The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2016-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2017-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.
ARM-Led Improvements Aerosols in Climate and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghan, Steven J.; Penner, Joyce E.
2016-07-25
The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.
Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model
2016-01-14
distribution is unlimited. TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH A GLOBAL CLOUD RESOLVING MODEL PI: Tim Li IPRC/SOEST, University of Hawaii at...Project Final Report 3. DATES COVERED (From - To) 1 May 2012 - 30 September 2015 4. TITLE AND SUBTITLE TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH...A GLOBAL CLOUD RESOLVING MODEL 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000141210450 5c. PROGRAM ELEMENT NUMBER ONR Marine Meteorology Program 6
Local Climate and Energy Program Model Design Guide: Enhancing Value and Creating Lasting Programs
Created for local climate and clean energy program implementers, learn how programs create and deliver value to target audiences and partners, how to raise revenue, and how they can operate cost effectively.
Subseasonal-to-Seasonal Science and Prediction Initiatives of the NOAA MAPP Program
NASA Astrophysics Data System (ADS)
Archambault, H. M.; Barrie, D.; Mariotti, A.
2016-12-01
There is great practical interest in developing predictions beyond the 2-week weather timescale. Scientific communities have historically organized themselves around the weather and climate problems, but the subseasonal-to-seasonal (S2S) timescale range overall is recognized as new territory for which a concerted shared effort is needed. For instance, the climate community, as part of programs like CLIVAR, has historically tackled coupled phenomena and modeling, keys to harnessing predictability on longer timescales. In contrast, the weather community has focused on synoptic dynamics, higher-resolution modeling, and enhanced model initialization, of importance at the shorter timescales and especially for the prediction of extremes. The processes and phenomena specific to timescales between weather and climate require a unified approach to science, modeling, and predictions. Internationally, the WWRP/WCRP S2S Prediction Project is a promising catalyzer for these types of activities. Among the various contributing U.S. research programs, the Modeling, Analysis, Predictions and Projections (MAPP) program, as part of the NOAA Climate Program Office, has launched coordinated research and transition activities that help to meet the agency's goals to fill the weather-to-climate prediction gap and will contribute to advance international goals. This presentation will describe ongoing MAPP program S2S science and prediction initiatives, specifically the MAPP S2S Task Force and the SubX prediction experiment.
Theory and Programs for Dynamic Modeling of Tree Rings from Climate
Paul C. van Deusen; Jennifer Koretz
1988-01-01
Computer programs written in GAUSS(TM) for IBM compatible personal computers are described that perform dynamic tree ring modeling with climate data; the underlying theory is also described. The programs and a separate users manual are available from the authors, although users must have the GAUSS software package on their personal computer. An example application of...
Climate and atmospheric modeling studies
NASA Technical Reports Server (NTRS)
1992-01-01
The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.
Assessing NARCCAP climate model effects using spatial confidence regions.
French, Joshua P; McGinnis, Seth; Schwartzman, Armin
2017-01-01
We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.
Assessing and Upgrading Ocean Mixing for the Study of Climate Change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.
2016-12-01
Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate science by improving our mixing schemes. We are incorporating climate research into our college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293.
Modeling and assessing international climate financing
NASA Astrophysics Data System (ADS)
Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng
2016-06-01
Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.
The Arctic Climate Modeling Program: Professional Development for Rural Teachers
ERIC Educational Resources Information Center
Bertram, Kathryn Berry
2010-01-01
The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…
The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.; Higgins, W.
2013-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward improving their representations in numerical models and improving MJO simulation and prediction. Recent results from CVP-funded projects will be summarized in this poster.
Beets, Michael W; Flay, Brian R; Vuchinich, Samuel; Acock, Alan C; Li, Kin-Kit; Allred, Carol
2008-12-01
Teacher- and school-level factors influence the fidelity of implementation of school-based prevention and social character and development (SACD) programs. Using a diffusion of innovations framework, the relationships among teacher beliefs and attitudes towards a prevention/SACD program and the influence of a school's administrative support and perceptions of school connectedness, characteristics of a school's climate, were specified in two cross-sectional mediation models of program implementation. Implementation was defined as the amount of the programs' curriculum delivered (e.g., lessons taught), and use of program-specific materials in the classroom (e.g., ICU boxes and notes) and in relation to school-wide activities (e.g., participation in assemblies). Teachers from 10 elementary schools completed year-end process evaluation reports for year 2 (N = 171) and 3 (N = 191) of a multi-year trial. Classroom and school-wide material usage were each favorably associated with the amount of the curriculum delivered, which were associated with teachers' attitudes toward the program which, in turn, were related to teachers' beliefs about SACD. These, in turn, were associated with teachers' perceptions of school climate. Perceptions of school climate were indirectly related to classroom material usage and both indirectly and directly related to the use of school-wide activities. Program developers need to consider the importance of a supportive environment on program implementation and attempt to incorporate models of successful school leadership and collaboration among teachers that foster a climate promoting cohesiveness, shared visions, and support.
Assessing NARCCAP climate model effects using spatial confidence regions
French, Joshua P.; McGinnis, Seth; Schwartzman, Armin
2017-01-01
We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference. PMID:28936474
NASA Technical Reports Server (NTRS)
1990-01-01
The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.
NASA Astrophysics Data System (ADS)
Mearns, L. O.; Sain, S. R.; McGinnis, S. A.; Steinschneider, S.; Brown, C. M.
2015-12-01
In this talk we present the development of a joint Bayesian Probabilistic Model for the climate change results of the North American Regional Climate Change Assessment Program (NARCCAP) that uses a unique prior in the model formulation. We use the climate change results (joint distribution of seasonal temperature and precipitation changes (future vs. current)) from the global climate models (GCMs) that provided boundary conditions for the six different regional climate models used in the program as informative priors for the bivariate Bayesian Model. The two variables involved are seasonal temperature and precipitation over sub-regions (i.e., Bukovsky Regions) of the full NARCCAP domain. The basic approach to the joint Bayesian hierarchical model follows the approach of Tebaldi and Sansó (2009). We compare model results using informative (i.e., GCM information) as well as uninformative priors. We apply these results to the Water Evaluation and Planning System (WEAP) model for the Colorado Springs Utility in Colorado. We investigate the layout of the joint pdfs in the context of the water model sensitivities to ranges of temperature and precipitation results to determine the likelihoods of future climate conditions that cannot be accommodated by possible adaptation options. Comparisons may also be made with joint pdfs formed from the CMIP5 collection of global climate models and empirically downscaled to the region of interest.
The Swedish Regional Climate Modelling Programme, SWECLIM: a review.
Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael
2004-06-01
The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.
A flexible tool for diagnosing water, energy, and entropy budgets in climate models
NASA Astrophysics Data System (ADS)
Lembo, Valerio; Lucarini, Valerio
2017-04-01
We have developed a new flexible software for studying the global energy budget, the hydrological cycle, and the material entropy production of global climate models. The program receives as input radiative, latent and sensible energy fluxes, with the requirement that the variable names are in agreement with the Climate and Forecast (CF) conventions for the production of NetCDF datasets. Annual mean maps, meridional sections and time series are computed by means of Climate Data Operators (CDO) collection of command line operators developed at Max-Planck Institute for Meteorology (MPI-M). If a land-sea mask is provided, the program also computes the required quantities separately on the continents and oceans. Depending on the user's choice, the program also calls the MATLAB software to compute meridional heat transports and location and intensities of the peaks in the two hemispheres. We are currently planning to adapt the program in order to be included in the Earth System Model eValuation Tool (ESMValTool) community diagnostics.
Climate Adaptation Training for Natural Resource Professionals
NASA Astrophysics Data System (ADS)
Sorensen, H. L.; Meyer, N.
2016-02-01
The University of Minnesota Sea Grant Program and University of Minensota Extension are coordinating the development of a cohort-based training for natural resource professionals that prepares them with essential aptitude, resources and tools to lead climate adaptation activities in their organizations and municipalities. This course is geared toward the growing cadre of natural resources, water, municipal infrastructure, and human resources professionals who are called upon to lead climate adaptation initiatives but lack core training in climate change science, vulnerability assessment, and adaptation planning. Modeled on pre-existing UMN certificate programs, the online course encompasses approximately 40 contact hours of training. Content builds from basic climate mechanics to change science, vulnerability assessment, downscaled climate modeling, ecosystem response to climate change and strategies communicating climate change to diverse audiences. Minnesota as well as national case studies and expertise will anchor core climate adaptation concepts in a relevant context.
Atmospheric Radiation Measurement Program facilities newsletter, March 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2000-04-03
The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.
A Simple Climate Model Program for High School Education
NASA Astrophysics Data System (ADS)
Dommenget, D.
2012-04-01
The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!
Reconstruction of Past Mediterranean Climate
NASA Astrophysics Data System (ADS)
García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos
2007-02-01
First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.
News of the Day... view past news Central Pacific Hurricane Season Outlook for 2018 2017-18 Hawaii Wet Local Graphics National Graphics Model Output River and Lakes Climate and Past Weather Local National Model Output Climate and Past Weather Local National More... Hawaii Climate Portal Local Programs
Accelerated Climate Modeling for Energy (ACME) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhary, Aashish
Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook a coordinated effort to build an Earth system modeling capability tailored to meet the climate change research strategic objectives of the DOE Office of Science, as well as the broader climate change application needs of other DOE programs.
NASA Astrophysics Data System (ADS)
Stover, D. B.; Jones, A.; Kusek, K.; Bebber, D.; Phillips, R.; Campbell, J.
2010-12-01
Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC banking employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results are establishing baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests within a changing climate. A critical component of the program is the engagement of 2,200 corporate HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Program participants are empowered and have successfully developed sustainability projects they implement back in their office, homes and communities that furthers corporate and public commitment to sustainability and combating the effects of climate change. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified one week versions of the field program. New models of citizen science engagement are currently under development, with best practices and stories documenting the effectiveness of the program design from a research, engagement and business perspective. In US, the program has successfully collected over 10,000 hours of data collection in just 2 years and has contributed to our understanding of positive growth response to climate change in the Chesapeake Bay forests. Additionally, preliminary results are indicating that invasive species recruitment in recently logging areas is modifying the future crown species dominance. By the end of the program, nearly 100,000 citizen science research hours will have been invested in the program globally—leading to scientific publications on forest responses to climate change, policy development and citizen engagement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SA Edgerton; LR Roeder
The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less
NASA Astrophysics Data System (ADS)
Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald
2014-05-01
Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are accompanied by the WASCAL Graduate Research Program on the West African Climate System. The GRP-WACS provides ten scholarships per year for West African PhD students with a duration of three years. Present and future WASCAL PhD students will constitute one important user group of the Linux cluster that will be installed at the Competence Center in Ouagadougou, Burkina Faso. Regional Land-Atmosphere Simulations A key research activity of the WASCAL Core Research Program is the analysis of interactions between the land surface and the atmosphere to investigate how land surface changes affect hydro-meteorological surface fluxes such as evapotranspiration. Since current land surface models of global and regional climate models neglect dominant lateral hydrological processes such as surface runoff, a novel land surface model is used, the NCAR Distributed Hydrological Modeling System (NDHMS). This model can be coupled to WRF (WRF-Hydro) to perform two-way coupled atmospheric-hydrological simulations for the watershed of interest. Hardware and network prerequisites include a HPC cluster, network switches, internal storage media, Internet connectivity of sufficient bandwidth. Competences needed are HPC, storage, and visualization systems optimized for climate research, parallelization and optimization of climate models and workflows, efficient management of highest data volumes.
The United States Environmental Protection Agency (USEPA) and National Oceanic and Atmospheric Administration (NOAA) participate in a multi-agency examination of the effects of climate change through the U.S. Climate Change Science Program (CCSP, 2003). The EPA Global Change Rese...
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Randall, D.; Denning, S.; Jones, B.; Russell, R.; Gardiner, L.; Hatheway, B.; Johnson, R. M.; Drossman, H.; Pandya, R.; Swartz, D.; Lanting, J.; Pitot, L.
2007-12-01
The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. The new National Science Foundation- funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is a major research program addressing this problem over the next five years through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interactions among the many physical and chemical processes that are active in cloud systems. At the end of its first year, CMMAP has established effective partnerships between scientists, students, and teachers to meet its goals to: (1) provide first-rate graduate education in atmospheric science; (2) recruit diverse undergraduates into graduate education and careers in climate science; and (3) develop, evaluate, and disseminate educational resources designed to inform K-12 students, teachers, and the general public about the nature of the climate system, global climate change, and career opportunities in climate science. This presentation will describe the partners, our challenges and successes, and measures of achievement involved in the integrated suite of programs launched in the first year. They include: (1) a new high school Colorado Climate Conference drawing prestigious climate scientists to speak to students, (2) a summer Weather and Climate Workshop at CSU and the National Center for Atmospheric Research introducing K-12 teachers to Earth system science and a rich toolkit of teaching materials, (3) a program from CSU's Little Shop of Physics reaching 50 schools and 20,000 K-12 students through the new "It's Up In the Air" program, (4) expanded content, imagery, and interactives on clouds, weather, climate, and modeling for students, teachers, and the public on The Windows to the Universe web site at University Corporation for Atmospheric Research (UCAR), (5) mentoring programs engaging diverse undergraduate and graduate level students in CMMAP research through UCAR's Significant Opportunities in Atmospheric Research and Science (SOARS) Program, and (6) after school activities about clouds, climate and weather for underrepresented middle school students at the Catamount Institute. CMMAP is also enabling Windows to the Universe to continue its commitment to translate all new web pages into Spanish. This presentation will explain how resources emerging from CMMAP can be accessed and used by the entire Earth and Ocean Science educational outreach community.
