the above-mentioned aspects. First, temperature and precipitation characteristics as simulated by a set of reanalysis-driven EURO-CORDEX RCM experiments are validated against three different gridded reference data products, namely (1) the EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. The analysis reveals a considerable influence of the choice of the reference data on the evaluation results, especially for precipitation. It is also illustrated how differences between the reference data sets influence the ranking of RCMs according to a comprehensive set of performance measures.

  2. Climate Change in Nicaragua: a dynamical downscaling of precipitation and temperature.

    NASA Astrophysics Data System (ADS)

    Porras, Ignasi; Domingo-Dalmau, Anna; Sole, Josep Maria; Arasa, Raul; Picanyol, Miquel; Ángeles Gonzalez-Serrano, M.°; Masdeu, Marta

    2016-04-01

    Climate Change affects weather patterns and modifies meteorological extreme events like tropical cyclones, heavy rainfalls, dry events, extreme temperatures, etc. The aim of this study is to show the Climate Change projections over Nicaragua for the period 2010-2040 focused on precipitation and temperature. In order to obtain the climate change signal, the results obtained by modelling a past period (1980-2009) were compared with the ones obtained by modelling a future period (2010-2040). The modelling method was based on a dynamical downscaling, coupling global and regional models. The MPI-ESM-MR global climate model was selected due to the better performance over Nicaragua. Moreover, a detailed sensitivity analysis for different parameterizations and schemes of the Weather Research and Forecast (WRF-ARW) model was made to minimize the model uncertainty. To evaluate and validate the methodology, a comparison between model outputs and satellite measurements data was realized. The results show an expected increment of the temperature and an increment of the number of days per year with temperatures higher than 35°C. Monthly precipitation patterns will change although annual total precipitation will be similar. In addition, number of dry days are expected to increase.

  3. Unraveling past impacts of climate change and land management on historic peatland development using proxy-based reconstruction, monitoring data and process modeling.

    PubMed

    Heinemeyer, Andreas; Swindles, Graeme T

    2018-05-08

    Peatlands represent globally significant soil carbon stores that have been accumulating for millennia under water-logged conditions. However, deepening water-table depths (WTD) from climate change or human-induced drainage could stimulate decomposition resulting in peatlands turning from carbon sinks to carbon sources. Contemporary WTD ranges of testate amoebae (TA) are commonly used to predict past WTD in peatlands using quantitative transfer function models. Here we present, for the first time, a study comparing TA-based WTD reconstructions to instrumentally monitored WTD and hydrological model predictions using the MILLENNIA peatland model to examine past peatland responses to climate change and land management. Although there was very good agreement between monitored and modeled WTD, TA-reconstructed water table was consistently deeper. Predictions from a larger European TA transfer function data set were wetter, but the overall directional fit to observed WTD was better for a TA transfer function based on data from northern England. We applied a regression-based offset correction to the reconstructed WTD for the validation period (1931-2010). We then predicted WTD using available climate records as MILLENNIA model input and compared the offset-corrected TA reconstruction to MILLENNIA WTD predictions over an extended period (1750-1931) with available climate reconstructions. Although the comparison revealed striking similarities in predicted overall WTD patterns, particularly for a recent drier period (1965-1995), there were clear periods when TA-based WTD predictions underestimated (i.e. drier during 1830-1930) and overestimated (i.e. wetter during 1760-1830) past WTD compared to MILLENNIA model predictions. Importantly, simulated grouse moor management scenarios may explain the drier TA WTD predictions, resulting in considerable model predicted carbon losses and reduced methane emissions, mainly due to drainage. This study demonstrates the value of a site-specific and combined data-model validation step toward using TA-derived moisture conditions to understand past climate-driven peatland development and carbon budgets alongside modeling likely management impacts. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.

  5. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  6. Erosion of lizard diversity by climate change and altered thermal niches.

    PubMed

    Sinervo, Barry; Méndez-de-la-Cruz, Fausto; Miles, Donald B; Heulin, Benoit; Bastiaans, Elizabeth; Villagrán-Santa Cruz, Maricela; Lara-Resendiz, Rafael; Martínez-Méndez, Norberto; Calderón-Espinosa, Martha Lucía; Meza-Lázaro, Rubi Nelsi; Gadsden, Héctor; Avila, Luciano Javier; Morando, Mariana; De la Riva, Ignacio J; Victoriano Sepulveda, Pedro; Rocha, Carlos Frederico Duarte; Ibargüengoytía, Nora; Aguilar Puntriano, César; Massot, Manuel; Lepetz, Virginie; Oksanen, Tuula A; Chapple, David G; Bauer, Aaron M; Branch, William R; Clobert, Jean; Sites, Jack W

    2010-05-14

    It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce. Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local populations have gone extinct. We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide. Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20%. Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.

  7. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    PubMed

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Calculating distributed glacier mass balance for the Swiss Alps from RCM output: Development and testing of downscaling and validation methods

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.

    2009-04-01

    Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to model performance. The development and testing of methods to reduce regionally variable biases in entire fields of RCM output should be a focus of pursuing studies.

  9. Validating predictions from climate envelope models

    USGS Publications Warehouse

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  10. Organizational climate, occupational stress, and employee mental health: mediating effects of organizational efficiency.

    PubMed

    Arnetz, Bengt B; Lucas, Todd; Arnetz, Judith E

    2011-01-01

    To determine whether the relationship between organizational climate and employee mental health is consistent (ie, invariant) or differs across four large hospitals, and whether organizational efficiency mediates this relationship. Participants (total N = 5316) completed validated measures of organizational climate variables (social climate, participatory management, goal clarity, and performance feedback), organizational efficiency, occupational stress, and mental health. Path analysis best supported a model in which organizational efficiency partially mediated relationships between organizational climate, occupational stress, and mental health. Focusing on improving both the psychosocial work environment and organizational efficiency might contribute to decreased employee stress, improved mental well-being, and organizational performance.

  11. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less

  12. Pinatubo global cooling on target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1993-01-29

    When Pinatubo blasted millions of tons of debris into the stratosphere in June 1991, Hansen of NASA's Goddard Institute for Space Studies used his computer climate model to predict that the shade cost by the debris would cool the globe by about half a degree C. Year end temperature reports for 1992 are now showing that the prediction was on target-confirming the tentative belief that volcanos can temporarily cool the climate and validating at least one component of the computer models predicting a greenhouse warming.

  13. High resolution regional climate simulation of the Hawaiian Islands - Validation of the historical run from 2003 to 2012

    NASA Astrophysics Data System (ADS)

    Xue, L.; Newman, A. J.; Ikeda, K.; Rasmussen, R.; Clark, M. P.; Monaghan, A. J.

    2016-12-01

    A high-resolution (a 1.5 km grid spacing domain nested within a 4.5 km grid spacing domain) 10-year regional climate simulation over the entire Hawaiian archipelago is being conducted at the National Center for Atmospheric Research (NCAR) using the Weather Research and Forecasting (WRF) model version 3.7.1. Numerical sensitivity simulations of the Hawaiian Rainband Project (HaRP, a filed experiment from July to August in 1990) showed that the simulated precipitation properties are sensitive to initial and lateral boundary conditions, sea surface temperature (SST), land surface models, vertical resolution and cloud droplet concentration. The validations of model simulated statistics of the trade wind inversion, temperature, wind field, cloud cover, and precipitation over the islands against various observations from soundings, satellites, weather stations and rain gauges during the period from 2003 to 2012 will be presented at the meeting.

  14. Sharing the Data along with the Responsibility: Examining an Analytic Scale-Based Model for Assessing School Climate.

    ERIC Educational Resources Information Center

    Shindler, John; Taylor, Clint; Cadenas, Herminia; Jones, Albert

    This study was a pilot effort to examine the efficacy of an analytic trait scale school climate assessment instrument and democratic change system in two urban high schools. Pilot study results indicate that the instrument shows promising soundness in that it exhibited high levels of validity and reliability. In addition, the analytic trait format…

  15. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological stations. The proposed model will be validated by using the (National Centers for Environmental Prediction / National Center for Atmospheric Research) NCEP/NCAR predictors for the period of 1960-1990 and validated for 1990-2000. To investigate the efficiency of the proposed model, it will be compared with the multivariate multiple regression model and with dynamical downscaling climate models by using different climate indices that describe the frequency, intensity and duration of the variables of interest. KEY WORDS: Climate change, Copula, Monsoon, Quantile regression, Spatio-temporal distribution.

  16. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico.

    PubMed

    Johansson, Michael A; Reich, Nicholas G; Hota, Aditi; Brownstein, John S; Santillana, Mauricio

    2016-09-26

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.

  17. Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico

    PubMed Central

    Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio

    2016-01-01

    Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model. PMID:27665707

  18. On the dangers of model complexity without ecological justification in species distribution modeling

    Treesearch

    David M. Bell; Daniel R. Schlaepfer

    2016-01-01

    Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...

  19. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  20. Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study

    NASA Astrophysics Data System (ADS)

    Ferrarini, Alessandro; Alsafran, Mohammed H. S. A.; Dai, Junhu; Alatalo, Juha M.

    2018-04-01

    Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.

  1. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J.; Puttagunta, S.

    This study was intended to validate actual performance of three ZERHs in the Northeast to energy models created in REM/Rate v14.5 (one of the certified software programs used to generate a HERS Index) and the National Renewable Energy Laboratory’s Building Energy Optimization (BEopt™) v2.3 E+ (a more sophisticated hourly energy simulation software). This report details the validation methods used to analyze energy consumption at each home.

  2. Projected Changes to Streamflow Characteristics in Quebec Basins as Simulated by the Canadian Regional Climate Model (CRCM4)

    NASA Astrophysics Data System (ADS)

    Huziy, O.; Sushama, L.; Khaliq, M.; Lehner, B.; Laprise, R.; Roy, R.

    2011-12-01

    According to the Intergovernmental Panel on Climate Change (IPCC, 2007), an intensification of the global hydrological cycle and increase in precipitation for some regions around the world, including the northern mid- to high-latitudes, is expected in future climate. This will have an impact on mean and extreme flow characteristics, which need to be assessed for better development of adaptation strategies. Analysis of the mean and extreme streamflow characteristics for Quebec (North-eastern Canada) basins in current climate and their projected changes in future climate are assessed using a 10 member ensemble of current (1970 - 1999) and future (2041 - 2070) Canadian RCM (CRCM4) simulations. Validation of streamflow characteristics, performed by comparing modeled values with those observed, available from the Centre d'expertise hydrique du Quebec (CEHQ) shows that the model captures reasonably well the high flows. Results suggest increase in mean and 10 year return levels of 1 day high flows, which appear significant for most of the northern basins.

  3. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  4. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    NASA Astrophysics Data System (ADS)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  5. NASA Downscaling Project: Final Report

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA - 2 reanalyses were used to drive the NU - WRF regional climate model and a GEOS - 5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000 - 2010. The results of these experiments were compared to observational datasets to evaluate the output.

  6. NASA Downscaling Project

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA-2 reanalyses were used to drive the NU-WRF regional climate model and a GEOS-5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000-2010. The results of these experiments were compared to observational datasets to evaluate the output.

  7. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  8. Simulation of Drought-induced Tree Mortality Using a New Individual and Hydraulic Trait-based Model (S-TEDy)

    NASA Astrophysics Data System (ADS)

    Sinha, T.; Gangodagamage, C.; Ale, S.; Frazier, A. G.; Giambelluca, T. W.; Kumagai, T.; Nakai, T.; Sato, H.

    2017-12-01

    Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.

  9. Climate controls the distribution of a widespread invasive species: Implications for future range expansion

    USGS Publications Warehouse

    McDowell, W.G.; Benson, A.J.; Byers, J.E.

    2014-01-01

    1. Two dominant drivers of species distributions are climate and habitat, both of which are changing rapidly. Understanding the relative importance of variables that can control distributions is critical, especially for invasive species that may spread rapidly and have strong effects on ecosystems. 2. Here, we examine the relative importance of climate and habitat variables in controlling the distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future distribution under a suite of climate scenarios using logistic regression and maximum entropy modelling (MaxEnt). 3. Logistic regression identified climate variables as more important than habitat variables in controlling Corbicula distribution. MaxEnt modelling predicted Corbicula's range expansion westward and northward to occupy half of the contiguous United States. By 2080, Corbicula's potential range will expand 25–32%, with more than half of the continental United States being climatically suitable. 4. Our combination of multiple approaches has revealed the importance of climate over habitat in controlling Corbicula's distribution and validates the climate-only MaxEnt model, which can readily examine the consequences of future climate projections. 5. Given the strong influence of climate variables on Corbicula's distribution, as well as Corbicula's ability to disperse quickly and over long distances, Corbicula is poised to expand into New England and the northern Midwest of the United States. Thus, the direct effects of climate change will probably be compounded by the addition of Corbicula and its own influences on ecosystem function.

  10. MALIBU: A High Spatial Resolution Multi-Angle Imaging Unmanned Airborne System to Validate Satellite-derived BRDF/Albedo Products

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Pahlevan, N.; Stachura, M.; McCorkel, J.; Bland, G.; Schaaf, C.

    2016-12-01

    Albedo is a key climate forcing variable that governs the absorption of incoming solar radiation and its ultimate transfer to the atmosphere. Albedo contributes significant uncertainties in the simulation of climate changes; and as such, it is defined by the Global Climate Observing System (GCOS) as a terrestrial essential climate variable (ECV) required by global and regional climate and biogeochemical models. NASA's Goddard Space Flight Center's Multi AngLe Imaging Bidirectional Reflectance Distribution Function small-UAS (MALIBU) is part of a series of pathfinder missions to develop enhanced multi-angular remote sensing techniques using small Unmanned Aircraft Systems (sUAS). The MALIBU instrument package includes two multispectral imagers oriented at two different viewing geometries (i.e., port and starboard sides) capture vegetation optical properties and structural characteristics. This is achieved by analyzing the surface reflectance anisotropy signal (i.e., BRDF shape) obtained from the combination of surface reflectance from different view-illumination angles and spectral channels. Satellite measures of surface albedo from MODIS, VIIRS, and Landsat have been evaluated by comparison with spatially representative albedometer data from sparsely distributed flux towers at fixed heights. However, the mismatch between the footprint of ground measurements and the satellite footprint challenges efforts at validation, especially for heterogeneous landscapes. The BRDF (Bidirectional Reflectance Distribution Function) models of surface anisotropy have only been evaluated with airborne BRDF data over a very few locations. The MALIBU platform that acquires extremely high resolution sub-meter measures of surface anisotropy and surface albedo, can thus serve as an important source of reference data to enable global land product validation efforts, and resolve the errors and uncertainties in the various existing products generated by NASA and its national and international partners.

  11. Effects of different representations of transport in the new EMAC-SWIFT chemistry climate model

    NASA Astrophysics Data System (ADS)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Kreyling, Daniel; Rex, Markus

    2017-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Interactively coupled chemistry climate models (CCMs) provide a means to realistically simulate the interaction between atmospheric chemistry and dynamics. The calculation of chemistry in CCMs, however, is computationally expensive which renders the use of complex chemistry models not suitable for ensemble simulations or simulations with multiple climate change scenarios. In these simulations ozone is therefore usually prescribed as a climatological field or included by incorporating a fast linear ozone scheme into the model. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. An alternative approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. When using SWIFT in EMAC, there are several possibilities to represent the effect of transport inside the polar vortex: the semi-Lagrangian transport scheme of EMAC and a transport parameterisation that can be useful when using SWIFT in models not having transport of their own. Here, we present results of equivalent simulations with different handling of transport, compare with EMAC simulations with full interactive chemistry and evaluate the results with observations.

  12. Integrated assessment of water-power grid systems under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  13. High-resolution dynamic downscaling of CMIP5 output over the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas; Andrade, Marcos; Ohara, Noriaki

    2015-04-01

    Our project is targeted towards making robust predictions of future changes in climate over the tropical part of the South American Andes. This goal is challenging, since tropical lowlands, steep mountains, and snow covered subarctic surfaces meet over relatively short distances, leading to distinct climate regimes within the same domain and pronounced spatial gradients in virtually every climate quantity. We use an innovative approach to solve this problem, including several quadruple nested versions of WRF, a systematic validation strategy to find the version of WRF that best fits our study region, spatial resolutions at the kilometer scale, 20-year-long simulation periods, and bias-corrected output from various CMIP5 simulations that also include the multi-model mean of all CMIP5 models. We show that the simulated changes in climate are consistent with the results from the global climate models and also consistent with two different versions of WRF. We also discuss the expected changes in snow and ice, derived from off-line coupling the regional simulations to a carefully calibrated snow and ice model.

  14. Effect of climate change on the irrigation and discharge scheme for winter wheat in Huaibei Plain, China

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Ren, L.; Lü, H.

    2017-12-01

    On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.

  15. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis.

    PubMed Central

    Tong, S; Hu, W

    2001-01-01

    In this study we assessed the impact of climate variability on the Ross River virus (RRv) transmission and validated an epidemic-forecasting model in Cairns, Australia. Data on the RRv cases recorded between 1985 and 1996 were obtained from the Queensland Department of Health. Climate and population data were supplied by the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. The cross-correlation function (CCF) showed that maximum temperature in the current month and rainfall and relative humidity at a lag of 2 months were positively and significantly associated with the monthly incidence of RRv, whereas relative humidity at a lag of 5 months was inversely associated with the RRv transmission. We developed autoregressive integrated moving average (ARIMA) models on the data collected between 1985 to 1994, and then validated the models using the data collected between 1995 and 1996. The results show that the relative humidity at a lag of 5 months (p < 0.001) and the rainfall at a lag of 2 months (p < 0.05) appeared to play significant roles in the transmission of RRv disease in Cairns. Furthermore, the regressive forecast curves were consistent with the pattern of actual values. PMID:11748035

  16. Future credible precipitation occurrences in Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeele, W.V.

    1980-09-01

    I have studied many factors thought to have influenced past climatic change. Because they might recur, they are possible suspects for future climatic alterations. Most of these factors are totally unpredictable; therefore, they cast a shadow on the validity of derived climatic predictions. Changes in atmospheric conditions and in continental surfaces, variations in solar radiation, and in the earth's orbit around the sun are among the influential mechanisms investigated. Even when models are set up that include the above parameters, their reliability will depend on unpredictable variables totally alien to the model (like volcanic eruptions). Based on climatic records, however,more » maximum precipitation amounts have been calculated for different probability levels. These seem to correspond well to past precipitation occurrences, derived from tree ring indices. The link between tree ring indices and local climate has been established through regression analysis.« less

  17. Regional climate simulations with COSMO-CLM over MENA-CORDEX domain

    NASA Astrophysics Data System (ADS)

    Galluccio, Salvatore; Bucchignani, Edoardo; Mercogliano, Paola; Montesarchio, Myriam

    2014-05-01

    In the frame of WCRP Coordinated Regional Downscaling Experiment (CORDEX), a set of common Regional Climate Downscaling (RCD) domains has been defined, as a prerequisite for the development of model evaluation and climate projection frameworks. CORDEX domains encompass the majority of land areas of the world. In this work, climate simulations have been performed over MENA-CORDEX domain, which includes North-Africa, southern Europe and the whole Arabian peninsula. The non-hydrostatic regional climate model COSMO-CLM has been used. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A series of simulations has been conducted over the MENA-CORDEX area at spatial resolution of 0.44°. A sensitivity analysis was conducted to adjust the model configuration to better reproduce the observed climate data. The numerical simulations were driven by ERA-Interim reanalysis (horizontal resolution of 0.703°) for the period 1979-1984; the first year, was considered as a spin up period. The validation was performed by using several data sets: CRU data set was used to validate temperature, precipitation and cloud cover; MERRA data set was used to validate temperature and precipitation and GPCP for precipitation. The model sensitivity to the external parameters was tested considering two different configurations for the surface albedo. In the first one, albedo is only function of soil-type whereas in the second configuration it is prescribed by two external fields for dry and saturated soil based on MODIS data. Moreover, we tested two aerosol distributions as well, namely the default Tanre aerosol distribution and aerosol maps according to Tegen (NASA/GISS). We found, as expected, a significant sensitivity, in particular on the African region. We also varied tuning and physical parameters, such as the scaling factor for the thickness of the laminar boundary layer for heat, which defines the layer with non-turbulent characteristics, mean entrainment rate for shallow convection, cloud ice threshold for autoconversion, radiation and clouds. We choose such parameters following several literature works, which showed that these parameters mostly affect the fields simulated by the model. However, it is known that the sensitivity of a RCM with respect to parameter variations depends, in general, on the model domain, the temporal and spatial scales and the model variables considered. We made a first set of simulations varying one parameter at a time, using Taylor's diagrams, as well as seasonal cycles and bias maps to take tracking changes in the model performance. Successively, we run a second set of simulations in which we varied two or three parameters at a time to get an optimal configuration. The selected configuration is being used to carry out simulations on a 30-years past period, starting from 1979, for three horizontal resolutions, namely 0.44°, 0.22° and 0.11°.

  18. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation

    USDA-ARS?s Scientific Manuscript database

    We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5o scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventor...

  19. Glacier melt buffers river runoff in the Pamir Mountains

    NASA Astrophysics Data System (ADS)

    Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Knoche, Malte

    2017-03-01

    Newly developed approaches based on satellite altimetry and gravity measurements provide promising results on glacier dynamics in the Pamir-Himalaya but cannot resolve short-term natural variability at regional and finer scale. We contribute to the ongoing debate by upscaling a hydrological model that we calibrated for the central Pamir. The model resolves the spatiotemporal variability in runoff over the entire catchment domain with high efficiency. We provide relevant information about individual components of the hydrological cycle and quantify short-term hydrological variability. For validation, we compare the modeled total water storages (TWS) with GRACE (Gravity Recovery and Climate Experiment) data with a very good agreement where GRACE uncertainties are low. The approach exemplifies the potential of GRACE for validating even regional scale hydrological applications in remote and hard to access mountain regions. We use modeled time series of individual hydrological components to characterize the effect of climate variability on the hydrological cycle. We demonstrate that glaciers play a twofold role by providing roughly 35% of the annual runoff of the Panj River basin and by effectively buffering runoff both during very wet and very dry years. The modeled glacier mass balance (GMB) of -0.52 m w.e. yr-1 (2002-2013) for the entire catchment suggests significant reduction of most Pamiri glaciers by the end of this century. The loss of glaciers and their buffer functionality in wet and dry years could not only result in reduced water availability and increase the regional instability, but also increase flood and drought hazards.Plain Language SummaryGlaciers store large amounts of water in the form of ice. They grow and shrink dominantly in response to climatic conditions. In Central Asia, where rivers originate in the high mountains, glaciers are an important source for sustainable water availability. Thus, understanding the link between climate, hydrology, and glacier evolution is fundamental. Some instruments mounted on satellites are capable of monitoring glaciers. However, the potential of these sensors is limited by technical constraints that will affect the availability and precision of the products. In order to overcome these shortcomings and investigate glacier dynamics, we use a numerical model that represents the relevant processes of the hydrological cycle with a very fine spatial and temporal resolution. We validate model results with snow cover observations and measurements of the total amount of water stored in the region. We demonstrate that this approach is valid and could facilitate studies in other cold climate regions. Our results show that glaciers buffer extreme weather conditions to provide sustainable river flow. This functionality is put in jeopardy due to the currently observed glacier retreat, in the Pamir Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930015733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930015733"><span>World Ocean Circulation Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clarke, R. Allyn</p> <p>1992-01-01</p> <p>The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192642','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192642"><span>Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tipton, John; Hooten, Mevin B.; Goring, Simon</p> <p>2017-01-01</p> <p>Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at historical United States military forts and other observer stations from 1820 to 1894. One common method for reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting for measurement error in the observational data. Next, we extend our method to better accommodate outliers that occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computationally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring rules including a computationally efficient approximation to leave-one-out cross-validation using the log score to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal temperature from a very sparse historical record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC43C1046B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC43C1046B"><span>A network-base analysis of CMIP5 "historical" experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bracco, A.; Foudalis, I.; Dovrolis, C.</p> <p>2012-12-01</p> <p>In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC33B1227B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC33B1227B"><span>A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonetti, F.; McInnes, C. R.</p> <p>2016-12-01</p> <p>Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.1223J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.1223J"><span>Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao</p> <p>2016-02-01</p> <p>Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950032432&hterms=regional+impacts+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dregional%2Bimpacts%2Bclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950032432&hterms=regional+impacts+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dregional%2Bimpacts%2Bclimate%2Bchange"><span>Regional climates in the GISS general circulation model: Surface air temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hewitson, Bruce</p> <p>1994-01-01</p> <p>One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007HESS...11.1175K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007HESS...11.1175K"><span>Hydrological impacts of climate change on the Tejo and Guadiana Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilsby, C. G.; Tellier, S. S.; Fowler, H. J.; Howels, T. R.</p> <p>2007-05-01</p> <p>A distributed daily rainfall runoff model is applied to the Tejo and Guadiana river basins in Spain and Portugal to simulate the effects of climate change on runoff production, river flows and water resource availability with results aggregated to the monthly level. The model is calibrated, validated and then used for a series of climate change impact assessments for the period 2070 2100. Future scenarios are derived from the HadRM3H regional climate model (RCM) using two techniques: firstly a bias-corrected RCM output, with monthly mean correction factors calculated from observed rainfall records; and, secondly, a circulation-pattern-based stochastic rainfall model. Major reductions in rainfall and streamflow are projected throughout the year; these results differ from those for previous studies where winter increases are projected. Despite uncertainties in the representation of heavily managed river systems, the projected impacts are serious and pose major threats to the maintenance of bipartite water treaties between Spain and Portugal and the supply of water to urban and rural regions of Portugal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC13D1178Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC13D1178Z"><span>Biases in simulation of the rice phenology models when applied in warmer climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, T.; Li, T.; Yang, X.; Simelton, E.</p> <p>2015-12-01</p> <p>The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A53G..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A53G..04S"><span>The ESA DUE GlobVapour Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schröder, M.; ESA Due Globvapour Project Team</p> <p>2010-12-01</p> <p>The European Space Agency (ESA) Data User Element (DUE) project series aims at bridging the gap between research projects and the sustainable provision of Earth Observation (EO) climate data products at an information level that fully responds to the operational needs of user communities. The ultimate objective of GlobVapour is to provide long-term coherent water vapour data sets exploiting the synergistic capabilities of different EO missions aiming at improved accuracies and enhanced temporal and spatial sampling better than those provided by the single sources. The project seeks to utilize the increasing potential of the synergistic capabilities of past, existing and upcoming satellite missions (ERS-1 and -2, ENVISAT, METOP, MSG as well as relevant non-European missions and in-situ data) in order to meet the increasing needs for coherent long-term water vapour datasets required by the scientific community. GlobVapour develops, validates and applies novel water vapour climate data sets derived from various sensors. More specifically, the primary objectives of the GlobVapour project are: 1)The development of multi-annual global water vapour data sets inclusive of error estimates based on carefully calibrated and inter-calibrated radiances. 2)The validation of the water vapour products against ground based, airborne and other satellite based measurements. 3) The provision of an assessment of the quality of different IASI water vapour profile algorithms developed by the project partners and other groups. 4) The provision of a complete processing system that can further strengthen operational production of the developed products. 5) A demonstration of the use of the products in the field of climate modelling, including applying alternative ways of climate model validation using forward radiation operators. 6) The promotion of the strategy of data set construction and the data sets themselves to the global research and operational community. The ultimate goal of the DUE GlobVapour project is the preparation of recognised data sets and successful concepts that can be used to ensure a sustainable provision of such data from operational entities such as the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility (SAF) network. Key scientific questions which GlobVapour data can contribute to are climate monitoring and attribution, assimilation of different water vapour datasets to form a consistent analysis, model process studies, evaluation of in-situ water vapour measurements, validation of climate models and reanalyses, assessing the relationship between water vapour and dynamics, research and development for operational applications and input to atmospheric reanalyses. This presentation will introduce the GlobVapour project and concept as well as the products which are the global total column water vapour (TCWV) time series from a combination of MERIS and SSM/I as well as TCWV data sets derived from the GOME/SCIAMACHY/GOME-2 and the (A)ATSR instruments. A shorter time series of water vapour profiles will be derived from a combination of IASI and SEVIRI. The retrieval and combination methods as well as first validation results will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H34D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H34D..01S"><span>A Multiscale Simulation Framework to Investigate Hydrobiogeochemical Processes in the Groundwater-Surface Water Interaction Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheibe, T. D.; Yang, X.; Song, X.; Chen, X.; Hammond, G. E.; Song, H. S.; Hou, Z.; Murray, C. J.; Tartakovsky, A. M.; Tartakovsky, G.; Yang, X.; Zachara, J. M.</p> <p>2016-12-01</p> <p>Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1616..187F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1616..187F"><span>Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernández, Eduardo F.; Almonacid, Florencia; Sarmah, Nabin; Mallick, Tapas; Sanchez, Iñigo; Cuadra, Juan M.; Soria-Moya, Alberto; Pérez-Higueras, Pedro</p> <p>2014-09-01</p> <p>A model based on easily obtained atmospheric parameters and on a simple lineal mathematical expression has been developed at the Centre of Advanced Studies in Energy and Environment in southern Spain. The model predicts the maximum power of a HCPV module as a function of direct normal irradiance, air temperature and air mass. Presently, the proposed model has only been validated in southern Spain and its performance in locations with different atmospheric conditions still remains unknown. In order to address this issue, several HCPV modules have been measured in two different locations with different climate conditions than the south of Spain: the Environment and Sustainability Institute in southern UK and the National Renewable Energy Center in northern Spain. Results show that the model has an adequate match between actual and estimated data with a RMSE lower than 3.9% at locations with different climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJBm...55..435G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJBm...55..435G"><span>Climate-based models for West Nile Culex mosquito vectors in the Northeastern US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.</p> <p>2011-05-01</p> <p>Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A23I3361C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A23I3361C"><span>Scientific Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandra, C. V.; Reising, S. C.; Kummerow, C. D.; van den Heever, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Haddad, Z. S.; Koch, T.; Berg, G.; L'Ecuyer, T.; Munchak, S. J.; Luo, Z. J.; Boukabara, S. A.; Ruf, C. S.</p> <p>2014-12-01</p> <p>Over the past decade and a half, we have gained a better understanding of the role of clouds and precipitation on Earth's water cycle, energy budget and climate, from focused Earth science observational satellite missions. However, these missions provide only a snapshot at one point in time of the cloud's development. Processes that govern cloud system development occur primarily on time scales of the order of 5-30 minutes that are generally not observable from low Earth orbiting satellites. Geostationary satellites, in contrast, have higher temporal resolution but at present are limited to visible and infrared wavelengths that observe only the tops of clouds. This observing gap was noted by the National Research Council's Earth Science Decadal Survey in 2007. Uncertainties in global climate models are significantly affected by processes that govern the formation and dissipation of clouds that largely control the global water and energy budgets. Current uncertainties in cloud parameterization within climate models lead to drastically different climate outcomes. With all evidence suggesting that the precipitation onset may be governed by factors such atmospheric stability, it becomes critical to have at least first-order observations globally in diverse climate regimes. Similar arguments are valid for ice processes where more efficient ice formation and precipitation have a tendency to leave fewer ice clouds behind that have different but equally important impacts on the Earth's energy budget and resulting temperature trends. TEMPEST is a unique program that will provide a small constellation of inexpensive CubeSats with millimeter-wave radiometers to address key science needs related to cloud and precipitation processes. Because these processes are most critical in the development of climate models that will soon run at scales that explicitly resolve clouds, the TEMPEST program will directly focus on examining, validating and improving the parameterizations currently used in cloud scale models. The time evolution of cloud and precipitation microphysics is dependent upon parameterized process rates. The outcome of TEMPEST will provide a first-order understanding of how individual assumptions in current cloud model parameterizations behave in diverse climate regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B53B1168W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B53B1168W"><span>The Use of a Mesoscale Climate Model to Validate the Nocturnal Carbon Flux over a Forested Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Werth, D.; Parker, M.; Kurzeja, R.; Leclerc, M.; Watson, T.</p> <p>2007-12-01</p> <p>The Savannah River National Laboratory is initiating a comprehensive carbon dioxide monitoring and modeling program in collaboration with the University of Georgia and the Brookhaven National Laboratory. One of the primary goals is to study the dynamics of carbon dioxide in the stable nocturnal boundary layer (NBL) over a forested area of the Savannah River Site in southwest South Carolina. In the nocturnal boundary layer (NBL), eddy flux correlation is less effective in determining the release of CO2 due to respiration. Theoretically, however, the flux can be inferred by measuring the build up of CO2 in the stable layer throughout the night. This method of monitoring the flux will be validated and studied in more detail with both observations and the results of a high-resolution regional climate model. The experiment will involve two phases. First, an artificial tracer will be released into the forest boundary layer and observed through an array of sensors and at a flux tower. The event will be simulated with the RAMS climate model run at very high resolution. Ideally, the tracer will remain trapped within the stable layer and accumulate at rates which will allow us to infer the release rate, and this should compare well to the actual release rate. If an unknown mechanism allows the tracer to escape, the model simulation would be used to reveal it. In the second phase, carbon fluxes will be measured overnight through accumulation in the overlying layer. The RAMS model will be coupled with the SiB carbon model to simulate the nocturnal cycle of carbon dynamics, and this will be compared to the data collected during the night. As with the tracer study, the NBL method of flux measurement will be validated against the model. The RAMS-SiB coupled model has been run over the SRS at high-resolution to simulate the NBL, and results from simulations of both phases of the project will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28750284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28750284"><span>Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio</p> <p>2017-11-01</p> <p>The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H31J..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H31J..03H"><span>Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, M.</p> <p>2016-12-01</p> <p>Earth System models (ESMs) are effective tools for investigating the water-energy-food system interactions under climate change. In this presentation, I will introduce research efforts at the Pacific Northwest National Laboratory towards quantifying impacts of LULCC on the water-energy-food nexus in a changing climate using an integrated regional Earth system modeling framework: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Two studies will be discussed to showcase the capability of PRIMA: (1) quantifying changes in terrestrial hydrology over the Conterminous US (CONUS) from 2005 to 2095 using the Community Land Model (CLM) driven by high-resolution downscaled climate and land cover products from PRIMA, which was designed for assessing the impacts of and potential responses to climate and anthropogenic changes at regional scales; (2) applying CLM over the CONUS to provide the first county-scale model validation in simulating crop yields and assessing associated impacts on the water and energy budgets using CLM. The studies demonstrate the benefits of incorporating and coupling human activities into complex ESMs, and critical needs to account for the biogeophysical and biogeochemical effects of LULCC in climate impacts studies, and in designing mitigation and adaptation strategies at a scale meaningful for decision-making. Future directions in quantifying LULCC impacts on the water-energy-food nexus under a changing climate, as well as feedbacks among climate, energy production and consumption, and natural/managed ecosystems using an Integrated Multi-scale, Multi-sector Modeling framework will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1276808','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1276808"><span>Validating a work group climate assessment tool for improving the performance of public health organizations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Perry, Cary; LeMay, Nancy; Rodway, Greg; Tracy, Allison; Galer, Joan</p> <p>2005-01-01</p> <p>Background This article describes the validation of an instrument to measure work group climate in public health organizations in developing countries. The instrument, the Work Group Climate Assessment Tool (WCA), was applied in Brazil, Mozambique, and Guinea to assess the intermediate outcomes of a program to develop leadership for performance improvement. Data were collected from 305 individuals in 42 work groups, who completed a self-administered questionnaire. Methods The WCA was initially validated using Cronbach's alpha reliability coefficient and exploratory factor analysis. This article presents the results of a second validation study to refine the initial analyses to account for nested data, to provide item-level psychometrics, and to establish construct validity. Analyses included eigenvalue decomposition analysis, confirmatory factor analysis, and validity and reliability analyses. Results This study confirmed the validity and reliability of the WCA across work groups with different demographic characteristics (gender, education, management level, and geographical location). The study showed that there is agreement between the theoretical construct of work climate and the items in the WCA tool across different populations. The WCA captures a single perception of climate rather than individual sub-scales of clarity, support, and challenge. Conclusion The WCA is useful for comparing the climates of different work groups, tracking the changes in climate in a single work group over time, or examining differences among individuals' perceptions of their work group climate. Application of the WCA before and after a leadership development process can help work groups hold a discussion about current climate and select a target for improvement. The WCA provides work groups with a tool to take ownership of their own group climate through a process that is simple and objective and that protects individual confidentiality. PMID:16223447</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSM.B13A..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSM.B13A..01J"><span>Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ju, W.; Chen, J.; Liu, J.; Chen, B.</p> <p>2004-05-01</p> <p>Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool years. Interannual variability of heterotrophic respiration, however, is strongly related to precipitation. The soil releases more CO2 in wet years than in dry years. Warm and relatively dry climate enhances the C uptake in this forest stand. Compared with SOA, a temperate deciduous forest in the southern part of the temperate deciduous forest biome in eastern United States responds to climate variability differently. High temperature and low precipitation in the growing season reduces NPP and consequently NEP (Net Ecosystem Productivity). In warm years, the Southern Old Jack Pine forest uptakes less C than in cool years. The modeled heterotrophic respiration and NEP are very sensitive to soil moisture and the empirical equation used to describe the effect of soil moisture on decomposition. This suggests that hydrological modelling is critical in C budget estimation. Next step, this model will be validated against more tower data and used for upscaling from site to region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25316460','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25316460"><span>Validation of the Hospital Ethical Climate Survey for older people care.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suhonen, Riitta; Stolt, Minna; Katajisto, Jouko; Charalambous, Andreas; Olson, Linda L</p> <p>2015-08-01</p> <p>The exploration of the ethical climate in the care settings for older people is highlighted in the literature, and it has been associated with various aspects of clinical practice and nurses' jobs. However, ethical climate is seldom studied in the older people care context. Valid, reliable, feasible measures are needed for the measurement of ethical climate. This study aimed to test the reliability, validity, and sensitivity of the Hospital Ethical Climate Survey in healthcare settings for older people. A non-experimental cross-sectional study design was employed, and a survey using questionnaires, including the Hospital Ethical Climate Survey was used for data collection. Data were analyzed using descriptive statistics, inferential statistics, and multivariable methods. Survey data were collected from a sample of nurses working in the care settings for older people in Finland (N = 1513, n = 874, response rate = 58%) in 2011. This study was conducted according to good scientific inquiry guidelines, and ethical approval was obtained from the university ethics committee. The mean score for the Hospital Ethical Climate Survey total was 3.85 (standard deviation = 0.56). Cronbach's alpha was 0.92. Principal component analysis provided evidence for factorial validity. LISREL provided evidence for construct validity based on goodness-of-fit statistics. Pearson's correlations of 0.68-0.90 were found between the sub-scales and the Hospital Ethical Climate Survey. The Hospital Ethical Climate Survey was found able to reveal discrimination across care settings and proved to be a valid and reliable tool for measuring ethical climate in care settings for older people and sensitive enough to reveal variations across various clinical settings. The Finnish version of the Hospital Ethical Climate Survey, used mainly in the hospital settings previously, proved to be a valid instrument to be used in the care settings for older people. Further studies are due to analyze the factor structure and some items of the Hospital Ethical Climate Survey. © The Author(s) 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900062914&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deffect%2Bglobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900062914&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deffect%2Bglobal%2Bwarming"><span>The ice-core record - Climate sensitivity and future greenhouse warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.</p> <p>1990-01-01</p> <p>The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN41A1391Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN41A1391Y"><span>A Computing Infrastructure for Supporting Climate Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, C.; Bambacus, M.; Freeman, S. M.; Huang, Q.; Li, J.; Sun, M.; Xu, C.; Wojcik, G. S.; Cahalan, R. F.; NASA Climate @ Home Project Team</p> <p>2011-12-01</p> <p>Climate change is one of the major challenges facing us on the Earth planet in the 21st century. Scientists build many models to simulate the past and predict the climate change for the next decades or century. Most of the models are at a low resolution with some targeting high resolution in linkage to practical climate change preparedness. To calibrate and validate the models, millions of model runs are needed to find the best simulation and configuration. This paper introduces the NASA effort on Climate@Home project to build a supercomputer based-on advanced computing technologies, such as cloud computing, grid computing, and others. Climate@Home computing infrastructure includes several aspects: 1) a cloud computing platform is utilized to manage the potential spike access to the centralized components, such as grid computing server for dispatching and collecting models runs results; 2) a grid computing engine is developed based on MapReduce to dispatch models, model configuration, and collect simulation results and contributing statistics; 3) a portal serves as the entry point for the project to provide the management, sharing, and data exploration for end users; 4) scientists can access customized tools to configure model runs and visualize model results; 5) the public can access twitter and facebook to get the latest about the project. This paper will introduce the latest progress of the project and demonstrate the operational system during the AGU fall meeting. It will also discuss how this technology can become a trailblazer for other climate studies and relevant sciences. It will share how the challenges in computation and software integration were solved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29258039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29258039"><span>Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geletič, Jan; Lehnert, Michal; Savić, Stevan; Milošević, Dragan</p> <p>2018-05-15</p> <p>This study uses the MUKLIMO_3 urban climate model (in German, Mikroskaliges Urbanes KLImaMOdell in 3-Dimensionen) and measurements from an urban climate network in order to simulate, validate and analyse the spatiotemporal pattern of human thermal comfort outdoors in the city of Brno (Czech Republic) during a heat-wave period. HUMIDEX, a heat index designed to quantify human heat exposure, was employed to assess thermal comfort, employing air temperature and relative humidity data. The city was divided into local climate zones (LCZs) in order to access differences in intra-urban thermal comfort. Validation of the model results, based on the measurement dates within the urban monitoring network, confirmed that the MUKLIMO_3 micro-scale model had the capacity to simulate the main spatiotemporal patterns of thermal comfort in an urban area and its vicinity. The results suggested that statistically significant differences in outdoor thermal comfort exist in the majority of cases between different LCZs. The most built-up LCZ types (LCZs 2, 3, 5, 8 and 10) were disclosed as the most uncomfortable areas of the city. Hence, conditions of great discomfort (HUMIDEX >40) were recorded in these areas, mainly in the afternoon hours (from 13.00 to 18.00 CEST), while some thermal discomfort continued overnight. In contrast, HUMIDEX values in sparsely built-up LCZ 9 and non-urban LCZs were substantially lower and indicated better thermal conditions for the urban population. Interestingly, the model captured a local increase of HUMIDEX values arising out of air humidity in LCZs with the presence of more vegetation (LCZs A and B) and in the vicinity of larger bodies of water (LCZ G). Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916938O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916938O"><span>Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl</p> <p>2017-04-01</p> <p>The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5863722','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5863722"><span>A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shafapour Tehrany, Mahyat; Solhjouy-fard, Samaneh; Kumar, Lalit</p> <p>2018-01-01</p> <p>Aedes albopictus, the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion. PMID:29576954</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29576954','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29576954"><span>A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shabani, Farzin; Shafapour Tehrany, Mahyat; Solhjouy-Fard, Samaneh; Kumar, Lalit</p> <p>2018-01-01</p> <p>Aedes albopictus , the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus ? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ThApC.120...87T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ThApC.120...87T"><span>Effects of climate change on daily minimum and maximum temperatures and cloudiness in the Shikoku region: a statistical downscaling model approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tatsumi, Kenichi; Oizumi, Tsutao; Yamashiki, Yosuke</p> <p>2015-04-01</p> <p>In this study, we present a detailed analysis of the effect of changes in cloudiness (CLD) between a future period (2071-2099) and the base period (1961-1990) on daily minimum temperature (TMIN) and maximum temperature (TMAX) in the same period for the Shikoku region, Japan. This analysis was performed using climate data obtained with the use of the Statistical DownScaling Model (SDSM). We calibrated the SDSM using the National Center for Environmental Prediction (NCEP) reanalysis dataset for the SDSM input and daily time series of temperature and CLD from 10 surface data points (SDP) in Shikoku. Subsequently, we validated the SDSM outputs, specifically, TMIN, TMAX, and CLD, obtained with the use of the NCEP reanalysis dataset and general circulation model (GCM) data against the SDP. The GCM data used in the validation procedure were those from the Hadley Centre Coupled Model, version 3 (HadCM3) for the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios and from the third generation Coupled Global Climate Model (CGCM3) for the SRES A2 and A1B scenarios. Finally, the validated SDSM was run to study the effect of future changes in CLD on TMIN and TMAX. Our analysis showed that (1) the negative linear fit between changes in TMAX and those in CLD was statistically significant in winter while the relationship between the two changes was not evident in summer, (2) the dependency of future changes in TMAX and TMIN on future changes in CLD were more evident in winter than in other seasons with the present SDSM, (3) the diurnal temperature range (DTR) decreased in the southern part of Shikoku in summer in all the SDSM projections while DTR increased in the northern part of Shikoku in the same season in these projections, (4) the dependencies of changes in DTR on changes in CLD were unclear in summer and winter. Results of the SDSM simulations performed for climate change scenarios such as those from this study contribute to local-scale agricultural and hydrological simulations and development of agricultural and hydrological models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..529.1601D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..529.1601D"><span>Multi-model approach to assess the impact of climate change on runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.</p> <p>2015-10-01</p> <p>The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011351','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011351"><span>Using Paleo-climate Comparisons to Constrain Future Projections in CMIP5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, G. A.; Annan, J D.; Bartlein, P. J.; Cook, B. I.; Guilyardi, E.; Hargreaves, J. C.; Harrison, S. P.; Kageyama, M.; LeGrande, A. N..; Konecky, B.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140011351'); toggleEditAbsImage('author_20140011351_show'); toggleEditAbsImage('author_20140011351_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140011351_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140011351_hide"></p> <p>2013-01-01</p> <p>We present a description of the theoretical framework and best practice for using the paleo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to constrain future projections of climate using the same models. The constraints arise from measures of skill in hindcasting paleo-climate changes from the present over 3 periods: the Last Glacial Maximum (LGM) (21 thousand years before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (8501850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of paleo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitationtemperature or sea ice extent to indicate that models that produce the best agreement with paleoclimate information give demonstrably different future results than the rest of the models. We also find that some comparisons, for instance associated with model variability, are strongly dependent on uncertain forcing timeseries, or show time dependent behaviour, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the paleo-climate simulations to help inform the future projections and urge all the modeling groups to complete this subset of the CMIP5 runs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..438M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..438M"><span>The Mars Climate Database (MCD version 5.2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millour, E.; Forget, F.; Spiga, A.; Navarro, T.; Madeleine, J.-B.; Montabone, L.; Pottier, A.; Lefevre, F.; Montmessin, F.; Chaufray, J.-Y.; Lopez-Valverde, M. A.; Gonzalez-Galindo, F.; Lewis, S. R.; Read, P. L.; Huot, J.-P.; Desjean, M.-C.; MCD/GCM development Team</p> <p>2015-10-01</p> <p>The Mars Climate Database (MCD) is a database of meteorological fields derived from General Circulation Model (GCM) numerical simulations of the Martian atmosphere and validated using available observational data. The MCD includes complementary post-processing schemes such as high spatial resolution interpolation of environmental data and means of reconstructing the variability thereof. We have just completed (March 2015) the generation of a new version of the MCD, MCD version 5.2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51K1539W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51K1539W"><span>Modular modeling system for building distributed hydrologic models with a user-friendly software package</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wi, S.; Ray, P. A.; Brown, C.</p> <p>2015-12-01</p> <p>A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED42A..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED42A..06M"><span>A Model for Teaching a Climate Change Elective Science Course at the Community College Level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandia, S. A.</p> <p>2012-12-01</p> <p>The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=232207','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=232207"><span>Simulating Soil Organic Matter with CQESTR (v.2.0): Model Description and Validation against Long-term Experiments across North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Soil carbon (C) models are important tools for examining complex interactions between climate, crop and soil management practices, and to evaluate the long-term effects of management practices on C-storage potential in soils. CQESTR is a process-based carbon balance model that relates crop residue a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27279167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27279167"><span>Climate-driven vital rates do not always mean climate-driven population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel</p> <p>2016-12-01</p> <p>Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919551D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919551D"><span>Modelling extreme climatic events in Guadalquivir Estuary ( Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo</p> <p>2017-04-01</p> <p>Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512909W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512909W"><span>Simulated Extreme Prepitation Indices over Northeast Brasil in Current Climate and Future Scenarios RCP4.5 and RCP8.5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco</p> <p>2013-04-01</p> <p>In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends to decrease over most of NEB in the short but this trend is reverted toward the end of the century in both scenarios with a significant increase in the duration of the dry season over Northwestern and Eastern NEB (exceeding 50 days over certain areas), whereas projected CWD changes are smaller. Rx5 shows a general increasing trend especially in the long term period,under RCP8.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26173081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26173081"><span>A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A</p> <p>2015-01-01</p> <p>Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4501821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4501821"><span>A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.</p> <p>2015-01-01</p> <p>Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26259438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26259438"><span>[Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua</p> <p>2015-04-01</p> <p>SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C54A..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C54A..02P"><span>A Historical Forcing Ice Sheet Model Validation Framework for Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, S. F.; Hoffman, M. J.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Kalashnikova, I.; Neumann, T.; Nowicki, S.; Perego, M.; Salinger, A.</p> <p>2014-12-01</p> <p>We propose an ice sheet model testing and validation framework for Greenland for the years 2000 to the present. Following Perego et al. (2014), we start with a realistic ice sheet initial condition that is in quasi-equilibrium with climate forcing from the late 1990's. This initial condition is integrated forward in time while simultaneously applying (1) surface mass balance forcing (van Angelen et al., 2013) and (2) outlet glacier flux anomalies, defined using a new dataset of Greenland outlet glacier flux for the past decade (Enderlin et al., 2014). Modeled rates of mass and elevation change are compared directly to remote sensing observations obtained from GRACE and ICESat. Here, we present a detailed description of the proposed validation framework including the ice sheet model and model forcing approach, the model-to-observation comparison process, and initial results comparing model output and observations for the time period 2000-2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51E..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51E..04S"><span>Water Isotopes in the GISS GCM: History, Applications and Potential</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, G. A.; LeGrande, A. N.; Field, R. D.; Nusbaumer, J. M.</p> <p>2017-12-01</p> <p>Water isotopes have been incorporated in the GISS GCMs since the pioneering work of Jean Jouzel in the 1980s. Since 2005, this functionality has been maintained within the master branch of the development code and has been usable (and used) in all subsequent versions. This has allowed a wide variety of applications, across multiple time-scales and interests, to be tackled coherently. Water isotope tracers have been used to debug the atmospheric model code, tune parameterisations of moist processes, assess the isotopic fingerprints of multiple climate drivers, produce forward models for remotely sensed isotope products, and validate paleo-climate interpretations from the last millennium to the Eocene. We will present an overview of recent results involving isotope tracers, including improvements in models for the isotopic fractionation processes themselves, and demonstrate the potential for using these tracers and models more systematically in paleo-climate reconstructions and investigations of the modern hydrological cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29703895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29703895"><span>Limits on determining the skill of North Atlantic Ocean decadal predictions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Menary, Matthew B; Hermanson, Leon</p> <p>2018-04-27</p> <p>The northern North Atlantic is important globally both through its impact on the Atlantic Meridional Overturning Circulation (AMOC) and through widespread atmospheric teleconnections. The region has been shown to be potentially predictable a decade ahead with the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show that the prediction skill in this region is strongly dependent on the choice of reanalysis used for validation, and describe the causes. Multiannual skill in key metrics such as Labrador Sea density and the AMOC depends on more than simply the choice of the prediction model. Instead, this skill is related to the similarity between the nature of interannual density variability in the underlying climate model and the chosen reanalysis. The climate models used in these decadal predictions are also used in climate projections, which raises questions about the sensitivity of these projections to the models' innate North Atlantic density variability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJBm...61..785D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJBm...61..785D"><span>Spatio-temporal dynamic climate model for Neoleucinodes elegantalis using CLIMEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; da Silva, Ezio Marques; da Silva Galdino, Tarcisio Visintin; Picanço, Marcelo Coutinho</p> <p>2017-05-01</p> <p>Seasonal variations are important components in understanding the ecology of insect population of crops. Ecological studies through modeling may be a useful tool for enhancing knowledge of seasonal patterns of insects on field crops as well as seasonal patterns of favorable climatic conditions for species. Recently CLIMEX, a semi-mechanistic niche model, was upgraded and enhanced to consider spatio-temporal dynamics of climate suitability through time. In this study, attempts were made to determine monthly variations of climate suitability for Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) in five commercial tomato crop localities through the latest version of CLIMEX. We observed that N. elegantalis displays seasonality with increased abundance in tomato crops during summer and autumn, corresponding to the first 6 months of the year in monitored areas in this study. Our model demonstrated a strong accord between the CLIMEX weekly growth index (GIw) and the density of N. elegantalis for this period, thus indicating a greater confidence in our model results. Our model shows a seasonal variability of climatic suitability for N. elegantalis and provides useful information for initiating methods for timely management, such as sampling strategies and control, during periods of high degree of suitability for N. elegantalis. In this study, we ensure that the simulation results are valid through our verification using field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918958B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918958B"><span>Vegetation zones in changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava</p> <p>2017-04-01</p> <p>Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries between the selected types can be studied as well providing the information on climate change signal. The shift of the boundary between the boreal zone and continental temperate zone to the north is clearly seen in most simulations as well as eastern move of the boundary of the maritime and continental type of temperate zone. However, there can be quite clear problem with model biases in climate types association. When analysing climate types in Europe and their shifts under climate change using Köppen-Trewartha classification (KTC), for the temperate climate type there are subtypes defined following the continentality patterns, and we can see their generally meridionally located divide across Europe shifted to the east. There is a question whether this is realistic or rather due to the simplistic condition in KTC following the winter minimum temperature, while other continentality indices consider rather the amplitude of temperature during the year. This leads us to connect our analysis of climate change effects using climate classification to the more detailed analysis of continentality patterns development in Europe to provide better insight on the climate regimes and to verify the continentality conditions, their definitions and climate change effects on them. The comparison of several selected continentality indices is shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33C1090R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33C1090R"><span>Climate Change Impact Assessment for Wheat and Rice Productivity, Haryana, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rana, M.; Singh, K. K.; Kumari, N.