NASA Astrophysics Data System (ADS)
Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.
2011-12-01
Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.
NASA Astrophysics Data System (ADS)
Kusek, K. M.; Stover, D. B.; Phillips, R.; Jones, A.; Campbell, J.
2009-12-01
Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results will establish baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests in a changing climate. A critical component of the program is the engagement of 2,200 HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Their charge is to develop a project they will implement back in their office that furthers HSBC’s commitment to sustainability. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified versions of the two-week field program. New models of citizen science engagement are currently under development, and Earthwatch will share “lessons learned” and stories documenting the effectiveness of the program design from a research, engagement and business perspective. By the end of the partnership nearly 100,000 citizen science research hours will have been invested in the program globally—leading to scientific publications, policy development and citizen engagement.
Engineering Geology | Alaska Division of Geological & Geophysical Surveys
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Highway and development of avalanche susceptibility and prediction models near Atigun Pass. Alaska coastal
Nevada Infrastructure for Climate Change Science, Education, and Outreach
NASA Astrophysics Data System (ADS)
Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.
2009-12-01
The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?
A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hubs
NASA Astrophysics Data System (ADS)
Foster, J. G.
2014-12-01
NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.
A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hub
NASA Astrophysics Data System (ADS)
Foster, J. G.
2014-12-01
NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.
Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhengyu; Kutzbach, J.; Jacob, R.
2011-12-05
In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadalmore » climate prediction.« less
Software Simplifies the Sharing of Numerical Models
NASA Technical Reports Server (NTRS)
2014-01-01
To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.
Climate Science's Globally Distributed Infrastructure
NASA Astrophysics Data System (ADS)
Williams, D. N.
2016-12-01
The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Carbone, L.; Eastburn, T.; Munoz, R.; Lu, G.; Ammann, C.
2004-05-01
The study of climate and global change is an important on-going focal area for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies, and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year. This is accomplished through the implementation of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to exhibits which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 offers visitors a visually engaging and informative overview of information, graphics, artifacts, and interactives describing the Earth system's dynamic processes that contribute to and mediate climate change, the history of our planet's changing climate, and perspectives on geographic locations and societies around the world that have potential to be impacted by a changing climate. Climate Futures, an addition to this exhibit to open in the summer of 2004, will help visitors to understand why scientists seek to model the global climate system and how information about past and current climate are used to validate models and build scenarios for Earth's future climate, while clarifying the effects of natural and human-induced contributions to these predictions. UCAR-EO further strives to enhance public understanding and to dispel misconceptions about climate change by bringing scientists' explanations to visitors who learn about atmospheric sciences while on staff-guided tours and/or while using an audiotour developed in 2003 with a grant from the National Science Foundation. With advanced reservations, a limited number of visitors may experience demonstrations of climate models in the NCAR Visualization Laboratory. An instructional module for approximately 5,000 visiting school children and a teachers guide for the Climate Discovery Exhibit is in the development and field testing phase with a goal to promote interest in and understanding of how climate change studies align with K-12 science standards. Over the next year, much of the content will become available to national audiences via the new NCAR EO web site (www.ncar.ucar.edu/eo), UCAR-EO's summer teachers workshops, and sessions at the National Science Teacher Association meetings.
Lombarts, Kiki M J M H; Heineman, Maas Jan; Scherpbier, Albert J J A; Arah, Onyebuchi A
2014-01-01
To understand teaching performance of individual faculty, the climate in which residents' learning takes place, the learning climate, may be important. There is emerging evidence that specific climates do predict specific outcomes. Until now, the effect of learning climate on the performance of the individual faculty who actually do the teaching was unknown. THIS STUDY: (i) tested the hypothesis that a positive learning climate was associated with better teaching performance of individual faculty as evaluated by residents, and (ii) explored which dimensions of learning climate were associated with faculty's teaching performance. We conducted two cross-sectional questionnaire surveys amongst residents from 45 residency training programs and multiple specialties in 17 hospitals in the Netherlands. Residents evaluated the teaching performance of individual faculty using the robust System for Evaluating Teaching Qualities (SETQ) and evaluated the learning climate of residency programs using the Dutch Residency Educational Climate Test (D-RECT). The validated D-RECT questionnaire consisted of 11 subscales of learning climate. Main outcome measure was faculty's overall teaching (SETQ) score. We used multivariable adjusted linear mixed models to estimate the separate associations of overall learning climate and each of its subscales with faculty's teaching performance. In total 451 residents completed 3569 SETQ evaluations of 502 faculty. Residents also evaluated the learning climate of 45 residency programs in 17 hospitals in the Netherlands. Overall learning climate was positively associated with faculty's teaching performance (regression coefficient 0.54, 95% confidence interval: 0.37 to 0.71; P<0.001). Three out of 11 learning climate subscales were substantially associated with better teaching performance: 'coaching and assessment', 'work is adapted to residents' competence', and 'formal education'. Individual faculty's teaching performance evaluations are positively affected by better learning climate of residency programs.
Regional-Scale Climate Change: Observations and Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Raymond S; Diaz, Henry F
2010-12-14
This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less
This seminar for Oregon State University’s Water Resources Graduate Program will describe the use of a spatially-distributed ecohydrological model, VELMA, for quantifying how alternative land use and climate scenarios affect tradeoffs among important ecosystem services. Sp...
Climate Change Student Summits: A Model that Works (Invited)
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2013-12-01
The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems approach to climate change education which have been successfully integrated into existing curricula in grades 4-12, as well as at numerous science museums.
Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies
Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; ...
2010-01-01
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.
OVERVIEW OF THE CLIMATE IMPACT ON REGIONAL AIR QUALITY (CIRAQ) PROJECT
The Climate Impacts on Regional Air Quality (CIRAQ) project will develop model-estimated impacts of global climate changes on ozone and particulate matter (PM) in direct support of the USEPA Global Change Research Program's (GCRP) national air quality assessment. EPA's urban/reg...
NASA Astrophysics Data System (ADS)
Watanabe, S.; Kim, H.; Utsumi, N.
2017-12-01
This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.
Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change
NASA Astrophysics Data System (ADS)
Puttick, Gillian; Tucker-Raymond, Eli
2018-01-01
Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.
Nevada Infrastructure for Climate Change Science, Education, and Outreach
NASA Astrophysics Data System (ADS)
Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.
2008-12-01
The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.
Weather Forecaster Understanding of Climate Models
NASA Astrophysics Data System (ADS)
Bol, A.; Kiehl, J. T.; Abshire, W. E.
2013-12-01
Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.
Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency
NASA Astrophysics Data System (ADS)
Petrone, C.
2017-12-01
Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.
Modeling Climate Change and Sturgeon Populations in the Missouri River
Wildhaber, Mark L.
2010-01-01
The U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC), in collaboration with researchers from the University of Missouri and Iowa State University, is conducting research to address effects of climate change on sturgeon populations (Scaphirhynchus spp.) in the Missouri River. The CERC is conducting laboratory, field, and modeling research to identify causative factors for the responses of fish populations to natural and human-induced environmental changes and using this information to understand sensitivity of sturgeon populations to potential climate change in the Missouri River drainage basin. Sturgeon response information is being used to parameterize models predicting future population trends. These models will provide a set of tools for natural resource managers to assess management strategies in the context of global climate change. This research complements and builds on the ongoing Comprehensive Sturgeon Research Program (CSRP) at the CERC. The CSRP is designed to provide information critical to restoration of the Missouri River ecosystem and the endangered pallid sturgeon (S. albus). Current research is being funded by USGS through the National Climate Change Wildlife Science Center (NCCWSC) and the Science Support Partnership (SSP) Program that is held by the USGS and the U.S. Fish and Wildlife Service. The national mission of the NCCWSC is to improve the capacity of fish and wildlife agencies to respond to climate change and to address high-priority climate change effects on fish and wildlife. Within the national context, the NCCWSC research on the Missouri River focuses on temporal and spatial downscaling and associated uncertainty in modeling climate change effects on sturgeon species in the Missouri River. The SSP research focuses on improving survival and population estimates for pallid sturgeon population models.
75 FR 54403 - U.S. National Climate Assessment Objectives, Proposed Topics, and Next Steps
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
..., methods and design, tools for assessing climate change and impacts, dealing with uncertainty, sources of..., coordination with other Federal climate-related programs, design of documents and tailored communications with... methodological perspectives related to selecting model and downscaling outputs and approaches for their use in...
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health.
Conlon, Kathryn C; Kintziger, Kristina W; Jagger, Meredith; Stefanova, Lydia; Uejio, Christopher K; Konrad, Charles
2016-08-09
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health
Conlon, Kathryn C.; Kintziger, Kristina W.; Jagger, Meredith; Stefanova, Lydia; Uejio, Christopher K.; Konrad, Charles
2016-01-01
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida. PMID:27517942
NASA Technical Reports Server (NTRS)
Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol
2003-01-01
The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.
ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua
2010-01-01
Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).
Agricultural climate impacts assessment for economic modeling and decision support
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.
2013-12-01
A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.
Approaches to local climate action in Colorado
NASA Astrophysics Data System (ADS)
Huang, Y. D.
2011-12-01
Though climate change is a global problem, the impacts are felt on the local scale; it follows that the solutions must come at the local level. Fortunately, many cities and municipalities are implementing climate mitigation (or climate action) policies and programs. However, they face many procedural and institutional barriers to their efforts, such of lack of expertise or data, limited human and financial resources, and lack of community engagement (Krause 2011). To address the first obstacle, thirteen in-depth case studies were done of successful model practices ("best practices") of climate action programs carried out by various cities, counties, and organizations in Colorado, and one outside Colorado, and developed into "how-to guides" for other municipalities to use. Research was conducted by reading documents (e.g. annual reports, community guides, city websites), email correspondence with program managers and city officials, and via phone interviews. The information gathered was then compiled into a series of reports containing a narrative description of the initiative; an overview of the plan elements (target audience and goals); implementation strategies and any indicators of success to date (e.g. GHG emissions reductions, cost savings); and the adoption or approval process, as well as community engagement efforts and marketing or messaging strategies. The types of programs covered were energy action plans, energy efficiency programs, renewable energy programs, and transportation and land use programs. Between the thirteen case studies, there was a range of approaches to implementing local climate action programs, examined along two dimensions: focus on climate change (whether it was direct/explicit or indirect/implicit) and extent of government authority. This benchmarking exercise affirmed the conventional wisdom propounded by Pitt (2010), that peer pressure (that is, the presence of neighboring jurisdictions with climate initiatives), the level of community engagement and enthusiasm, and most importantly staff members dedicated to the area of climate planning have a significant effect on climate mitigation policy adoption. In addition, it supported the claim asserted by Toly (2008) that an emphasis on economic co-benefits perpetuates the principle that economic growth need not be compromised when addressing climate change and weakens our capacity to shift toward a bolder paradigm in what is politically achievable in climate legislation.
Evaluation of mean climate in a chemistry-climate model simulation
NASA Astrophysics Data System (ADS)
Hong, S.; Park, H.; Wie, J.; Park, R.; Lee, S.; Moon, B. K.
2017-12-01
Incorporation of the interactive chemistry is essential for understanding chemistry-climate interactions and feedback processes in climate models. Here we assess a newly developed chemistry-climate model (GRIMs-Chem), which is based on the Global/Regional Integrated Model system (GRIMs) including the aerosol direct effect as well as stratospheric linearized ozone chemistry (LINOZ). We conducted GRIMs-Chem with observed sea surface temperature during the period of 1979-2010, and compared the simulation results with observations and also with CMIP models. To measure the relative performance of our model, we define the quantitative performance metric using the Taylor diagram. This metric allow us to assess overall features in simulating multiple variables. Overall, our model better reproduce the zonal mean spatial pattern of temperature, horizontal wind, vertical motion, and relative humidity relative to other models. However, the model did not produce good simulations at upper troposphere (200 hPa). It is currently unclear which model processes are responsible for this. AcknowledgementsThis research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
2017-08-01
This large repository of climate model results for North America (Wang and Kotamarthi 2013, 2014, 2015) is stored in Network Common Data Form (NetCDF...Network Common Data Form (NetCDF). UCAR/Unidata Program Center, Boulder, CO. Available at: http://www.unidata.ucar.edu/software/netcdf. Accessed on 6/20...emissions diverge from each other regarding fossil fuel use, technology, and other socioeconomic factors. As a result, the estimated emissions for each of
Modeling climate change impacts on water trading.
Luo, Bin; Maqsood, Imran; Gong, Yazhen
2010-04-01
This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.
The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Gerald L; Bader, David C; Riches, Michael
Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment andmore » because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI's success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M'©t'©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.« less
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
NASA Astrophysics Data System (ADS)
Walton, P.; Yarker, M. B.; Mesquita, M. D. S.; Otto, F. E. L.
2014-12-01
There is a clear role for climate science in supporting decision making at a range of scales and in a range of contexts: from Global to local, from Policy to Industry. However, clear a role climate science can play, there is also a clear discrepancy in the understanding of how to use the science and associated tools (such as climate models). Despite there being a large body of literature on the science there is clearly a need to provide greater support in how to apply appropriately. However, access to high quality professional development courses can be problematic, due to geographic, financial and time constraints. In attempt to address this gap we independently developed two online professional courses that focused on helping participants use and apply two regional climate models, WRF and PRECIS. Both courses were designed to support participants' learning through tutor led programs that covered the basic climate scientific principles of regional climate modeling and how to apply model outputs. The fundamental differences between the two courses are: 1) the WRF modeling course expected participants to design their own research question that was then run on a version of the model, whereas 2) the PRECIS course concentrated on the principles of regional modeling and how the climate science informed the modeling process. The two courses were developed to utilise the cost and time management benefits associated with eLearning, with the recognition that this mode of teaching can also be accessed internationally, providing professional development courses in countries that may not be able to provide their own. The development teams saw it as critical that the courses reflected sound educational theory, to ensure that participants had the maximum opportunity to learn successfully. In particular, the role of reflection is central to both course structures to help participants make sense of the science in relation to their own situation. This paper details the different structures of both courses, evaluating the advantages and disadvantages of each, along with the educational approaches used. We conclude by proposing a framework for the develop of educationally robust online professional development programs that actively supports decision makers in understanding, developing and applying regional climate models.
Climate Science Program at California State University, Northridge
NASA Astrophysics Data System (ADS)
Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.
2012-12-01
Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical Information System (GIS). In addition the Geography department will similarly update the corresponding graduate courses on Remote Sensing, Geog 690D, and Climate Change Geog 620F, and there will be a reciprocal curriculum and data sharing collaboration with the Earth and Environmental Sciences program at Santa Monica College. Throughout the academic year a seminar series offers the students the opportunity to learn about ongoing work on Atmospheric Sciences and Climate and during the summer they have access to research experiences at NASA's Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Denning, S.; Burt, M. A.; Jones, B.
2015-12-01
Since 2006, the Center for Multiscale Modeling of Atmospheric Processes (CMMAP) has sponsored a fertile collaboration among researchers in many fields, graduate and undergraduate student, K-12 teachers, science outreach professionals, and evaluators. This collaboration included groundbreaking work in climate modeling, ecology, political science, sociology, psychology, and English. At the undergraduate level, we engaged more than 80 faculty in 26 Departments at a major public university who now teach one another's content in dozens of classes. Hundreds of English Composition students learned about climate change while developing basic writing skills. We also worked very closely with public schools to develop and test curriculum enhancement kits for teaching standards-aligned climate science in K-12 classrooms and built a successful series of Professional Development workshops for teachers at three different grade levels. Nearly 200,000 students participated in these programs in public schools and millions of individuals around the world used our web-based tools. The success of this collaborative program is apparent in traditional metrics and assessments of content knowledge. Equally important, the sustained interaction with education professionals had a substantial impact on the climate scientists and faculty involved in the program, and on our graduate students. We outline some of the key elements that made CMMAP's program successful, and offer suggestions for other institutions seeking to enhance climate literacy.
The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Riley, William J.; Randerson, James T.
2016-06-01
The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).
Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Lynn M; Lubin, Dan
2013-06-18
The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of datamore » that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM North Slope of Alaska (NSA) data.« less
GEWEX - The Global Energy and Water Cycle Experiment
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1992-01-01
GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.
Hydrologic and water quality sensitivity to climate and land ...
This page describes a current EPA ORD project. No project report or other download is available at this time. Please see the section Next Steps below for a timeline of anticipated products of this work. Background: Projected changes in climate during the next century could cause or contribute to increased flooding, drought, water quality degradation, and ecosystem impairment. The effects of climate change in different watersheds will vary due to regional differences in climate change, physiographic setting, and interaction with land-use, pollutant sources, and water management in different locations. EPA is conducting watershed modeling to develop hydrologic and water quality change scenarios for 20 relatively large U.S. watersheds. Watershed modeling will be conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil Water Assessment Tool (SWAT) watershed models. Study areas range from about 10,000-15,000 square miles in size, and will cover nearly every ecoregion in the United States and a range of hydro-climatic conditions. A range of hydrologic and water quality endpoints will be determined for each watershed simulation. Endpoints will be selected to inform upon a range of stream flow, water quality, aquatic ecosystem, and EPA program management goals and targets. Model simulations will be conducted to evaluate a range of projected future (2040-2070) changes in climate and land-use. Simulations will include baseline conditions,
Atmospheric Aerosol Properties and Climate Impacts
NASA Technical Reports Server (NTRS)
Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip;
2009-01-01
This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.
Addressing climate challenges in developing countries
NASA Astrophysics Data System (ADS)
Tilmes, Simone; Monaghan, Andrew; Done, James
2012-04-01
Advanced Study Program/Early Career Scientist Assembly Workshop on Regional Climate Issues in Developing Countries; Boulder, Colorado, 19-22 October 2011 The Early Career Scientist Assembly (ECSA) and the Advanced Study Program of the National Center for Atmospheric Research (NCAR) invited 35 early-career scientists from nearly 20 countries to attend a 3-day workshop at the NCAR Mesa Laboratory prior to the World Climate Research Programme (WCRP) Open Science Conference in October 2011. The goal of the workshop was to examine a range of regional climate challenges in developing countries. Topics included regional climate modeling, climate impacts, water resources, and air quality. The workshop fostered new ideas and collaborations between early-career scientists from around the world. The discussions underscored the importance of establishing partnerships with scientists located in typically underrepresented countries to understand and account for the local political, economic, and cultural factors on which climate change is superimposed.
Contribution of physical modelling to climate-driven landslide hazard mapping: an alpine test site
NASA Astrophysics Data System (ADS)
Vandromme, R.; Desramaut, N.; Baills, A.; Hohmann, A.; Grandjean, G.; Sedan, O.; Mallet, J. P.
2012-04-01
The aim of this work is to develop a methodology for integrating climate change scenarios into quantitative hazard assessment and especially their precipitation component. The effects of climate change will be different depending on both the location of the site and the type of landslide considered. Indeed, mass movements can be triggered by different factors. This paper describes a methodology to address this issue and shows an application on an alpine test site. Mechanical approaches represent a solution for quantitative landslide susceptibility and hazard modeling. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account the uncertainty in the analysis. In this perspective, a new hazard modeling method is developed and integrated in a program named ALICE. This program integrates mechanical stability analysis through a GIS software taking into account data uncertainty. This method proposes a quantitative classification of landslide hazard and offers a useful tool to gain time and efficiency in hazard mapping. However, an expertise approach is still necessary to finalize the maps. Indeed it is the only way to take into account some influent factors in slope stability such as heterogeneity of the geological formations or effects of anthropic interventions. To go further, the alpine test site (Barcelonnette area, France) is being used to integrate climate change scenarios into ALICE program, and especially their precipitation component with the help of a hydrological model (GARDENIA) and the regional climate model REMO (Jacob, 2001). From a DEM, land-cover map, geology, geotechnical data and so forth the program classifies hazard zones depending on geotechnics and different hydrological contexts varying in time. This communication, realized within the framework of Safeland project, is supported by the European Commission under the 7th Framework Programme for Research and Technological Development, Area "Environment", Activity 1.3.3.1 "Prediction of triggering and risk assessment for landslides".
A History of Sandia’s Water Decision Modeling and Analysis Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Thomas Stephen; Pate, Ronald C.
This document provides a brief narrative, and selected project descriptions, that represent Sandia’s history involving data, modeling, and analysis related to water, energy-water nexus, and energy-water-agriculture nexus within the context of climate change. Sandia National Laboratories has been engaged since the early-1990s with program development involving data, modeling, and analysis projects that address the interdependent issues, risks, and technology-based mitigations associated with increasing demands and stresses being placed on energy, water, and agricultural/food resources, and the related impacts on their security and sustainability in the face of both domestic and global population growth, expanding economic development, and climate change.
Simulation of modern climate with the new version of the INM RAS climate model
NASA Astrophysics Data System (ADS)
Volodin, E. M.; Mortikov, E. V.; Kostrykin, S. V.; Galin, V. Ya.; Lykosov, V. N.; Gritsun, A. S.; Diansky, N. A.; Gusev, A. V.; Yakovlev, N. G.
2017-03-01
The INMCM5.0 numerical model of the Earth's climate system is presented, which is an evolution from the previous version, INMCM4.0. A higher vertical resolution for the stratosphere is applied in the atmospheric block. Also, we raised the upper boundary of the calculating area, added the aerosol block, modified parameterization of clouds and condensation, and increased the horizontal resolution in the ocean block. The program implementation of the model was also updated. We consider the simulation of the current climate using the new version of the model. Attention is focused on reducing systematic errors as compared to the previous version, reproducing phenomena that could not be simulated correctly in the previous version, and modeling the problems that remain unresolved.
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Kovats, R. Sari;
2016-01-01
This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decisionmakers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs (observational datasets) and indicated user needs for the gridding and processing of model output.
NASA Astrophysics Data System (ADS)
Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Sari Kovats, R.; Lotze, Heike K.; Mearns, Linda O.; Navarra, Antonio; Ojima, Dennis S.; Riahi, Keywan; Rosenzweig, Cynthia; Themessl, Matthias; Vincent, Katharine
2016-09-01
This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.
Recent Naval Postgraduate School Publications.
1982-04-01
477 p. Haney, R L; et al.; eds. Ocean models for climate research: A workshop Sponsored by the U.S. Committee for the Global Atmos. Hes. Program. Nat... climate variability Oceanus, vol. 21, no. 4, p. 33-39, (1978). Williams, R T A review of theoretical models of atmospheric frontogenesis Chapman Conf...structure in large-scale optimization models Symp. 9 n Computer-Assisted Analysis and Model Simpification, Boulder, Colo., Mar. 24, 1980. Brown, G G
NASA Astrophysics Data System (ADS)
Choudhary, S.; Nayak, R.; Gore, A.
2013-12-01
There is an overwhelming international scientific consensus on climate change; however, the global community still lacks the resolve to implement meaningful solutions. No meaningful solutions can be found without educating and engaging non-scientific community in addressing the climate change. With more than 41 percent of world's population falling under 10-34 years age group, the future citizens, inspiring them is a great challenge for the climate scientists. In order to educate the youth and students in India, a model program named 'Climeducate' was created with the help of scientists in Indian Polar Research Network (IPRN), trained climate leaders in ';The Climate Reality Project', and a local organization (Planature Consultancy Services). This model was developed keeping in mind the obstacles that may be faced in reaching out to non-specialist audiences in different parts of India. The identified obstacles were 1- making such a presentation that could reveal the truth about the climate crisis in a way that ignites the moral courage in non-specialist audience 2- lack of funding for travel and boarding expenses of a climate communicator, 3- language barrier in educating local audiences, 4- logistical arrangements at the venue. In this presentation we will share how all the four obstacles were overcome. Audiences were also given short questionnaires before and after the presentation. Remarkable changes in the pattern of answers, data would be shared in the presentation, were observed between the two questionnaires. More importantly, a significant difference in audience engagement was observed comparing a presentation that integrated scientific data with audiovisuals prepared by The Climate Reality Project Chairman, Al Gore (also Former US Vice President) and the other using simple PowerPoint slides. With the success of this program which was implemented among 500 audiences in the eastern India, we aim to replicate this program soon in other parts of India. This presentation will outline how scientific story telling through an effective collaboration of network of scientists, climate mentors, school teachers and local organizations would derive significant results in inspiring, engaging and preparing non-specialists audiences to face the realities of climate change.
NASA Astrophysics Data System (ADS)
Trtanj, J.; Balbus, J. M.; Brown, C.; Shimamoto, M. M.
2017-12-01
The transmission and spread of infectious diseases, especially vector-borne diseases, water-borne diseases and zoonosis, are influenced by short and long-term climate factors, in conjunction with numerous other drivers. Public health interventions, including vaccination, vector control programs, and outreach campaigns could be made more effective if the geographic range and timing of increased disease risk could be more accurately targeted, and high risk areas and populations identified. While some progress has been made in predictive modeling for transmission of these diseases using climate and weather data as inputs, they often still start after the first case appears, the skill of those models remains limited, and their use by public health officials infrequent. And further, predictions with lead times of weeks, months or seasons are even rarer, yet the value of acting early holds the potential to save more lives, reduce cost and enhance both economic and national security. Information on high-risk populations and areas for infectious diseases is also potentially useful for the federal defense and intelligence communities as well. The US Global Change Research Program, through its Interagency Group on Climate Change and Human Health (CCHHG), has put together a science plan that pulls together federal scientists and programs working on predictive modeling of climate-sensitive diseases, and draws on academic and other partners. Through a series of webinars and an in-person workshop, the CCHHG has convened key federal and academic stakeholders to assess the current state of science and develop an integrated science plan to identify data and observation systems needs as well as a targeted research agenda for enhancing predictive modeling. This presentation will summarize the findings from this effort and engage AGU members on plans and next steps to improve predictive modeling for infectious diseases.