</p> <p>2017-12-01</p> <p>Agriculture presents a core of the India Economy and provides food and livelihood activities to much of the Indian population. However, the changing climate is putting challenges to agriculture. The mean temperature in India is increased by 0.1-0.3 degC in Kharif and 0.3-0.7 degC during rabi by 2010, and projected to further increase by 0.4-0.2 degC during Kharif and to 1.1-4.5degC in rabi by 2070. Similarly mean rainfall is projected to increase up to 10% during kharif and rabi by 2070.At same time, there is an increased possibility of climate extremes, such as the timing of onset of monsoon, intensities and frequency of floods and droughts (S.A. Khan et al.,2009).In addition, the rapid population growth at a rate of 1.2% per annum, expected to reach 1.53 billion by the end of 2030; is also a critical issue of this century. Keeping in mind the above facts, this study is carried out in one of major agriculture state in India. The related field data collected from the ongoing experiments in agriculture universities/institutes in the respective state and observed weather data from India Meteorological Dept.(IMD), New Delhi and future climate scenarios data from India Institute of Tropical Meteorology(IITM). Validated CERES Wheat and Rice model embedded in DSSATv4.6 used for simulating the climate change impacts. The yield simulations of crop models were obtained separately for baseline and future data The simulation result indicates significant impact of climate change on both wheat and rice yield. The reason for same attributed to increase in temperature that majorly impact rabi wheat and extreme weather events for Kharif rice. Keywords: Climate Change, CERES Rice-Wheat, Yield, Validation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8550D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8550D"><span>SPAGETTA, a Gridded Weather Generator: Calibration, Validation and its Use for Future Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubrovsky, Martin; Rotach, Mathias W.; Huth, Radan</p> <p>2017-04-01</p> <p>Spagetta is a new (started in 2016) stochastic multi-site multi-variate weather generator (WG). It can produce realistic synthetic daily (or monthly, or annual) weather series representing both present and future climate conditions at multiple sites (grids or stations irregularly distributed in space). The generator, whose model is based on the Wilks' (1999) multi-site extension of the parametric (Richardson's type) single site M&Rfi generator, may be run in two modes: In the first mode, it is run as a classical generator, which is calibrated in the first step using weather data from multiple sites, and only then it may produce arbitrarily long synthetic time series mimicking the spatial and temporal structure of the calibration weather data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. In the second mode, the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the surface weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying autoregressive model, which produces the multi-site weather series. In the latter mode of operation, the user is allowed to prescribe the spatially varying trend, which is superimposed to the values produced by the generator; this feature has been implemented for use in developing the methodology for assessing significance of trends in multi-site weather series (for more details see another EGU-2017 contribution: Huth and Dubrovsky, 2017, Evaluating collective significance of climatic trends: A comparison of methods on synthetic data; EGU2017-4993). This contribution will focus on the first (classical) mode. The poster will present (a) model of the generator, (b) results of the validation tests made in terms of the spatial hot/cold/dry/wet spells, and (c) results of the pilot climate change impact experiment, in which (i) the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and then (ii) the effect on the above spatial validation indices derived from the synthetic series produced by the modified WG is analysed. In this experiment, the generator is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulation (taken from the CORDEX database).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH23C..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH23C..05R"><span>Modeling Storm-Induced Inundation on the Yukon-Kuskokwim Delta for Present and Future Climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ravens, T. M.; Allen, J.</p> <p>2012-12-01</p> <p>The Yukon-Kuskokwim (YK) Delta is a large delta on the west coast of Alaska and one of the few remaining deltas that is largely free of anthropogenic impacts. The delta hosts a wide-range of nesting birds including the endangered Spectacled Eider. The delta plain, with an elevation of about 2 m (m.s.l.) - and an average tidal range of 2.7 m - is subject to frequent inundation by storm surges originating from the adjacent Bering Sea. Here, we report on our efforts to validate a storm-surge modeling system consisting of a course-grid ADCIRC model covering the Bering and Chukchi Seas and a Delft3D fine-grid model of the southern YK Delta. The storm surge models are validated based on measured water levels from 2007-2010 and using satellite observations of inundation due to large storms in 2005 and 2006. About 10 storms over the past 30 years are modeled. Based on model output, we computed a spatially distributed inundation index which is a time-integral of water level throughout the fine-grid model domain from individual storms and from the 30 year period. In order to examine the change in inundation in future climates, the models of the 30 year period were re-run assuming a 1 and 2 meter sea level rise. The impact of climate change on inundation frequency and intensity - using the inundation index - is reported. Future work will relate the present and projected inundation index to ecological parameters such as bird-nest concentration and vegetation type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24257163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24257163"><span>Redesigning mental healthcare delivery: is there an effect on organizational climate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joosten, T C M; Bongers, I M B; Janssen, R T J M</p> <p>2014-02-01</p> <p>Many studies have investigated the effect of redesign on operational performance; fewer studies have evaluated the effects on employees' perceptions of their working environment (organizational climate). Some authors state that redesign will lead to poorer organizational climate, while others state the opposite. The goal of this study was to empirically investigate this relation. Organizational climate was measured in a field experiment, before and after a redesign intervention. At one of the sites, a redesign project was conducted. At the other site, no redesign efforts took place. Two Dutch child- and adolescent-mental healthcare providers. Professionals that worked at one of the units at the start and/or the end of the intervention period. The main intervention was a redesign project aimed at improving timely delivery of services (modeled after the breakthrough series). Scores on the four models of the organizational climate measure, a validated questionnaire that measures organizational climate. Our analysis showed that climate at the intervention site changed on factors related to productivity and goal achievement (rational goal model). The intervention group scored worse than the comparison group on the part of the questionnaire that focuses on sociotechnical elements of organizational climate. However, observed differences were so small, that their practical relevance seems rather limited. Redesign efforts in healthcare, so it seems, do not influence organizational climate as much as expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1393746-vulnerability-us-thermoelectric-power-generation-climate-change-when-incorporating-state-level-environmental-regulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1393746-vulnerability-us-thermoelectric-power-generation-climate-change-when-incorporating-state-level-environmental-regulations"><span>Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Lu; Hejazi, Mohamad; Li, Hongyi</p> <p></p> <p>This study explores the interactions between climate and thermoelectric generation in the U.S. by coupling an Earth System Model with a thermoelectric power generation model. We validated model simulations of power production for selected power plants (~44% of existing thermoelectric capacity) against reported values. In addition, we projected future usable capacity for existing power plants under two different climate change scenarios. Results indicate that climate change alone may reduce average thermoelectric generating capacity by 2%-3% by the 2060s. Reductions up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. This study concludes that the impactmore » of climate change on the U.S. thermoelectric power system is less than previous estimates due to an inclusion of a spatially-disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. This work highlights the significance of accounting for legal constructs in which the operation of power plants are managed, and underscores the effects of provisional variances in addition to environmental requirements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4978232','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4978232"><span>Model confirmation in climate economics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Millner, Antony; McDermott, Thomas K. J.</p> <p>2016-01-01</p> <p>Benefit–cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth—one of its most important economic components—had questionable predictive power over the 20th century. PMID:27432964</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130000816','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130000816"><span>Utilizing Chamber Data for Developing and Validating Climate Change Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Monje, Oscar</p> <p>2012-01-01</p> <p>Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..859C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..859C"><span>Parameter identification of the SWAT model on the BANI catchment (West Africa) under limited data condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaibou Begou, Jamilatou; Jomaa, Seifeddine; Benabdallah, Sihem; Rode, Michael</p> <p>2015-04-01</p> <p>Due to the climate change, drier conditions have prevailed in West Africa, since the seventies, and the consequences are important on water resources. In order to identify and implement management strategies of adaptation to climate change in the sector of water, it is crucial to improve our physical understanding of water resources evolution in the region. To this end, hydrologic modelling is an appropriate tool for flow predictions under changing climate and land use conditions. In this study, the applicability and performance of the recent version of Soil and Water Assessment Tool (SWAT2012) model were tested on the Bani catchment in West Africa under limited data condition. Model parameters identification was also tested using one site and multisite calibration approaches. The Bani is located in the upper part of the Niger River and drains an area of about 101, 000 km2 at the outlet of Douna. The climate is tropical, humid to semi-arid from the South to the North with an average annual rainfall of 1050 mm (period 1981-2000). Global datasets were used for the model setup such as: USGS hydrosheds DEM, USGS LCI GlobCov2009 and the FAO Digital Soil Map of the World. Daily measured rainfall from nine rain gauges and maximum and minimum temperature from five weather stations covering the period 1981-1997 were used for model setup. Sensitivity analysis, calibration and validation are performed within SWATCUP using GLUE procedure at Douna station first (one site calibration), then at three additional internal stations, Bougouni, Pankourou and Kouoro1 (multi-site calibration). Model parameters were calibrated at daily time step for the period 1983-1992, then validated for the period 1993-1997. A period of two years (1981-1982) was used for model warming up. Results of one-site calibration showed that the model performance is evaluated by 0.76 and 0.79 for Nash-Sutcliffe (NS) and correlation coefficient (R2), respectively. While for the validation period the performance improved considerably with NS and R2 equal to 0.84 and 0.87, respectively. The degree of total uncertainties is quantified by a minimum P-factor of 0.61 and a maximum R-factor of 0.59. These statistics suggest that the model performance can be judged as very good, especially considering limited data condition and high climate, land use and soil variability in the studied basin. The most sensitive parameters (CN2, OVN and SLSUBBSN) are related to surface runoff reflecting the dominance of this process on the streamflow generation. In the next step, multisite calibration approach will be performed on the BANI basin to assess how much additional observations improve the model parameter identification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC52D..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC52D..01M"><span>Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.</p> <p>2015-12-01</p> <p>While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411507N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411507N"><span>Simulating Climate Change in Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nolan, P.; Lynch, P.</p> <p>2012-04-01</p> <p>At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7744A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7744A"><span>Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexander, M. Joan; Stephan, Claudia</p> <p>2015-04-01</p> <p>In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B31B0460R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B31B0460R"><span>Evaluation Of The MODIS-VIIRS Land Surface Reflectance Fundamental Climate Data Record.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roger, J. C.; Vermote, E.; Skakun, S.; Murphy, E.; Holben, B. N.; Justice, C. O.</p> <p>2016-12-01</p> <p>The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and has been recognized as a key parameter in the understanding of the land-surface-climate processes. Here, we present the validation of the Land surface reflectance used for MODIS and VIIRS data. This methodology uses the 6SV Code and data from the AERONET network. The first part was to define a protocol to use the AERONET data. To correctly take into account the aerosol model, we used the aerosol microphysical properties provided by the AERONET network including size-distribution (%Cf, %Cc, rf, rc, σr, σc), complex refractive indices and sphericity. Over the 670 available AERONET sites, we selected 230 sites with sufficient data. To be useful for validation, the aerosol model should be readily available anytime, which is rarely the case. We then used regressions for each microphysical parameter using the aerosol optical thickness at 440nm and the Angström coefficient as parameters. Comparisons with the AERONET dataset give good APU (Accuracy-Precision-Uncertainties) for each parameter. The second part of the study relies on the theoretical land surface retrieval. We generated TOA synthetic data using aerosol models from AERONET and determined APU on the surface reflectance retrieval while applying the MODIS and VIRRS Atmospheric correction software. Over 250 AERONET sites, the global uncertainties are for MODIS band 1 (red) is always lower than 0.0015 (when surface reflectance is > 0.04). This very good result shows the validity of our reference. Then, we used this reference for validating the MODIS and VIIRS surface reflectance products. The overall accuracy clearly reaches specifications. Finally, we will present an error budget of the surface reflectance retrieval. Indeed, to better understand how to improve the methodology, we defined an exhaustive error budget. We included all inputs i.e. sensor, calibration, aerosol properties, atmospheric conditions… This latter work provides a lot of information, such as the aerosol optical thickness obviously drives the uncertainties of the retrieval, the absorption and the volume concentration of the fine aerosol mode have an important impact as well…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29522503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29522503"><span>Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali</p> <p>2018-03-09</p> <p>In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2079H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2079H"><span>Hydrological Validation of The Lpj Dynamic Global Vegetation Model - First Results and Required Actions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haberlandt, U.; Gerten, D.; Schaphoff, S.; Lucht, W.</p> <p></p> <p>Dynamic global vegetation models are developed with the main purpose to describe the spatio-temporal dynamics of vegetation at the global scale. Increasing concern about climate change impacts has put the focus of recent applications on the sim- ulation of the global carbon cycle. Water is a prime driver of biogeochemical and biophysical processes, thus an appropriate representation of the water cycle is crucial for their proper simulation. However, these models usually lack thorough validation of the water balance they produce. Here we present a hydrological validation of the current version of the LPJ (Lund- Potsdam-Jena) model, a dynamic global vegetation model operating at daily time steps. Long-term simulated runoff and evapotranspiration are compared to literature values, results from three global hydrological models, and discharge observations from various macroscale river basins. It was found that the seasonal and spatial patterns of the LPJ-simulated average values correspond well both with the measurements and the results from the stand-alone hy- drological models. However, a general underestimation of runoff occurs, which may be attributable to the low input dynamics of precipitation (equal distribution within a month), to the simulated vegetation pattern (potential vegetation without anthro- pogenic influence), and to some generalizations of the hydrological components in LPJ. Future research will focus on a better representation of the temporal variability of climate forcing, improved description of hydrological processes, and on the consider- ation of anthropogenic land use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMIN41A1467H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMIN41A1467H"><span>Enhancement of Local Climate Analysis Tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.</p> <p>2012-12-01</p> <p>The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25591942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25591942"><span>Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A</p> <p>2015-10-01</p> <p>We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31A0733A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31A0733A"><span>A Comparison of the SNICAR Radiative Transfer Model to In Situ Snow Characterization Measurements at Sites in New England, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adolph, A. C.; Albert, M. R.; Dibb, J. E.; Lazarcik, J.; Amante, J.</p> <p>2016-12-01</p> <p>As a highly reflective material, snow serves as an important control on surface energy balance. Given the current changes in climate and the sensitivity of snow cover to rising temperatures, it is critical that we understand the role of snow and its associated feedbacks in the climate system. Much of snow albedo research has focused on polar or high altitude snow packs, but rapid changes are also occurring in temperate regions; in the northeastern United States of America, changing climate has resulted in shallower snow packs and fewer days of snow cover. As these changes occur and we seek to understand the associated implications for snow albedo within climate dynamics, it is imperative that we are able to accurately represent snow in models. The SNow, ICe, and Aerosol Radiation model (SNICAR), developed by Flanner and Zender (2005) and used in the IPCC assessments, provides upward and downward radiative fluxes of one or many snow layers based on the following inputs: snow depth, density, grain size, and impurity content; solar zenith angle; lighting conditions; and albedo of the surface beneath the snowpack. To our knowledge, the SNICAR model has not been validated with data from a mid-latitude temperate region. Through a measurement campaign that occurred from winter 2013-2016, we have collected over 400 independent observations of a suite of snow characterization measurements and spectral snow albedo from three different sites in New Hampshire, USA. Comparison of our spectral albedo measurements to the SNICAR albedo derived from measured snow properties and illumination conditions will allow for validation of the model or recommendations for improvement based on the sensitivities found in the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C33C0829T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C33C0829T"><span>Estimating time and spatial distribution of snow water equivalent in the Hakusan area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, K.; Matsui, Y.; Touge, Y.</p> <p>2015-12-01</p> <p>In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate hydrological model, satellite based precipitation product, GCM output, etc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51A0112G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51A0112G"><span>Potential Impact of Climate Change on Streamflow of Major Ethiopian Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gizaw, M. S.; Zhang, S.; Biftu, G. F.; Gan, T. Y.; Tan, X.; Moges, S. A.; Koivusalo, H.</p> <p>2017-12-01</p> <p>In this study, HSPF (Hydrologic Simulation Program-FORTRAN) was used to analyze the potential impact of climate change on the streamflow of four major river basins in Ethiopia: Awash, Baro, Genale and Tekeze. The calibrated and validated HSPF model was forced with daily climate data of 10 CMIP5 (Coupled Model Intercomparison Project phase 5) Global Climate Models (GCMs) for the 1971-2000 control period and the RCP4.5 and RCP8.5 climate projections of 2041-2070 (2050s) and 2071-2100 (2080s). The ensemble median of these 10 GCMs projects the temperature in the four study areas to increase by about 2.3 ˚C (3.3 ˚C) in 2050s (2080s) whereas the mean annual precipitation is projected to increase by about 6% (9%) in 2050s (2080s). This results in about 3% (6%) increase in the projected annual streamflow in Awash, Baro and Tekeze rivers whereas the annual streamflow of Genale river is projected to increase by about 18% (33%) in the 2050s (2080s). However, such projected increase in the mean annual streamflow due to increasing precipitation over Ethiopia contradicts the decreasing trends in mean annual precipitation observed in recent decades. Regional climate models of high resolutions could provide more realistic climate projections for Ethiopia's complex topography, thus reducing the uncertainties in future streamflow projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20499561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20499561"><span>Measuring the emotional climate of an organization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yurtsever, Gülçimen; De Rivera, Joseph</p> <p>2010-04-01</p> <p>The importance of emotional climate in the organizational climate literature has gained interest. However, few studies have concentrated on adequately measuring the emotional climate of organizations. In this study, a reliable and valid scale was developed to measure the most important aspects of emotional climate in different organizations. This study presents evidence of reliability and validity for 28 items constructed to measure emotional climate in an organization in four separate studies. The data were obtained from working people from four different organizations by self-administered questionnaires. The findings indicate that three factors--Trust, Hope, and Security--were factors of the 28-item scale. Validation data also included correlations with duration of employment. The other method of assessing criterion validity was by comparing mean scores in organizations with differing productivity; results indicated that the organization with more productive members had a significantly higher mean score on emotional climate and its subscales. The generalizability of the results to private businesses also was assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21931944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21931944"><span>Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Lei; Lu, Wenxi; An, Yonglei; Li, Di; Gong, Lei</p> <p>2012-01-01</p> <p>The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010-2039, 2040-2069, and 2070-2099) relative to a baseline of 1961-1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash-Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m(3) s(-1) per decade, and a significant upward trend in summer, with an increase rate of 1.32 m(3) s(-1) per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH (4) (+) -N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision makers and strategies of adaptation to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27907262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27907262"><span>Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; Flather, Curtis H; VanDerWal, Jeremy; Akçakaya, H Resit; Thogmartin, Wayne E; Albright, Thomas P; Vavrus, Stephen J; Heglund, Patricia J</p> <p>2016-12-01</p> <p>Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous USA and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated area-under-the-curve AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability vs. 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information, we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species' potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs. © 2016 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B3ED59780-BF7A-4A3E-A1FF-BF82D173BE98%7D','PESTICIDES'); return false;" href="https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B3ED59780-BF7A-4A3E-A1FF-BF82D173BE98%7D"><span>Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Changes in climate and land cover are among the principal variables affecting watershed hydrology.This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in thesemi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-basedmodel is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCSCN)method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation,the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologicsimulation results reveal climate change as the dominant factor and land-cover change as a secondary factor inregulating future river discharge. The combined effects of climate and land-cover changes will slightly increaseriver discharge in summer but substantially decrease discharge in winter. This impact on water resources deservesattention in climate change adaptation planning.This dataset is associated with the following publication:Chen, H., S. Tong, H. Yang, and J. Yang. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed. Hydrological Sciences Journal. IAHS LIMITED, Oxford, UK, 60(10): 1739-1758, (2015).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53C1463A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53C1463A"><span>Hydrological Modelling the Middle Magdalena Valley (Colombia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arenas, M. C.; Duque, N.; Arboleda, P.; Guadagnini, A.; Riva, M.; Donado-Garzon, L. D.</p> <p>2017-12-01</p> <p>Hydrological distributed modeling is key point for a comprehensive assessment of the feedback between the dynamics of the hydrological cycle, climate conditions and land use. Such modeling results are markedly relevant in the fields of water resources management, natural hazards and oil and gas industry. Here, we employ TopModel (TOPography based hydrological MODEL) for the hydrological modeling of an area in the Middle Magdalena Valley (MMV), a tropical basin located in Colombia. This study is located over the intertropical convergence zone and is characterized by special meteorological conditions, with fast water fluxes over the year. It has been subject to significant land use changes, as a result of intense economical activities, i.e., and agriculture, energy and oil & gas production. The model employees a record of 12 years of daily precipitation and evapotranspiration data as inputs. Streamflow data monitored across the same time frame are used for model calibration. The latter is performed by considering data from 2000 to 2008. Model validation then relies on observations from 2009 to 2012. The robustness of our analyses is based on the Nash-Sutcliffe coefficient (values of this metric being 0.62 and 0.53, respectively for model calibration and validation). Our results reveal high water storage capacity in the soil, and a marked subsurface runoff, consistent with the characteristics of the soil types in the regions. A significant influence on runoff response of the basin to topographical factors represented in the model is evidenced. Our calibrated model provides relevant indications about recharge in the region, which is important to quantify the interaction between surface water and groundwater, specially during the dry season, which is more relevant in climate-change and climate-variability scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A41E0075S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A41E0075S"><span>A Test of Model Validation from Observed Temperature Trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singer, S. F.</p> <p>2006-12-01</p> <p>How much of current warming is due to natural causes and how much is manmade? This requires a comparison of the patterns of observed warming with the best available models that incorporate both anthropogenic (greenhouse gases and aerosols) as well as natural climate forcings (solar and volcanic). Fortunately, we have the just published U.S.-Climate Change Science Program (CCSP) report (www.climatescience.gov/Library/sap/sap1-1/finalreport/default.htm), based on best current information. As seen in Fig. 1.3F of the report, modeled surface temperature trends change little with latitude, except for a stronger warming in the Arctic. The observations, however, show a strong surface warming in the northern hemisphere but not in the southern hemisphere (see Fig. 3.5C and 3.6D). The Antarctic is found to be cooling and Arctic temperatures, while currently rising, were higher in the 1930s than today. Although the Executive Summary of the CCSP report claims "clear evidence" for anthropogenic warming, based on comparing tropospheric and surface temperature trends, the report itself does not confirm this. Greenhouse models indicate that the tropics should provide the most sensitive location for their validation; trends there should increase by 200-300 percent with altitude, peaking at around 10 kilometers. The observations, however, show the opposite: flat or even decreasing tropospheric trend values (see Fig. 3.7 and also Fig. 5.7E). This disparity is demonstrated most strikingly in Fig. 5.4G, which shows the difference between surface and troposphere trends for a collection of models (displayed as a histogram) and for balloon and satellite data. [The disparities are less apparent in the Summary, which displays model results in terms of "range" rather than as histograms.] There may be several possible reasons for the disparity: Instrumental and other effects that exaggerate or otherwise distort observed temperature trends. Or, more likely: Shortcomings in models that result in much reduced values of climate sensitivity; for example, the neglect of important negative feedbacks. Allowing for uncertainties in the data and for imperfect models, there is only one valid conclusion from the failure of greenhouse models to explain the observations: The human contribution to global warming is still quite small, so that natural climate factors are dominant. This may also explain why the climate was cooling from 1940 to 1975 -- even as greenhouse-gas levels increased rapidly. An overall test for climate prediction may soon be possible by measuring the ongoing rise in sea level. According to my estimates, sea level should rise by 1.5 to 2.0 cm per decade (about the same rate as in past millennia); the U.N.-IPCC (4th Assessment Report) predicts 1.4 to 4.3 cm per decade. In the New York Review of Books (July 13, 2006), however, James Hansen suggests 20 feet or more per century -- equivalent to about 60 cm or more per decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29036169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29036169"><span>Developing a dengue forecast model using machine learning: A case study in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun</p> <p>2017-10-01</p> <p>In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4466T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4466T"><span>Climate change impact on the establishment and seasonal abundance of Invasive Mosquito Species: current state and future risk maps over southeast Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panayiotis; Michaelakis, Antonios</p> <p>2017-04-01</p> <p>Establishment and seasonal abundance of a region for Invasive Mosquito Species (IMS) are related to climatic parameters such as temperature and precipitation. In this work the current state is assessed using data from the European Climate Assessment and Dataset (ECA&D) project over Greece and Italy for the development of current spatial risk databases of IMS. Results are validated from the installation of a prototype IMS monitoring device that has been designed and developed in the framework of the LIFE CONOPS project at key points across the two countries. Since climate models suggest changes in future temperature and precipitation rates, the future potentiality of IMS establishment and spread over Greece and Italy is assessed using the climatic parameters in 2050's provided by the NASA GISS GCM ModelE under the IPCC-A1B emissions scenarios. The need for regional climate projections in a finer grid size is assessed using the Weather Research and Forecasting (WRF) model to dynamically downscale GCM simulations. The estimated changes in the future meteorological parameters are combined with the observation data in order to estimate the future levels of the climatic parameters of interest. The final product includes spatial distribution maps presenting the future suitability of a region for the establishment and seasonal abundance of the IMS over Greece and Italy. Acknowledgement: LIFE CONOPS project "Development & demonstration of management plans against - the climate change enhanced - invasive mosquitoes in S. Europe" (LIFE12 ENV/GR/000466).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890006113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890006113"><span>Cloud cover determination in polar regions from satellite imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barry, R. G.; Key, J. R.; Maslanik, J. A.</p> <p>1988-01-01</p> <p>The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9537M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9537M"><span>Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Swen; Ludwig, Ralf</p> <p>2013-04-01</p> <p>According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating 7 test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. The Rio Mannu Basin, located in Sardinia; Italy, is one test site of the CLIMB project. The catchment has a size of 472.5 km2, it ranges from 62 to 946 meters in elevation, at mean annual temperatures of 16°C and precipitation of about 700 mm, the annual runoff volume is about 200 mm. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) was setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. In a field campaign about 250 soil samples were collected and lab-analyzed. Different geostatistical regionalization methods were tested to improve the model setup. The soil parameterization of the model was tested against publically available soil data. Results show a significant improvement of modeled soil moisture outputs. To validate WaSiMs evapotranspiration (ETact) outputs, Landsat TM images were used to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season. WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. Output results were analyzed for climate induced changes on selected hydrological variables. While the climate projections reveal increased precipitation rates in the spring season, first simulation results show an earlier onset and an increased duration of the dry season, imposing an increased irrigation demand and higher vulnerability of agricultural productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCC...5..596H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCC...5..596H"><span>Geographic variation in opinions on climate change at state and local scales in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howe, Peter D.; Mildenberger, Matto; Marlon, Jennifer R.; Leiserowitz, Anthony</p> <p>2015-06-01</p> <p>Addressing climate change in the United States requires enactment of national, state and local mitigation and adaptation policies. The success of these initiatives depends on public opinion, policy support and behaviours at appropriate scales. Public opinion, however, is typically measured with national surveys that obscure geographic variability across regions, states and localities. Here we present independently validated high-resolution opinion estimates using a multilevel regression and poststratification model. The model accurately predicts climate change beliefs, risk perceptions and policy preferences at the state, congressional district, metropolitan and county levels, using a concise set of demographic and geographic predictors. The analysis finds substantial variation in public opinion across the nation. Nationally, 63% of Americans believe global warming is happening, but county-level estimates range from 43 to 80%, leading to a diversity of political environments for climate policy. These estimates provide an important new source of information for policymakers, educators and scientists to more effectively address the challenges of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11A0860S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11A0860S"><span>Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>SHI, J.</p> <p>2014-12-01</p> <p>Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913413D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913413D"><span>A Bayesian Belief Network framework to predict SOC stock change: the Veneto region (Italy) case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dal Ferro, Nicola; Quinn, Claire Helen; Morari, Francesco</p> <p>2017-04-01</p> <p>A key challenge for soil scientists is predicting agricultural management scenarios that combine crop productions with high standards of environmental quality. In this context, reversing the soil organic carbon (SOC) decline in croplands is required for maintaining soil fertility and contributing to mitigate GHGs emissions. Bayesian belief networks (BBN) are probabilistic models able to accommodate uncertainty and variability in the predictions of the impacts of management and environmental changes. By linking multiple qualitative and quantitative variables in a cause-and-effect relationships, BBNs can be used as a decision support system at different spatial scales to find best management strategies in the agroecosystems. In this work we built a BBN to model SOC dynamics (0-30 cm layer) in the low-lying plain of Veneto region, north-eastern Italy, and define best practices leading to SOC accumulation and GHGs (CO2-equivalent) emissions reduction. Regional pedo-climatic, land use and management information were combined with experimental and modelled data on soil C dynamics as natural and anthropic key drivers affecting SOC stock change. Moreover, utility nodes were introduced to determine optimal decisions for mitigating GHGs emissions from croplands considering also three different IPCC climate scenarios. The network was finally validated with real field data in terms of SOC stock change. Results showed that the BBN was able to model real SOC stock changes, since validation slightly overestimated SOC reduction (+5%) at the expenses of its accumulation. At regional level, probability distributions showed 50% of SOC loss, while only 17% of accumulation. However, the greatest losses (34%) were associated with low reduction rates (100-500 kg C ha-1 y-1), followed by 33% of stabilized conditions (-100 < SOC < 100 kg ha-1 y-1). Land use management (especially tillage operations and soil cover) played a primary role to affect SOC stock change, while climate conditions were only slightly involved in C regulation within the 0-30 cm layer. The proposed BBN framework was flexible to perform both field-scale validation and regional-scale predictions. Moreover, BBN provided guidelines for improved land management strategies in a perspective of climate change scenarios, although further validation, including a broader set of experimental data, is needed to strengthen the outcomes across Veneto region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53D1471W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53D1471W"><span>Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, S.; Kim, H.; Utsumi, N.</p> <p>2017-12-01</p> <p>This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29451851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29451851"><span>Validation of a pre-existing safety climate scale for the Turkish furniture manufacturing industry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akyuz, Kadri Cemil; Yildirim, Ibrahim; Gungor, Celal</p> <p>2018-03-22</p> <p>Understanding the safety climate level is essential to implement a proactive safety program. The objective of this study is to explore the possibility of having a safety climate scale for the Turkish furniture manufacturing industry since there has not been any scale available. The questionnaire recruited 783 subjects. Confirmatory factor analysis (CFA) tested a pre-existing safety scale's fit to the industry. The CFA indicated that the structures of the model present a non-satisfactory fit with the data (χ 2  = 2033.4, df = 314, p ≤ 0.001; root mean square error of approximation = 0.08, normed fit index = 0.65, Tucker-Lewis index = 0.65, comparative fit index = 0.69, parsimony goodness-of-fit index = 0.68). The results suggest that a new scale should be developed and validated to measure the safety climate level in the Turkish furniture manufacturing industry. Due to the hierarchical structure of organizations, future studies should consider a multilevel approach in their exploratory factor analyses while developing a new scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43M..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43M..07A"><span>Application of Inverse Modeling to Estimate Groundwater Recharge under Future Climate Scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akbariyeh, S.; Wang, T.; Bartelt-Hunt, S.; Li, Y.</p> <p>2016-12-01</p> <p>Climate variability and change will impose profound influences on groundwater systems. Accurate estimation of groundwater recharge is extremely important for predicting the flow and contaminant transport in the subsurface, which, however, remains as one of the most challenging tasks in the field of hydrology. Using an inverse modeling technique and HYDRUS 1D software, we predicted the spatial distribution of groundwater recharge across the Upper Platte basin in Nebraska, USA, based on 5-year projected future climate and soil moisture data (2057-2060). The climate data was obtained from Weather Research and Forecasting (WRF) model under RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. Precipitation, potential evapotranspiration, and soil moisture data were extracted from 76 grids located within the Upper Platte basin to perform the inverse modeling. Hargreaves equation was used to calculate the potential evapotranspiration according to latitude, maximum and minimum temperature, and leaf area index (LAI) data at each node. Van-Genuchten parameters were optimized using the inverse algorithm to minimize the error between input and modeled soil moisture data. The groundwater recharge was calculated as the amount of water that passed the lower boundary of the best fitted model. The year of 2057 was used as a spin-up period to minimize the impact of initial conditions. The model was calibrated for years 2058 to 2059 and validation was performed for 2060. This work demonstrates an efficient approach to estimating groundwater recharge based on climate modeling results, which will aid groundwater resources management under future climate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16....1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16....1Y"><span>Climate projections of spatial variations in coastal storm surges along the Gulf of Mexico and U.S. east coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Xie, Jun; Ge, Qian</p> <p>2017-02-01</p> <p>Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system (ROMS) to the study region with a mesh grid size of 7-10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry (PI) and the other for the A1FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.2029P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.2029P"><span>Climate change impact assessment on hydrology of a small watershed using semi-distributed model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak</p> <p>2017-07-01</p> <p>This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70122722','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70122722"><span>Can air temperature be used to project influences of climate change on stream temperature?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.