Glisson, Charles; Schoenwald, Sonja K; Kelleher, Kelly; Landsverk, John; Hoagwood, Kimberly Eaton; Mayberg, Stephen; Green, Philip
2008-03-01
The present study incorporates organizational theory and organizational characteristics in examining issues related to the successful implementation of mental health services. Following the theoretical foundations of socio-technical and cultural models of organizational effectiveness, organizational climate, culture, legal and service structures, and workforce characteristics are examined as correlates of therapist turnover and new program sustainability in a nationwide sample of mental health clinics. Results of General Linear Modeling (GLM) with the organization as the unit of analysis revealed that organizations with the best climates as measured by the Organizational Social Context (OSC) profiling system, had annual turnover rates (10%) that were less than half the rates found in organizations with the worst climates (22%). In addition, organizations with the best culture profiles sustained new treatment or service programs over twice as long (50 vs. 24 months) as organizations with the worst cultures. Finally, clinics with separate children's services units had higher turnover rates than clinics that served adults and children within the same unit. The findings suggest that strategies to support the implementation of new mental health treatments and services should attend to organizational culture and climate, and to the compatibility of organizational service structures with the demand characteristics of treatments.
NASA Astrophysics Data System (ADS)
Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa
2013-04-01
Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the predictive skill of POAMA is consistently higher than skill of statistical-based method. Presently, under the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program, we are developing dynamical model-based seasonal climate prediction for climate extremes. Of particular concern are tropical cyclones which are the most destructive weather systems that impact on coastal areas of Australia and Pacific Island Countries. To analyse historical cyclone data, we developed a consolidate archive for the Southern Hemisphere and North-Western Pacific (http://www.bom.gov.au/cyclone/history/tracks/). Using dynamical climate models (POAMA and Japan Meteorological Agency's model), we work on improving accuracy of seasonal forecasts of tropical cyclone activity for the regions of Western Pacific. Improved seasonal climate prediction based on dynamical models will further enhance climate services in Australia and Pacific Island Countries.
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Undergraduate Students As Effective Climate Change Communicators
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.; Mullendore, G. L.
2014-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.
Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, D.A.; Jensen, T.G.
1995-10-01
Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less
NASA Astrophysics Data System (ADS)
Lynds, S. E.; Buhr, S. M.
2011-12-01
The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.
Post, Ellen S.; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Leung, Lai-Yung; Nolte, Christopher G.; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee
2012-01-01
Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Methods: Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration–response functions. Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration–response functions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O3. Results: Different combinations of methodological choices produced a range of estimates of national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O3-related human health effects resulting from climate change. PMID:22796531
Semiannual progress report, April - September 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Research conducted during the past year in the climate and modeling programs has concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols, and the solar constant on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree by 1 degree resolution has now been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method has been developed to simulate the hydraulic behavior of the soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water throughout the planet.
Scientific Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) Program
NASA Astrophysics Data System (ADS)
Chandra, C. V.; Reising, S. C.; Kummerow, C. D.; van den Heever, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Haddad, Z. S.; Koch, T.; Berg, G.; L'Ecuyer, T.; Munchak, S. J.; Luo, Z. J.; Boukabara, S. A.; Ruf, C. S.
2014-12-01
Over the past decade and a half, we have gained a better understanding of the role of clouds and precipitation on Earth's water cycle, energy budget and climate, from focused Earth science observational satellite missions. However, these missions provide only a snapshot at one point in time of the cloud's development. Processes that govern cloud system development occur primarily on time scales of the order of 5-30 minutes that are generally not observable from low Earth orbiting satellites. Geostationary satellites, in contrast, have higher temporal resolution but at present are limited to visible and infrared wavelengths that observe only the tops of clouds. This observing gap was noted by the National Research Council's Earth Science Decadal Survey in 2007. Uncertainties in global climate models are significantly affected by processes that govern the formation and dissipation of clouds that largely control the global water and energy budgets. Current uncertainties in cloud parameterization within climate models lead to drastically different climate outcomes. With all evidence suggesting that the precipitation onset may be governed by factors such atmospheric stability, it becomes critical to have at least first-order observations globally in diverse climate regimes. Similar arguments are valid for ice processes where more efficient ice formation and precipitation have a tendency to leave fewer ice clouds behind that have different but equally important impacts on the Earth's energy budget and resulting temperature trends. TEMPEST is a unique program that will provide a small constellation of inexpensive CubeSats with millimeter-wave radiometers to address key science needs related to cloud and precipitation processes. Because these processes are most critical in the development of climate models that will soon run at scales that explicitly resolve clouds, the TEMPEST program will directly focus on examining, validating and improving the parameterizations currently used in cloud scale models. The time evolution of cloud and precipitation microphysics is dependent upon parameterized process rates. The outcome of TEMPEST will provide a first-order understanding of how individual assumptions in current cloud model parameterizations behave in diverse climate regimes.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.
2017-12-01
The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.
The impacts of land use, radiative forcing, and biological changes on regional climate in Japan
NASA Astrophysics Data System (ADS)
Dairaku, K.; Pielke, R. A., Sr.
2013-12-01
Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.
2010-12-01
The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.
A Summary of the Naval Postgraduate School Research Program.
1979-09-30
Research (M. G. Sovereign) 116 Review of COMWTH II Model (M. G. Sovereign and J. K. Arima ) 117 Optimization of Combat Dynamics (J. G. Taylor) 118...Studies (R. L. Elsberry) 291 4 Numerical Models of Ocean Circulation and Climate Interaction--A Review (R. L. Haney) 292 Numerical Studies of the Dynamics... climatic numerical models to investigate the various mechan- isms pertinent to the large-scale interaction between tropi- cal atmosphere and oceans. Among
BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...
EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use
NASA Astrophysics Data System (ADS)
Lee, H.
2016-12-01
Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.
Probabilistic Climate Scenario Information for Risk Assessment
NASA Astrophysics Data System (ADS)
Dairaku, K.; Ueno, G.; Takayabu, I.
2014-12-01
Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.
OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats
NASA Astrophysics Data System (ADS)
Erickson, T. A.; Koziol, B. W.; Rood, R. B.
2011-12-01
The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.
The North American Regional Climate Change Assessment Program (NARCCAP): Status and results
NASA Astrophysics Data System (ADS)
Arritt, R.
2009-04-01
NARCCAP is an international program that is generating projections of climate change for the U.S., Canada, and northern Mexico at decision-relevant regional scales. NARCCAP uses multiple limited-area regional climate models (RCMs) nested within multiple atmosphere-ocean general circulation models (AOGCMs). The use of multiple regional and global models allows us to investigate the uncertainty in model responses to future emissions (here, the A2 SRES scenario). The project also includes global time-slice experiments at the same discretization (50 km) using the GFDL atmospheric model (AM2.1) and the NCAR atmospheric model (CAM3). Phase I of the experiment uses the regional models nested within reanalysis in order to establish uncertainty attributable to the RCMs themselves. Phase II of the project then nests the RCMs within results from the current and future runs of the AOGCMs to explore the cascade of uncertainty from the global to the regional models. Phase I has been completed and the results to be shown include findings that spectral nudging is beneficial in some regions but not in others. Phase II is nearing completion and some preliminary results will be shown.
Water resources in the twenty-first century; a study of the implications of climate uncertainty
Moss, Marshall E.; Lins, Harry F.
1989-01-01
The interactions of the water resources on and within the surface of the Earth with the atmosphere that surrounds it are exceedingly complex. Increased uncertainty can be attached to the availability of water of usable quality in the 21st century, therefore, because of potential anthropogenic changes in the global climate system. For the U.S. Geological Survey to continue to fulfill its mission with respect to assessing the Nation's water resources, an expanded program to study the hydrologic implications of climate uncertainty will be required. The goal for this program is to develop knowledge and information concerning the potential water-resources implications for the United States of uncertainties in climate that may result from both anthropogenic and natural changes of the Earth's atmosphere. Like most past and current water-resources programs of the Geological Survey, the climate-uncertainty program should be composed of three elements: (1) research, (2) data collection, and (3) interpretive studies. However, unlike most other programs, the climate-uncertainty program necessarily will be dominated by its research component during its early years. Critical new concerns to be addressed by the research component are (1) areal estimates of evapotranspiration, (2) hydrologic resolution within atmospheric (climatic) models at the global scale and at mesoscales, (3) linkages between hydrology and climatology, and (4) methodology for the design of data networks that will help to track the impacts of climate change on water resources. Other ongoing activities in U.S. Geological Survey research programs will be enhanced to make them more compatible with climate-uncertainty research needs. The existing hydrologic data base of the Geological Survey serves as a key element in assessing hydrologic and climatologic change. However, this data base has evolved in response to other needs for hydrologic information and probably is not as sensitive to climate change as is desirable. Therefore, as measurement and network-design methodologies are improved to account for climate-change potential, new data-collection activities will be added to the existing programs. One particular area of data-collection concern pertains to the phenomenon of evapotranspiration. Interpretive studies of the hydrologic implications of climate uncertainty will be initiated by establishing several studies at the river-basin scale in diverse hydroclimatic and demographic settings. These studies will serve as tests of the existing methodologies for studying the impacts of climate change and also will help to define subsequent research priorities. A prototype for these studies was initiated in early 1988 in the Delaware River basin.
Regionalisation of statistical model outputs creating gridded data sets for Germany
NASA Astrophysics Data System (ADS)
Höpp, Simona Andrea; Rauthe, Monika; Deutschländer, Thomas
2016-04-01
The goal of the German research program ReKliEs-De (regional climate projection ensembles for Germany, http://.reklies.hlug.de) is to distribute robust information about the range and the extremes of future climate for Germany and its neighbouring river catchment areas. This joint research project is supported by the German Federal Ministry of Education and Research (BMBF) and was initiated by the German Federal States. The Project results are meant to support the development of adaptation strategies to mitigate the impacts of future climate change. The aim of our part of the project is to adapt and transfer the regionalisation methods of the gridded hydrological data set (HYRAS) from daily station data to the station based statistical regional climate model output of WETTREG (regionalisation method based on weather patterns). The WETTREG model output covers the period of 1951 to 2100 with a daily temporal resolution. For this, we generate a gridded data set of the WETTREG output for precipitation, air temperature and relative humidity with a spatial resolution of 12.5 km x 12.5 km, which is common for regional climate models. Thus, this regionalisation allows comparing statistical to dynamical climate model outputs. The HYRAS data set was developed by the German Meteorological Service within the German research program KLIWAS (www.kliwas.de) and consists of daily gridded data for Germany and its neighbouring river catchment areas. It has a spatial resolution of 5 km x 5 km for the entire domain for the hydro-meteorological elements precipitation, air temperature and relative humidity and covers the period of 1951 to 2006. After conservative remapping the HYRAS data set is also convenient for the validation of climate models. The presentation will consist of two parts to present the actual state of the adaptation of the HYRAS regionalisation methods to the statistical regional climate model WETTREG: First, an overview of the HYRAS data set and the regionalisation methods for precipitation (REGNIE method based on a combination of multiple linear regression with 5 predictors and inverse distance weighting), air temperature and relative humidity (optimal interpolation) will be given. Finally, results of the regionalisation of WETTREG model output will be shown.
NOAA Climate Program Office Contributions to National ESPC
NASA Astrophysics Data System (ADS)
Higgins, W.; Huang, J.; Mariotti, A.; Archambault, H. M.; Barrie, D.; Lucas, S. E.; Mathis, J. T.; Legler, D. M.; Pulwarty, R. S.; Nierenberg, C.; Jones, H.; Cortinas, J. V., Jr.; Carman, J.
2016-12-01
NOAA is one of five federal agencies (DOD, DOE, NASA, NOAA, and NSF) which signed an updated charter in 2016 to partner on the National Earth System Prediction Capability (ESPC). Situated within NOAA's Office of Oceanic and Atmospheric Research (OAR), NOAA Climate Program Office (CPO) programs contribute significantly to the National ESPC goals and activities. This presentation will provide an overview of CPO contributions to National ESPC. First, we will discuss selected CPO research and transition activities that directly benefit the ESPC coupled model prediction capability, including The North American Multi-Model Ensemble (NMME) seasonal prediction system The Subseasonal Experiment (SubX) project to test real-time subseasonal ensemble prediction systems. Improvements to the NOAA operational Climate Forecast System (CFS), including software infrastructure and data assimilation. Next, we will show how CPO's foundational research activities are advancing future ESPC capabilities. Highlights will include: The Tropical Pacific Observing System (TPOS) to provide the basis for predicting climate on subseasonal to decadal timescales. Subseasonal-to-Seasonal (S2S) processes and predictability studies to improve understanding, modeling and prediction of the MJO. An Arctic Research Program to address urgent needs for advancing monitoring and prediction capabilities in this major area of concern. Advances towards building an experimental multi-decadal prediction system through studies on the Atlantic Meridional Overturning Circulation (AMOC). Finally, CPO has embraced Integrated Information Systems (IIS's) that build on the innovation of programs such as the National Integrated Drought Information System (NIDIS) to develop and deliver end to end environmental information for key societal challenges (e.g. extreme heat; coastal flooding). These contributions will help the National ESPC better understand and address societal needs and decision support requirements.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
NASA Astrophysics Data System (ADS)
Ranatunga, T.; Tong, S.; Yang, J.
2011-12-01
Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.
Assessing ocean vertical mixing schemes for the study of climate change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.
2014-12-01
Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our understanding and prediction of climate. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, a minority serving institution in an urban setting in central Brooklyn. This Project is supported by NSF award AGS-1359293 REU site: CUNY/GISS Center for Global Climate Research.
Helweg, David A.; Keener, Victoria; Burgett, Jeff M.
2016-07-14
In the subtropical and tropical Pacific islands, changing climate is predicted to influence precipitation and freshwater availability, and thus is predicted to impact ecosystems goods and services available to ecosystems and human communities. The small size of high Hawaiian Islands, plus their complex microlandscapes, require downscaling of global climate models to provide future projections of greater skill and spatial resolution. Two different climate modeling approaches (physics-based dynamical downscaling and statistics-based downscaling) have produced dissimilar projections. Because of these disparities, natural resource managers and decision makers have low confidence in using the modeling results and are therefore are unwilling to include climate-related projections in their decisions. In September 2015, the Pacific Islands Climate Science Center (PICSC), the Pacific Islands Climate Change Cooperative (PICCC), and the Pacific Regional Integrated Sciences and Assessments (Pacific RISA) program convened a 2-day facilitated workshop in which the two modeling teams, plus key model users and resource managers, were brought together for a comparison of the two approaches, culminating with a discussion of how to provide predictions that are useable by resource managers. The proceedings, discussions, and outcomes of this Workshop are summarized in this Open-File Report.
USDA-ARS?s Scientific Manuscript database
The USEPA Office of Pesticide Programs (OPP) reviewed most of its human and ecological exposure assessment models for conventional pesticides to evaluate which inputs and parameters may be affected by changing climate conditions. To illustrate the approach used for considering potential effects of c...
Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt
2014-01-01
The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041–2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999–2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: −7% to 24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models. PMID:24764746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; ...
2016-06-16
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
Undergraduate Students as Climate Communicators
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.; Mullendore, G. L.
2012-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) are partnering with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students will have the opportunity to participate in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. An integral part of the learning process will include training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of a webcast about investigating aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.
Enhancing seasonal climate prediction capacity for the Pacific countries
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Jones, D.; Hendon, H.; Charles, A.; Cottrill, A.; Lim, E.-P.; Langford, S.; de Wit, R.; Shelton, K.
2012-04-01
Seasonal and inter-annual climate variability is a major factor in determining the vulnerability of many Pacific Island Countries to climate change and there is need to improve weekly to seasonal range climate prediction capabilities beyond what is currently available from statistical models. In the seasonal climate prediction project under the Australian Government's Pacific Adaptation Strategy Assistance Program (PASAP), we describe a comprehensive project to strengthen the climate prediction capacities in National Meteorological Services in 14 Pacific Island Countries and East Timor. The intent is particularly to reduce the vulnerability of current services to a changing climate, and improve the overall level of information available assist with managing climate variability. Statistical models cannot account for aspects of climate variability and change that are not represented in the historical record. In contrast, dynamical physics-based models implicitly include the effects of a changing climate whatever its character or cause and can predict outcomes not seen previously. The transition from a statistical to a dynamical prediction system provides more valuable and applicable climate information to a wide range of climate sensitive sectors throughout the countries of the Pacific region. In this project, we have developed seasonal climate outlooks which are based upon the current dynamical model POAMA (Predictive Ocean-Atmosphere Model for Australia) seasonal forecast system. At present, meteorological services of the Pacific Island Countries largely employ statistical models for seasonal outlooks. Outcomes of the PASAP project enhanced capabilities of the Pacific Island Countries in seasonal prediction providing National Meteorological Services with an additional tool to analyse meteorological variables such as sea surface temperatures, air temperature, pressure and rainfall using POAMA outputs and prepare more accurate seasonal climate outlooks.
Toby Thaler; Gwen Griffith; Nancy Gilliam
2014-01-01
Forest-based ecosystem services are at risk from human-caused stressors, including climate change. Improving governance and management of forests to reduce impacts and increase community resilience to all stressors is the objective of forest-related climate change adaptation. The Model Forest Policy Program (MFPP) has applied one method designed to meet this objective...
ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6
NASA Technical Reports Server (NTRS)
Nowicki, S.
2015-01-01
ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.
Making work safer: testing a model of social exchange and safety management.
DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G
2010-04-01
This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.
Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.
2009-01-01
Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape.
Assessing gains in teacher knowledge and confidence in a long-duration climate literacy initiative
NASA Astrophysics Data System (ADS)
Haine, D. B.; Kendall, L.; Yelton, S.
2013-12-01
Climate Literacy: Integrating Modeling & Technology Experiences (CLIMATE) in NC Classrooms, an interdisciplinary, global climate change program for NC high school science teachers is administered by UNC Chapel Hill's Institute for the Environment (IE) with funding from NASA's Innovations in Climate Education (NICE) Program. Currently in its third year, this year-long program serves 24 teaching fellows annually and combines hands-on climate science investigations with experiential learning in fragile ecosystem environments to achieve the following program goals: increased teacher knowledge of climate change science and predicted impacts; increased teacher knowledge of modeling and technology resources, with an emphasis on those provided by NASA; and increased teacher confidence in using technology to address climate change education. A mixed-methods evaluation approach that includes external evaluation is providing quantitative and qualitative data about the extent to which program goals are being achieved. With regard to increases in teacher knowledge, teachers often self-report an increase in knowledge as a result of a program activity; this session will describe our strategies for assessing actual gains in teacher knowledge which include pre- and post-collaborative concept mapping and pre- and post-open response questionnaires. For each evaluation approach utilized, the process of analyzing these qualitative data will be discussed and results shared. For example, a collaborative concept mapping activity for assessment of learning as a result of the summer institute was utilized to assess gains in content knowledge. Working in small groups, teachers were asked to identify key vocabulary terms and show their relationship to one another via a concept map to answer these questions: What is global climate change? What is/are the: evidence? mechanisms? causes? consequences? Concept maps were constructed at the beginning (pre) and again at the end (post) of the Summer Institute. Concept map analysis revealed that post-maps included more key terms/concepts on average than pre-concept maps and that 6-9 NEW terms were present on post-maps; these NEW terms were directly related to science content addressed during the summer institute. In an effort to assess knowledge gained as a result of participating in an experiential weekend retreat, a pre- and post-open response questionnaire focused on the spruce-fir forest, an ecosystem prominently featured during programming, was administered. Post-learning assessments revealed learning gains for 100% of participants, all of whom were able to provide responses that referenced specific content covered during the retreat. To demonstrate increased teacher confidence in using technology to support climate science instruction, teachers are asked to develop and pilot a lesson that integrates at least one NASA resource. In collaboration with an external evaluator, a rubric was developed to evaluate submitted lessons in an effort to assess progress at achieving this program goal. The process of developing this rubric as well as the results from this analysis will be shared along with the challenges and insights that have been revealed from analyzing submitted lessons.
NASA Astrophysics Data System (ADS)
Caldwell, C. M.
2017-12-01
Creating opportunities and appropriate spaces with Tribal communities to engage with western scientists on climate resiliency is a complex endeavor. The shifting of seasons predicted by climate models and the resulting impacts that climate scientists investigate often verify what Traditional knowledge has already revealed to Indigenous peoples as they continue to live on, manage, and care for the environment they have been a part of for thousands of years. However, this convergence of two ways of knowing about our human environmental relationships is often difficult to navigate because of the ongoing impacts of colonialism and the disadvantage that Tribes operate from as a result. Day to day priorities of the Tribe are therefore reflective of more immediate issues rather than specifically considering the uncertainties of climate change. The College of Menominee Nation Sustainable Development Institute has developed a climate resilience program aimed at combining western science methodologies with indigenous ways of knowing as a means to assist Tribes in building capacity to address climate and community resiliency through culturally appropriate activities led by the Tribes. The efforts of the Institute, as guided by the SDI theoretical model of sustainability, have resulted in a variety of research, education and outreach projects that have provided not only the Menominee community, but other Tribal communities with opportunities to address climate resiliency as they see fit.
NASA Astrophysics Data System (ADS)
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.
A National Program for Analysis of the Climate System
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Arkin, Phil; Kalnay, Eugenia; Laver, James; Trenberth, Kevin
2002-01-01
Perhaps the single greatest roadblock to fundamental advances in our understanding of climate variability and climate change is the lack of robust and unbiased long-term global observations of the climate system. Such observations are critical for the identification and diagnosis of climate variations, and provide the constraints necessary for developing and validating climate models. The first generation of reanalysis efforts, by using fixed analysis systems, eliminated the artificial climate signals that occurred in analyses generated at the operational numerical weather prediction centers. These datasets are now widely used by the scientific community in a variety of applications including atmosphere-ocean interactions, seasonal prediction, climate monitoring, the hydrological cycle, and a host of regional and other diagnostic studies. These reanalyses, however, had problems that made them sub-optimal or even unusable for some applications. Perhaps the most serious problem for climate applications was that, while the assimilation system remained fixed, changes in the observing systems did produce spurious changes in the perceived climate. The first generation reanalysis products also exposed problems with physical consistency of the products and the accurate representation of physical processes in the climate system. Examples are bias in the estimates of ocean surface fluxes, and inadequate representation of polar hydrology. In this talk, I will describe some initial plans for a national program on reananlysis. The program is envisioned to be part of an on-going activity to maintain, improve, and reprocess our record of climate observations. I will discuss various issues affecting the quality of reanalyses, with a special focus on those relevant to the ocean.
Uncertainty Quantification in Climate Modeling and Projection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Jackson, Charles; Giorgi, Filippo
The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for assessing reliability and uncertainties of climate change information. An alternative approach is to generate similar ensembles by perturbing parameters within a single-model framework. One of workshop’s objectives was to give participants a deeper understanding of these approaches within a Bayesian statistical framework. However, there remain significant challenges still to be resolved before UQ can be applied in a convincing way to climate models and their projections.« less
iGen: An automated generator of simplified models with provable error bounds.
NASA Astrophysics Data System (ADS)
Tang, D.; Dobbie, S.
2009-04-01
Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.
Bringing a Realistic Global Climate Modeling Experience to a Broader Audience
NASA Astrophysics Data System (ADS)
Sohl, L. E.; Chandler, M. A.; Zhou, J.
2010-12-01
EdGCM, the Educational Global Climate Model, was developed with the goal of helping students learn about climate change and climate modeling by giving them the ability to run a genuine NASA global climate model (GCM) on a desktop computer. Since EdGCM was first publicly released in January 2005, tens of thousands of users on seven continents have downloaded the software. EdGCM has been utilized by climate science educators from middle school through graduate school levels, and on occasion even by researchers who otherwise do not have ready access to climate model at national labs in the U.S. and elsewhere. The EdGCM software is designed to walk users through the same process a climate scientist would use in designing and running simulations, and analyzing and visualizing GCM output. Although the current interface design gives users a clear view of some of the complexities involved in using a climate model, it can be daunting for users whose main focus is on climate science rather than modeling per se. As part of the work funded by NASA’s Global Climate Change Education (GCCE) program, we will begin modifications to the user interface that will improve the accessibility of EdGCM to a wider array of users, especially at the middle school and high school levels, by: 1) Developing an automated approach (a “wizard”) to simplify the user experience in setting up new climate simulations; 2) Produce a catalog of “rediscovery experiments” that allow users to reproduce published climate model results, and in some cases compare model projections to real world data; and 3) Enhance distance learning and online learning opportunities through the development of a web-based interface. The prototypes for these modifications will then be presented to educators belonging to an EdGCM Users Group for feedback, so that we can further refine the EdGCM software, and thus deliver the tools and materials educators want and need across a wider range of learning environments.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.
2009-12-01
The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.
Developing tools and strategies for communicating climate change
NASA Astrophysics Data System (ADS)
Bader, D.; Yam, E. M.; Perkins, L.
2011-12-01
Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.
Enabling Research Tools for Sustained Climate Assessment
NASA Technical Reports Server (NTRS)
Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.
2016-01-01
The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.
Revolutionizing Climate Science: Using Teachers as Communicators
NASA Astrophysics Data System (ADS)
Warburton, J.; Crowley, S.; Wood, J.