</p> <p>2014-01-01</p> <p>Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28886075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28886075"><span>Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A</p> <p>2017-01-01</p> <p>Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913908E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913908E"><span>Reliability of groundwater supply from a coastal aquifer in the context of climate and socio-economic changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eley, Malte; Schöniger, Hans Matthias; Gelleszun, Marlene; Wolf, Jens; Schneider, Anke; Wiederhold, Helga; Meon, Günter</p> <p>2017-04-01</p> <p>Especially coastal areas are vulnerable in case of sea level rise and changing climate conditions. Therefore, the NAWAK study (design of sustainable adaptation strategies for infrastructures in water management under the conditions of climatic and demographic change) started in 2013. It is designed to assess impairments of groundwater availability for a coastal lowland aquifer system in North-West Germany (> 1.000 km2) in the context of climate and socio-economic changes. The research results are focused on the quantification of the groundwater availability for past and future scenarios. Impacts from both climatic and socio-economic changes on the water availability and water balance are assessed by means of hydrologic, hydrogeological and geophysical models and methods, which where developed and adapted by project partners. For the model area there are three fields of work to create the conditions for a density dependent calculation of changings in salt-freshwater budget with the numerical model d3f++ (distributed density-driven Flow). The first is the description of initial conditions in three dimensions, especially for the salt-freshwater boundary. That description is based on airborne electromagnetic data of the underground and a complex processing to identify the differences between salt and freshwater, without anthropogenic and geologic influences. A validation is possible by comparison with groundwater measurements and an online monitoring of specific conductivity. The second is the calculation and measurement of flow conditions to derive the boundary conditions and the groundwater recharge. The groundwater recharge was calculated by using the hydrologic model PANTA RHEI. It is a conceptual model with partly physic-based modules, especially for the soil water processes. The model was calibrated and validated by discharge measurements and groundwater levels. The third step is a detailed information about the spatial discretization and the reconstruction of the geologic body. The interpolation of point information's from boreholes and geologic sections was calculated with the geologic modelling software SubsurfaceViewerMX. For implementation in the groundwater model, the layers were combined to hydrogeological similar units. With this sophisticated models it is possible to model the density-dependent complex groundwater systems at large spatial scales as well as contaminant transport. The modeling analysis is focused on water-budget components (groundwater recharge, submarine groundwater discharge, surface-groundwater interaction and water supply), salt- water intrusion and sea level rise under different climate and water-use scenarios. With our models we offer the capability to evaluate possible coastal aquifer management strategies of real-world applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..544..407W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..544..407W"><span>Pan evaporation modeling using six different heuristic computing methods in different climates of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui</p> <p>2017-01-01</p> <p>Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GMD.....6.1157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GMD.....6.1157L"><span>Failure analysis of parameter-induced simulation crashes in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.</p> <p>2013-08-01</p> <p>Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038142&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Banthropogenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038142&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Banthropogenic"><span>Importance of Sea Ice for Validating Global Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geiger, Cathleen A.</p> <p>1997-01-01</p> <p>Reproduction of current day large-scale physical features and processes is a critical test of global climate model performance. Without this benchmark, prognoses of future climate conditions are at best speculation. A fundamental question relevant to this issue is, which processes and observations are both robust and sensitive enough to be used for model validation and furthermore are they also indicators of the problem at hand? In the case of global climate, one of the problems at hand is to distinguish between anthropogenic and naturally occuring climate responses. The polar regions provide an excellent testing ground to examine this problem because few humans make their livelihood there, such that anthropogenic influences in the polar regions usually spawn from global redistribution of a source originating elsewhere. Concomitantly, polar regions are one of the few places where responses to climate are non-anthropogenic. Thus, if an anthropogenic effect has reached the polar regions (e.g. the case of upper atmospheric ozone sensitivity to CFCs), it has most likely had an impact globally but is more difficult to sort out from local effects in areas where anthropogenic activity is high. Within this context, sea ice has served as both a monitoring platform and sensitivity parameter of polar climate response since the time of Fridtjof Nansen. Sea ice resides in the polar regions at the air-sea interface such that changes in either the global atmospheric or oceanic circulation set up complex non-linear responses in sea ice which are uniquely determined. Sea ice currently covers a maximum of about 7% of the earth's surface but was completely absent during the Jurassic Period and far more extensive during the various ice ages. It is also geophysically very thin (typically <10 m in Arctic, <3 m in Antarctic) compared to the troposphere (roughly 10 km) and deep ocean (roughly 3 to 4 km). Because of these unique conditions, polar researchers regard sea ice as one of the more important features to monitor in terms of heat, mass, and momentum transfer between the air and sea and furthermore, the impact of such responses to global climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29313841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29313841"><span>TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C</p> <p>2018-01-09</p> <p>We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatSD...570191A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatSD...570191A"><span>TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.</p> <p>2018-01-01</p> <p>We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512371L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512371L"><span>Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang</p> <p>2013-04-01</p> <p>The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED31B0874P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED31B0874P"><span>Indigenous Waters: Applying the SWAT Hydrological Model to the Lumbee River Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Painter, J.; Singh, N.; Martin, K. L.; Vose, J. M.; Wear, D. N.; Emanuel, R. E.</p> <p>2016-12-01</p> <p>Hydrological modeling can reveal insight about how rainfall becomes streamflow in a watershed comprising heterogeneous soils, terrain and land cover. Modeling can also help disentangle predicted impacts of climate and land use change on hydrological processes. We applied a hydrological model to the Lumbee River watershed, also known as the Lumber River Watershed, in the coastal plain of North Carolina (USA) to better understand how streamflow may be impacted by predicted climate and land use change in the mid-21st century. The Lumbee River flows through a predominantly Native American community, which may be affected by changing water resources during this period. The long-term goal of our project is to predict the effects of climate and land use change on the Lumbee River watershed and on the Native community that relies upon the river. We applied the Soil & Water Assessment Tool for ArcGIS (ArcSWAT), which was calibrated to historical climate and USGS streamflow data during the late 20th century, and we determined frequency distributions for key model parameters that best predicted streamflow during this time period. After calibrating and validating the model during the historical period, we identified land use and climate projections to represent a range of future conditions in the watershed. Specifically, we selected downscaled climate forcing data from four general circulation models running the RCP8.5 scenario. We also selected land use projections from a cornerstone scenario of the USDA Forest Service's Southern Forest Futures Project. This presentation reports on our methods for propagating parameter and climatic uncertainty through model predictions, and it reports on spatial patterns of land use change predicted by the cornerstone scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP21D..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP21D..06F"><span>Paleoclimate reconstruction through Bayesian data assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fer, I.; Raiho, A.; Rollinson, C.; Dietze, M.</p> <p>2017-12-01</p> <p>Methods of paleoclimate reconstruction from plant-based proxy data rely on assumptions of static vegetation-climate link which is often established between modern climate and vegetation. This approach might result in biased climate constructions as it does not account for vegetation dynamics. Predictive tools such as process-based dynamic vegetation models (DVM) and their Bayesian inversion could be used to construct the link between plant-based proxy data and palaeoclimate more realistically. In other words, given the proxy data, it is possible to infer the climate that could result in that particular vegetation composition, by comparing the DVM outputs to the proxy data within a Bayesian state data assimilation framework. In this study, using fossil pollen data from five sites across the northern hardwood region of the US, we assimilate fractional composition and aboveground biomass into dynamic vegetation models, LINKAGES, LPJ-GUESS and ED2. To do this, starting from 4 Global Climate Model outputs, we generate an ensemble of downscaled meteorological drivers for the period 850-2015. Then, as a first pass, we weigh these ensembles based on their fidelity with independent paleoclimate proxies. Next, we run the models with this ensemble of drivers, and comparing the ensemble model output to the vegetation data, adjust the model state estimates towards the data. At each iteration, we also reweight the climate values that make the model and data consistent, producing a reconstructed climate time-series dataset. We validated the method using present-day datasets, as well as a synthetic dataset, and then assessed the consistency of results across ecosystem models. Our method allows the combination of multiple data types to reconstruct the paleoclimate, with associated uncertainty estimates, based on ecophysiological and ecological processes rather than phenomenological correlations with proxy data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1104865.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1104865.pdf"><span>Development and Validation of an Instrument for Assessing Climate Change Knowledge and Perceptions: The Climate Stewardship Survey (CSS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Walker, Scott L.; McNeal, Karen S.</p> <p>2013-01-01</p> <p>The Climate Stewardship Survey (CSS) was developed to measure knowledge and perceptions of global climate change, while also considering information sources that respondents 'trust.' The CSS was drafted using a three-stage approach: development of salient scales, writing individual items, and field testing and analyses. Construct validity and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26290551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26290551"><span>Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harbert, Robert S; Nixon, Kevin C</p> <p>2015-08-01</p> <p>• Plant distributions have long been understood to be correlated with the environmental conditions to which species are adapted. Climate is one of the major components driving species distributions. Therefore, it is expected that the plants coexisting in a community are reflective of the local environment, particularly climate.• Presented here is a method for the estimation of climate from local plant species coexistence data. The method, Climate Reconstruction Analysis using Coexistence Likelihood Estimation (CRACLE), is a likelihood-based method that employs specimen collection data at a global scale for the inference of species climate tolerance. CRACLE calculates the maximum joint likelihood of coexistence given individual species climate tolerance characterization to estimate the expected climate.• Plant distribution data for more than 4000 species were used to show that this method accurately infers expected climate profiles for 165 sites with diverse climatic conditions. Estimates differ from the WorldClim global climate model by less than 1.5°C on average for mean annual temperature and less than ∼250 mm for mean annual precipitation. This is a significant improvement upon other plant-based climate-proxy methods.• CRACLE validates long hypothesized interactions between climate and local associations of plant species. Furthermore, CRACLE successfully estimates climate that is consistent with the widely used WorldClim model and therefore may be applied to the quantitative estimation of paleoclimate in future studies. © 2015 Botanical Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1514068W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1514068W"><span>CFD Study of the Performance of an Operational Wind Farm and its Impact on the Local Climate: CFD sensitivity to forestry modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wylie, Scott; Watson, Simon</p> <p>2013-04-01</p> <p>Any past, current or projected future wind farm developments are highly dependent on localised climatic conditions. For example the mean wind speed, one of the main factors in assessing the economic feasibility of a wind farm, can vary significantly over length scales no greater than the size of a typical wind farm. Any additional heterogeneity at a potential site, such as forestry, can affect the wind resource further not accounting for the additional difficulty of installation. If a wind farm is sited in an environmentally sensitive area then the ability to predict the wind farm performance and possible impacts on the important localised climatic conditions are of increased importance. Siting of wind farms in environmentally sensitive areas is not uncommon, such as areas of peat-land as in this example. Areas of peat-land are important sinks for carbon in the atmosphere but their ability to sequester carbon is highly dependent on the local climatic conditions. An operational wind farm's impact on such an area was investigated using CFD. Validation of the model outputs were carried out using field measurements from three automatic weather stations (AWS) located throughout the site. The study focuses on validation of both wind speed and turbulence measurement, whilst also assessing the models ability to predict wind farm performance. The use of CFD to model the variation in wind speed over heterogeneous terrain, including wind turbines effects, is increasing in popularity. Encouraging results have increased confidence in the ability of CFD performance in complex terrain with features such as steep slopes and forests, which are not well modelled by the widely used linear models such as WAsP and MS-Micro. Using concurrent measurements from three stationary AWS across the wind farm will allow detailed validation of the model predicted flow characteristics, whilst aggregated power output information will allow an assessment of how accurate the model setup can predict wind farm performance. Given the dependence of the local climatic conditions influence on the peat-land's ability to sequester carbon, accurate predictions of the local wind and turbulence features will allow us to quantify any possible wind farm influences. This work was carried out using the commercially available Reynolds Averaged Navier-Stokes (RANS) CFD package ANSYS CFX. Utilising the Windmodeller add-on in CFX, a series of simulations were carried out to assess wind flow interactions through and around the wind farm, incorporating features such as terrain, forestry and rotor wake interactions. Particular attention was paid to forestry effects, as the AWS are located close to the vicinity of forestry. Different Leaf Area Densities (LAD) were tested to assess how sensitive the models output was to this change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC42C..02Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC42C..02Q"><span>Localizing drought monitoring products to support agricultural climate service advisories in South Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qamer, F. M.; Matin, M. A.; Yadav, N. K.; Bajracharya, B.; Zaitchik, B. F.; Ellenburg, W. L.; Krupnik, T. J.; Hussain, G.</p> <p>2017-12-01</p> <p>The Fifth Assessment Report of the Intergovernmental Panel on Climate Change identifies drought as one of the major climate risks in South Asia. During past two decades, a large amount of climate data have been made available by the scientific community, but the deployment of climate information for local level and agricultural decision making remains less than optimal. The provisioning of locally calibrated, easily accessible, decision-relevant and user-oriented information, in the form of drought advisory service could help to prepare communities to reduce climate vulnerability and increase resilience. A collaborative effort is now underway to strengthen existing and/or establish new drought monitoring and early warning systems in Afghanistan, Bangladesh, Nepal and Pakistan by incorporating standard ground-based observations, earth observation datasets, and numerical forecast models. ICT-based agriculture drought monitoring platforms, hosted at national agricultural and meteorological institutions, are being developed and coupled with communications and information deployment strategies to enable the rapid and efficient deployment of information that farmers can understand, interpret, and act on to adapt to anticipated droughts. Particular emphasis is being placed on the calibration and validation of data products through retrospective analysis of time series data, in addition to the installation of automatic weather station networks. In order to contextualize monitoring products to that they may be relevant for farmers' primary cropping systems, district level farming practices calendars are being compiled and validated through focus groups and surveys to identify the most important times and situations during which farmers can adapt to drought. High-resolution satellite crop distribution maps are under development and validation to add value to these efforts. This programme also aims to enhance capacity of agricultural extension staff to better understand climate information, probabilistic forecasts, related technologies, and adaptation strategies, in addition to equipping them with increased capacity to convey drought risks to farmers and improve climate related decision making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NPGeo..23...13S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NPGeo..23...13S"><span>Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.</p> <p>2016-01-01</p> <p>Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11523118K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11523118K"><span>A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kyselý, Jan; Plavcová, Eva</p> <p>2010-12-01</p> <p>The study compares daily maximum (Tmax) and minimum (Tmin) temperatures in two data sets interpolated from irregularly spaced meteorological stations to a regular grid: the European gridded data set (E-OBS), produced from a relatively sparse network of stations available in the European Climate Assessment and Dataset (ECA&D) project, and a data set gridded onto the same grid from a high-density network of stations in the Czech Republic (GriSt). We show that large differences exist between the two gridded data sets, particularly for Tmin. The errors tend to be larger in tails of the distributions. In winter, temperatures below the 10% quantile of Tmin, which is still far from the very tail of the distribution, are too warm by almost 2°C in E-OBS on average. A large bias is found also for the diurnal temperature range. Comparison with simple average series from stations in two regions reveals that differences between GriSt and the station averages are minor relative to differences between E-OBS and either of the two data sets. The large deviations between the two gridded data sets affect conclusions concerning validation of temperature characteristics in regional climate model (RCM) simulations. The bias of the E-OBS data set and limitations with respect to its applicability for evaluating RCMs stem primarily from (1) insufficient density of information from station observations used for the interpolation, including the fact that the stations available may not be representative for a wider area, and (2) inconsistency between the radii of the areal average values in high-resolution RCMs and E-OBS. Further increases in the amount and quality of station data available within ECA&D and used in the E-OBS data set are essentially needed for more reliable validation of climate models against recent climate on a continental scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CG.....94...68S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CG.....94...68S"><span>A GRASS GIS module to obtain an estimation of glacier behavior under climate change: A pilot study on Italian glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strigaro, Daniele; Moretti, Massimiliano; Mattavelli, Matteo; Frigerio, Ivan; Amicis, Mattia De; Maggi, Valter</p> <p>2016-09-01</p> <p>The aim of this work is to integrate the Minimal Glacier Model in a Geographic Information System Python module in order to obtain spatial simulations of glacier retreat and to assess the future scenarios with a spatial representation. The Minimal Glacier Models are a simple yet effective way of estimating glacier response to climate fluctuations. This module can be useful for the scientific and glaciological community in order to evaluate glacier behavior, driven by climate forcing. The module, called r.glacio.model, is developed in a GRASS GIS (GRASS Development Team, 2016) environment using Python programming language combined with different libraries as GDAL, OGR, CSV, math, etc. The module is applied and validated on the Rutor glacier, a glacier in the south-western region of the Italian Alps. This glacier is very large in size and features rather regular and lively dynamics. The simulation is calibrated by reconstructing the 3-dimensional dynamics flow line and analyzing the difference between the simulated flow line length variations and the observed glacier fronts coming from ortophotos and DEMs. These simulations are driven by the past mass balance record. Afterwards, the future assessment is estimated by using climatic drivers provided by a set of General Circulation Models participating in the Climate Model Inter-comparison Project 5 effort. The approach devised in r.glacio.model can be applied to most alpine glaciers to obtain a first-order spatial representation of glacier behavior under climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6207S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6207S"><span>Development of ALARO-Climate regional climate model for a very high resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan</p> <p>2013-04-01</p> <p>ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main features of the RCM ALARO-Climate and results of the first model simulations on longer time-scales (1961-1990). The model was driven by the ERA-40/Interim re-analyses and run on the large pan-European integration domain ("ENSEMBLES / Euro-Cordex domain") with spatial resolution of 25 km. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version 7 dataset. The validation of the first ERA-40 simulation has revealed significant cold biases in all seasons (between -4 and -2 °C) and overestimation of precipitation on 20% to 60% in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The consequent adaptations in the model and their effect on the simulated properties of climate variables are illustrated. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030032179&hterms=ensemble&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Densemble','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030032179&hterms=ensemble&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Densemble"><span>Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, Wei-Kuo; Starr, David (Technical Monitor)</p> <p>2002-01-01</p> <p>One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.5419P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.5419P"><span>Application of all relevant feature selection for failure analysis of parameter-induced simulation crashes in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paja, W.; Wrzesień, M.; Niemiec, R.; Rudnicki, W. R.</p> <p>2015-07-01</p> <p>The climate models are extremely complex pieces of software. They reflect best knowledge on physical components of the climate, nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a crash of simulation. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to crash of simulation, and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the dataset used in this research using different methodology. We confirm the main conclusion of the original study concerning suitability of machine learning for prediction of crashes. We show, that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three other are relevant but redundant, and two are not relevant at all. We also show that the variance due to split of data between training and validation sets has large influence both on accuracy of predictions and relative importance of variables, hence only cross-validated approach can deliver robust prediction of performance and relevance of variables.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51J1397G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51J1397G"><span>Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gampe, D.; Ludwig, R.</p> <p>2017-12-01</p> <p>Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and detect potential model biases with respect to each reference data set. The RCMs are then ranked based on various statistical measures for each indicator and a score matrix is derived to select a subset of RCMs. We show the impact and importance of the reference data set with respect to the resulting climate change signal on the catchment scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23506044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23506044"><span>Swedish translation and psychometric testing of the safety attitudes questionnaire (operating room version).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Göras, Camilla; Wallentin, Fan Yang; Nilsson, Ulrica; Ehrenberg, Anna</p> <p>2013-03-19</p> <p>Tens of millions of patients worldwide suffer from avoidable disabling injuries and death every year. Measuring the safety climate in health care is an important step in improving patient safety. The most commonly used instrument to measure safety climate is the Safety Attitudes Questionnaire (SAQ). The aim of the present study was to establish the validity and reliability of the translated version of the SAQ. The SAQ was translated and adapted to the Swedish context. The survey was then carried out with 374 respondents in the operating room (OR) setting. Data was received from three hospitals, a total of 237 responses. Cronbach's alpha and confirmatory factor analysis (CFA) was used to evaluate the reliability and validity of the instrument. The Cronbach's alpha values for each of the factors of the SAQ ranged between 0.59 and 0.83. The CFA and its goodness-of-fit indices (SRMR 0.055, RMSEA 0.043, CFI 0.98) showed good model fit. Intercorrelations between the factors safety climate, teamwork climate, job satisfaction, perceptions of management, and working conditions showed moderate to high correlation with each other. The factor stress recognition had no significant correlation with teamwork climate, perception of management, or job satisfaction. Therefore, the Swedish translation and psychometric testing of the SAQ (OR version) has good construct validity. However, the reliability analysis suggested that some of the items need further refinement to establish sound internal consistency. As suggested by previous research, the SAQ is potentially a useful tool for evaluating safety climate. However, further psychometric testing is required with larger samples to establish the psychometric properties of the instrument for use in Sweden.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13C1086T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13C1086T"><span>Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trachsel, M.; Rehfeld, K.; Telford, R.; Laepple, T.</p> <p>2017-12-01</p> <p>Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70128155','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70128155"><span>Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul</p> <p>2013-01-01</p> <p>Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28483743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28483743"><span>The Virtual Care Climate Questionnaire: Development and Validation of a Questionnaire Measuring Perceived Support for Autonomy in a Virtual Care Setting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smit, Eline Suzanne; Dima, Alexandra Lelia; Immerzeel, Stephanie Annette Maria; van den Putte, Bas; Williams, Geoffrey Colin</p> <p>2017-05-08</p> <p>Web-based health behavior change interventions may be more effective if they offer autonomy-supportive communication facilitating the internalization of motivation for health behavior change. Yet, at this moment no validated tools exist to assess user-perceived autonomy-support of such interventions. The aim of this study was to develop and validate the virtual climate care questionnaire (VCCQ), a measure of perceived autonomy-support in a virtual care setting. Items were developed based on existing questionnaires and expert consultation and were pretested among experts and target populations. The virtual climate care questionnaire was administered in relation to Web-based interventions aimed at reducing consumption of alcohol (Study 1; N=230) or cannabis (Study 2; N=228). Item properties, structural validity, and reliability were examined with item-response and classical test theory methods, and convergent and divergent validity via correlations with relevant concepts. In Study 1, 20 of 23 items formed a one-dimensional scale (alpha=.97; omega=.97; H=.66; mean 4.9 [SD 1.0]; range 1-7) that met the assumptions of monotonicity and invariant item ordering. In Study 2, 16 items fitted these criteria (alpha=.92; H=.45; omega=.93; mean 4.2 [SD 1.1]; range 1-7). Only 15 items remained in the questionnaire in both studies, thus we proceeded to the analyses of the questionnaire's reliability and construct validity with a 15-item version of the virtual climate care questionnaire. Convergent validity of the resulting 15-item virtual climate care questionnaire was confirmed by positive associations with autonomous motivation (Study 1: r=.66, P<.001; Study 2: r=.37, P<.001) and perceived competence for reducing alcohol intake (Study 1: r=.52, P<.001). Divergent validity could only be confirmed by the nonsignificant association with perceived competence for learning (Study 2: r=.05, P=.48). The virtual climate care questionnaire accurately assessed participants' perceived autonomy-support offered by two Web-based health behavior change interventions. Overall, the scale showed the expected properties and relationships with relevant concepts, and the studies presented suggest this first version of the virtual climate care questionnaire to be reasonably valid and reliable. As a result, the current version may cautiously be used in future research and practice to measure perceived support for autonomy within a virtual care climate. Future research efforts are required that focus on further investigating the virtual climate care questionnaire's divergent validity, on determining the virtual climate care questionnaire's validity and reliability when used in the context of Web-based interventions aimed at improving nonaddictive or other health behaviors, and on developing and validating a short form virtual climate care questionnaire. ©Eline Suzanne Smit, Alexandra Lelia Dima, Stephanie Annette Maria Immerzeel, Bas van den Putte, Geoffrey Colin Williams. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.05.2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H53C0480F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H53C0480F"><span>Climatic Forecasting of Net Infiltration at Yucca Mountain, Using Analogue Meteorological Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faybishenko, B.</p> <p>2005-12-01</p> <p>Net infiltration is a key hydrologic parameter that, throughout the unsaturated zone, controls the rate of deep percolation, the groundwater recharge, radionuclide transport, and seepage into underground tunnels. Because net infiltration is largely affected by climatic conditions, future changes in climatic conditions will potentially alter net infiltration. The objectives of this presentation are to: (1) Present a conceptual model and a semi-empirical approach for regional climatic forecasting of net infiltration, based on precipitation and temperature data from analogue meteorological stations; and (2) Demonstrate the results of forecasting net infiltration for future climates - interglacial, monsoon and glacial - over the Yucca Mountain region for a period of 500,000 years. Calculations of net infiltration were performed using a modified Budyko's water-balance model, and potential evapotranspiration was evaluated from the temperature-based Thornthwaite formula. (Both Budyko's and Thornthwaite's formulae have been used broadly in hydrological studies.) The results of these calculations were used for ranking net infiltration, along with aridity and precipitation-effectiveness (P-E) indices, for future climatic scenarios. Using this approach, we determined a general trend of increasing net infiltration from the present-day (interglacial) climate to the monsoon, intermediate (glacial transition) climate, a trend that continued into the glacial climate time frame. The ranking of aridity and P-E indices is practically the same as that for net infiltration. Validation of the computed net infiltration rates yielded a good match with other field and modeling study results related to groundwater recharge and net infiltration evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC33E0564Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC33E0564Y"><span>Impacts of climate change on large forest wildfire of Washington and Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Z.; Davis, R. J.; Yost, A.; Cohen, W. B.</p> <p>2014-12-01</p> <p>Climate changes in the 21st century were projected to have major impact on wildfire. The state of Washington and Oregon contains a tightly coupled forest ecosystem and fire regime. The objective of this study was to examine the impact of future climate changes for large wildfire in the two states. MAXENT algorithm was used to develop a large forest wildfire suitability model using historical fire for the 1971-2000 time period and validated for 1981-2010 time period . Input variables include climate (e.g. July-August temperature) and topographic variables (e.g. elevation). The model test AUC of 0.77±0.1. Using the predicted versus expected curve and methods described by Hirzel and others (Hirzel et al. 2006), we reclassified the model into four classes; low suitability (0-0.36), moderate suitability 0.36-0.5), high suitability (0.5-0.75), and very high suitability (0.75-1.0). To examine the future climate change impact, climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from 33 different climate models were used to predict the large wildfire suitability from 1971-2100 using the NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset. Results from ensembles of all the climate scenarios showed that the area with high and very high suitability for large wildfire increased under all 4 climate scenarios from 1971 to 2100. However, under RCP 2.6, the area start to decline from 2080 while the other three scenarios keep increasing. On the extreme case of RCP 8.5, very high suitable area increases from less than 1% during 1971-2000 to 14.9% during 2070-2100. Details about temporal patterns for the study area and changes by ecoregions will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..557..305F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..557..305F"><span>An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Dapeng; Zheng, Yi; Mao, Yixin; Zhang, Aijing; Wu, Bin; Li, Jinguo; Tian, Yong; Wu, Xin</p> <p>2018-02-01</p> <p>Water resources in coastal areas can be profoundly influenced by both climate change and human activities. These climatic and human impacts are usually intertwined and difficult to isolate. This study developed an integrated model-based approach for detection and attribution of climatic and human impacts and applied this approach to the Luanhe Plain, a typical coastal area in northern China. An integrated surface water-groundwater model was developed for the study area using GSFLOW (coupled groundwater and surface-water flow). Model calibration and validation were performed for background years between 1975 and 2000. The variation in water resources between the 1980s and 1990s was then quantitatively attributed to climate variability, groundwater pumping and changes in upstream inflow. Climate scenarios for future years (2075-2100) were also developed by downscaling the projections in CMIP5. Potential water resource responses to climate change, as well as their uncertainty, were then investigated through integrated modeling. The study results demonstrated the feasibility and value of the integrated modeling-based analysis for water resource management in areas with complex surface water-groundwater interaction. Specific findings for the Luanhe Plain included the following: (1) During the historical period, upstream inflow had the most significant impact on river outflow to the sea, followed by climate variability, whereas groundwater pumping was the least influential. (2) The increase in groundwater pumping had a dominant influence on the decline in groundwater change, followed by climate variability. (3) Synergetic and counteractive effects among different impacting factors, while identified, were not significant, which implied that the interaction among different factors was not very strong in this case. (4) It is highly probable that future climate change will accelerate groundwater depletion in the study area, implying that strict regulations for groundwater pumping are imperative for adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010523','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010523"><span>Field testing of thermal canopy models in a spruce-fir forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1990-01-01</p> <p>Recent advances in remote sensing technology allow the use of the thermal infrared region to gain information about vegetative surfaces. Extending existing models to account for thermal radiance transfers within rough forest canopies is of paramount importance. This is so since all processes of interest in the physical climate system and biogeochemical cycles are thermally mediated. Model validation experiments were conducted at a well established boreal forest; northern hardwood forest ecotone research site located in central Maine. Data was collected to allow spatial and temporal validation of thermal models. Emphasis was placed primarily upon enhancing submodels of stomatal behavior, and secondarily upon enhancing boundary layer resistance submodels and accounting for thermal storage in soil and vegetation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/42012','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/42012"><span>Predicting germination in semi-arid wildland seedbeds II. Field validation of wet thermal-time models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jennifer K. Rawlins; Bruce A. Roundy; Dennis Eggett; Nathan Cline</p> <p>2011-01-01</p> <p>Accurate prediction of germination for species used for semi-arid land revegetation would support selection of plant materials for specific climatic conditions and sites. Wet thermal-time models predict germination time by summing progress toward germination subpopulation percentages as a function of temperature across intermittent wet periods or within singular wet...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IJBm...54..517M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IJBm...54..517M"><span>Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morin, Cory W.; Comrie, Andrew C.</p> <p>2010-09-01</p> <p>Climate can strongly influence the population dynamics of disease vectors and is consequently a key component of disease ecology. Future climate change and variability may alter the location and seasonality of many disease vectors, possibly increasing the risk of disease transmission to humans. The mosquito species Culex quinquefasciatus is a concern across the southern United States because of its role as a West Nile virus vector and its affinity for urban environments. Using established relationships between atmospheric variables (temperature and precipitation) and mosquito development, we have created the Dynamic Mosquito Simulation Model (DyMSiM) to simulate Cx. quinquefasciatus population dynamics. The model is driven with climate data and validated against mosquito count data from Pasco County, Florida and Coachella Valley, California. Using 1-week and 2-week filters, mosquito trap data are reproduced well by the model ( P < 0.0001). Dry environments in southern California produce different mosquito population trends than moist locations in Florida. Florida and California mosquito populations are generally temperature-limited in winter. In California, locations are water-limited through much of the year. Using future climate projection data generated by the National Center for Atmospheric Research CCSM3 general circulation model, we applied temperature and precipitation offsets to the climate data at each location to evaluate mosquito population sensitivity to possible future climate conditions. We found that temperature and precipitation shifts act interdependently to cause remarkable changes in modeled mosquito population dynamics. Impacts include a summer population decline from drying in California due to loss of immature mosquito habitats, and in Florida a decrease in late-season mosquito populations due to drier late summer conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2716330','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2716330"><span>Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Holt, Ashley C; Salkeld, Daniel J; Fritz, Curtis L; Tucker, James R; Gong, Peng</p> <p>2009-01-01</p> <p>Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions. PMID:19558717</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC43A0883S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC43A0883S"><span>Comparison of Global Cloud Fraction and TOA Radiation Budgets between the NASA GISS AR5 GCM Simulations and CERES-MODIS Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanfield, R. E.; Dong, X.; Xi, B.; Del Genio, A. D.; Minnis, P.; Doelling, D.; Loeb, N. G.</p> <p>2011-12-01</p> <p>To better advise policymakers, it is necessary for climate models to provide credible predictions of future climates. Meeting this goal requires climate models to successfully simulate the present and past climates. The past, current and future Earth climate has been simulated by the NASA GISS ModelE climate model and has been summarized by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4, 2007). New simulations from the updated AR5 version of the NASA GISS ModelE GCM have been released to the public community and will be included in the IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, however, they have yet to be extensively validated against observations. To evaluate the GISS AR5 simulated global clouds and TOA radiation budgets, we have collected and processed the NASA CERES and MODIS observations during the period 2000-2005. In detail, the 1ox1o resolution monthly averaged SYN1 product has been used with combined observations from both Terra and Aqua satellites, and degraded to a 2ox2.5o grid box to match the GCM spatial resolution. These observations are temporally interpolated and fit to data from geostationary satellites to provide time continuity. The GISS AR5 products were downloaded from the CMIP5 (Coupled Model Intercomparison Project Phase 5) for the IPCC-AR5. Preliminary comparisons between GISS AR5 simulations and CERES-MODIS observations have shown that although their annual and seasonal mean CFs agree within a few percent, there are significant differences in several climatic regions. For example, the modeled CFs have positive biases in the Arctic, Antarctic, Tropics, and Sahara Desert, but negative biases over the southern middle latitudes (30-65 oS). The OLR, albedo and NET radiation comparisons are similar to the CF comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC21G..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC21G..05G"><span>Sea Level Rise, Rainfall and Coastal Flooding in Northeastern U.S. Cities Vivien Gornitz, Radley Horton, Philip Orton, Nickitas Georgas, Alan Blumberg, and Cynthia Rosenzweig</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gornitz, V.; Horton, R. M.; Orton, P. M.; Georgas, N.; Blumberg, A. F.; Rosenzweig, C.</p> <p>2012-12-01</p> <p>Populations and infrastructure along much of the northeastern coast of the United States will become increasingly vulnerable to the impacts of rising sea level and storm surges over the coming century. This vulnerability is amplified by regional land subsidence and likely also by shifts in ocean circulation. Building upon recent studies for the New York City Panel on Climate Change (NPCC), New York State ClimAid assessment, and the latest U.S. National Climate Assessment, we report new regional sea level rise projections based on the latest CMIP-5 global climate models (GCMs) and RCP emission scenarios, adjusted for revised glacial ice melt contributions, and other factors such as gravitational effects, land water storage, and changes in the Atlantic Meriodional Overturning Circulation (AMOC). Over the coming two years, GCM-derived sea level outputs for future decades will be utilized in risk assessments for coastal flooding in New York City, Boston, and Philadelphia, as part of the Consortium for Climate Risk in the Urban Northeast-RISA project. The Stevens Institute Estuarine and Coastal Ocean Model (sECOM) will be used to produce best estimates (including uncertainty ranges) of sea level rise impacts for a wide range of tropical and extra-tropical cyclones for the 2010s, 2050s, and 2080s. Major improvements over prior studies include (a) the use of a detailed, extensively validated ocean model, and (b) inclusion of rainfall and river flow influences on coastal flooding, which affect flood levels in enclosed tidal waterways (e.g., the Hudson and Delaware Rivers), and which are also likely important in coastal confluence zones of impermeable urbanized watersheds. In addition to the sea level rise results, we present initial model validation results for historical storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..517.1019F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..517.1019F"><span>Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.