2012-12-01
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university faculty in climate science and a PolarTREC alumni teacher the program was touted as 'the best professional opportunity to date". This program gave new teachers the tools to adequately communicate climate science with a new generation of scientifically literate students. Additionally, teachers possess the skills to inform young professional scientists on effective outreach and communication beyond peer-reviewed papers and scientific circles.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
Climate Science Performance, Data and Productivity on Titan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Benjamin W; Worley, Patrick H; Gaddis, Abigail L
2015-01-01
Climate Science models are flagship codes for the largest of high performance computing (HPC) resources, both in visibility, with the newly launched Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) effort, and in terms of significant fractions of system usage. The performance of the DOE ACME model is captured with application level timers and examined through a sizeable run archive. Performance and variability of compute, queue time and ancillary services are examined. As Climate Science advances in the use of HPC resources there has been an increase in the required human and data systems to achieve programs goals.more » A description of current workflow processes (hardware, software, human) and planned automation of the workflow, along with historical and projected data in motion and at rest data usage, are detailed. The combination of these two topics motivates a description of future systems requirements for DOE Climate Modeling efforts, focusing on the growth of data storage and network and disk bandwidth required to handle data at an acceptable rate.« less
Conceptual Model of Climate Change Impacts at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewart, Jean Marie
Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less
NASA Contributions to the Development and Testing of Climate Indicators
NASA Astrophysics Data System (ADS)
Houser, P. R.; Leidner, A. K.; Tsaoussi, L.; Kaye, J. A.
2014-12-01
NASA is a major contributor the U.S. National Climate Assessment (NCA), a central component of the 2012-2022 U.S. Global Change Research Program's Strategic Plan. NASA supports a range of global climate and related environmental assessment activities through its data records, models, and model-produced data sets, as well as through involvement of agency personnel. These assessments provide important information on climate change and are used by policymakers, especially with the recent increased interest in climate vulnerability, impacts, and adaptation. Climate indicators provide a clear and concise way of communicating to the NCA audiences about not only status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. NASA is enhancing its participation in future NCAs by encouraging the developing and testing of potential indicators that best address the needs expressed in the NCA indicator vision and that leverage NASA's capabilities. This presentation will highlight a suite of new climate indicators that draws significantly from NASA -produced data and/or modeling products, to support decisions related to impacts, adaptation, vulnerability, and mitigation associated with climate and global change.
The impact of SciDAC on US climate change research and the IPCCAR4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael
2005-07-08
SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2011-04-02
This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.« less
Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen
2000-01-01
A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...
Incorporating Student Activities into Climate Change Education
NASA Astrophysics Data System (ADS)
Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.
2013-12-01
Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.
Evaluating the Effectiveness of a Sustainable Living Education Program
ERIC Educational Resources Information Center
Mazze, Sarah; Stockard, Jean
2013-01-01
The Climate Masters at Home program was modeled after Extension "master" classes with the aim of increasing individuals' energy and resource saving behaviors. This article explores the impact of the program on participants' behavior, attitudes, and knowledge over several years of implementation. Data sources include survey…
Private land manager capacity to conserve threatened communities under climate change.
Raymond, C M; Lechner, A M; Lockwood, M; Carter, O; Harris, R M B; Gilfedder, L
2015-08-15
Major global changes in vegetation community distributions and ecosystem processes are expected as a result of climate change. In agricultural regions with a predominance of private land, biodiversity outcomes will depend on the adaptive capacity of individual land managers, as well as their willingness to engage with conservation programs and actions. Understanding adaptive capacity of landholders is critical for assessing future prospects for biodiversity conservation in privately owned agricultural landscapes globally, given projected climate change. This paper is the first to develop and apply a set of statistical methods (correlation and bionomial regression analyses) for combining social data on land manager adaptive capacity and factors associated with conservation program participation with biophysical data describing the current and projected-future distribution of climate suitable for vegetation communities. We apply these methods to the Tasmanian Midlands region of Tasmania, Australia and discuss the implications of the modelled results on conservation program strategy design in other contexts. We find that the integrated results can be used by environmental management organisations to design community engagement programs, and to tailor their messages to land managers with different capacity types and information behaviours. We encourage environmental agencies to target high capacity land managers by diffusing climate change and grassland management information through well respected conservation NGOs and farm system groups, and engage low capacity land managers via formalized mentoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Z. L.; McClelland, J. W.; Su, H.; Cai, X.; Lin, P.; Tavakoly, A. A.; Griffin, C. G.; Turner, E.; Maidment, D. R.; Montagna, P.
2014-12-01
This study seeks to improve our understanding of how upland landscapes and coastal waters, which are connected by watersheds, respond to changes in hydrological and biogeochemical cycles resulting from changes in climate, local weather patterns, and land use. This paper will report our progress in the following areas. (1) The Noah-MP land surface model is augmented to include the soil nitrogen leaching and plants fixation and uptake of nitrogen. (2) We have evaluated temperature, precipitation and runoff change (2039-2048 relative to 1989-1998) patterns in Texas under the A2 emission scenario using the North American Regional Climate Change Assessment Program (NARCCAP) product. (3) We have linked a GIS-based river routing model (RAPID) and a GIS-based nitrogen input dataset (TX-ANB). The modeling framework was conducted for total nitrogen (TN) load estimation in the San Antonio and Guadalupe basins. (4) Beginning in July 2011, the Colorado, Guadalupe, San Antonio, and Nueces rivers have been sampled on a monthly basis. Sampling continued until November 2013. We also have established an on-going citizen science sampling program. We have contacted the Lower Colorado River Authority and the Texas Stream Team at Texas State University to solicit participation in our program. (5) We have tested multiple scenarios of nutrient contribution to South Texas bays. We are modeling the behavior of these systems under stress due to climate change such as less overall freshwater inflow, increased inorganic nutrient loading, and more frequent large storms.
Steele, Madeline O.; Chang, Heejun; Reusser, Deborah A.; Brown, Cheryl A.; Jung, Il-Won
2012-01-01
As part of a larger investigation into potential effects of climate change on estuarine habitats in the Pacific Northwest, we estimated changes in freshwater inputs into four estuaries: Coquille River estuary, South Slough of Coos Bay, and Yaquina Bay in Oregon, and Willapa Bay in Washington. We used the U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) to model watershed hydrological processes under current and future climatic conditions. This model allowed us to explore possible shifts in coastal hydrologic regimes at a range of spatial scales. All modeled watersheds are located in rainfall-dominated coastal areas with relatively insignificant base flow inputs, and their areas vary from 74.3 to 2,747.6 square kilometers. The watersheds also vary in mean elevation, ranging from 147 meters in the Willapa to 1,179 meters in the Coquille. The latitudes of watershed centroids range from 43.037 degrees north latitude in the Coquille River estuary to 46.629 degrees north latitude in Willapa Bay. We calibrated model parameters using historical climate grid data downscaled to one-sixteenth of a degree by the Climate Impacts Group, and historical runoff from sub-watersheds or neighboring watersheds. Nash Sutcliffe efficiency values for daily flows in calibration sub-watersheds ranged from 0.71 to 0.89. After calibration, we forced the PRMS models with four North American Regional Climate Change Assessment Program climate models: Canadian Regional Climate Model-(National Center for Atmospheric Research) Community Climate System Model version 3, Canadian Regional Climate Model-Canadian Global Climate Model version 3, Hadley Regional Model version 3-Hadley Centre Climate Model version 3, and Regional Climate Model-Canadian Global Climate Model version 3. These are global climate models (GCMs) downscaled with regional climate models that are embedded within the GCMs, and all use the A2 carbon emission scenario developed by the Intergovernmental Panel on Climate Change. With these climate-forcing outputs, we derived the mean change in flow from the period encompassing the 1980s (1971-1995) to the period encompassing the 2050s (2041-2065). Specifically, we calculated percent change in mean monthly flow rate, coefficient of variation, top 5 percent of flow, and 7-day low flow. The trends with the most agreement among climate models and among watersheds were increases in autumn mean monthly flows, especially in October and November, decreases in summer monthly mean flow, and increases in the top 5 percent of flow. We also estimated variance in PRMS outputs owing to parameter uncertainty and the selection of climate model using Latin hypercube sampling. This analysis showed that PRMS low-flow simulations are more uncertain than medium or high flow simulations, and that variation among climate models was a larger source of uncertainty than the hydrological model parameters. These results improve our understanding of how climate change may affect the saltwater-freshwater balance in Pacific Northwest estuaries, with implications for their sensitive ecosystems.
NASA Astrophysics Data System (ADS)
Breil, Marcus; Panitz, Hans-Jürgen
2013-04-01
Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the DEPARTURE project (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, based on SST-driven global MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, three different SVAT's (TERRA_ML, Community Land Model (CLM), and VEG3D) will be coupled with the CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, the influence of the model domain on the CCLM results was examined. For this purpose, recent CCLM results from simulations for the official CORDEX domain were compared with CCLM results achieved by using an extended DEPARTURE model domain to about 60°W. This sensitivity analysis was performed with a horizontal resolution of 0.44°. Thereby, the analysis showed that the domain size doesn't affect the quality of the simulation results significantly. The impact of different SVAT's on the model performance is supposed to be higher. To investigate this assumption, TERRA_ML, the standard SVAT implemented in CCLM, is replaced by VEG3D using the OASIS3-MCT coupling software. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer, inducing higher correlations with observations as it has been shown in previous studies. The results of both model configurations are analysed and presented for the DEPARTURE model domain.
Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Schubert, Siegfried; Pozzi, Will; Mo, Kingtse; Wood, Eric F.; Stahl, Kerstin; Hayes, Mike; Vogt, Juergen; Seneviratne, Sonia; Stewart, Ron;
2015-01-01
The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information.
NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making
NASA Technical Reports Server (NTRS)
Eckman, Richard S.; Stackhouse, Paul W., Jr.
2008-01-01
The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.
CORDEX Coordinated Output for Regional Evaluation
NASA Astrophysics Data System (ADS)
Gutowski, William; Giorgi, Filippo; Lake, Irene
2017-04-01
The Science Advisory Team for the Coordinated Regional Downscaling Experiment (CORDEX) has developed a baseline framework of specified regions, resolutions and simulation periods intended to provide a foundation for ongoing regional CORDEX activities: the CORDEX Coordinated Output for Regional Evaluation, or CORDEX-CORE. CORDEX-CORE was conceived in part to be responsive to IPCC needs for coordinated simulations that could provide regional climate downscaling (RCD) that yields fine-scale climate information beyond that resolved by GCMs. For each CORDEX region, a matrix of GCM-RCD experiments is designed based on the need to cover as much as possible different dimensions of the uncertainty space (e.g., different emissions and land-use scenarios, GCMs, RCD models and techniques). An appropriate set of driving GCMs can allow a program of simulations that efficiently addresses key scientific issues within CORDEX, while facilitating comparison and transfer of results and lessons learned across different regions. The CORDEX-CORE program seeks to provide, as much as possible, homogeneity across domains, so it is envisioned that a standard set of regional climate models (RCMs) and empirical statistical downscaling (ESD) methods will downscale a standard set of GCMs over all or at least most CORDEX domains for a minimum set of scenarios (high and low end). The focus is on historical climate simulations for the 20th century and projections for 21st century, implying that data would be needed minimally for the period 1950-2100 (but ideally 1900-2100). This foundational ensemble can be regionally enriched with further contributions (additional GCM-RCD pairs) by individual groups over their selected domains of interest. The RCM model resolution for these core experiments will be in the range of 10-20 km, a resolution that has been shown to provide substantial added value for a variety of climate variables and that represents a significant forward step compared in the CORDEX program. This presentation presents the vision and structure of CORDEX-CORE while also soliciting discussion on plans for implementing the program.
Energy Modeling Capabilities in ORD's Air, Climate and ...
Presentation to ACE Centers Kick-Off Meeting highlighting energy modeling work, capabilities and tools that are under development in ORD/NRMRL under the ACE Program. Presentation to ACE Centers Kick-Off Meeting
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.
NASA Technical Reports Server (NTRS)
McGalliard, James
2008-01-01
This viewgraph presentation details the science and systems environments that NASA High End computing program serves. Included is a discussion of the workload that is involved in the processing for the Global Climate Modeling. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is a system of models integrated using the Earth System Modeling Framework (ESMF). The GEOS-5 system was used for the Benchmark tests, and the results of the tests are shown and discussed. Tests were also run for the Cubed Sphere system, results for these test are also shown.
Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J
2018-01-01
Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.
Drought Prediction Site Specific and Regional up to Three Years in Advance
NASA Astrophysics Data System (ADS)
Suhler, G.; O'Brien, D. P.