</p> <p>2014-09-01</p> <p>Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047978&hterms=urban+landscape&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Durban%2Blandscape','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047978&hterms=urban+landscape&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Durban%2Blandscape"><span>Estimating the urban bias of surface shelter temperatures using upper-air and satellite data. Part 1: Development of models predicting surface shelter temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.</p> <p>1995-01-01</p> <p>Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root-mean-square errors (rmse's) were over 3 C for GHCN models and over 2 C for COOP models for winter months, and near 2 C for GHCN models and near 1.5 C for COOP models for summer months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7533P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7533P"><span>Coupling climate and hydrological models to evaluate the impact of climate change on run of the river hydropower schemes from UK study sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen</p> <p>2015-04-01</p> <p>As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26262755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26262755"><span>Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho</p> <p>2015-01-01</p> <p>Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4532508','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4532508"><span>Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P.; Hopkinson, Charles S.; Lee, Joon Ho</p> <p>2015-01-01</p> <p>Climate change has caused shifts in species’ ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula. PMID:26262755</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1410025-mixed-phase-cloud-physics-southern-ocean-cloud-feedback-climate-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1410025-mixed-phase-cloud-physics-southern-ocean-cloud-feedback-climate-models"><span>Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.; ...</p> <p>2015-08-21</p> <p>Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13E2120R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13E2120R"><span>How does a High Resolution Global Model represent Mesoscale Convective Systems over the Amazon Basin?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rehbein, A.; Ambrizzi, T.</p> <p>2017-12-01</p> <p>The mesoscale convective systems (MCSs) are very important meteorological systems, which can impact on the local, regional and global climate. Despite of their importance, the knowledge about their occurrence and behavior is still poor, mainly over the tropical region of South America where the data availability is scarce. Besides, few attentions are given to represent the MCSs in the numerical modeling in that region. The aim of the present work is to evaluate the representation of the MCSs by a global high resolution model over the Amazon basin. In this study, we will make a revision of the state of art involving the MCSs' over the Amazon basin and also how they are represented. For this last point, we will identify and track the MCSs using precipitation data from a high resolution nonhydrostatic global model, called Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The spatial and temporal resolution of NICAM are 14 km and 1 hour, respectively. The MCSs identification and tracking will be performed by the algorithm Forecast and Tracking the evolution of Cloud Clusters (ForTraCC) for the period of 2000 to 2008. This will allow us evaluate the representation of the MCSs obtained by NICAM and compare them with those found using infrared satellite images. NICAM's precipitation was validated using Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from 1981 to 2008. Once the model is validated, we will analyze the variability of the MCSs using the simulations of the NICAM for a future climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP22A..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP22A..06J"><span>Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobs, P.; Dowsett, H. J.; de Mutsert, K.</p> <p>2017-12-01</p> <p>Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913780K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913780K"><span>The WASCAL high-resolution climate projection ensemble for West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunstmann, Harald; Heinzeller, Dominikus; Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Hamann, Ilse; Salack, Seyni</p> <p>2017-04-01</p> <p>With climate change being one of the most severe challenges to rural Africa in the 21st century, West Africa is facing an urgent need to develop effective adaptation and mitigation measures to protect its constantly growing population. We perform ensemble-based regional climate simulations at a high resolution of 12km for West Africa to allow a scientifically sound derivation of climate change adaptation measures. Based on the RCP4.5 scenario, our ensemble consist of three simulation experiments with the Weather Research & Forecasting Tool (WRF) and one additional experiment with the Consortium for Small-scale Modelling Model COSMO in Climate Mode (COSMO-CLM). We discuss the model performance over the validation period 1980-2010, including a novel, station-based precipitation database for West Africa obtained within the WASCAL (West African Science Service Centre for Climate Change and Adapted Land Use) program. Particular attention is paid to the representation of the dynamics of the West African Summer Monsoon and to the added value of our high-resolution models over existing data sets. We further present results on the climate change signal obtained for the two future periods 2020-2050 and 2070-2100 and compare them to current state-of-the-art projections from the CORDEX-Africa project. While the temperature change signal is similar to that obtained within CORDEX-Africa, our simulations predict a wetter future for the Coast of Guinea and the southern Soudano area and a slight drying in the northernmost part of the Sahel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33G0253F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33G0253F"><span>Satellite Remote Sensing and Mesoscale Modeling of Biomass Burning Aerosols over the Southeast Asian Maritime Continent: Climatic Implications of Smokes on Regional Energy Balance, Cloud Formations and Precipitations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, N.</p> <p>2015-12-01</p> <p>The influences of anthropogenic aerosols have been suggested as an important reason for climate changes over Southeast Asia (SE Asia, 10°S~20°N and 90°E~135°E). Accurate observations and modelling of aerosols effects on the weather and climate patterns is crucial for a better understanding and mitigation of anthropogenic climate change. This study uses NASA satellite observations along with online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) to evaluate aerosols impacts on climate over SE Asia. We assess the direct and semi-direct radiative effects of smoke particles over this region during September, 2009 when a significant El Niño event caused the highest biomass burning activity during the last 15 years. Quantification efforts are made to assess how changes of radiative and non radiative parameters (sensible and latent heat) due to smoke aerosols would affect regional climate process such as precipitations, clouds and planetary boundary layer process. Comparison of model simulations for the current land cover conditions against surface meteorological observations and satellite observations of precipitations and cloudiness show satisfactory performance of the model over our study area. In order to quantitatively validate the model results, several experiments will be performed to test the aerosols radiative feedback under different radiation schemes and with/without considering aerosol effects explicitly in the model. Relevant ground-based data (e.g. AERONET), along with aerosol vertical profile data from CALIPSO, will also be applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014QSRv..106..186H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014QSRv..106..186H"><span>Palaeoclimate records 60-8 ka in the Austrian and Swiss Alps and their forelands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heiri, Oliver; Koinig, Karin A.; Spötl, Christoph; Barrett, Sam; Brauer, Achim; Drescher-Schneider, Ruth; Gaar, Dorian; Ivy-Ochs, Susan; Kerschner, Hanns; Luetscher, Marc; Moran, Andrew; Nicolussi, Kurt; Preusser, Frank; Schmidt, Roland; Schoeneich, Philippe; Schwörer, Christoph; Sprafke, Tobias; Terhorst, Birgit; Tinner, Willy</p> <p>2014-12-01</p> <p>The European Alps and their forelands provide a range of different archives and climate proxies for developing climate records in the time interval 60-8 thousand years (ka) ago. We review quantitative and semi-quantitative approaches for reconstructing climatic variables in the Austrian and Swiss sector of the Alpine region within this time interval. Available quantitative to semi-quantitative climate records in this region are mainly based on fossil assemblages of biota such as chironomids, cladocerans, coleopterans, diatoms and pollen preserved in lake sediments and peat, the analysis of oxygen isotopes in speleothems and lake sediment records, the reconstruction of past variations in treeline altitude, the reconstruction of past equilibrium line altitude and extent of glaciers based on geomorphological evidence, and the interpretation of past soil formation processes, dust deposition and permafrost as apparent in loess-palaeosol sequences. Palaeoclimate reconstructions in the Alpine region are affected by dating uncertainties increasing with age, the fragmentary nature of most of the available records, which typically only incorporate a fraction of the time interval of interest, and the limited replication of records within and between regions. Furthermore, there have been few attempts to cross-validate different approaches across this time interval to confirm reconstructed patterns of climatic change by several independent lines of evidence. Based on our review we identify a number of developments that would provide major advances for palaeoclimate reconstruction for the period 60-8 ka in the Alps and their forelands. These include (1) the compilation of individual, fragmentary records to longer and continuous reconstructions, (2) replication of climate records and the development of regional reconstructions for different parts of the Alps, (3) the cross-validation of different proxy-types and approaches, and (4) the reconstruction of past variations in climate gradients across the Alps and their forelands. Furthermore, the development of downscaled climate model runs for the Alpine region 60-8 ka, and of forward modelling approaches for climate proxies would expand the opportunities for quantitative assessments of climatic conditions in Europe within this time-interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23202819','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23202819"><span>Spatial diffusion of influenza outbreak-related climate factors in Chiang Mai Province, Thailand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakapan, Supachai; Tripathi, Nitin Kumar; Tipdecho, Taravudh; Souris, Marc</p> <p>2012-10-24</p> <p>Influenza is one of the most important leading causes of respiratory illness in the countries located in the tropical areas of South East Asia and Thailand. In this study the climate factors associated with influenza incidence in Chiang Mai Province, Northern Thailand, were investigated. Identification of factors responsible for influenza outbreaks and the mapping of potential risk areas in Chiang Mai are long overdue. This work examines the association between yearly climate patterns between 2001 and 2008 and influenza outbreaks in the Chiang Mai Province. The climatic factors included the amount of rainfall, percent of rainy days, relative humidity, maximum, minimum temperatures and temperature difference. The study develops a statistical analysis to quantitatively assess the relationship between climate and influenza outbreaks and then evaluate its suitability for predicting influenza outbreaks. A multiple linear regression technique was used to fit the statistical model. The Inverse Distance Weighted (IDW) interpolation and Geographic Information System (GIS) techniques were used in mapping the spatial diffusion of influenza risk zones. The results show that there is a significance correlation between influenza outbreaks and climate factors for the majority of the studied area. A statistical analysis was conducted to assess the validity of the model comparing model outputs and actual outbreaks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5877029','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5877029"><span>Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lyu, Sainan; Chan, Albert P. C.; Wong, Francis K. W.</p> <p>2018-01-01</p> <p>In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East. PMID:29522503</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA259042','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA259042"><span>Analysis of Whole-Sky Imager Data to Determine the Validity of PCFLOS models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-12-01</p> <p>included in the data sample. 2-5 3.1. Data arrangement for a r x c contingency table ....................... 3-2 3.2. ARIMA models estimated for each...satellites. This model uses the multidimen- sional Boehm Sawtooth Wave Model to establish climatic probabilities through repetitive simula- tions of...analysis techniques to develop an ARIMAe model for each direction at the Columbia and Kirtland sites. Then, the models can be compared and analyzed to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG41A0115D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG41A0115D"><span>SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.</p> <p>2017-12-01</p> <p>SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B43C2144Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B43C2144Z"><span>Quantifying Hydroperiod, Fire and Nutrient Effects on the Composition of Plant Communities in Marl Prairie of the Everglades: a Joint Probability Method Based Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhai, L.</p> <p>2017-12-01</p> <p>Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..539..141L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..539..141L"><span>Evaluation of TOPLATS on three Mediterranean catchments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel</p> <p>2016-08-01</p> <p>Physically based hydrological models are complex tools that provide a complete description of the different processes occurring on a catchment. The TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and distributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different conditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a 4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by different levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar results that identified Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) and Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After calibration and validation, adequate streamflow simulations were obtained in the two wettest catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability between calibration and validation periods. To overcome this issue, an alternative random and discontinuous method of cal/val period selection was implemented, improving model results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC11E0604G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC11E0604G"><span>Agricultural Adaptations to Climate Changes in West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.</p> <p>2014-12-01</p> <p>Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51A0796C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51A0796C"><span>Climate-Driven Risk of Large Fire Occurrence in the Western United States, 1500 to 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crockett, J.; Westerling, A. L.</p> <p>2017-12-01</p> <p>Spatially comprehensive fire climatology has provided managers with tools to understand thecauses and consequences of large forest wildfires, but a paleoclimate context is necessary foranticipating the trajectory of future climate-fire relationships. Although accumulated charcoalrecords and tree scars have been utilized in high resolution, regional fire reconstructions, there isuncertainty as to how current climate-fire relationships of the western United States (WUS) fitwithin the natural long-term variability. While contemporary PDSI falls within the naturalvariability of the past, contemporary temperatures skew higher. Here, we develop a WUSfire reconstruction by applying climate-fire-topography model built on the 1972 to 2003 periodto the past 500 years, validated by recently updated fire-scar histories from WUS forests. Theresultant narrative provides insight into changing climate-fire relationships during extendedperiods of high aridity and temperature, providing land managers with historical precedent toeffectively anticipate disturbances during future climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29070449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29070449"><span>Assessing cover crop management under actual and climate change conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis</p> <p>2018-04-15</p> <p>The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28257501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28257501"><span>Remote-sensing based approach to forecast habitat quality under climate change scenarios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier</p> <p>2017-01-01</p> <p>As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5336225','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5336225"><span>Remote-sensing based approach to forecast habitat quality under climate change scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier</p> <p>2017-01-01</p> <p>As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26761791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26761791"><span>Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tellería, José L; Fernández-López, Javier; Fandos, Guillermo</p> <p>2016-01-01</p> <p>We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPA24A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPA24A..05M"><span>A Systems Approach to Climate, Water and Diarrhea in Hubli-Dharward, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mellor, J. E.; Zimmerman, J.</p> <p>2014-12-01</p> <p>Although evidence suggests that climate change will negatively impact water resources and hence diarrheal disease rates in the developing world, there is uncertainty surrounding prior studies. This is due to the complexity of the pathways by which climate impacts diarrhea rates making it difficult to develop interventions. Therefore, our goal was to develop a mechanistic systems approach that incorporates the complex climate, human, engineered and water systems to relate climate change to diarrhea rates under future climate scenarios.To do this, we developed an agent-based model (ABM). Our agents are households and children living in Hubli-Dharward, India. The model was informed with 15 months of weather, water quality, ethnographic and diarrhea incidence data. The model's front end is a stochastic weather simulator incorporating 15 global climate models to simulate rainfall and temperature. The water quality available to agents (residents) on a model "day" is a function of the simulated day's weather and is fully validated with field data. As with the field data, as the ambient temperature increases or it rains, the quality of water available to residents in the model deteriorates. The propensity for an resident to get diarrhea is calculated with an integrated Quantitative Microbial Risk Assessment model with uncertainty simulated with a bootstrap method. Other factors include hand-washing, improved water sources, household water treatment and improved sanitation.The benefits of our approach are as follows: Our mechanistic method allows us to develop scientifically derived adaptation strategies. We can quantitatively link climate scenarios with diarrhea incidence over long time periods. We can explore the complex climate and water system dynamics, rank risk factor importance, examine a broad range of scenarios and identify tipping points. Our approach is modular and expandable such that new datasets can be integrated to study climate impacts on a larger scale. Our results indicate that climate change will have a serious effect on diarrhea incidence in the region. However, adaptation strategies including more reliable water supplies and household water treatment can mitigate these impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A23A0188P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A23A0188P"><span>Koeppen Bioclimatic Metrics for Evaluating CMIP5 Simulations of Historical Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, T. J.; Bonfils, C.</p> <p>2012-12-01</p> <p>The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by the observed amplitude and phase of the annual cycles of continental temperature (T) and precipitation (P). Koeppen classification thus can provide concise, multivariate metrics for evaluating climate model performance in simulating the regional magnitudes and seasonalities of climate variables that are of critical importance for living organisms. In this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of 1980-1999 climate, a period when observational data provides a reliable global validation standard. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of the vegetation types, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are most deficient in simulating 1) the climates of the drier zones (e.g. desert, savanna, grassland, steppe vegetation types) that are located in the Southwestern U.S. and Mexico, Eastern Europe, Southern Africa, and Central Australia, as well as 2) the climate of regions such as Central Asia and Western South America where topography plays a central role. (Detailed analysis of regional biases in the annual cycles of T and P of selected simulations exemplifying general model performance problems also are to be presented.) The more encouraging results include evidence for a general improvement in CMIP5 performance relative to that of older CMIP3 models. Within CMIP5 also, the more complex Earth Systems Models (ESMs) with prognostic biogeochemistry perform comparably to the corresponding global models that simulate only the "physical" climate. Acknowledgments This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA43B0324J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA43B0324J"><span>Decision-relevant evaluation of climate models: A case study of chill hours in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jagannathan, K. A.; Jones, A. D.; Kerr, A. C.</p> <p>2017-12-01</p> <p>The past decade has seen a proliferation of different climate datasets with over 60 climate models currently in use. Comparative evaluation and validation of models can assist practitioners chose the most appropriate models for adaptation planning. However, such assessments are usually conducted for `climate metrics' such as seasonal temperature, while sectoral decisions are often based on `decision-relevant outcome metrics' such as growing degree days or chill hours. Since climate models predict different metrics with varying skill, the goal of this research is to conduct a bottom-up evaluation of model skill for `outcome-based' metrics. Using chill hours (number of hours in winter months where temperature is lesser than 45 deg F) in Fresno, CA as a case, we assess how well different GCMs predict the historical mean and slope of chill hours, and whether and to what extent projections differ based on model selection. We then compare our results with other climate-based evaluations of the region, to identify similarities and differences. For the model skill evaluation, historically observed chill hours were compared with simulations from 27 GCMs (and multiple ensembles). Model skill scores were generated based on a statistical hypothesis test of the comparative assessment. Future projections from RCP 8.5 runs were evaluated, and a simple bias correction was also conducted. Our analysis indicates that model skill in predicting chill hour slope is dependent on its skill in predicting mean chill hours, which results from the non-linear nature of the chill metric. However, there was no clear relationship between the models that performed well for the chill hour metric and those that performed well in other temperature-based evaluations (such winter minimum temperature or diurnal temperature range). Further, contrary to conclusions from other studies, we also found that the multi-model mean or large ensemble mean results may not always be most appropriate for this outcome metric. Our assessment sheds light on key differences between global versus local skill, and broad versus specific skill of climate models, highlighting that decision-relevant model evaluation may be crucial for providing practitioners with the best available climate information for their specific needs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616415R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616415R"><span>Evolution of extreme temperature events in short term climate projection for Iberian Peninsula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita</p> <p>2014-05-01</p> <p>Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology 32:74-85 DOI: 10.1002/joc.2256. van der Linden, P., and J. F. B. Mitchell (Eds.) (2009), ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results From the ENSEMBLES Project, Met Off. Hadley Cent, Exeter, U. K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/931346-developing-models-predictive-climate-science','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/931346-developing-models-predictive-climate-science"><span>Developing Models for Predictive Climate Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Drake, John B; Jones, Philip W</p> <p>2007-01-01</p> <p>The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strongmore » tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NPGD....2.1317D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NPGD....2.1317D"><span>Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>dos Santos, T. S.; Mendes, D.; Torres, R. R.</p> <p>2015-08-01</p> <p>Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GPC...152..152P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GPC...152..152P"><span>Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattnayak, K. C.; Kar, S. C.; Dalal, Mamta; Pattnayak, R. K.</p> <p>2017-05-01</p> <p>Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project (CMIP5) models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2369R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2369R"><span>Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.</p> <p>2018-04-01</p> <p>This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent deep-water formation in the Labrador Sea, resulting in overestimated North Atlantic SST variability. Concerning the influence of locally (isotropically) increased resolution, the ENSO pattern and index statistics improve significantly with higher resolution around the equator, illustrating the potential of the novel unstructured-mesh method for global climate modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24446429','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24446429"><span>Predicting plant invasions under climate change: are species distribution models validated by field trials?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C</p> <p>2014-09-01</p> <p>Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced frosts with climate change may provide more suitable habitats and enable the spread of these species. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43I0673G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43I0673G"><span>Modeling Soil Organic Carbon Variation Along Climatic and Topographic Trajectories in the Central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gavilan, C.; Grunwald, S.; Quiroz, R.; Zhu, L.</p> <p>2015-12-01</p> <p>The Andes represent the largest and highest mountain range in the tropics. Geological and climatic differentiation favored landscape and soil diversity, resulting in ecosystems adapted to very different climatic patterns. Although several studies support the fact that the Andes are a vast sink of soil organic carbon (SOC) only few have quantified this variable in situ. Estimating the spatial distribution of SOC stocks in data-poor and/or poorly accessible areas, like the Andean region, is challenging due to the lack of recent soil data at high spatial resolution and the wide range of coexistent ecosystems. Thus, the sampling strategy is vital in order to ensure the whole range of environmental covariates (EC) controlling SOC dynamics is represented. This approach allows grasping the variability of the area, which leads to more efficient statistical estimates and improves the modeling process. The objectives of this study were to i) characterize and model the spatial distribution of SOC stocks in the Central Andean region using soil-landscape modeling techniques, and to ii) validate and evaluate the model for predicting SOC content in the area. For that purpose, three representative study areas were identified and a suite of variables including elevation, mean annual temperature, annual precipitation and Normalized Difference Vegetation Index (NDVI), among others, was selected as EC. A stratified random sampling (namely conditioned Latin Hypercube) was implemented and a total of 400 sampling locations were identified. At all sites, four composite topsoil samples (0-30 cm) were collected within a 2 m radius. SOC content was measured using dry combustion and SOC stocks were estimated using bulk density measurements. Regression Kriging was used to map the spatial variation of SOC stocks. The accuracy, fit and bias of SOC models was assessed using a rigorous validation assessment. This study produced the first comprehensive, geospatial SOC stock assessment in this undersampled region that serves as a baseline reference to assess potential impacts of climate and land use change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28946705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28946705"><span>Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Diouf, Ibrahima; Rodriguez-Fonseca, Belen; Deme, Abdoulaye; Caminade, Cyril; Morse, Andrew P; Cisse, Moustapha; Sy, Ibrahima; Dia, Ibrahima; Ermert, Volker; Ndione, Jacques-André; Gaye, Amadou Thierno</p> <p>2017-09-25</p> <p>The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal) and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be considered as a validation of the reliability of reanalysis to be used as inputs for the calculation of malaria parameters in the Sahel using dynamical malaria models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880014739','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880014739"><span>Cloud cover determination in polar regions from satellite imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barry, R. G.; Key, J. R.; Maslanik, J. A.</p> <p>1988-01-01</p> <p>The principal objectives of this project are: to develop suitable validation data sets to evaluate the effectiveness of the ISCCP operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers: and to compare synoptic cloud data from a control run experiment of the Goddard Institute for Space Studies (GISS) climate model 2 with typical observed synoptic cloud patterns. Current investigations underway are listed and the progress made to date is summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.100...78L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.100...78L"><span>Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick</p> <p>2016-04-01</p> <p>The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...58a2054N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...58a2054N"><span>Predictive Modeling of Rice Yellow Stem Borer Population Dynamics under Climate Change Scenarios in Indramayu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nurhayati, E.; Koesmaryono, Y.; Impron</p> <p>2017-03-01</p> <p>Rice Yellow Stem Borer (YSB) is one of the major insect pests in rice plants that has high attack intensity in rice production center areas, especially in West Java. This pest is consider as holometabola insects that causes rice damage in the vegetative phase (deadheart) as well as generative phase (whitehead). Climatic factor is one of the environmental factors influence the pattern of dynamics population. The purpose of this study was to develop a predictive modeling of YSB pest dynamics population under climate change scenarios (2016-2035 period) using Dymex Model in Indramayu area, West Java. YSB modeling required two main components, namely climate parameters and YSB development lower threshold of temperature (To) to describe YSB life cycle in every phase. Calibration and validation test of models showed the coefficient of determination (R2) between the predicted results and observations of the study area were 0.74 and 0.88 respectively, which was able to illustrate the development, mortality, transfer of individuals from one stage to the next life also fecundity and YSB reproduction. On baseline climate condition, there was a tendency of population abundance peak (outbreak) occured when a change of rainfall intensity in the rainy season transition to dry season or the opposite conditions was happen. In both of application of climate change scenarios, the model outputs were generated well and able to predict the pattern of YSB population dynamics with a the increasing trend of specific population numbers, generation numbers per season and also shifting pattern of populations abundance peak in the future climatic conditions. These results can be adopted as a tool to predict outbreak and to give early warning to control YSB pest more effectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025498','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025498"><span>Taking the pulse of mountains: Ecosystem responses to climatic variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.</p> <p>2003-01-01</p> <p>An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31I..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31I..01N"><span>The essential interactions between understanding climate variability and climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neelin, J. D.</p> <p>2017-12-01</p> <p>Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP34B..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP34B..01R"><span>The Evolution of Indian and Pacific Ocean Denitrification and Nitrogen Dynamcs since the Miocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ravelo, A. C.; Carney, C.; Rosenthal, Y.; Holbourn, A.; Kulhanek, D. K.</p> <p>2017-12-01</p> <p>The feedbacks between geochemical cycles and physical climate change are poorly understood; however, there has been tremendous progress in developing coupled models to help predict the direction and strength of these feedbacks. As such, there is a need for more data to validate and test these models. To this end, the nitrogen (N) cycle, and its links to the biological pump and to climate, is an active area of paleoceanographic research. Using N isotope records, Robinson et al. (2014) showed that pelagic denitrification in the Indian and Pacific Oceans intensified as climate cooled and subsurface ventilation decreased since the Pliocene. They pointed out that a more ventilated warm Pliocene contrasts with glacial-interglacial patterns wherein more ventilation occurs during cold phases, indicating that different mechanisms may occur at different timescales. Our objective is to better understand the nature of the feedbacks between the oceanic N cycle and climate by focusing on the large dynamic range of conditions that occurred during and since the Miocene. We used new cores drilled during IODP Expedition 363 to generate bulk sediment N isotope records at three western tropical Pacific sites (U1486, U1488, U1490) and one southeastern tropical Indian Ocean site (U1482). We find that the N isotope trends since the Pliocene are in agreement with previous studies showing increasing denitrification as climate cooled. In the Miocene, the Indian Ocean record shows no long-term N isotope trend whereas the Pacific Ocean records show a trend that is roughly coupled to changes in global climate suggesting that pelagic denitrification in the Pacific was strongly influenced by greater ventilation during global warmth. However, there are notable deviations from this coupling during several intervals in the Miocene, and there are site-to-site differences in trends. These deviations and differences can be explained by changes in tropical productivity (e.g., late Miocene biogenic bloom), which drove changes subsurface oxygenation and denitrification, and by changes in regional circulation. Our study provides fundamental data that can be used to validate conceptual and numerical models of the long-term coupling of climate, biological productivity and ocean chemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080023285','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080023285"><span>Cloud-System Resolving Models: Status and Prospects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, Wei-Kuo; Moncreiff, Mitch</p> <p>2008-01-01</p> <p>Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050175690','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050175690"><span>Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka</p> <p>2005-01-01</p> <p>This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4263392','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4263392"><span>Psychometric properties of the Persian version of the “Hospital Ethical Climate Survey”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khalesi, Nader; Arabloo, Jalal; Khosravizadeh, Omid; Taghizadeh, Sanaz; Heyrani, Ali; Ebrahimian, Abbasali</p> <p>2014-01-01</p> <p>In order to improve the ethical climate in health care organizations, it is important to apply a valid measure. This study aimed to investigate the psychometric properties of the Persian version of the Hospital Ethical Climate Survey (HECS) and to assess nurses’ perceptions of the ethical climate in teaching hospitals of Iran. A cross-sectional study of randomly selected nurses (n = 187) was conducted in three teaching general hospitals of Tehran, capital of Iran. Olson’s Hospital Ethical Climate Survey (HECS), a self-administered questionnaire, was used to assess the nurses’ perceptions of the hospital ethical climate. Descriptive statistics, confirmatory factor analysis (CFA), internal consistency, and correlation were used to analyze the data. CFA showed acceptable model fit: an standardized root mean square residual (SRMR) of 0.064, an non-normalized fit index (NNFI) of 0.96, a comparative fit index (CFI) of 0.96, and an root mean square error of approximation (RMSEA) of 0.075. The Cronbach’s alpha values were acceptable and ranging from 0.69 to 0.85. The overall Cronbach’s alpha coefficient was 0.94. The factor loadings for all ethical climate items were between 0.50 and 0.80, which revealed good structure of the Persian version of the HECS. Survey findings showed that the “managers” subscale had the highest score and the subscale of “doctors” had the lowest score. This study shows that the Persian version of the HECS is a valid and reliable instrument for measuring nurses’ perceptions of the ethical climate in hospitals of Iran PMID:25512834</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28789748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28789748"><span>Measuring Certified Registered Nurse Anesthetist Organizational Climate: Instrument Adaptation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boyd, Donald; Poghosyan, Lusine</p> <p>2017-08-01</p> <p>No tool exists measuring certified registered nurse anesthetist (CRNA) organizational climate. The study's purpose is to adapt a validated tool to measure CRNA organizational climate. Content validity of the Certified Registered Nurse Anesthetist Organizational Climate Questionnaire (CRNA-OCQ) was established. Pilot testing was conducted to determine internal reliability consistency of the subscales. Experts rated the tool as content valid. The subscales had high internal consistency reliability (with respective Cronbach's alphas): CRNA-Anesthesiologist Relations (.753), CRNA-Physician Relations (.833), CRNA-Administration Relations (.895), Independent Practice (.830), Support for CRNA Practice (.683), and Professional Visibility (.772). Further refinement of the CRNA-OCQ is necessary. Measurement and assessment of CRNA organizational climate may produce evidence needed to improve provider and patient outcomes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375902','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375902"><span>Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Meifang; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong</p> <p>2017-01-01</p> <p>Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS) active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra) and MYD14A1 (Aqua)) and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578), which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly distributed in Xin Barag Youqi, Xin Barag Zuoqi, Zalantun Shi, Oroqen Zizhiqi, and Molidawa Zizhiqi; the zones with medium fire climate index are mainly distributed in Chen Barag Qi, Ewenkizu Zizhiqi, Manzhouli Shi, and Arun Qi; and the zones with lower fire climate index are mainly distributed in Genhe Shi, Ergun city, Yakeshi Shi, and Hailar Shi. The results of this study will contribute to the quantitative assessment and management of early warning and forecasting for mid-to long-term grassland fire risk in HulunBuir. PMID:28304336</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A23P..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A23P..02M"><span>Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.</p> <p>2014-12-01</p> <p>Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various datasets available, the methods employed to utilize them in the cloud property retrieval validation process, and the results and how they aid future development of the retrieval algorithms. Future needs are also discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1335334-development-coupled-regional-climate-vegetation-model-rcm-clm-cn-dv-its-validation-tropical-africa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1335334-development-coupled-regional-climate-vegetation-model-rcm-clm-cn-dv-its-validation-tropical-africa"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Guiling; Yu, Miao; Pal, Jeremy</p> <p></p> <p>This paper presents a regional climate system model RCM-CLM-CN-DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon-nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule intomore » the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM-CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM-CLM-CN with prescribed PFTs coverage but prognostic plant phenology; RCM-CLM-CN-DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated through vegetation dynamics in RCM-CLM-CN-DV.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1046228','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1046228"><span>ARM Climate Modeling Best Estimate Lamont, OK Statistical Summary (ARMBE-CLDRAD SGPC1)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>McCoy, Renata; Xie, Shaocheng</p> <p>2010-01-26</p> <p>Calculate monthly mean diurnal cycle based on the hourly CMBE data with qcflag >=-1 (>30% valid data within the averaged hour). For 2-D clouds, only data over the period when both MMCR and MPL were working are used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191008','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191008"><span>Integrating research tools to support the management of social-ecological systems under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, Brian W.; Morisette, Jeffrey T.</p> <p>2014-01-01</p> <p>Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8.2031L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8.2031L"><span>Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859-present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lea, J. M.; Mair, D. W. F.; Nick, F. M.; Rea, B. R.; van As, D.; Morlighem, M.; Nienow, P. W.; Weidick, A.</p> <p>2014-11-01</p> <p>Many tidewater glaciers in Greenland are known to have undergone significant retreat during the last century following their Little Ice Age maxima. Where it is possible to reconstruct glacier change over this period, they provide excellent records for comparison to climate records, as well as calibration/validation for numerical models. These glacier change records therefore allow for tests of numerical models that seek to simulate tidewater glacier behaviour over multi-decadal to centennial timescales. Here we present a detailed record of behaviour from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859 and 2012, and compare it against available oceanographic and atmospheric temperature data between 1871 and 2012. We also use these records to evaluate the ability of a well-established one-dimensional flow-band model to replicate behaviour for the observation period. The record of terminus change demonstrates that KNS has advanced/retreated in phase with atmosphere and ocean climate anomalies averaged over multi-annual to decadal timescales. Results from an ensemble of model runs demonstrate that observed dynamics can be replicated. Model runs that provide a reasonable match to observations always require a significant atmospheric forcing component, but do not necessarily require an oceanic forcing component. Although the importance of oceanic forcing cannot be discounted, these results demonstrate that changes in atmospheric forcing are likely to be a primary driver of the terminus fluctuations of KNS from 1859 to 2012. We propose that the detail and length of the record presented makes KNS an ideal site for model validation exercises investigating links between climate, calving rates, and tidewater glacier dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045859','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045859"><span>Analyzing the water budget and hydrological characteristics and responses to land use in a monsoonal climate river basin in South China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, Yiping; Chen, Ji</p> <p>2013-01-01</p> <p>Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992EOSTr..73..195H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992EOSTr..73..195H"><span>Intercomparison of land-surface parameterizations launched</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henderson-Sellers, A.; Dickinson, R. E.