2002-12-01
Dynamic Predictables has developed proprietary software that analyzes and predicts future climatic behavior based on past data. The programs employ both a regional thermodynamic model together with a unique predictive algorithm to achieve a high degree of prediction accuracy up to 36 months. The thermodynamic model was developed initially to explain the results of a study on global circulation models done at SUNY-Stony Brook by S. Hameed, R.G. Currie, and H. LaGrone (Int. Jour. Climatology, 15, pp.852-871, 1995). The authors pointed out that on a time scale of 2-70 months the spectrum of sea level pressure is dominated by the harmonics and subharmonics of the seasonal cycle and their combination tones. These oscillations are fundamental to an understanding of climatic variations on a sub-regional to continental basis. The oscillatory nature of these variations allows them to be used as broad based climate predictors. In addition, they can be subtracted from the data to yield residuals. The residuals are then analyzed to determine components that are predictable. The program then combines both the thermodynamic model results (the primary predictive model) with those from the residual data (the secondary model) to yield an estimate of the future behavior of the climatic variable. Spatial resolution is site specific or aggregated regional based upon appropriate length (45 years or more monthly data) and reasonable quality weather observation records. Most climate analysis has been based on monthly time-step data, but time scales on the order of days can be used. Oregon Climate Division 1 (Coastal) precipitation provides an example relating DynaPred's method to nature's observed elements in the early 2000s. The prediction's leading dynamic factors are the strong seasonal in the primary model combined with high secondary model contributions from planet Earth's Chandler Wobble (near 15 months) and what has been called the Quasi-Triennial Oscillation (QTO, near 36 months) in equatorial regions. Examples of regional aggregate and site-specific predictions previously made blind forward and publicly available (AASC Annual Meetings 1998-2002) will be shown. Certain climate dynamics features relevant to extrema prediction and specifically drought prediction will then be discussed. Time steps presented will be monthly. Climate variables examined are mean temperature and accumulated precipitation. NINO3 SST, interior continental and marine/continental transition area examples will be shown. http://www.dynamicpredictables.com
Markstrom, Steven L.
2012-01-01
A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.
NASA Astrophysics Data System (ADS)
Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.
2002-12-01
The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).
ERIC Educational Resources Information Center
Pruneau, Diane; Doyon, Andre; Langis, Joanne; Vasseur, Liette; Martin, Gilles; Ouellet, Eileen; Boudreau, Gaston
2006-01-01
During a training program on climate change education, teachers were invited to experiment with environmental behaviors in their personal lives. They then created their own climate change education model, with which they experimented in their classroom. Through teachers' and students' work, individual interviews, and questionnaires, researchers…
Climate Change Communicators: The C3E3 Project
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.
2013-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.
Statistical surrogate models for prediction of high-consequence climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick
2011-09-01
In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest.more » A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.« less
NASA Astrophysics Data System (ADS)
Prein, A. F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; Brisson, E.; Kollet, S. J.; Schmidli, J.; Van Lipzig, N. P. M.; Leung, L. R.
2015-12-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. We aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby
2015-06-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
NASA Astrophysics Data System (ADS)
Prein, Andreas F.; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P. M.; Leung, Ruby
2015-06-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
Regional climate model downscaling may improve the prediction of alien plant species distributions
NASA Astrophysics Data System (ADS)
Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.
2014-12-01
Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.
The Development of a Mentoring Program for University Undergraduate Women
ERIC Educational Resources Information Center
Putsche, Laura; Storrs, Debbie; Lewis, Alicia A.; Haylett, Jennifer
2008-01-01
The Women's Center at a university in the United States implemented a mentoring program based on feminist and networking models to improve the educational climate for female undergraduate students. Due to a lack of literature detailing how to develop such a program, an interdisciplinary team of researchers collaborated with the Women's Center to…
One T A To Grow, Please! A Workbook of Teacher Advisory Ideas and Activities.
ERIC Educational Resources Information Center
Spencer, Carol
This workbook provides guidance for the implementation of teacher advisory programs in middle-level schools. Teacher advisory programs are designed to change impersonal school climates, provide a supportive framework for student risk-taking, and promote the healthy development of adolescents. Two program models are described, one initiated in…
The North American Regional Climate Change Assessment Program (NARCCAP): Status and results
NASA Astrophysics Data System (ADS)
Gutowski, W. J.
2009-12-01
NARCCAP is a multi-institutional program that is investigating systematically the uncertainties in regional scale simulations of contemporary climate and projections of future climate. NARCCAP is supported by multiple federal agencies. NARCCAP is producing an ensemble of high-resolution climate-change scenarios by nesting multiple RCMs in reanalyses and multiple atmosphere-ocean GCM simulations of contemporary and future-scenario climates. The RCM domains cover the contiguous U.S., northern Mexico, and most of Canada. The simulation suite also includes time-slice, high resolution GCMs that use sea-surface temperatures from parent atmosphere-ocean GCMs. The baseline resolution of the RCMs and time-slice GCMs is 50 km. Simulations use three sources of boundary conditions: National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) AMIP-II Reanalysis, GCMs simulating contemporary climate and GCMs using the A2 SRES emission scenario for the twenty-first century. Simulations cover 1979-2004 and 2038-2060, with the first 3 years discarded for spin-up. The resulting RCM and time-slice simulations offer opportunity for extensive analysis of RCM simulations as well as a basis for multiple high-resolution climate scenarios for climate change impacts assessments. Geophysical statisticians are developing measures of uncertainty from the ensemble. To enable very high-resolution simulations of specific regions, both RCM and high-resolution time-slice simulations are saving output needed for further downscaling. All output is publically available to the climate analysis and the climate impacts assessment community, through an archiving and data-distribution plan. Some initial results show that the models closely reproduce ENSO-related precipitation variations in coastal California, where the correlation between the simulated and observed monthly time series exceeds 0.94 for all models. The strong El Nino events of 1982-83 and 1997-98 are well reproduced for the Pacific coastal region of the U.S. in all models. ENSO signals are less well reproduced in other regions. The models also produce well extreme monthly precipitation in coastal California and the Upper Midwest. Model performance tends to deteriorate from west to east across the domain, or roughly from the inflow boundary toward the outflow boundary. This deterioration with distance from the inflow boundary is ameliorated to some extent in models formulated such that large-scale information is included in the model solution, whether implemented by spectral nudging or by use of a perturbation form of the governing equations.
NASA Astrophysics Data System (ADS)
Breil, Marcus; Panitz, Hans-Jürgen
2014-05-01
Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the project DEPARTURE (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, driven by global decadal MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, two different SVATs (Community Land Model (CLM), and VEG3D) will be coupled with the CCLM, replacing TERRA_ML, the standard SVAT implemented in CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, TERRA_ML is substituted by VEG3D, a SVAT developed at the IMK-TRO, Karlsruhe, Germany. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer by using a big leaf approach, inducing higher correlations with observations as it has been shown in previous studies. The coupling of VEG3D with CCLM is performed by using the OASIS3-MCT coupling software, developed by CERFACS, Toulouse, France. Results of CCLM simulations using both SVATs are analysed and compared for the DEPARTURE model domain. Thereby ERA-Interim driven CCLM simulations with VEG3D showed better agreement with observational data than simulations with TERRA_ML, especially for dense vegetaded areas. This will be demonstrated exemplarily. Additionally, results for MPI-ESM-LR driven decadal hindcast simulations (1966 - 1975) are analysed and presented.
Climate change, urbanization, and optimal long-term floodplain protection
NASA Astrophysics Data System (ADS)
Zhu, Tingju; Lund, Jay R.; Jenkins, Marion W.; Marques, Guilherme F.; Ritzema, Randall S.
2007-06-01
This paper examines levee-protected floodplains and economic aspects of adaptation to increasing long-term flood risk due to urbanization and climate change. The lower American River floodplain in the Sacramento, California, metropolitan area is used as an illustration to explore the course of optimal floodplain protection decisions over long periods. A dynamic programming model is developed and suggests economically desirable adaptations for floodplain levee systems given simultaneous changes in flood climate and urban land values. Economic engineering optimization analyses of several climate change and urbanization scenarios are made. Sensitivity analyses consider assumptions about future values of floodplain land and damageable property along with the discount rate. Methodological insights and policy lessons are drawn from modeling results, reflecting the joint effects and relationships that climate, economic costs, and regional economic growth can have on floodplain levee planning decisions.
NASA Astrophysics Data System (ADS)
Shafer, M.; Boone, M.; Keim, B. D.
2015-12-01
With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.
NASA Astrophysics Data System (ADS)
Donner, S. D.
2016-12-01
Coral reefs are thought to be more sensitive to climate change than any other marine ecosystem. Episodes of mass coral bleaching, due to anomalously warm water temperatures, have led to coral mortality, declines in coral cover and shifts in the population of other reef-dwelling organisms. The onset of mass bleaching is typically predicted using accumulated heat stress, specifically when the SST exceeds a local climatological maximum by 1-2 °C for a month or more. However, recent evidence suggests that the threshold at which bleaching occurs depends on the past thermal experience of the coral reef and the composition of the coral community. This presentation describes the results of a long-term field and modelling research program evaluating the influence of climate experience on the susceptibility of coral reef ecosystems to future climate extremes. Modeling work identified Kiribati's equatorial Gilbert Islands, where the El Niño / Southern Oscillation drives year-to-year shifts in current strength, current direction and consequently ocean temperatures, as an ideal natural laboratory for studying ocean climate extremes. The field program then tracked changes in the coral communities over multiple heat stress events (e.g. 2004-5, 2009-10 El Niño) at a matrix of sites exposed to different levels of historical climate variability and human disturbance. Among the results is evidence that coral bleaching patterns are best predicted by the coefficient of variation of past SST, light exposure, and the presence of particular resilient coral taxa, rather than the standard heat stress metrics. The lessons of this research can be applicable other systems where past experience influences the response to climate extremes
Processes Understanding of Decadal Climate Variability
NASA Astrophysics Data System (ADS)
Prömmel, Kerstin; Cubasch, Ulrich
2016-04-01
The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.
Geodynamic contributions to global climatic change
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1992-01-01
Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.
NASA Astrophysics Data System (ADS)
Hatheway, B.
2013-12-01
After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.
NASA Astrophysics Data System (ADS)
Merrill, J.
2017-12-01
Multidisciplinary undergraduate climate change education is critical for students entering any sector of the workforce. The University of Delaware has developed a new interdisciplinary affinity program—UD Climate Program for Undergraduates (CPUG)—open to undergraduate students of all majors to provide a comprehensive educational experience designed to educate skilled climate change problem-solvers for a wide range of professional careers. The program is designed to fulfill all General Education requirements, and includes a residential community commitment and experiential learning in community outreach and problem solving. Seminars will introduce current popular press and research materials and provide practice in confirming source credibility, communications training, and psychological support, as well as team building. As undergraduates, members of the UD CPUG team will define, describe, and develop a solution or solutions for a pressing local climate challenge that has the potential for global impact. The choice of a challenge and approach to addressing it will be guided by the student's advisor. Students are expected to develop a practical, multidisciplinary solution to address the challenge as defined, using their educational and experiential training. Solutions will be presented to the UD community during the spring semester of their senior year, as a collaborative team solution, with enhancement through individual portfolios from each team member. The logic model, structure, curricular and co-curricular supports for the CPUG will be provided. Mechanisms of support available through University administration will also be discussed.
Uncertainty quantification of US Southwest climate from IPCC projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark Bruce Elrick
2011-01-01
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statisticalmore » analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.« less
75 FR 22391 - Notice of Web Site Publication for the Climate Program Office
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-28
...-01] Notice of Web Site Publication for the Climate Program Office AGENCY: Climate Program Office (CPO... its Web site at http://www.climate.noaa.gov . FOR FURTHER INFORMATION CONTACT: Eric Locklear; Chief... information is available on the Climate Program Office Web site pertaining to the CPO's research strategies...
Workshop on Satellite and In situ Observations for Climate Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acker, J.G.; Busalacchi, A.
1995-02-01
Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
Workshop on Satellite and In situ Observations for Climate Prediction
NASA Technical Reports Server (NTRS)
Acker, James G.; Busalacchi, Antonio
1995-01-01
Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
The Martian climate: Energy balance models with CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1984-01-01
Progress in the development of a multi-reservoir, time dependent energy balance climate model for Mars driven by prescribed insolation at the top of the atmosphere is reported. The first approximately half-year of the program was devoted to assembling and testing components of the full model. Specific accomplishments were made on a longwave radiation code, coupling seasonal solar input to a ground temperature simulation, and conceptualizing an approach to modeling the seasonal pressure waves that develop in the Martian atmosphere as a result of sublimation and condensation of CO2 in polar regions.
Seasonal Atmospheric and Oceanic Predictions
NASA Technical Reports Server (NTRS)
Roads, John; Rienecker, Michele (Technical Monitor)
2003-01-01
Several projects associated with dynamical, statistical, single column, and ocean models are presented. The projects include: 1) Regional Climate Modeling; 2) Statistical Downscaling; 3) Evaluation of SCM and NSIPP AGCM Results at the ARM Program Sites; and 4) Ocean Forecasts.
GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program
NASA Technical Reports Server (NTRS)
1991-01-01
The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.
The Organizational Decision Making Climate of Issues Management Programs: A Case Study.
ERIC Educational Resources Information Center
Wills, Sandra
A study examined the decision making climate of organizations that are using issues management and what type of model of issues management is followed--theorists have been attempting to define issues management since it began appearing 20 year ago. Subjects, 112 males and 30 females who were professionals working in the area of issues management…
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Carbone, L.; Munoz, R.; Eastburn, T.; Ammann, C.; Lu, G.; Richmond, A.; Committee, S.