</p> <p></p> <p>One of the crucial tasks for climatic and hydrological scientists over the next several years will be validating land surface process parameterizations used in climate models. There is not, necessarily, a unique set of parameters to be used. Different scientists will want to attempt to capture processes through various methods “for example, Avissar and Verstraete, 1990”. Validation of some aspects of the available (and proposed) schemes' performance is clearly required. It would also be valuable to compare the behavior of the existing schemes [for example, Dickinson et al., 1991; Henderson-Sellers, 1992a].The WMO-CAS Working Group on Numerical Experimentation (WGNE) and the Science Panel of the GEWEX Continental-Scale International Project (GCIP) [for example, Chahine, 1992] have agreed to launch the joint WGNE/GCIP Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS). The principal goal of this project is to achieve greater understanding of the capabilities and potential applications of existing and new land-surface schemes in atmospheric models. It is not anticipated that a single “best” scheme will emerge. Rather, the aim is to explore alternative models in ways compatible with their authors' or exploiters' goals and to increase understanding of the characteristics of these models in the scientific community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA31E..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA31E..04C"><span>Translating Extreme Precipitation Data from Climate Change Projections into Resilient Engineering Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, L. M.; Samaras, C.; Anderson, C.</p> <p>2016-12-01</p> <p>Engineers generally use historical precipitation trends to inform assumptions and parameters for long-lived infrastructure designs. However, resilient design calls for the adjustment of current engineering practice to incorporate a range of future climate conditions that are likely to be different than the past. Despite the availability of future projections from downscaled climate models, there remains a considerable mismatch between climate model outputs and the inputs needed in the engineering community to incorporate climate resiliency. These factors include differences in temporal and spatial scales, model uncertainties, and a lack of criteria for selection of an ensemble of models. This research addresses the limitations to working with climate data by providing a framework for the use of publicly available downscaled climate projections to inform engineering resiliency. The framework consists of five steps: 1) selecting the data source based on the engineering application, 2) extracting the data at a specific location, 3) validating for performance against observed data, 4) post-processing for bias or scale, and 5) selecting the ensemble and calculating statistics. The framework is illustrated with an example application to extreme precipitation-frequency statistics, the 25-year daily precipitation depth, using four publically available climate data sources: NARCCAP, USGS, Reclamation, and MACA. The attached figure presents the results for step 5 from the framework, analyzing how the 24H25Y depth changes when the model ensemble is culled based on model performance against observed data, for both post-processing techniques: bias-correction and change factor. Culling the model ensemble increases both the mean and median values for all data sources, and reduces range for NARCCAP and MACA ensembles due to elimination of poorer performing models, and in some cases, those that predict a decrease in future 24H25Y precipitation volumes. This result is especially relevant to engineers who wish to reduce the range of the ensemble and remove contradicting models; however, this result is not generalizable for all cases. Finally, this research highlights the need for the formation of an intermediate entity that is able to translate climate projections into relevant engineering information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5731736','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5731736"><span>Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.</p> <p>2017-01-01</p> <p>Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29244839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29244839"><span>Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W</p> <p>2017-01-01</p> <p>Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1531..416R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1531..416R"><span>Outcome of the third cloud retrieval evaluation workshop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi</p> <p>2013-05-01</p> <p>Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on cloud vertical placement, cloud physical properties, and cloud climatologies. We present the recommendations of these sessions, propose a way forward to establish international partnerships on cloud research, and summarize actions defined to tailor CREW activities to missions of international programs, such as the Global Energy and Water Cycle Experiment (GEWEX) and Sustained, Co-Ordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM). Finally, attention is given to increase the traceability and uniformity of different longterm and homogeneous records of cloud parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP22A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP22A..08S"><span>Indices and Dynamics of Global Hydroclimate Over the Past Millennium from Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steiger, N. J.; Smerdon, J. E.</p> <p>2017-12-01</p> <p>Reconstructions based on data assimilation (DA) are at the forefront of model-data syntheses in that such reconstructions optimally fuse proxy data with climate models. DA-based paleoclimate reconstructions have the benefit of being physically-consistent across the reconstructed climate variables and are capable of providing dynamical information about past climate phenomena. Here we use a new implementation of DA, that includes updated proxy system models and climate model bias correction procedures, to reconstruct global hydroclimate on seasonal and annual timescales over the last millennium. This new global hydroclimate product includes reconstructions of the Palmer Drought Severity Index, the Standardized Precipitation Evapotranspiration Index, and global surface temperature along with dynamical variables including the Nino 3.4 index, the latitudinal location of the intertropical convergence zone, and an index of the Atlantic Multidecadal Oscillation. Here we present a validation of the reconstruction product and also elucidate the causes of severe drought in North America and in equatorial Africa. Specifically, we explore the connection between droughts in North America and modes of ocean variability in the Pacific and Atlantic oceans. We also link drought over equatorial Africa to shifts of the intertropical convergence zone and modes of ocean variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930068345&hterms=effects+fossil+fuels+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deffects%2Bfossil%2Bfuels%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930068345&hterms=effects+fossil+fuels+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Deffects%2Bfossil%2Bfuels%2Bclimate"><span>Model simulations of the competing climatic effects of SO2 and CO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufman, Yoram J.; Chou, Ming-Dah</p> <p>1993-01-01</p> <p>Sulfur dioxide-derived cloud condensation nuclei are expected to enhance the planetary albedo, thereby cooling the planet. This effect might counteract the global warming expected from enhanced greenhouse gases. A detailed treatment of the relationship between fossil fuel burning and the SO2 effect on cloud albedo is implemented in a two-dimensional model for assessing the climate impact. Using a conservative approach, results show that the cooling induced by the SO2 emission can presently counteract 50 percent of the CO2 greenhouse warming. Since 1980, a strong warming trend has been predicted by the model: 0.15 C during the 1980-1990 period alone. The model predicts that by the year 2060 the SO2 cooling reduces climate warming by 0.5 C or 25 percent for the Intergovernmental Panel on Climate Change (IPCC) business as usual (BAU) scenario and 0.2 C or 20 percent for scenario D (for a slow pace of fossil fuel burning). The hypothesis is examined that the different responses between the Northern Hemisphere and the Southern Hemisphere can be used to validate the presence of the SO2-induced cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B11I..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B11I..06P"><span>To Tip or Not to Tip: The Case of the Congo Basin Rainforest Realm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietsch, S.; Bednar, J. E.; Fath, B. D.; Winter, P. A.</p> <p>2017-12-01</p> <p>The future response of the Congo basin rainforest, the second largest tropical carbon reservoir, to climate change is still under debate. Different Climate projections exist stating increase and decrease in rainfall and different changes in rainfall patterns. Within this study we assess all options of climate change possibilities to define the climatic thresholds of Congo basin rainforest stability and assess the limiting conditions for rainforest persistence. We use field data from 199 research plots from the Western Congo basin to calibrate and validate a complex BioGeoChemistry model (BGC-MAN) and assess model performance against an array of possible future climates. Next, we analyze the reasons for the occurrence of tipping points, their spatial and temporal probability of occurrence, will present effects of hysteresis and derive probabilistic spatial-temporal resilience landscapes for the region. Additionally, we will analyze attractors of forest growth dynamics and assess common linear measures for early warning signals of sudden shifts in system dynamics for their robustness in the context of the Congo Basin case, and introduce the correlation integral as a nonlinear measure of risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29136659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29136659"><span>Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaky, Emad; Gilbert, Francis</p> <p>2017-01-01</p> <p>Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13C1101D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13C1101D"><span>The Power of the Spectrum: Combining Numerical Proxy System Models with Analytical Error Spectra to Better Understand Timescale Dependent Proxy Uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolman, A. M.; Laepple, T.; Kunz, T.</p> <p>2017-12-01</p> <p>Understanding the uncertainties associated with proxy-based reconstructions of past climate is critical if they are to be used to validate climate models and contribute to a comprehensive understanding of the climate system. Here we present two related and complementary approaches to quantifying proxy uncertainty. The proxy forward model (PFM) "sedproxy" bitbucket.org/ecus/sedproxy numerically simulates the creation, archiving and observation of marine sediment archived proxies such as Mg/Ca in foraminiferal shells and the alkenone unsaturation index UK'37. It includes the effects of bioturbation, bias due to seasonality in the rate of proxy creation, aliasing of the seasonal temperature cycle into lower frequencies, and error due to cleaning, processing and measurement of samples. Numerical PFMs have the advantage of being very flexible, allowing many processes to be modelled and assessed for their importance. However, as more and more proxy-climate data become available, their use in advanced data products necessitates rapid estimates of uncertainties for both the raw reconstructions, and their smoothed/derived products, where individual measurements have been aggregated to coarser time scales or time-slices. To address this, we derive closed-form expressions for power spectral density of the various error sources. The power spectra describe both the magnitude and autocorrelation structure of the error, allowing timescale dependent proxy uncertainty to be estimated from a small number of parameters describing the nature of the proxy, and some simple assumptions about the variance of the true climate signal. We demonstrate and compare both approaches for time-series of the last millennia, Holocene, and the deglaciation. While the numerical forward model can create pseudoproxy records driven by climate model simulations, the analytical model of proxy error allows for a comprehensive exploration of parameter space and mapping of climate signal re-constructability, conditional on the climate and sampling conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1410025','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1410025"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.</p> <p></p> <p>Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33L..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33L..08R"><span>Evaluating the Effectiveness of Agricultural Management Practices under Climate Change for Water Quality Improvement in a Rural Agricultural Watershed of Oklahoma, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasoulzadeh Gharibdousti, S.; Kharel, G.; Stoecker, A.; Storm, D.</p> <p>2016-12-01</p> <p>One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. The FCR watershed with an area of 813 km2 includes one major lake fed by four tributaries. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. In this study we aim to estimate the effectiveness of different BMPs in improving watershed health under future climate projections. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the FCR watershed. The watershed was delineated using the 10 m USGS Digital Elevation Model and divided into 43 sub-basins with an average area of 8 km2 (min. 0.2 km2 - max. 28 km2). Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 1,217 hydrologic response units. The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated (1991 - 2000) and validated (2001 - 2010) against the monthly USGS observations of streamflow recorded at the watershed outlet using three statistical matrices: coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB). Model parametrization resulted into satisfactory values of R2 (0.56) and NS (0.56) in calibration period and an excellent model performance (R2 = 0.75; NS = 0.75; PB = <1) in validation period. We have selected 19 BMPs to estimate their efficacy in terms of water and sediment yields under a combination of three Coupled Model Intercomparison Project-5 Global Climate Model projections and two concentration pathways (4.5 and 8.5) downscaled to the FCR watershed. The model results provide precise information for stakeholders to prioritize ecologically sound and economically feasible BMPs that are capable of mitigating future climate change impacts at the watershed scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27846997','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27846997"><span>Safety compliance and safety climate: A repeated cross-sectional study in the oil and gas industry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kvalheim, Sverre A; Dahl, Øyvind</p> <p>2016-12-01</p> <p>Violations of safety rules and procedures are commonly identified as a causal factor in accidents in the oil and gas industry. Extensive knowledge on effective management practices related to improved compliance with safety procedures is therefore needed. Previous studies of the causal relationship between safety climate and safety compliance demonstrate that the propensity to act in accordance with prevailing rules and procedures is influenced to a large degree by workers' safety climate. Commonly, the climate measures employed differ from one study to another and identical measures of safety climate are seldom tested repeatedly over extended periods of time. This research gap is addressed in the present study. The study is based on a survey conducted four times among sharp-end workers of the Norwegian oil and gas industry (N=31,350). This is done by performing multiple tests (regression analysis) over a period of 7years of the causal relationship between safety climate and safety compliance. The safety climate measure employed is identical across the 7-year period. Taking all periods together, the employed safety climate model explained roughly 27% of the variance in safety compliance. The causal relationship was found to be stable across the period, thereby increasing the reliability and the predictive validity of the factor structure. The safety climate factor that had the most powerful effect on safety compliance was work pressure. The factor structure employed shows high predictive validity and should therefore be relevant to organizations seeking to improve safety in the petroleum sector. The findings should also be relevant to other high-hazard industries where safety rules and procedures constitute a central part of the approach to managing safety. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.2671W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.2671W"><span>Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus</p> <p>2017-07-01</p> <p>The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the original training on satellite data. Hence, the new version allows for an implementation into climate models in combination with an existing stratospheric transport scheme. Finally, the model is now formulated on several vertical levels encompassing the vertical range in which polar ozone depletion is observed. The results of the Polar SWIFT model are validated with independent Microwave Limb Sounder (MLS) satellite observations and output from the original detailed chemistry model of ATLAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5083B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5083B"><span>Medium term hurricane catastrophe models: a validation experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonazzi, Alessandro; Turner, Jessica; Dobbin, Alison; Wilson, Paul; Mitas, Christos; Bellone, Enrica</p> <p>2013-04-01</p> <p>Climate variability is a major source of uncertainty for the insurance industry underwriting hurricane risk. Catastrophe models provide their users with a stochastic set of events that expands the scope of the historical catalogue by including synthetic events that are likely to happen in a defined time-frame. The use of these catastrophe models is widespread in the insurance industry but it is only in recent years that climate variability has been explicitly accounted for. In the insurance parlance "medium term catastrophe model" refers to products that provide an adjusted view of risk that is meant to represent hurricane activity on a 1 to 5 year horizon, as opposed to long term models that integrate across the climate variability of the longest available time series of observations. In this presentation we discuss how a simple reinsurance program can be used to assess the value of medium term catastrophe models. We elaborate on similar concepts as discussed in "Potential Economic Value of Seasonal Hurricane Forecasts" by Emanuel et al. (2012, WCAS) and provide an example based on 24 years of historical data of the Chicago Mercantile Hurricane Index (CHI), an insured loss proxy. Profit and loss volatility of a hypothetical primary insurer are used to score medium term models versus their long term counterpart. Results show that medium term catastrophe models could help a hypothetical primary insurer to improve their financial resiliency to varying climate conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN24B..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN24B..06M"><span>Geometric state space uncertainty as a new type of uncertainty addressing disparity in ';emergent properties' between real and modeled systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montero, J. T.; Lintz, H. E.; Sharp, D.</p> <p>2013-12-01</p> <p>Do emergent properties that result from models of complex systems match emergent properties from real systems? This question targets a type of uncertainty that we argue requires more attention in system modeling and validation efforts. We define an ';emergent property' to be an attribute or behavior of a modeled or real system that can be surprising or unpredictable and result from complex interactions among the components of a system. For example, thresholds are common across diverse systems and scales and can represent emergent system behavior that is difficult to predict. Thresholds or other types of emergent system behavior can be characterized by their geometry in state space (where state space is the space containing the set of all states of a dynamic system). One way to expedite our growing mechanistic understanding of how emergent properties emerge from complex systems is to compare the geometry of surfaces in state space between real and modeled systems. Here, we present an index (threshold strength) that can quantify a geometric attribute of a surface in state space. We operationally define threshold strength as how strongly a surface in state space resembles a step or an abrupt transition between two system states. First, we validated the index for application in greater than three dimensions of state space using simulated data. Then, we demonstrated application of the index in measuring geometric state space uncertainty between a real system and a deterministic, modeled system. In particular, we looked at geometric space uncertainty between climate behavior in 20th century and modeled climate behavior simulated by global climate models (GCMs) in the Coupled Model Intercomparison Project phase 5 (CMIP5). Surfaces from the climate models came from running the models over the same domain as the real data. We also created response surfaces from a real, climate data based on an empirical model that produces a geometric surface of predicted values in state space. We used a kernel regression method designed to capture the geometry of real data pattern without imposing shape assumptions a priori on the data; this kernel regression method is known as Non-parametric Multiplicative Regression (NPMR). We found that quantifying and comparing a geometric attribute in more than three dimensions of state space can discern whether the emergent nature of complex interactions in modeled systems matches that of real systems. Further, this method has potentially wider application in contexts where searching for abrupt change or ';action' in any hyperspace is desired.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180002884','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180002884"><span>Improved Hydrology over Peatlands in a Global Land Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk</p> <p>2018-01-01</p> <p>Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In addition, a comparison of evapotranspiration and soil moisture estimates over peatlands will be presented, albeit only with limited ground-based validation data. We will discuss strengths and weaknesses of the new model by focusing on time series of specific validation sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817719D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817719D"><span>Break and trend analysis of EUMETSAT Climate Data Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doutriaux-Boucher, Marie; Zeder, Joel; Lattanzio, Alessio; Khlystova, Iryna; Graw, Kathrin</p> <p>2016-04-01</p> <p>EUMETSAT reprocessed imagery acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8-9. The data covers the period from 2004 to 2012. Climate Data Records (CDRs) of atmospheric parameters such as Atmospheric Motion Vectors (AMV) as well as Clear and All Sky Radiances (CSR and ASR) have been generated. Such CDRs are mainly ingested by ECMWF to produce a reanalysis data. In addition, EUMETSAT produced a long CDR (1982-2004) of land surface albedo exploiting imagery acquired by the Meteosat Visible and Infrared Imager (MVIRI) on board Meteosat 2-7. Such CDR is key information in climate analysis and climate models. Extensive validation has been performed for the surface albedo record and a first validation of the winds and clear sky radiances have been done. All validation results demonstrated that the time series of all parameter appear homogeneous at first sight. Statistical science offers a variety of analyses methods that have been applied to further analyse the homogeneity of the CDRs. Many breakpoint analysis techniques depend on the comparison of two time series which incorporates the issue that both may have breakpoints. This paper will present a quantitative and statistical analysis of eventual breakpoints found in the MVIRI and SEVIRI CDRs that includes attribution of breakpoints to changes of instruments and other events in the data series compared. The value of different methods applied will be discussed with suggestions how to further develop this type of analysis for quality evaluation of CDRs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3563012','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3563012"><span>A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth</p> <p>2013-01-01</p> <p>Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA11B..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA11B..03M"><span>Simulation of the August 21, 2017 Solar Eclipse Using the Whole Atmosphere Community Climate Model - eXtended (WACCM-X)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McInerney, J. M.; Liu, H.; Marsh, D. R.; Solomon, S. C.; Vitt, F.; Conley, A. J.</p> <p>2017-12-01</p> <p>The total solar eclipse of August 21, 2017 transited the entire continental United States. This presented an opportunity for model simulation of eclipse effects on the lower atmosphere, upper atmosphere, and ionosphere. The Community Earth System Model (CESM), v2.0, now includes a functional version of the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) that has a fully interactive ionosphere and thermosphere. WACCM-X, with a model top up to 700 kilometers, is an atmospheric component of CESM and is being developed at the National Center for Atmospheric Research in Boulder, Colorado. Here we present results from simulations using this model during a total solar eclipse. This not only gives insights into the effects of the eclipse through the entire atmosphere from the surface through the ionosphere/thermosphere, but also serves as a validation tool for the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/14677','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/14677"><span>Validation of landsurface processes in the AMIP models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Phillips, T J</p> <p></p> <p>The Atmospheric Model Intercomparison Project (AMIP) is a commonly accepted protocol for testing the performance of the world's atmospheric general circulation models (AGCMs) under common specifications of radiative forcings (in solar constant and carbon dioxide concentration) and observed ocean boundary conditions (Gates 1992, Gates et al. 1999). From the standpoint of landsurface specialists, the AMIP affords an opportunity to investigate the behaviors of a wide variety of land-surface schemes (LSS) that are coupled to their ''native'' AGCMs (Phillips et al. 1995, Phillips 1999). In principle, therefore, the AMIP permits consideration of an overarching question: ''To what extent does an AGCM'smore » performance in simulating continental climate depend on the representations of land-surface processes by the embedded LSS?'' There are, of course, some formidable obstacles to satisfactorily addressing this question. First, there is the dilemna of how to effectively validate simulation performance, given the present dearth of global land-surface data sets. Even if this data problem were to be alleviated, some inherent methodological difficulties would remain: in the context of the AMIP, it is not possible to validate a given LSS per se, since the associated land-surface climate simulation is a product of the coupled AGCM/LSS system. Moreover, aside from the intrinsic differences in LSS across the AMIP models, the varied representations of land-surface characteristics (e.g. vegetation properties, surface albedos and roughnesses, etc.) and related variations in land-surface forcings further complicate such an attribution process. Nevertheless, it may be possible to develop validation methodologies/statistics that are sufficiently penetrating to reveal ''signatures'' of particular ISS representations (e.g. ''bucket'' vs more complex parameterizations of hydrology) in the AMIP land-surface simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=351741','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=351741"><span>Big agronomic data validates an oxymoron: Sustainable intensification under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Crop science is increasingly embracing big data to reconcile the apparent rift between intensification of food production and sustainability of a steadily stressed production base. A strategy based on long-term agroecosystem research and modeling simulation of crops, crop rotations and cropping sys...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33G1778W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33G1778W"><span>Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, S.; Zhao, J.; Wang, H.</p> <p>2017-12-01</p> <p>This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16.2559L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16.2559L"><span>Using statistical models to explore ensemble uncertainty in climate impact studies: the example of air pollution in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemaire, Vincent E. P.; Colette, Augustin; Menut, Laurent</p> <p>2016-03-01</p> <p>Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology). After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071-2100) for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate) of -1.08 (±0.21), -1.03 (±0.32), -0.83 (±0.14) µg m-3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the impact of climate change on ozone was considered satisfactory and it confirms the climate penalty bearing upon ozone of 10.51 (±3.06), 11.70 (±3.63), 11.53 (±1.55), 9.86 (±4.41), 4.82 (±1.79) µg m-3, respectively. In the British-Irish Isles, Scandinavia and the Mediterranean, the skill of the statistical model was not considered robust enough to draw any conclusion for ozone pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33E1118L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33E1118L"><span>Evaluation of CMIP5 Ability to Reproduce 20th Century Regional Trends in Surface Air Temperature and Precipitation over CONUS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.</p> <p>2017-12-01</p> <p>Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to access observation and model datasets, calculate evaluation metrics, and visualize the results. Several other examples of the RCMES capabilities can be found at https://rcmes.jpl.nasa.gov.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMD.....9.1065P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMD.....9.1065P"><span>Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paja, Wiesław; Wrzesien, Mariusz; Niemiec, Rafał; Rudnicki, Witold R.</p> <p>2016-03-01</p> <p>Climate models are extremely complex pieces of software. They reflect the best knowledge on the physical components of the climate; nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a simulation crashing. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to the simulation crashing and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the data set used in this research using different methodology. We confirm the main conclusion of the original study concerning the suitability of machine learning for the prediction of crashes. We show that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three others are relevant but redundant and two are not relevant at all. We also show that the variance due to the split of data between training and validation sets has a large influence both on the accuracy of predictions and on the relative importance of variables; hence only a cross-validated approach can deliver a robust prediction of performance and relevance of variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1022a2042S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1022a2042S"><span>Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sipayung, Sinta B.; Nurlatifah, Amalia; Siswanto, Bambang</p> <p>2018-05-01</p> <p>Bengawan Solo Watershed is one of the largest watersheds in Indonesia. This watershed flows in many areas both in Central Java and East Java. Therefore, the water resources condition greatly affects many people. This research will be conducted on prediction of climate change effect on water resources condition in terms of rainfall conditions in Bengawan Solo River Basin. The goal of this research is to know and predict the climate change impact on water resources based on CCAM (Conformal Cubic Atmosphere Model) with downscaling baseline (historical) model data from 1949 to 2005 and RCP 4.5 from 2006 to 2069. The modeling data was validated with in-situ data (measurement data). To analyse the water availability condition in Bengawan Solo Watershed, the simulation of river flow and water balance condition were done in Bengawan Solo River. Simulation of river flow and water balance conditions were done with ArcSWAT model using climate data from CCAM, DEM SRTM 90 meter, soil type, and land use data. The results of this simulation indicate there is (i) The CCAM data itself after validation has a pretty good result when compared to the insitu data. Based on CCAM simulation results, it is predicted that in 2040-2069 rainfall in Bengawan Solo River Basin will decrease, to a maximum of only about 1 mm when compared to 1971-2000. (ii) The CCAM rainfall prediction itself shows that rainfall in Bengawan Solo River basin will decline until 2069 although the decline itself is not significant and tends to be negligible (rainfall is considered unchanged) (iii) Both in the DJF and JJA seasons, precipitation is predicted to decline as well despite the significant decline. (iv) The river flow simulation show that the water resources in Bengawan Solo River did not change significantly. This event occurred because the rainfall also did not change greatly and close to 0 mm/month.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27507279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27507279"><span>Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Little, Eliza; Campbell, Scott R; Shaman, Jeffrey</p> <p>2016-08-09</p> <p>West Nile Virus (WNV) is an endemic public health concern in the United States that produces periodic seasonal epidemics. Underlying these outbreaks is the enzootic cycle of WNV between mosquito vectors and bird hosts. Identifying the key environmental conditions that facilitate and accelerate this cycle can be used to inform effective vector control. Here, we model and forecast WNV infection rates among mosquito vectors in Suffolk County, New York using readily available meteorological and hydrological conditions. We first validate a statistical model built with surveillance data between 2001 and 2009 (m09) and specify a set of new statistical models using surveillance data from 2001 to 2012 (m12). This ensemble of new models is then used to make predictions for 2013-2015, and multimodel inference is employed to provide a formal probabilistic interpretation across the disparate individual model predictions. The findings of the m09 and m12 models align; with the ensemble of m12 models indicating an association between warm, dry early spring (April) conditions and increased annual WNV infection rates in Culex mosquitoes. This study shows that real-time climate information can be used to predict WNV infection rates in Culex mosquitoes prior to its seasonal peak and before WNV spillover transmission risk to humans is greatest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26941933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26941933"><span>Confronting species distribution model predictions with species functional traits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M</p> <p>2016-02-01</p> <p>Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.2559S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.2559S"><span>Assessment of extreme flood events in a changing climate for a long-term planning of socio-economic infrastructure in the Russian Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shevnina, Elena; Kourzeneva, Ekaterina; Kovalenko, Viktor; Vihma, Timo</p> <p>2017-05-01</p> <p>Climate warming has been more acute in the Arctic than at lower latitudes and this tendency is expected to continue. This generates major challenges for economic activity in the region. Among other issues is the long-term planning and development of socio-economic infrastructure (dams, bridges, roads, etc.), which require climate-based forecasts of the frequency and magnitude of detrimental flood events. To estimate the cost of the infrastructure and operational risk, a probabilistic form of long-term forecasting is preferable. In this study, a probabilistic model to simulate the parameters of the probability density function (PDF) for multi-year runoff based on a projected climatology is applied to evaluate changes in extreme floods for the territory of the Russian Arctic. The model is validated by cross-comparison of the modelled and empirical PDFs using observations from 23 sites located in northern Russia. The mean values and coefficients of variation (CVs) of the spring flood depth of runoff are evaluated under four climate scenarios, using simulations of six climate models for the period 2010-2039. Regions with substantial expected changes in the means and CVs of spring flood depth of runoff are outlined. For the sites located within such regions, it is suggested to account for the future climate change in calculating the maximal discharges of rare occurrence. An example of engineering calculations for maximal discharges with 1 % exceedance probability is provided for the Nadym River at Nadym.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC53B1203G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC53B1203G"><span>Applying Multimodel Ensemble from Regional Climate Models for Improving Runoff Projections on Semiarid Regions of Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.</p> <p>2015-12-01</p> <p>In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22354576','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22354576"><span>A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ocaña-Peinado, Francisco M; Valderrama, Mariano J; Bouzas, Paula R</p> <p>2013-05-01</p> <p>The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995-2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75-80% of the variability in the airborne Cupressaceae pollen concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3646738','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3646738"><span>Combining Inferential and Deductive Approaches to Estimate the Potential Geographical Range of the Invasive Plant Pathogen, Phytophthora ramorum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ireland, Kylie B.; Hardy, Giles E. St. J.; Kriticos, Darren J.</p> <p>2013-01-01</p> <p>Phytophthora ramorum, an invasive plant pathogen of unknown origin, causes considerable and widespread damage in plant industries and natural ecosystems of the USA and Europe. Estimating the potential geographical range of P. ramorum has been complicated by a lack of biological and geographical data with which to calibrate climatic models. Previous attempts to do so, using either invaded range data or surrogate species approaches, have delivered varying results. A simulation model was developed using CLIMEX to estimate the global climate suitability patterns for establishment of P. ramorum. Growth requirements and stress response parameters were derived from ecophysiological laboratory observations and site-level transmission and disease factors related to climate data in the field. Geographical distribution data from the USA (California and Oregon) and Norway were reserved from model-fitting and used to validate the models. The model suggests that the invasion of P. ramorum in both North America and Europe is still in its infancy and that it is presently occupying a small fraction of its potential range. Phytophthora ramorum appears to be climatically suited to large areas of Africa, Australasia and South America, where it could cause biodiversity and economic losses in plant industries and natural ecosystems with susceptible hosts if introduced. PMID:23667628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25323145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25323145"><span>Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Govindan, Siva Shangari; Agamuthu, P</p> <p>2014-10-01</p> <p>Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC43C1182L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC43C1182L"><span>Future water supply and demand in response to climate change and agricultural expansion in Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K.; Zhou, T.; Gao, H.; Huang, M.</p> <p>2016-12-01</p> <p>With ongoing global environmental change and an increasing population, it is challenging (to say the least) to understand the complex interactions of irrigation and reservoir systems. Irrigation is critical to agricultural production and food security, and is a vital component of Texas' agricultural economy. Agricultural irrigation currently accounts for about 60% of total water demand in Texas, and recent occurrences of severe droughts has brought attention to the availability and use of water in the future. In this study, we aim to assess future agricultural irrigation water demand, and to estimate how changes in the fraction of crop irrigated land will affect future water availability in Texas, which has the largest farm area and the highest value of livestock production in the United States. The Variable Infiltration Capacity (VIC) model, which has been calibrated and validated over major Texas river basins during the historical period, is employed for this study. The VIC model, coupling with an irrigation scheme and a reservoir module, is adopted to simulate the water management and regulations. The evolution on agricultural land is also considered in the model as a changing fraction of crop for each grid cell. The reservoir module is calibrated and validated based on the historical (1915-2011) storage records of major reservoirs in Texas. The model is driven by statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The lowest (RCP 2.6) and highest (RC P8.5) greenhouse-gas concentration scenarios are adopted for future projections to provide an estimate of uncertainty bounds. We expect that our results will be helpful to assist decision making related to reservoir operations and agricultural water planning for Texas under future climate and environmental changes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=environmental+AND+behaviour+AND+change&id=EJ984853','ERIC'); return false;" href="https://eric.ed.gov/?q=environmental+AND+behaviour+AND+change&id=EJ984853"><span>Development and Validation of the ACSI: Measuring Students' Science Attitudes, Pro-Environmental Behaviour, Climate Change Attitudes and Knowledge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dijkstra, E. M.; Goedhart, M. J.</p> <p>2012-01-01</p> <p>This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science, scientists, a career in science and the urgency…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ici&pg=2&id=EJ614390','ERIC'); return false;" href="https://eric.ed.gov/?q=ici&pg=2&id=EJ614390"><span>The Reliability and Validity of the Instructional Climate Inventory-Student Form.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Worrell, Frank C.</p> <p>2000-01-01</p> <p>Study examines the reliability and validity of the Instructional Climate Survey-Form S (ICI-S), a 20-item instrument that measures school climate, administered to students (N=328) in three programs. Analysis indicates that ICI-S was best explained by one factor. Reliability coeffecients of the total score were within the acceptable range for all…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711986','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711986"><span>Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tellería, José L.; Fernández-López, Javier; Fandos, Guillermo</p> <p>2016-01-01</p> <p>We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050–2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean. PMID:26761791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5658193','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5658193"><span>Developing a dengue forecast model using machine learning: A case study in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun</p> <p>2017-01-01</p> <p>Background In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Methodology/Principal findings Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. Conclusion and significance The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics. PMID:29036169</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJS..231...12W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJS..231...12W"><span>Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.</p> <p>2017-07-01</p> <p>Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007364&hterms=environment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denvironment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007364&hterms=environment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denvironment"><span>Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007364'); toggleEditAbsImage('author_20170007364_show'); toggleEditAbsImage('author_20170007364_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007364_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007364_hide"></p> <p>2017-01-01</p> <p>Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3159S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3159S"><span>Development of ALARO-Climate regional climate model for a very high resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan</p> <p>2014-05-01</p> <p>ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GMDD....6..585L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GMDD....6..585L"><span>Failure analysis of parameter-induced simulation crashes in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.</p> <p>2013-01-01</p> <p>Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/269041','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/269041"><span>Structure of the tropical lower stratosphere as revealed by three reanalysis data sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pawson, S.; Fiorino, M.</p> <p>1996-05-01</p> <p>While the skill of climate simulation models has advanced over the last decade, mainly through improvements in modeling, further progress will depend on the availability and the quality of comprehensive validation data sets covering long time periods. A new source of such validation data is atmospheric {open_quotes}reanalysis{close_quotes} where a fixed, state-of-the-art global atmospheric model/data assimilation system is run through archived and recovered observations to produce a consistent set of atmospheric analyses. Although reanalysis will be free of non-physical variability caused by changes in the models and/or the assimilation procedure, it is necessary to assess its quality. A region for stringentmore » testing of the quality of reanalysis is the tropical lower stratosphere. This portion of the atmosphere is sparse in observations but displays the prominent quasi-biennial oscillation (QBO) and an annual cycle, neither of which is fully understood, but which are likely coupled dynamically. We first consider the performance of three reanalyses, from NCEP/NCAR, NASA and ECMWF, against rawinsonde data in depicting the QBO and then examine the structure of the tropical lower stratosphere in NCEP and ECMWF data sets in detail. While the annual cycle and the QBO in wind and temperature are quite successfully represented, the mean meridional circulations in NCEP and ECMWF data sets contain unusual features which may be due to the assimilation process rather than being physically based. Further, the models capture the long-term temperature fluctuations associated with volcanic eruptions, even though the physical mechanisms are not included, thus implying that the model does not mask prominent stratospheric signals in the observational data. We conclude that reanalysis offers a unique opportunity to better understand the dynamics of QBO and can be applied to climate model validation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.3693S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.3693S"><span>A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safeeq, M.; Grant, G. E.; Lewis, S. L.; Kramer, M. G.; Staab, B.</p> <p>2014-09-01</p> <p>Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation models (GCMs) coupled with large-scale hydrologic models. Here we develop and apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially explicit fashion. In particular, we incorporate the role of deep groundwater, which large-scale hydrologic models generally fail to capture, into streamflow sensitivity assessments. We validate our analytical streamflow sensitivities against two empirical measures of sensitivity derived using historical observations of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and analytically derived streamflow sensitivity values correspond. Although the selected watersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixture of rain and snow, and snow-dominated), sensitivity validation was primarily driven by the snow-dominated watersheds, which are subjected to a wider range of change in recharge timing and magnitude as a result of increased temperature. Overall, two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to low-sensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers in adapting to an uncertain and potentially challenging future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.6289Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.6289Z"><span>Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan</p> <p>2017-12-01</p> <p>The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660372','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660372"><span>Combining a Climatic Niche Model of an Invasive Fungus with Its Host Species Distributions to Identify Risks to Natural Assets: Puccinia psidii Sensu Lato in Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kriticos, Darren J.; Morin, Louise; Leriche, Agathe; Anderson, Robert C.; Caley, Peter</p> <p>2013-01-01</p> <p>Puccinia psidii sensu lato (s.l.) is an invasive rust fungus threatening a wide range of plant species in the family Myrtaceae. Originating from Central and South America, it has invaded mainland USA and Hawai'i, parts of Asia and Australia. We used CLIMEX to develop a semi-mechanistic global climatic niche model based on new data on the distribution and biology of P. psidii s.l. The model was validated using independent distribution data from recently invaded areas in Australia, China and Japan. We combined this model with distribution data of its potential Myrtaceae host plant species present in Australia to identify areas and ecosystems most at risk. Myrtaceaeous species richness, threatened Myrtaceae and eucalypt plantations within the climatically suitable envelope for P. psidii s.l in Australia were mapped. Globally the model identifies climatically suitable areas for P. psidii s.l. throughout the wet tropics and sub-tropics where moist conditions with moderate temperatures prevail, and also into some cool regions with a mild Mediterranean climate. In Australia, the map of species richness of Myrtaceae within the P. psidii s.l. climatic envelope shows areas where epidemics are hypothetically more likely to be frequent and severe. These hotspots for epidemics are along the eastern coast of New South Wales, including the Sydney Basin, in the Brisbane and Cairns areas in Queensland, and in the coastal region from the south of Bunbury to Esperance in Western Australia. This new climatic niche model for P. psidii s.l. indicates a higher degree of cold tolerance; and hence a potential range that extends into higher altitudes and latitudes than has been indicated previously. The methods demonstrated here provide some insight into the impacts an invasive species might have within its climatically suited range, and can help inform biosecurity policies regarding the management of its spread and protection of valued threatened assets. PMID:23704988</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5786539','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5786539"><span>Development of a Work Climate Scale in Emergency Health Services</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sanduvete-Chaves, Susana; Lozano-Lozano, José A.; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P.</p> <p>2018-01-01</p> <p>An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate. Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four components (RMSEA = 0.079, GFI = 0.97, AGFI = 0.97, CFI = 0.97; NFI = 0.95, and NNFI = 0.97); absence of Differential Item Functioning (DIF) in 80% of the items; reliability (α = 0.96); and validity evidence based on relations to other variables, specifically the test-criterion relationship (ρ = 0.680). Finally, we discuss further developments of the instrument and its possible implications for EHS workers. PMID:29403417</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29403417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29403417"><span>Development of a Work Climate Scale in Emergency Health Services.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanduvete-Chaves, Susana; Lozano-Lozano, José A; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P</p> <p>2018-01-01</p> <p>An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate . Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four components ( RMSEA = 0.079, GFI = 0.97, AGFI = 0.97, CFI = 0.97; NFI = 0.95, and NNFI = 0.97); absence of Differential Item Functioning (DIF) in 80% of the items; reliability (α = 0.96); and validity evidence based on relations to other variables, specifically the test-criterion relationship (ρ = 0.680). Finally, we discuss further developments of the instrument and its possible implications for EHS workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APJAS..52..459H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APJAS..52..459H"><span>Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ham, Yoo-Geun; Kug, Jong-Seong</p> <p>2016-11-01</p> <p>The sensitivity of the precipitation responses to greenhouse warming can depend on the present-day climate. In this study, a robust linkage between the present-day precipitation climatology and precipitation change owing to global warming is examined in inter-model space. A model with drier climatology in the present-day simulation tends to simulate an increase in climatological precipitation owing to global warming. Moreover, the horizontal gradient of the present-day precipitation climatology plays an important role in determining the precipitation changes. On the basis of these robust relationships, future precipitation changes are calibrated by removing the impact of the present-day precipitation bias in the climate models. To validate this result, the perfect model approach is adapted, which treats a particular model's precipitation change as an observed change. The results suggest that the precipitation change pattern can be generally improved by applying the present statistical approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111817C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111817C"><span>Climate Change Risk Management Consulting: The opportunity for an independent business practice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciccozzi, R.</p> <p>2009-04-01</p> <p>The Paper outlines the main questions to be addressed with reference to the actual demand of climate change risk management consulting, in the financial services. Moreover, the Project shall also try to investigate if the Catastrophe Modelling Industry can start and manage a business practice specialised on climate change risk exposures. In this context, the Paper aims at testing the possibility to build a sound business case, based upon typical MBA course analysis tools, such as PEST(LE), SWOT, etc. Specific references to the tools to be used and to other contribution from academic literature and general documentation are also discussed in the body of the Paper and listed at the end. The analysis shall also focus on the core competencies required for an independent climate change risk management consulting business practice, with the purpose to outline a valid definition of how to achieve competitive advantage in climate change risk management consulting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B33A2071M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B33A2071M"><span>What Do GDGT Thermometers Tell us About Environmental Changes During the Holocene in Central Africa?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menot, G.; Garcin, Y.; Bard, E. G.; Deschamps, P.</p> <p>2017-12-01</p> <p>Africa has been recognized by the IPCC group as one of the most vulnerable continents to climate change. Validation of models currently used for future climate projections relies in part on their ability to reproduce past climate variability. Especially the past abrupt climatic and environmental events that have punctuated the recent history of the African continent are of prime interest to model the transient and non-linear response of the African monsoon and vegetation to both external forcing and internal feedbacks. The role of temperature among other controls of the hydrological cycle has to be assessed. However, reliable temperature benchmark sequences on continents remain scare and not evenly distributed. The recent discovery of tetraethers as paleothermometer has raised a considerable interest as these lipid biomarkers fill a gap between "quantitative but discrete" and "qualitative but continuous" proxies on continents. Their broad application is however to date hampered by the few constrains on their origin as well as on their dynamics and fates related to pedogenic, transport and sedimentary processes. Previous studies on the lake Barombi (Cameroon) demonstrate the potential of newly retrieved lacustrine sequences to document hydrological changes associated with the African humid Period and vegetation changes related to the late Holocene `rainforest crisis' with an appropriate time resolution. Preliminary reconstructed temperature profile reveals a clear shift at the end of the African Humid Period. Prior any interpretation of a climate signal, a more complete characterization of the tetraether distributions is however needed together with a thorough comparison with other sedimentological proxies. Such an approach should allow identifying the processes that have altered the validity of the tetraether record as changes in soil erosion or lacustrine stratification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714809T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714809T"><span>Can quantile mapping improve precipitation extremes from regional climate models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tani, Satyanarayana; Gobiet, Andreas</p> <p>2015-04-01</p> <p>The ability of quantile mapping to accurately bias correct regard to precipitation extremes is investigated in this study. We developed new methods by extending standard quantile mapping (QMα) to improve the quality of bias corrected extreme precipitation events as simulated by regional climate model (RCM) output. The new QM version (QMβ) was developed by combining parametric and nonparametric bias correction methods. The new nonparametric method is tested with and without a controlling shape parameter (Qmβ1 and Qmβ0, respectively). Bias corrections are applied on hindcast simulations for a small ensemble of RCMs at six different locations over Europe. We examined the quality of the extremes through split sample and cross validation approaches of these three bias correction methods. This split-sample approach mimics the application to future climate scenarios. A cross validation framework with particular focus on new extremes was developed. Error characteristics, q-q plots and Mean Absolute Error (MAEx) skill scores are used for evaluation. We demonstrate the unstable behaviour of correction function at higher quantiles with QMα, whereas the correction functions with for QMβ0 and QMβ1 are smoother, with QMβ1 providing the most reasonable correction values. The result from q-q plots demonstrates that, all bias correction methods are capable of producing new extremes but QMβ1 reproduces new extremes with low biases in all seasons compared to QMα, QMβ0. Our results clearly demonstrate the inherent limitations of empirical bias correction methods employed for extremes, particularly new extremes, and our findings reveals that the new bias correction method (Qmß1) produces more reliable climate scenarios for new extremes. These findings present a methodology that can better capture future extreme precipitation events, which is necessary to improve regional climate change impact studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1163902.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1163902.pdf"><span>COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq</p> <p>2014-01-01</p> <p>We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38725','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38725"><span>Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li</p> <p>2010-01-01</p> <p>A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1457601-integrated-modeling-approach-development-climate-informed-actionable-information','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1457601-integrated-modeling-approach-development-climate-informed-actionable-information"><span>Integrated Modeling Approach for the Development of Climate-Informed, Actionable Information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Judi, David R.; Rakowski, Cynthia L.; Waichler, Scott R.</p> <p></p> <p>Flooding is a prevalent natural disaster with both short and long-term social, economic, and infrastructure impacts. Changes in intensity and frequency of precipitation (including rain, snow, and rain on snow) events create challenges for the planning and management of resilient infrastructure and communities. While there is general acknowledgement that new infrastructure design should account for future climate change, no clear methods or actionable information is available to community planners and designers to ensure resilient design considering an uncertain climate future. This research used climate projections to drive high-resolution hydrology and flood models to evaluate social, economic, and infrastructure resilience formore » the Snohomish Watershed, WA, U.S.A. The proposed model chain has been calibrated and validated. Based on the established model chain, the peaks of precipitation and streamflows were found to shift from spring and summer to earlier winter season. The nonstationarity of peak discharges was discovered with more frequent and severe flood risks projected. The peak discharges were also projected to decrease for a certain period in the near future, which might be due to the reduced rain-on-snow events. This research was expected to provide a clear method for the incorporation of climate science in flood resilience analysis and to also provide actionable information relative to the frequency and intensity of future precipitation events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308903&Lab=NERL&keyword=survey+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308903&Lab=NERL&keyword=survey+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Validation Of DEM Data Dvied From World View 3 Stero Imagery For Low Elevation Majuro Atoll, Marchall Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The availability of surface elevation data for the Marshall Islands has been identified as a "massive" data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are nee...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307921&Lab=NERL&keyword=survey+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307921&Lab=NERL&keyword=survey+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Validation of DEM Data Derived from World View 3 Stereo Imagery for Low Elevation Majuro Atoll, Marshall Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The availability of surface elevation data for the Marshall Islands has been identified as a “massive” data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are need...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC53A0499K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC53A0499K"><span>Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keener, V. W.; Finucane, M.; Brewington, L.</p> <p>2014-12-01</p> <p>For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12k3001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12k3001C"><span>Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.</p> <p>2017-11-01</p> <p>Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4889A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4889A"><span>Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M.</p> <p>2018-05-01</p> <p>Mean annual ground temperature (MAGT) and active layer thickness (ALT) are key to understanding the evolution of the ground thermal state across the Arctic under climate change. Here a statistical modeling approach is presented to forecast current and future circum-Arctic MAGT and ALT in relation to climatic and local environmental factors, at spatial scales unreachable with contemporary transient modeling. After deploying an ensemble of multiple statistical techniques, distance-blocked cross validation between observations and predictions suggested excellent and reasonable transferability of the MAGT and ALT models, respectively. The MAGT forecasts indicated currently suitable conditions for permafrost to prevail over an area of 15.1 ± 2.8 × 106 km2. This extent is likely to dramatically contract in the future, as the results showed consistent, but region-specific, changes in ground thermal regime due to climate change. The forecasts provide new opportunities to assess future Arctic changes in ground thermal state and biogeochemical feedback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5075247-quaternary-fossil-pollen-record-global-change','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5075247-quaternary-fossil-pollen-record-global-change"><span>The Quaternary fossil-pollen record and global change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Grimm, E.C.</p> <p></p> <p>Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9636D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9636D"><span>Comparing Apples to Apples: Paleoclimate Model-Data comparison via Proxy System Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dee, Sylvia; Emile-Geay, Julien; Evans, Michael; Noone, David</p> <p>2014-05-01</p> <p>The wealth of paleodata spanning the last millennium (hereinafter LM) provides an invaluable testbed for CMIP5-class GCMs. However, comparing GCM output to paleodata is non-trivial. High-resolution paleoclimate proxies generally contain a multivariate and non-linear response to regional climate forcing. Disentangling the multivariate environmental influences on proxies like corals, speleothems, and trees can be complex due to spatiotemporal climate variability, non-stationarity, and threshold dependence. Given these and other complications, many paleodata-GCM comparisons take a leap of faith, relating climate fields (e.g. precipitation, temperature) to geochemical signals in proxy data (e.g. δ18O in coral aragonite or ice cores) (e.g. Braconnot et al., 2012). Isotope-enabled GCMs are a step in the right direction, with water isotopes providing a connector point between GCMs and paleodata. However, such studies are still rare, and isotope fields are not archived as part of LM PMIP3 simulations. More importantly, much of the complexity in how proxy systems record and transduce environmental signals remains unaccounted for. In this study we use proxy system models (PSMs, Evans et al., 2013) to bridge this conceptual gap. A PSM mathematically encodes the mechanistic understanding of the physical, geochemical and, sometimes biological influences on each proxy. To translate GCM output to proxy space, we have synthesized a comprehensive, consistently formatted package of published PSMs, including δ18O in corals, tree ring cellulose, speleothems, and ice cores. Each PSM is comprised of three sub-models: sensor, archive, and observation. For the first time, these different components are coupled together for four major proxy types, allowing uncertainties due to both dating and signal interpretation to be treated within a self-consistent framework. The output of this process is an ensemble of many (say N = 1,000) realizations of the proxy network, all equally plausible under assumed dating uncertainties. We demonstrate the utility of the PSM framework with an integrative multi-PSM simulation. An intermediate-complexity AGCM with isotope physics (SPEEDY-IER, (Molteni, 2003, Dee et al., in prep)) is used to simulate the isotope hydrology and atmospheric response to SSTs derived from the LM PMIP3 integration of the CCSM4 model (Landrum et al., 2012). Relevant dynamical and isotope variables are then used to drive PSMs, emulating a realistic multiproxy network (Emile-Geay et al., 2013). We then ask the following question: given our best knowledge of proxy systems, what aspects of GCM behavior may be validated, and with what uncertainties? We approach this question via a three-tiered 'perfect model' study. A random realization of the simulated proxy data (hereafter 'PaleoObs') is used as a benchmark in the following comparisons: (1) AGCM output (without isotopes) vs. PaleoObs; (2) AGCM output (with isotopes) vs. PaleoObs; (3) coupled AGCM-PSM-simulated proxy ensemble vs. PaleoObs. Enhancing model-data comparison using PSMs highlights uncertainties that may arise from ignoring non-linearities in proxy-climate relationships, or the presence of age uncertainties (as is most typically done is paleoclimate model-data intercomparison). Companion experiments leveraging the 3 sub-model compartmentalization of PSMs allows us to quantify the contribution of each sub-system to the observed model-data discrepancies. We discuss potential repercussions for model-data comparison and implications for validating predictive climate models using paleodata. References Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y., 06 2012. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2 (6), 417-424. URL http://dx.doi.org/10.1038/nclimate1456 Emile-Geay, J., Cobb, K. M., Mann, M. E., Wittenberg, A. T., Apr 01 2013. Estimating central equatorial pacific sst variability over the past millennium. part i: Methodology and validation. Journal of Climate 26 (7), 2302-2328. URL http://search.proquest.com/docview/1350277733?accountid=14749 Evans, M., Tolwinski-Ward, S. E., Thompson, D. M., Anchukaitis, K. J., 2013. Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews. URL http://adsabs.harvard.edu/abs/2012QuInt.279U.134E Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Capotondi, A., Lawrence, P. J., Teng, H., 2012. Last Millennium Climate and Its Variability in CCSM4. Journal of Climate (submitted) Molteni, F., 2003. Atmospheric simulations using a GCM with simplified physical parametrizations. I model climatology and variability in multi-decadal experiments. Climate Dynamics, 175-191</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024836','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024836"><span>Comparison of Ice Cloud Particle Sizes Retrieved from Satellite Data Derived from In Situ Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.</p> <p>1997-01-01</p> <p>Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al.), there is no comparable study for cirrus ice crystals. This study is an effort to supply such a data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=risk+AND+climate&pg=7&id=EJ1028109','ERIC'); return false;" href="https://eric.ed.gov/?q=risk+AND+climate&pg=7&id=EJ1028109"><span>Psychometric Support of the School Climate Measure in a Large, Diverse Sample of Adolescents: A Replication and Extension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zullig, Keith J.; Collins, Rani; Ghani, Nadia; Patton, Jon M.; Huebner, E. Scott; Ajamie, Jean</p> <p>2014-01-01</p> <p>Background: The School Climate Measure (SCM) was developed and validated in 2010 in response to a dearth of psychometrically sound school climate instruments. This study sought to further validate the SCM on a large, diverse sample of Arizona public school adolescents (N = 20,953). Methods: Four SCM domains (positive student-teacher relationships,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Grounded+AND+theory+AND+Elementary+AND+School&pg=2&id=EJ1052857','ERIC'); return false;" href="https://eric.ed.gov/?q=Grounded+AND+theory+AND+Elementary+AND+School&pg=2&id=EJ1052857"><span>Assessing School Climate: Validation of a Brief Measure of the Perceptions of Parents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bear, George G.; Yang, Chunyan; Pasipanodya, Elizabeth</p> <p>2015-01-01</p> <p>The goal of this study was to develop a parent school climate survey of high practical utility, grounded in theory, and supported by evidence of the reliability of its scores and validity of the inferences for their use. The Delaware School Climate Survey-Home is comprised of seven factors: Teacher-Student Relations, Student-Student Relations,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..245C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..245C"><span>Climate-driven range shifts of the king penguin in a fragmented ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emiliano</p> <p>2018-03-01</p> <p>Range shift is the primary short-term species response to rapid climate change, but it is often hampered by natural or anthropogenic habitat fragmentation. Different critical areas of a species' niche may be exposed to heterogeneous environmental changes and modelling species response under such complex spatial and ecological scenarios presents well-known challenges. Here, we use a biophysical ecological niche model validated through population genomics and palaeodemography to reconstruct past range shifts and identify future vulnerable areas and potential refugia of the king penguin in the Southern Ocean. Integrating genomic and demographic data at the whole-species level with specific biophysical constraints, we present a refined framework for predicting the effect of climate change on species relying on spatially and ecologically distinct areas to complete their life cycle (for example, migratory animals, marine pelagic organisms and central-place foragers) and, in general, on species living in fragmented ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25172202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25172202"><span>How school can teach civic engagement besides civic education: The role of democratic school climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lenzi, Michela; Vieno, Alessio; Sharkey, Jill; Mayworm, Ashley; Scacchi, Luca; Pastore, Massimiliano; Santinello, Massimo</p> <p>2014-12-01</p> <p>Civic engagement, defined as involvement in community life, is influenced by reciprocal relationships between individuals and contexts and is a key factor that contributes to positive youth development. The present study evaluates a theoretical model linking perceived democratic school climate with adolescent civic engagement (operationalized as civic responsibility and intentions for future participation), taking into account the mediating role of civic discussions and perceived fairness at school. Participants were 403 adolescents (47.9 % male) ranging in age from 11 to 15 years old (mean age = 13.6). Path analysis results partially validated the proposed theoretical model. Higher levels of democratic school climate were associated with higher levels of adolescent civic responsibility; the association was fully mediated by civic discussions and perceived fairness at school. Adolescents' civic responsibility, then, was positively associated with a stronger intention to participate in the civic domain in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1159372','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1159372"><span>Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weitzel, E.; Hoeschele, M.</p> <p>2014-09-01</p> <p>A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated,more » distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3224582','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3224582"><span>The meaning and measurement of implementation climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Background Climate has a long history in organizational studies, but few theoretical models integrate the complex effects of climate during innovation implementation. In 1996, a theoretical model was proposed that organizations could develop a positive climate for implementation by making use of various policies and practices that promote organizational members' means, motives, and opportunities for innovation use. The model proposes that implementation climate--or the extent to which organizational members perceive that innovation use is expected, supported, and rewarded--is positively associated with implementation effectiveness. The implementation climate construct holds significant promise for advancing scientific knowledge about the organizational determinants of innovation implementation. However, the construct has not received sufficient scholarly attention, despite numerous citations in the scientific literature. In this article, we clarify the meaning of implementation climate, discuss several measurement issues, and propose guidelines for empirical study. Discussion Implementation climate differs from constructs such as organizational climate, culture, or context in two important respects: first, it has a strategic focus (implementation), and second, it is innovation-specific. Measuring implementation climate is challenging because the construct operates at the organizational level, but requires the collection of multi-dimensional perceptual data from many expected innovation users within an organization. In order to avoid problems with construct validity, assessments of within-group agreement of implementation climate measures must be carefully considered. Implementation climate implies a high degree of within-group agreement in climate perceptions. However, researchers might find it useful to distinguish implementation climate level (the average of implementation climate perceptions) from implementation climate strength (the variability of implementation climate perceptions). It is important to recognize that the implementation climate construct applies most readily to innovations that require collective, coordinated behavior change by many organizational members both for successful implementation and for realization of anticipated benefits. For innovations that do not possess these attributes, individual-level theories of behavior change could be more useful in explaining implementation effectiveness. Summary This construct has considerable value in implementation science, however, further debate and development is necessary to refine and distinguish the construct for empirical use. PMID:21781328</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC34B..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC34B..06L"><span>Potential impacts of agricultural drought on crop yield variability under a changing climate in Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.</p> <p>2017-12-01</p> <p>Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43O..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43O..01K"><span>Satellite Remote Sensing is Key to Water Cycle Integrator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koike, T.</p> <p>2016-12-01</p> <p>To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the Global Earth Observation System of Systems (GEOSS) is now developing a "GEOSS Water Cycle Integrator (WCI)", which integrates "Earth observations", "modeling", "data and information", "management systems" and "education systems". GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEOSS/WCI archives various satellite data to provide various hydrological information such as cloud, rainfall, soil moisture, or land-surface snow. These satellite products were validated using land observation in-situ data. Water cycle models can be developed by coupling in-situ and satellite data. River flows and other hydrological parameters can be simulated and validated by in-situ data. Model outputs from weather-prediction, seasonal-prediction, and climate-prediction models are archived. Some of these model outputs are archived on an online basis, but other models, e.g., climate-prediction models are archived on an offline basis. After models are evaluated and biases corrected, the outputs can be used as inputs into the hydrological models for predicting the hydrological parameters. Additionally, we have already developed a data-assimilation system by combining satellite data and the models. This system can improve our capability to predict hydrological phenomena. The WCI can provide better predictions of the hydrological parameters for integrated water resources management (IWRM) and also assess the impact of climate change and calculate adaptation needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25851142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25851142"><span>A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dalmaris, Eleftheria; Ramalho, Cristina E; Poot, Pieter; Veneklaas, Erik J; Byrne, Margaret</p> <p>2015-11-01</p> <p>A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia. Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM). A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction. Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4370760','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4370760"><span>Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry</p> <p>2014-01-01</p> <p>In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ThApC..95..385G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ThApC..95..385G"><span>Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia-Mozo, H.; Orlandi, F.; Galan, C.; Fornaciari, M.; Romano, B.; Ruiz, L.; Diaz de La Guardia, C.; Trigo, M. M.; Chuine, I.</p> <p>2009-03-01</p> <p>Phenology data are sensitive data to identify how plants are adapted to local climate and how they respond to climatic changes. Modeling flowering phenology allows us to identify the meteorological variables determining the reproductive cycle. Phenology of temperate of woody plants is assumed to be locally adapted to climate. Nevertheless, recent research shows that local adaptation may not be an important constraint in predicting phenological responses. We analyzed variations in flowering dates of Olea europaea L. at different sites of Spain and Italy, testing for a genetic differentiation of flowering phenology among olive varieties to estimate whether local modeling is necessary for olive or not. We build models for the onset and peak dates flowering in different sites of Andalusia and Puglia. Process-based phenological models using temperature as input variable and photoperiod as the threshold date to start temperature accumulation were developed to predict both dates. Our results confirm and update previous results that indicated an advance in olive onset dates. The results indicate that both internal and external validity were higher in the models that used the photoperiod as an indicator to start to cumulate temperature. The use of the unified model for modeling the start and peak dates in the different localities provides standardized results for the comparative study. The use of regional models grouping localities by varieties and climate similarities indicate that local adaptation would not be an important factor in predicting olive phenological responses face to the global temperature increase.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DPS....4420612H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DPS....4420612H"><span>Science of Global Climate Modeling: Confirmation from Discoveries on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, William K.</p> <p>2012-10-01</p> <p>As early as 1993, analysis of obliquity changes on Mars revealed irregular cycles of high excursion, over 45°1. Further obliquity analyses indicated that insolation and climatic conditions vary with time, with the four most recent episodes of obliquity >45° occurring about 5.5, 8, 9, and 15 My.2 Various researchers applied global climate models, using Martian parameters and obliquity changes. The models (independent of Martian geomorphological observations) indicate exceptional climate conditions during the high-obliquity episodes at >45°3,4, with localized massive ice deposition effects east of Hellas and on the west slopes of Tharsis.5 At last year’s DPS my co-authors and I detailed evidence of unusual active glaciation in Greg crater, near the center of the predicted area of ice accumulation during high obliquity.6 We found that the timescale of glacial surface layer activity matches the general 5-15 My timescale of the last episodes of high obliquity and ice deposition. Radar results confirm ice deposits in debris aprons concentrated in the same area.7 Less direct evidence has also been found for glacial ice deposits in the west Tharsis region.8 Here I emphasize that if the models can be adjusted to Mars and then successfully indicate unusual, specific features that we see there, it is an argument for the robustness of climate modeling in general. In recent years we have see various public figures casting doubt on the validity of terrestrial global modeling. The successful match of Martian climate modeling with direct Martian geological and chronometric observations provides an interesting and teachable refutation of the attacks on climate science. References: 1. Science 259:1294-1297; 2. LPSC XXXV, Abs. 1600; 3. Nature 412:411-413; 4. Science 295:110-113; 5. Science 311:368-371; 6. EPSC-DPS Abs. 1394; 7. Science 322:1235-1238; 8. Nature 434:346-351.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010027896','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010027896"><span>Soil Moisture Memory in Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koster, Randal D.; Suarez, Max J.; Zukor, Dorothy J. (Technical Monitor)</p> <p>2000-01-01</p> <p>Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9652B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9652B"><span>Coupling records of fluvial activity from the last interglacial-glacial cycle with climate forcing using both geochronology and numerical modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Briant, Rebecca; Mottram, Gareth; Wainwright, John</p> <p>2010-05-01</p> <p>River systems are a critical component of the landscape. An understanding of their response to variations in the Earth's climate is vital in light of the expected changes in global climate (e.g. 1.8 to 4.8°C temperature rise) that are forecast to occur over the next c. 100 years. Over the longer term, it becomes increasingly likely that the changes we will see may even be of a magnitude for which the most appropriate analogue we have is the glacial-interglacial scale (c. 10°C temperature change) and other climate changes typical of the Quaternary period (last 2 million years). Therefore it is crucial to apply our understanding of climate-driven changes during the Quaternary to future projections of both climate and landscape change, especially since landscape instability is a key characteristic of the Quaternary. Linking river activity to climate requires both the recognition of potentially climate-driven changes within the fluvial sedimentary record and the linkage of these to external climate records using various geochronological techniques. To this end, this paper firstly presents results from the Welland catchment, Fenland Basin where climatically-driven phases of river activity have been identified using detailed sedimentological analysis and palaeontological environmental reconstruction. Dating of these using radiocarbon and optically-stimulated luminescence dating has shown broad correspondence to external climate fluctuations at a marine isotope substage scale over the last interglacial-glacial cycle (MIS 5d onwards). The precision and accuracy of the two different age techniques varies in different parts of this time period and this will be discussed. Limitations in the precision of these geochronological techniques have prompted the use of a further, complementary to improve understanding of these sequences, i.e. ensemble numerical modeling. The rationale behind this approach is that river response to climate can be traced within the model and validated against the known geological record. If the known geological record can be replicated, then the detailed linkages between climate and river activity shown in the model can be used understand to the relationships between climate change and river activity more clearly. This paper will present the results of three-dimensional cellular automata modeling of the Welland catchment, compare them to the geological record, and draw out what this means for our understanding of earth surface processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008966','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008966"><span>Atmospheric Composition Change: Climate-Chemistry Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140008966'); toggleEditAbsImage('author_20140008966_show'); toggleEditAbsImage('author_20140008966_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140008966_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140008966_hide"></p> <p>2011-01-01</p> <p>Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5163G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5163G"><span>Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goren, Liran; Petit, Carole</p> <p>2017-04-01</p> <p>Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........52E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........52E"><span>High Resolution Hydro-climatological Projections for Western Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erler, Andre Richard</p> <p></p> <p>Accurate identification of the impact of global warming on water resources and hydro-climatic extremes represents a significant challenge to the understanding of climate change on the regional scale. Here an analysis of hydro-climatic changes in western Canada is presented, with specific focus on the Fraser and Athabasca River basins and on changes in hydro-climatic extremes. The analysis is based on a suite of simulations designed to characterize internal variability, as well as model uncertainty. A small ensemble of Community Earth System Model version 1 (CESM1) simulations was employed to generate global climate projections, which were downscaled to 10 km resolution using the Weather Research and Forecasting model (WRF V3.4.1) with several sets of physical parameterizations. Downscaling was performed for a historical validation period and a mid- and end-21st-century projection period, using the RCP8.5 greenhouse gas trajectory. Daily station observations and monthly gridded datasets were used for validation. Changes in hydro-climatic extremes are characterized using Extreme Value Analysis. A novel method of aggregating data from climatologically similar stations was employed to increase the statistical power of the analysis. Changes in mean and extreme precipitation are found to differ strongly between seasons and regions, but (relative) changes in extremes generally follow changes in the (seasonal) mean. At the end of the 21st century, precipitation and precipitation extremes are projected to increase by 30% at the coast in fall and land-inwards in winter, while the projected increase in summer precipitation is smaller and changes in extremes are often not statistically significant. Reasons for the differences between seasons, the role of precipitation recycling in atmospheric water transport, and the sensitivity to physics parameterizations are discussed. Major changes are projected for the Fraser River basin, including earlier snowmelt and a 50% reduction in peak runoff. Combined with higher evapotranspiration, a significant increase in late summer drought risk is likely, but increasing fall precipitation might also increase the risk of moderate flooding. In the Athabasca River basin, increasing winter precipitation and snowmelt is balanced by increasing evapotranspiration in summer and no significant change in flood or drought risk is projected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24788513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24788513"><span>Productivity in the barents sea--response to recent climate variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dalpadado, Padmini; Arrigo, Kevin R; Hjøllo, Solfrid S; Rey, Francisco; Ingvaldsen, Randi B; Sperfeld, Erik; van Dijken, Gert L; Stige, Leif C; Olsen, Are; Ottersen, Geir</p> <p>2014-01-01</p> <p>The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4006807','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4006807"><span>Productivity in the Barents Sea - Response to Recent Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dalpadado, Padmini; Arrigo, Kevin R.; Hjøllo, Solfrid S.; Rey, Francisco; Ingvaldsen, Randi B.; Sperfeld, Erik; van Dijken, Gert L.; Stige, Leif C.; Olsen, Are; Ottersen, Geir</p> <p>2014-01-01</p> <p>The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region. PMID:24788513</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29596503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29596503"><span>Empirical radio propagation model for DTV applied to non-homogeneous paths and different climates using machine learning techniques.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomes, Igor Ruiz; Gomes, Cristiane Ruiz; Gomes, Herminio Simões; Cavalcante, Gervásio Protásio Dos Santos</p> <p>2018-01-01</p> <p>The establishment and improvement of transmission systems rely on models that take into account, (among other factors), the geographical features of the region, as these can lead to signal degradation. This is particularly important in Brazil, where there is a great diversity of scenery and climates. This article proposes an outdoor empirical radio propagation model for Ultra High Frequency (UHF) band, that estimates received power values that can be applied to non-homogeneous paths and different climates, this last being of an innovative character for the UHF band. Different artificial intelligence techniques were chosen on a theoretical and computational basis and made it possible to introduce, organize and describe quantitative and qualitative data quickly and efficiently, and thus determine the received power in a wide range of settings and climates. The proposed model was applied to a city in the Amazon region with heterogeneous paths, wooded urban areas and fractions of freshwater among other factors. Measurement campaigns were conducted to obtain data signals from two digital TV stations in the metropolitan area of the city of Belém, in the State of Pará, to design, compare and validate the model. The results are consistent since the model shows a clear difference between the two seasons of the studied year and small RMS errors in all the cases studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5875778','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5875778"><span>Empirical radio propagation model for DTV applied to non-homogeneous paths and different climates using machine learning techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gomes, Herminio Simões; Cavalcante, Gervásio Protásio dos Santos</p> <p>2018-01-01</p> <p>The establishment and improvement of transmission systems rely on models that take into account, (among other factors), the geographical features of the region, as these can lead to signal degradation. This is particularly important in Brazil, where there is a great diversity of scenery and climates. This article proposes an outdoor empirical radio propagation model for Ultra High Frequency (UHF) band, that estimates received power values that can be applied to non-homogeneous paths and different climates, this last being of an innovative character for the UHF band. Different artificial intelligence techniques were chosen on a theoretical and computational basis and made it possible to introduce, organize and describe quantitative and qualitative data quickly and efficiently, and thus determine the received power in a wide range of settings and climates. The proposed model was applied to a city in the Amazon region with heterogeneous paths, wooded urban areas and fractions of freshwater among other factors. Measurement campaigns were conducted to obtain data signals from two digital TV stations in the metropolitan area of the city of Belém, in the State of Pará, to design, compare and validate the model. The results are consistent since the model shows a clear difference between the two seasons of the studied year and small RMS errors in all the cases studied. PMID:29596503</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8493F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8493F"><span>Evaluating characteristics of dry spell changes in Lake Urmia Basin using an ensemble CMIP5 GCM models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh</p> <p>2015-04-01</p> <p>Drought is a natural phenomenon that can cause significant environmental, ecological, and socio-economic losses in water scarce regions. Studies of drought under climate change are essential for water resources planning and management. Dry spells and number of consecutive days with precipitation below a certain threshold can be used to identify the severity of hydrological drought. In this study, we analyzed the projected changes of number of dry days in two future periods, 2011-2040 and 2071-2100, for both seasonal and annual time scales in the Lake Urmia Basin. The lake and its wetlands, located in northwestern Iran, have invaluable environmental, social, and economic importance for the region. The lake level has been shrinking dramatically since 1995 and now the water volume is less than 30% of its original. Moreover, frequent dry spells have struck the region and effected the region's water resources and lake ecosystem as in other parts of Iran too. Analyzing future drought and dry spells characteristics in the region is crucial for sustainable water management and lake restoration plans. We used daily projected precipitation from 20 climate models used in the CMIP5 (Coupled Model Inter-comparison Project Phase 5) driven by three representative paths, RCP2.6, RCP4.5, and, RCP8.5. The model outputs were statistically downscaled and validated based on the historical observation period 1980-2010. We defined days with precipitation less than 1 mm as dry days for both observation periods and model projections. The model validation showed that all models underestimated the number of dry days. An ensemble based on the validation results consisting of five models which were in best agreement with observations was used to assess the changes in number of future dry days in Lake Urmia Basin. The entire ensemble showed increase in number of dry days for all seasons. The projected changes in winter and spring were larger than for summer and autumn. All models projected dryer winter and spring periods in the near and far future periods. The ensemble mean for future annual dry days increased by 6.5 % to 7.3% for the different climate change related emission and concentration pathway RCP2.6, RCP4.5, and, RCP8.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613216B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613216B"><span>In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha</p> <p>2014-05-01</p> <p>Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science Data Records for Use in Research Environments (MEaSUREs). OC-CCI product was found to be most similar to SeaWiFS record, and generally, the OC-CCI record was most similar to records derived from single mission than merged mission initiatives. Results suggest that CCI product is a more consistent dataset than other available merged mission initiatives. In conclusion, climate related science, requires long term data records to provide robust results, OC-CCI product proves to be a worthy data record for climate research, as it combines multi-sensor OC observations to provide a >15-year global error-characterized record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ERL....10d5005V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ERL....10d5005V"><span>Critical appraisal of assumptions in chains of model calculations used to project local climate impacts for adaptation decision support—the case of Baakse Beek</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Sluijs, Jeroen P.; Arjan Wardekker, J.</p> <p>2015-04-01</p> <p>In order to enable anticipation and proactive adaptation, local decision makers increasingly seek detailed foresight about regional and local impacts of climate change. To this end, the Netherlands Models and Data-Centre implemented a pilot chain of sequentially linked models to project local climate impacts on hydrology, agriculture and nature under different national climate scenarios for a small region in the east of the Netherlands named Baakse Beek. The chain of models sequentially linked in that pilot includes a (future) weather generator and models of respectively subsurface hydrogeology, ground water stocks and flows, soil chemistry, vegetation development, crop yield and nature quality. These models typically have mismatching time step sizes and grid cell sizes. The linking of these models unavoidably involves the making of model assumptions that can hardly be validated, such as those needed to bridge the mismatches in spatial and temporal scales. Here we present and apply a method for the systematic critical appraisal of model assumptions that seeks to identify and characterize the weakest assumptions in a model chain. The critical appraisal of assumptions presented in this paper has been carried out ex-post. For the case of the climate impact model chain for Baakse Beek, the three most problematic assumptions were found to be: land use and land management kept constant over time; model linking of (daily) ground water model output to the (yearly) vegetation model around the root zone; and aggregation of daily output of the soil hydrology model into yearly input of a so called ‘mineralization reduction factor’ (calculated from annual average soil pH and daily soil hydrology) in the soil chemistry model. Overall, the method for critical appraisal of model assumptions presented and tested in this paper yields a rich qualitative insight in model uncertainty and model quality. It promotes reflectivity and learning in the modelling community, and leads to well informed recommendations for model improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000442','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000442"><span>The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John</p> <p>2015-01-01</p> <p>The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC11J..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC11J..01R"><span>The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.</p> <p>2015-12-01</p> <p>The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC54A..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC54A..05K"><span>Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaneko, D.</p> <p>2016-12-01</p> <p>Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3866L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3866L"><span>The Role of Anchor Stations in the Validation of Earth Observation Satellite Data and Products. The Valencia and the Alacant Anchor Stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez-Baeza, Ernesto; Geraldo Ferreira, A.; Saleh-Contell, Kauzar</p> <p></p> <p>Space technology facilitates humanity and science with a global revolutionary view of the Earth through the acquisition of Earth Observation satellite data. Satellites capture information over different spatial and temporal scales and assist in understanding natural climate processes and in detecting and explaining climate change. Accurate Earth Observation data is needed to describe climate processes by improving the parameterisations of different climate elements. Algorithms to produce geophysical parameters from raw satellite observations should go through selection processes or participate in inter-comparison programmes to ensure performance reliability. Geophysical parameter datasets, obtained from satellite observations, should pass a quality control before they are accepted in global databases for impact, diagnostic or sensitivity studies. Calibration and Validation, or simply "Cal/Val", is the activity that endeavours to ensure that remote sensing products are highly consistent and reproducible. This is an evolving scientific activity that is becoming increasingly important as more long-term studies on global change are undertaken, and new satellite missions are launched. Calibration is the process of quantitatively defining the system responses to known, controlled signal inputs. Validation refers to the process of assessing, by independent means, the quality of the data products derived from the system outputs. These definitions are generally accepted and most often used in the remote sensing context to refer specifically and respectively to sensor radiometric calibration and geophysical parameter validation. Anchor Stations are carefully selected locations at which instruments measure quantities that are needed to run, calibrate or validate models and algorithms. These are needed to quanti-tatively evaluate satellite data and convert it into geophysical information. The instruments collect measurements of basic quantities over a long timescale. Measurements are made of meteorological and hydrological background data, and of quantities not readily assessed at operational stations. Anchor Stations also offer infrastructure to undertake validation experi-ments. These are more detailed measurements over shorter intensive observation periods. The Valencia Anchor Station is showing its capabilities and conditions as a reference validation site in the framework of low spatial resolution remote sensing missions such as CERES, GERB and SMOS. The Alacant Anchor Station is a reference site in studies on the interactions between desertification and climate. This paper presents the activities so far carried out at both Anchor Stations, the precise and detailed ground and aircraft experiments carefully designed to develop a specific methodology to validate low spatial resolution satellite data and products, and the knowledge exchange currently being exercised between the University of Valencia, Spain, and FUNCEME, Brazil, in common objectives of mutual interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ERL.....8d5004Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ERL.....8d5004Y"><span>A water resources model to explore the implications of energy alternatives in the southwestern US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yates, D.; Averyt, Kristen; Flores-Lopez, Francisco; Meldrum, J.; Sattler, S.; Sieber, J.; Young, C.</p> <p>2013-12-01</p> <p>This letter documents the development and validation of a climate-driven, southwestern-US-wide water resources planning model that is being used to explore the implications of extended drought and climate warming on the allocation of water among competing uses. These model uses include a separate accounting for irrigated agriculture; municipal indoor use based on local population and per-capita consumption; climate-driven municipal outdoor turf and amenity watering; and thermoelectric cooling. The model simulates the natural and managed flows of rivers throughout the southwest, including the South Platte, the Arkansas, the Colorado, the Green, the Salt, the Sacramento, the San Joaquin, the Owens, and more than 50 others. Calibration was performed on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. Goodness of fit statistics and other measures of performance are shown for a select number of locations and are used to summarize the model’s ability to represent monthly streamflow, reservoir storages, surface and ground water deliveries, etc, under 1980-2010 levels of sectoral water use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3999572','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3999572"><span>The Team Climate Inventory as a Measure of Primary Care Teams' Processes: Validation of the French Version</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Beaulieu, Marie-Dominique; Dragieva, Nataliya; Del Grande, Claudio; Dawson, Jeremy; Haggerty, Jeannie L.; Barnsley, Jan; Hogg, William E.; Tousignant, Pierre; West, Michael A.</p> <p>2014-01-01</p> <p>Purpose: Evaluate the psychometric properties of the French version of the short 19-item Team Climate Inventory (TCI) and explore the contributions of individual and organizational characteristics to perceived team effectiveness. Method: The TCI was completed by 471 of the 618 (76.2%) healthcare professionals and administrative staff working in a random sample of 37 primary care practices in the province of Quebec. Results: Exploratory factor analysis confirmed the original four-factor model. Cronbach's alphas were excellent (from 0.88 to 0.93). Latent class analysis revealed three-class response structure. Respondents in practices with professional governance had a higher probability of belonging to the “High TCI” class than did practices with community governance (36.7% vs. 19.1%). Administrative staff tended to fall into the “Suboptimal TCI” class more frequently than did physicians (36.5% vs. 19.0%). Conclusion: Results confirm the validity of our French version of the short TCI. The association between professional governance and better team climate merits further exploration. PMID:24726073</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.1117E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.1117E"><span>Validation of reactive gases and aerosols in the MACC global analysis and forecast system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eskes, H.; Huijnen, V.; Arola, A.; Benedictow, A.; Blechschmidt, A.-M.; Botek, E.; Boucher, O.; Bouarar, I.; Chabrillat, S.; Cuevas, E.; Engelen, R.; Flentje, H.; Gaudel, A.; Griesfeller, J.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Kinne, S.; Langerock, B.; Razinger, M.; Richter, A.; Schultz, M.; Schulz, M.; Sudarchikova, N.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.</p> <p>2015-02-01</p> <p>The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in-situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols and greenhouse gases, and is based on the Integrated Forecast System of the ECMWF. The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past three years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28966551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28966551"><span>Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kloog, Itai; Sorek-Hamer, Meytar; Lyapustin, Alexei; Coull, Brent; Wang, Yujie; Just, Allan C; Schwartz, Joel; Broday, David M</p> <p>2015-12-01</p> <p>Estimates of exposure to PM 2.5 are often derived from geographic characteristics based on land-use regression or from a limited number of fixed ground monitors. Remote sensing advances have integrated these approaches with satellite-based measures of aerosol optical depth (AOD), which is spatially and temporally resolved, allowing greater coverage for PM 2.5 estimations. Israel is situated in a complex geo-climatic region with contrasting geographic and weather patterns, including both dark and bright surfaces within a relatively small area. Our goal was to examine the use of MODIS-based MAIAC data in Israel, and to explore the reliability of predicted PM 2.5 and PM 10 at a high spatiotemporal resolution. We applied a three stage process, including a daily calibration method based on a mixed effects model, to predict ground PM 2.5 and PM 10 over Israel. We later constructed daily predictions across Israel for 2003-2013 using spatial and temporal smoothing, to estimate AOD when satellite data were missing. Good model performance was achieved, with out-of-sample cross validation R 2 values of 0.79 and 0.72 for PM 10 and PM 2.5 , respectively. Model predictions had little bias, with cross-validated slopes (predicted vs. observed) of 0.99 for both the PM 2.5 and PM 10 models. To our knowledge, this is the first study that utilizes high resolution 1km MAIAC AOD retrievals for PM prediction while accounting for geo-climate complexities, such as experienced in Israel. This novel model allowed the reconstruction of long- and short-term spatially resolved exposure to PM 2.5 and PM 10 in Israel, which could be used in the future for epidemiological studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5621656','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5621656"><span>Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kloog, Itai; Sorek-Hamer, Meytar; Lyapustin, Alexei; Coull, Brent; Wang, Yujie; Just, Allan C.; Schwartz, Joel; Broday, David M.</p> <p>2017-01-01</p> <p>Estimates of exposure to PM2.5 are often derived from geographic characteristics based on land-use regression or from a limited number of fixed ground monitors. Remote sensing advances have integrated these approaches with satellite-based measures of aerosol optical depth (AOD), which is spatially and temporally resolved, allowing greater coverage for PM2.5 estimations. Israel is situated in a complex geo-climatic region with contrasting geographic and weather patterns, including both dark and bright surfaces within a relatively small area. Our goal was to examine the use of MODIS-based MAIAC data in Israel, and to explore the reliability of predicted PM2.5 and PM10 at a high spatiotemporal resolution. We applied a three stage process, including a daily calibration method based on a mixed effects model, to predict ground PM2.5 and PM10 over Israel. We later constructed daily predictions across Israel for 2003–2013 using spatial and temporal smoothing, to estimate AOD when satellite data were missing. Good model performance was achieved, with out-of-sample cross validation R2 values of 0.79 and 0.72 for PM10 and PM2.5, respectively. Model predictions had little bias, with cross-validated slopes (predicted vs. observed) of 0.99 for both the PM2.5 and PM10 models. To our knowledge, this is the first study that utilizes high resolution 1km MAIAC AOD retrievals for PM prediction while accounting for geo-climate complexities, such as experienced in Israel. This novel model allowed the reconstruction of long- and short-term spatially resolved exposure to PM2.5 and PM10 in Israel, which could be used in the future for epidemiological studies. PMID:28966551</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6083H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6083H"><span>Regionalisation of statistical model outputs creating gridded data sets for Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Höpp, Simona Andrea; Rauthe, Monika; Deutschländer, Thomas</p> <p>2016-04-01</p> <p>The goal of the German research program ReKliEs-De (regional climate projection ensembles for Germany, http://.reklies.hlug.de) is to distribute robust information about the range and the extremes of future climate for Germany and its neighbouring river catchment areas. This joint research project is supported by the German Federal Ministry of Education and Research (BMBF) and was initiated by the German Federal States. The Project results are meant to support the development of adaptation strategies to mitigate the impacts of future climate change. The aim of our part of the project is to adapt and transfer the regionalisation methods of the gridded hydrological data set (HYRAS) from daily station data to the station based statistical regional climate model output of WETTREG (regionalisation method based on weather patterns). The WETTREG model output covers the period of 1951 to 2100 with a daily temporal resolution. For this, we generate a gridded data set of the WETTREG output for precipitation, air temperature and relative humidity with a spatial resolution of 12.5 km x 12.5 km, which is common for regional climate models. Thus, this regionalisation allows comparing statistical to dynamical climate model outputs. The HYRAS data set was developed by the German Meteorological Service within the German research program KLIWAS (www.kliwas.de) and consists of daily gridded data for Germany and its neighbouring river catchment areas. It has a spatial resolution of 5 km x 5 km for the entire domain for the hydro-meteorological elements precipitation, air temperature and relative humidity and covers the period of 1951 to 2006. After conservative remapping the HYRAS data set is also convenient for the validation of climate models. The presentation will consist of two parts to present the actual state of the adaptation of the HYRAS regionalisation methods to the statistical regional climate model WETTREG: First, an overview of the HYRAS data set and the regionalisation methods for precipitation (REGNIE method based on a combination of multiple linear regression with 5 predictors and inverse distance weighting), air temperature and relative humidity (optimal interpolation) will be given. Finally, results of the regionalisation of WETTREG model output will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5019498','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5019498"><span>Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mangabeira Albernaz, Ana Luisa</p> <p>2016-01-01</p> <p>Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27618445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27618445"><span>Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zanin, Marina; Mangabeira Albernaz, Ana Luisa</p> <p>2016-01-01</p> <p>Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B51C0332I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B51C0332I"><span>National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.</p> <p>2006-12-01</p> <p>Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to be 36% higher than those predicted during the second period. The climate projections of the PCM model had more positive impact on soil C sequestration than those predicted with the HadCM3 model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN13D..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN13D..05L"><span>Educational and Scientific Applications of Climate Model Diagnostic Analyzer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.</p> <p>2016-12-01</p> <p>Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212851B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212851B"><span>Establishing a baseline precipitation and temperature regime for the Guianas from observations and reanalysis data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bovolo, C. Isabella; Pereira, Ryan; Parkin, Geoff; Wagner, Thomas</p> <p>2010-05-01</p> <p>The tropical rainforests of the Guianas, north of the Amazon, are home to several Amerindian communities, hold high levels of biodiversity and, importantly, remain some of the world's most pristine and intact rainforests. Not only do they have important functions in the global carbon cycle, but they regulate the local and regional climate and help generate rain over vast distances. Despite their significance however, the climate and hydrology of this region is poorly understood. It is important to establish the current climate regime of the area as a baseline against which any impacts of future climate change or deforestation can be measured but observed historical climate datasets are generally sparse and of low quality. Here we examine the available precipitation and temperature datasets for the region and derive tentative precipitation and temperature maps focussed on Guyana. To overcome the limitations in the inadequate observational data coverage we also make use of a reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ECMWF). The ECMWF ERA40 dataset comprises a spatially consistent global historical climate for the period 1957-2002 at a ~125 km2 (1.125 degree) resolution at the equator and is particularly valuable for establishing the climate of data-poor areas. Once validated for the area of interest, ERA40 is used to determine the precipitation and temperature regime of the Guianas. Grid-cell by grid-cell analysis provides a complete picture of spatial patterns of averaged monthly precipitation variability across the area, vital for establishing a basis from which to compare any future effects of climate change. This is the first comprehensive study of the recent historical climate and its variability in this area, placing a new hydroclimate monitoring and research program at the Iwokrama International Centre for Rainforest Conservation and Development, Guyana, into the broader climate context. Mean differences (biases) and annual average spatial correlations are examined between modelled ERA40 and observed time series comparing the seasonal cycles and the yearly, monthly and monthly anomaly time series. This is to evaluate if the reanalysis data correctly reproduces the areally averaged observed mean annual precipitation, interannual variability and seasonal precipitation cycle over the region. Results show that reanalysis precipitation for the region compares favourably with areally averaged observations where available, although the model underestimates precipitation in some zones of higher elevation. Also ERA40 data is slightly positively biased along the coast and negatively biased inland. Comparisons between observed and modelled data show that although correlations of annual time series are low (<0.6), correlations of monthly time series reach 0.8 demonstrating that the model captures much of the seasonal variation in precipitation. However correlations between monthly precipitation anomalies, where the averaged seasonal cycle has been removed from the comparison, are lower (< 0.6). As precipitation observations are not assimilated into the reanalysis these results provide a good validation of model performance. The seasonal cycle of precipitation is found to be highly variable across the region. Two wet-seasons (June and December) occur in northern Guyana which relate to the twice yearly passage of the inter-tropical convergence zone whereas a single wet season (April-August) occurs in the savannah zone, which stretches from Venezuela through the southern third of Guyana. The climate transition zone lies slightly north of the distinctive forest-savannah boundary which suggests that the boundary may be highly sensitive to future alterations in climate, such as those due to climate change or deforestation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21D1123L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21D1123L"><span>Assessing the Impact of Climate Change on Extreme Streamflow and Reservoir Operation for Nuuanu Watershed, Oahu, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leta, O. T.; El-Kadi, A. I.; Dulaiova, H.</p> <p>2016-12-01</p> <p>Extreme events, such as flooding and drought, are expected to occur at increased frequencies worldwide due to climate change influencing the water cycle. This is particularly critical for tropical islands where the local freshwater resources are very sensitive to climate. This study examined the impact of climate change on extreme streamflow, reservoir water volume and outflow for the Nuuanu watershed, using the Soil and Water Assessment Tool (SWAT) model. Based on the sensitive parameters screened by the Latin Hypercube-One-factor-At-a-Time (LH-OAT) method, SWAT was calibrated and validated to daily streamflow using the SWAT Calibration and Uncertainty Program (SWAT-CUP) at three streamflow gauging stations. Results showed that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. This was verified with Nash-Sutcliffe Efficiency that resulted in acceptable values of 0.58 to 0.88, whereby more than 90% of observations were bracketed within 95% model prediction uncertainty interval for both calibration and validation periods, signifying the potential applicability of SWAT for future prediction. The climate change impact on extreme flows, reservoir water volume and outflow was assessed under the Representative Concentration Pathways of 4.5 and 8.5 scenarios. We found wide changes in extreme peak and low flows ranging from -44% to 20% and -50% to -2%, respectively, compared to baseline. Consequently, the amount of water stored in Nuuanu reservoir will be decreased up to 27% while the corresponding outflow rates are expected to decrease up to 37% relative to the baseline. In addition, the stored water and extreme flows are highly sensitive to rainfall change when compared to temperature and solar radiation changes. It is concluded that the decrease in extreme low and peak flows can have serious consequences, such as flooding, drought, with detrimental effects on riparian ecological functioning. This study's results are expected to aid in reservoir operation as well as in identifying appropriate climate change adaptation strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12..483F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12..483F"><span>Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.</p> <p>2016-02-01</p> <p>An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23932682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23932682"><span>Validation of the group nuclear safety climate questionnaire.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Navarro, M Felisa Latorre; Gracia Lerín, Francisco J; Tomás, Inés; Peiró Silla, José María</p> <p>2013-09-01</p> <p>Group safety climate is a leading indicator of safety performance in high reliability organizations. Zohar and Luria (2005) developed a Group Safety Climate scale (ZGSC) and found it to have a single factor. The ZGSC scale was used as a basis in this study with the researchers rewording almost half of the items on this scale, changing the referents from the leader to the group, and trying to validate a two-factor scale. The sample was composed of 566 employees in 50 groups from a Spanish nuclear power plant. Item analysis, reliability, correlations, aggregation indexes and CFA were performed. Results revealed that the construct was shared by each unit, and our reworded Group Safety Climate (GSC) scale showed a one-factor structure and correlated to organizational safety climate, formalized procedures, safety behavior, and time pressure. This validation of the one-factor structure of the Zohar and Luria (2005) scale could strengthen and spread this scale and measure group safety climate more effectively. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9819F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9819F"><span>Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos</p> <p>2013-04-01</p> <p>Cloud cover is one of the major factors that determine the radiation budget and the climate system of the Earth. Moreover, the response of clouds has always been an important source of uncertainty in global climate models. Visual surface observations of clouds have been conducted at the National Observatory of Athens (NOA) since the mid 19th century. The historical archive of cloud reports at NOA since 1860 has been digitized and updated, spanning now a period of one and a half century. Mean monthly values of total cloud cover were derived by averaging subdaily observations of cloud cover (3 observations/day). Changes in observational practice (e.g. from 1/10 to 1/8 units) were considered, however, subjective measures of cloud cover from trained observers introduces some kind of uncertainty in the time series. Data before 1884 were considered unreliable, so the analysis was restricted to the series from 1884 to 2012. The time series of total cloud cover at NOA is validated and correlated with historical time series of other (physically related) variables such as the total sunshine duration as well as DTR (Diurnal Temperature Range) which are independently measured. Trend analysis was performed on the mean annual and seasonal series of total cloud cover from 1884-2012. The mean annual values show a marked temporal variability with sub periods of decreasing and increasing tendencies, however, the overall linear trend is positive and statistically significant (p <0.001) amounting to +2% per decade and implying a total increase of almost 25% for the whole analysed period. These results are in agreement qualitatively with the trends reported in other studies worldwide, especially concerning the period before the mid 20th century. On a seasonal basis, spring and summer series present outstanding positive long term trends, while in winter and autumn total cloud cover reveals also positive but less pronounced long term trends Additionally, an evaluation of cloud cover and/or sunshine duration/diurnal temperature range as depicted by regional climate models over Athens will be performed. Regional climate models are valuable tools for projections of future climate change but their performance is typically assessed only in terms of temperature and precipitation. The representation of non-standard parameters such as cloud cover and/or sunshine duration/diurnal temperature range has so far seen little or no evaluation in the models and can therefore be prone to large uncertainties. Regional climate models developed in the framework of recent EU projects, such as the ENSEMBLES (www.ensembles-eu.org) and the CIRCE (www.circeproject.eu) projects, will be used and an initial validation of these parameters against the historical archive of NOA will be performed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27423431','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27423431"><span>Testing the effects of safety climate and disruptive children behavior on school bus drivers performance: A multilevel model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zohar, Dov; Lee, Jin</p> <p>2016-10-01</p> <p>The study was designed to test a multilevel path model whose variables exert opposing effects on school bus drivers' performance. Whereas departmental safety climate was expected to improve driving safety, the opposite was true for in-vehicle disruptive children behavior. The driving safety path in this model consists of increasing risk-taking practices starting with safety shortcuts leading to rule violations and to near-miss events. The study used a sample of 474 school bus drivers in rural areas, driving children to school and school-related activities. Newly developed scales for measuring predictor, mediator and outcome variables were validated with video data taken from inner and outer cameras, which were installed in 29 buses. Results partially supported the model by indicating that group-level safety climate and individual-level children distraction exerted opposite effects on the driving safety path. Furthermore, as hypothesized, children disruption moderated the strength of the safety rule violation-near miss relationship, resulting in greater strength under high disruptiveness. At the same time, the hypothesized interaction between the two predictor variables was not supported. Theoretical and practical implications for studying safety climate in general and distracted driving in particular for professional drivers are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED531401.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED531401.pdf"><span>Measuring School Climate for Gauging Principal Performance: A Review of the Validity and Reliability of Publicly Accessible Measures. A Quality School Leadership Issue Brief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Clifford, Matthew; Menon, Roshni; Gangi, Tracy; Condon, Christopher; Hornung, Katie</p> <p>2012-01-01</p> <p>This policy brief provides principal evaluation system designers information about the technical soundness and cost (i.e., time requirements) of publicly available school climate surveys. The authors focus on the technical soundness of school climate surveys because they believe that using validated and reliable surveys as an outcomes measure can…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14F..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14F..01S"><span>High-resolution RCMs as pioneers for future GCMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.</p> <p>2017-12-01</p> <p>Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data sets, the assessment of regional-scale climate feedback processes, and the development of alternative output analysis methodologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1975C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1975C"><span>Multi-site precipitation downscaling using a stochastic weather generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jie; Chen, Hua; Guo, Shenglian</p> <p>2018-03-01</p> <p>Statistical downscaling is an efficient way to solve the spatiotemporal mismatch between climate model outputs and the data requirements of hydrological models. However, the most commonly-used downscaling method only produces climate change scenarios for a specific site or watershed average, which is unable to drive distributed hydrological models to study the spatial variability of climate change impacts. By coupling a single-site downscaling method and a multi-site weather generator, this study proposes a multi-site downscaling approach for hydrological climate change impact studies. Multi-site downscaling is done in two stages. The first stage involves spatially downscaling climate model-simulated monthly precipitation from grid scale to a specific site using a quantile mapping method, and the second stage involves the temporal disaggregating of monthly precipitation to daily values by adjusting the parameters of a multi-site weather generator. The inter-station correlation is specifically considered using a distribution-free approach along with an iterative algorithm. The performance of the downscaling approach is illustrated using a 10-station watershed as an example. The precipitation time series derived from the National Centers for Environment Prediction (NCEP) reanalysis dataset is used as the climate model simulation. The precipitation time series of each station is divided into 30 odd years for calibration and 29 even years for validation. Several metrics, including the frequencies of wet and dry spells and statistics of the daily, monthly and annual precipitation are used as criteria to evaluate the multi-site downscaling approach. The results show that the frequencies of wet and dry spells are well reproduced for all stations. In addition, the multi-site downscaling approach performs well with respect to reproducing precipitation statistics, especially at monthly and annual timescales. The remaining biases mainly result from the non-stationarity of NCEP precipitation. Overall, the proposed approach is efficient for generating multi-site climate change scenarios that can be used to investigate the spatial variability of climate change impacts on hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53A0522F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53A0522F"><span>Model-based evidence for persistent species zonation shifts in the southern Rocky Mountains under a warming climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Dwire, K. A.; Fornwalt, P.; Sibold, J.; Negrón, J. F.</p> <p>2016-12-01</p> <p>Forests in the Rocky Mountains are a crucial part of the North American carbon budget, but increases in disturbances such as insect outbreaks and fire, in conjunction with climate change, threaten their vitality. Mean annual temperatures in the western United States have increased by 2°C since 1950 and the higher elevations are warming faster than the rest of the landscape. It is predicted that this warming trend will continue, and that by the end of this century, nearly 50% of the western US landscape will have climate profiles with no current analog within that region. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at a subalpine site in the southern Rocky Mountains. UVAFME has been quantitatively and qualitatively validated in the southern Rocky Mountains, and results show that UVAFME-output on size structure, biomass, and species composition compares reasonably to inventory data and descriptions of vegetation zonation and successional dynamics for the region. We perform a climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. This test is conducted to determine what effect elevated temperatures may have on vegetation zonation, and how persistent the changes may be if the climate is brought back to its current state. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and changes in species composition as species migrate upslope. These changes are also likely to be fairly persistent for at least one- to two-hundred years. The results from this study suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation strategies for this vitally important region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000011670&hterms=greenhouse+effect&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dgreenhouse%2Beffect','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000011670&hterms=greenhouse+effect&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dgreenhouse%2Beffect"><span>An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula</p> <p>1997-01-01</p> <p>In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2829W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2829W"><span>A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Chong; Xu, Jianhua; Chen, Yaning; Bai, Ling; Chen, Zhongsheng</p> <p>2018-04-01</p> <p>To quantitatively assess the impact of climate variability on streamflow in an ungauged mountainous basin is a difficult and challenging work. In this study, a hybrid model combing downscaling method based on earth data products, back propagation artificial neural networks (BPANN) and weights connection method was developed to explore an approach for solving this problem. To validate the applicability of the hybrid model, the Kumarik River and Toshkan River, two headwaters of the Aksu River, were employed to assess the impact of climate variability on streamflow by using this hybrid model. The conclusion is that the hybrid model presented a good performance, and the quantitative assessment results for the two headwaters are: (1) the precipitation respectively increased by 48.5 and 41.0 mm in the Kumarik catchment and Toshkan catchment, and the average annual temperature both increased by 0.1 °C in the two catchments during each decade from 1980 to 2012; (2) with the warming and wetting climate, the streamflow respectively increased 1.5 × 108 and 3.3 × 108 m3 per decade in the Kumarik River and the Toshkan River; and (3) the contribution of the temperature and precipitation to the streamflow, which were 64.01 ± 7.34, 35.99 ± 7.34 and 47.72 ± 8.10, 52.26 ± 8.10%, respectively in the Kumarik catchment and Toshkan catchment. Our study introduced a feasible hybrid model for the assessment of the impact of climate variability on streamflow, which can be used in the ungauged mountainous basin of Northwest China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13G1480L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13G1480L"><span>Predicting Nitrate Transport under Future Climate Scenarios beneath the Nebraska Management Systems Evaluation Area (MSEA) site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.</p> <p>2017-12-01</p> <p>Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>