2004-12-01
The study of climate and global change is an important on-going focus for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year, including about 10,000 K-12 students. This is currently accomplished through the implementation of an increasingly integrated system of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to the exhibits, which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 and expanded in 2004 offers visitors visually engaging and informative text panels, graphics, artifacts, and interactives describing Sun-Earth connections, dynamic processes that contribute to and mediate climate change, and the Earth's climate history. The exhibit seeks to help visitors to understand why scientists model the global climate system and how information about past and current climate is used to validate models and build scenarios for Earth's future climate. Exhibit-viewers are challenged to ask questions and reflect upon decision making challenges while considering the roles various natural and human-induced factors play in shaping these predictions. With support from NASA and NCAR, a K-12 Teacher's Guide has been developed corresponding the Climate Discovery exhibit's sections addressing the Sun-Earth connection and past climates (the Little Ice Age, in particular). This presentation will review efforts to identify the challenges of communicating with the public and school groups about climate change, while also describing several successful strategies for utilizing visitor questionnaires and interviews to learn how to develop and refine educational resources that will target their interests, bolster their knowledge, and address their misconceptions. Visitors view the exhibit every day of the year on their own, using an audiotour, or with a tour guide. NCAR/UCAR's educational content about climate change is increasingly available to national audiences through the new NCAR EO web site (www.ncar.ucar.edu/eo), Windows to the Universe (www.windows.ucar.edu), UCAR-EO's summer teachers workshops, and sessions at the National Science Teacher Association meetings and other professional education venues.
Communicating Urban Climate Change
NASA Astrophysics Data System (ADS)
Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership
2011-12-01
While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of models for community programming and this session will present early results of these efforts while engaging participants in exploring approaches to connecting urban communities and their local concerns to the issues of global climate change.
Projected 2050 Model Simulations for the Chesapeake Bay Program
The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and...
NASA Astrophysics Data System (ADS)
Rasmussen, R.; Liu, C.; Ikeda, K.
2016-12-01
The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km (see figure below). A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA. This study will examine the water cycle over Western U.S. seven U.S. mountain ranges, including likely changes to amount of snowpack and spring melt-off, critical to agriculture in the western U.S.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959
Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; ...
2015-05-27
Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less
Modeling the influence of climate change on watershed systems: Adaptation through targeted practices
NASA Astrophysics Data System (ADS)
Dudula, John; Randhir, Timothy O.
2016-10-01
Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.
Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, G.M.; Tichler, J.L.
The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less
Modelling extreme climatic events in Guadalquivir Estuary ( Spain)
NASA Astrophysics Data System (ADS)
Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo
2017-04-01
Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.
NASA Astrophysics Data System (ADS)
Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.
2017-12-01
Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing computational models to develop their own evidence-based claims about the Earth's climate system. We describe how epistemological investigations can be conducted using EzGCM to bring the scientific process and authentic climate science practice to middle and high school classrooms.
Li, Ruopu; Merchant, James W
2013-03-01
Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodman, A.; Lee, H.; Waliser, D. E.; Guttowski, W.
2017-12-01
Observation-based evaluations of global climate models (GCMs) have been a key element for identifying systematic model biases that can be targeted for model improvements and for establishing uncertainty associated with projections of global climate change. However, GCMs are limited in their ability to represent physical phenomena which occur on smaller, regional scales, including many types of extreme weather events. In order to help facilitate projections in changes of such phenomena, simulations from regional climate models (RCMs) for 14 different domains around the world are being provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX; www.cordex.org). However, although CORDEX specifies standard simulation and archiving protocols, these simulations are conducted independently by individual research and modeling groups representing each of these domains often with different output requirements and data archiving and exchange capabilities. Thus, with respect to similar efforts using GCMs (e.g., the Coupled Model Intercomparison Project, CMIP), it is more difficult to achieve a standardized, systematic evaluation of the RCMs for each domain and across all the CORDEX domains. Using the Regional Climate Model Evaluation System (RCMES; rcmes.jpl.nasa.gov) developed at JPL, we are developing easy to use templates for performing systematic evaluations of CORDEX simulations. Results from the application of a number of evaluation metrics (e.g., biases, centered RMS, and pattern correlations) will be shown for a variety of physical quantities and CORDEX domains. These evaluations are performed using products from obs4MIPs, an activity initiated by DOE and NASA, and now shepherded by the World Climate Research Program's Data Advisory Council.
Projecting Climate Change Impacts on Wildfire Probabilities
NASA Astrophysics Data System (ADS)
Westerling, A. L.; Bryant, B. P.; Preisler, H.
2008-12-01
We present preliminary results of the 2008 Climate Change Impact Assessment for wildfire in California, part of the second biennial science report to the California Climate Action Team organized via the California Climate Change Center by the California Energy Commission's Public Interest Energy Research Program pursuant to Executive Order S-03-05 of Governor Schwarzenegger. In order to support decision making by the State pertaining to mitigation of and adaptation to climate change and its impacts, we model wildfire occurrence monthly from 1950 to 2100 under a range of climate scenarios from the Intergovernmental Panel on Climate Change. We use six climate change models (GFDL CM2.1, NCAR PCM1, CNRM CM3, MPI ECHAM5, MIROC3.2 med, NCAR CCSM3) under two emissions scenarios--A2 (C02 850ppm max atmospheric concentration) and B1(CO2 550ppm max concentration). Climate model output has been downscaled to a 1/8 degree (~12 km) grid using two alternative methods: a Bias Correction and Spatial Donwscaling (BCSD) and a Constructed Analogues (CA) downscaling. Hydrologic variables have been simulated from temperature, precipitation, wind and radiation forcing data using the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. We model wildfire as a function of temperature, moisture deficit, and land surface characteristics using nonlinear logistic regression techniques. Previous work on wildfire climatology and seasonal forecasting has demonstrated that these variables account for much of the inter-annual and seasonal variation in wildfire. The results of this study are monthly gridded probabilities of wildfire occurrence by fire size class, and estimates of the number of structures potentially affected by fires. In this presentation we will explore the range of modeled outcomes for wildfire in California, considering the effects of emissions scenarios, climate model sensitivities, downscaling methods, hydrologic simulations, statistical model specifications for california wildfire, and their intersection with a range of development scenarios for California.
NASA Astrophysics Data System (ADS)
Rasmussen, R.; Ikeda, K.; Liu, C.; Gochis, D.; Chen, F.; Barlage, M. J.; Dai, A.; Dudhia, J.; Clark, M. P.; Gutmann, E. D.; Li, Y.
2015-12-01
The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km. A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA, as well as the very dominant role of convection in the eastern half of the USA. The high resolution WRF-downscaled climate change data will also become a valuable community resource for many university groups who are interested in studying regional climate changes and impacts but unable to perform such long-duration and high-resolution WRF-based downscaling simulations of their own. The scientific goals and details of the model dataset will be presented including some preliminary results.
Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling
NASA Astrophysics Data System (ADS)
Abel, D.
2016-12-01
This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.
About the Climate Ready Estuaries Program
The Climate Ready Estuaries program is a partnership between EPA and the National Estuary Programs to address climate change in coastal areas. It has helped coastal communities prepare for climate change since 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua B.; Ramaswami, Anu
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Sperling, Joshua B.; Ramaswami, Anu
2017-11-03
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Climate-based models for West Nile Culex mosquito vectors in the Northeastern US
NASA Astrophysics Data System (ADS)
Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.
2011-05-01
Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Safta, C.; Debusschere, B.; Najm, H.
2010-12-01
Uncertainty quantification in complex climate models is challenged by the sparsity of available climate model predictions due to the high computational cost of model runs. Another feature that prevents classical uncertainty analysis from being readily applicable is bifurcative behavior in climate model response with respect to certain input parameters. A typical example is the Atlantic Meridional Overturning Circulation. The predicted maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We outline a methodology for uncertainty quantification given discontinuous model response and a limited number of model runs. Our approach is two-fold. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve shape and location for arbitrarily distributed input parameter values. Then, we construct spectral representations of uncertainty, using Polynomial Chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification. The approach is enabled by a Rosenblatt transformation that maps each side of the discontinuity to regular domains where desirable orthogonality properties for the spectral bases hold. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference - where the latter allows obtaining reasonable expansions without extra forward model runs. The model output, and its associated uncertainty at specific design points, are then computed by taking an ensemble average over PC expansions corresponding to possible realizations of the discontinuity curve. The methodology is tested on synthetic examples of discontinuous model data with adjustable sharpness and structure. This work was supported by the Sandia National Laboratories Seniors’ Council LDRD (Laboratory Directed Research and Development) program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.
2013-12-01
Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of current building practices holding up under future climate change, we recommend using our methods and results to make modifications and adaptations to existing buildings and to aid in the design of future buildings.
CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium
NASA Astrophysics Data System (ADS)
Termonia, P.
2015-12-01
The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.
CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium
NASA Astrophysics Data System (ADS)
Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick
2016-04-01
The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.
Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
NASA Astrophysics Data System (ADS)
Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
The Nested Regional Climate Model: An Approach Toward Prediction Across Scales
NASA Astrophysics Data System (ADS)
Hurrell, J. W.; Holland, G. J.; Large, W. G.
2008-12-01
The reality of global climate change has become accepted and society is rapidly moving to questions of consequences on space and time scales that are relevant to proper planning and development of adaptation strategies. There are a number of urgent challenges for the scientific community related to improved and more detailed predictions of regional climate change on decadal time scales. Two important examples are potential impacts of climate change on North Atlantic hurricane activity and on water resources over the intermountain West. The latter is dominated by complex topography, so that accurate simulations of regional climate variability and change require much finer spatial resolution than is provided with state-of-the-art climate models. Climate models also do not explicitly resolve tropical cyclones, even though these storms have dramatic societal impacts and play an important role in regulating climate. Moreover, the debate over the impact of global warming on tropical cyclones has at times been acrimonious, and the lack of hard evidence has left open opportunities for misinterpretation and justification of pre-existing beliefs. These and similar topics are being assessed at NCAR, in partnership with university colleagues, through the development of a Nested Regional Climate Model (NRCM). This is an ambitious effort to combine a state of the science mesoscale weather model (WRF), a high resolution regional ocean modeling system (ROMS), and a climate model (CCSM) to better simulate the complex, multi-scale interactions intrinsic to atmospheric and oceanic fluid motions that are limiting our ability to predict likely future changes in regional weather statistics and climate. The NRCM effort is attracting a large base of earth system scientists together with societal groups as diverse as the Western Governor's Association and the offshore oil industry. All of these groups require climate data on scales of a few kilometers (or less), so that the NRCM program is producing unique data sets of climate change scenarios of immense interest. In addition, all simulations are archived in a form that will be readily accessible to other researchers, thus enabling a wider group to investigate these important issues.
NASA Astrophysics Data System (ADS)
Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.
2015-12-01
For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.
Stahl, Ralph G; Stauber, Jennifer L; Clements, William H
2017-08-01
Environmental toxicologists and chemists have been crucial to evaluating the chemical fate and toxicological effects of environmental contaminants, including chlorinated pesticides, before and after Rachel Carson's publication of Silent Spring in 1962. Like chlorinated pesticides previously, global climate change is widely considered to be one of the most important environmental challenges of our time. Over the past 30 yr, climate scientists and modelers have shown that greenhouse gases such as CO 2 and CH 4 cause radiative forcing (climate forcing) and lead to increased global temperatures. Despite significant climate change research efforts worldwide, the climate science community has overlooked potential problems associated with chemical contaminants, in particular how climate change could magnify the ecological consequences of their use and disposal. It is conceivable that the impacts of legacy or new chemical contaminants on wildlife and humans may be exacerbated when climate changes, especially if global temperatures rise as predicted. This lack of attention to chemical contaminants represents an opportunity for environmental toxicologists and chemists to become part of the global research program, and our objective is to highlight the importance of and ways for that to occur. Environ Toxicol Chem 2017;36:1971-1977. © 2017 SETAC. © 2017 SETAC.
2014-01-01
Background Psychostimulants and cannabis are two of the three most commonly used illicit drugs by young Australians. As such, it is important to deliver prevention for these substances to prevent their misuse and to reduce associated harms. The present study aims to evaluate the feasibility and effectiveness of the universal computer-based Climate Schools: Psychostimulant and Cannabis Module. Methods A cluster randomised controlled trial was conducted with 1734 Year 10 students (mean age = 15.44 years; SD = 0.41) from 21 secondary schools in Australia. Schools were randomised to receive either the six lesson computer-based Climate Schools program or their usual health classes, including drug education, over the year. Results The Climate Schools program was shown to increase knowledge of cannabis and psychostimulants and decrease pro-drug attitudes. In the short-term the program was effective in subduing the uptake and plateauing the frequency of ecstasy use, however there were no changes in meth/amphetamine use. In addition, females who received the program used cannabis significantly less frequently than students who received drug education as usual. Finally, the Climate Schools program was related to decreasing students’ intentions to use meth/amphetamine and ecstasy in the future, however these effects did not last over time. Conclusions These findings provide support for the use of a harm-minimisation approach and computer technology as an innovative platform for the delivery of prevention education for illicit drugs in schools. The current study indicated that teachers and students enjoyed the program and that it is feasible to extend the successful Climate Schools model to the prevention of other drugs, namely cannabis and psychostimulants. Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12613000492752. PMID:24943829
Vogl, Laura Elise; Newton, Nicola Clare; Champion, Katrina Elizabeth; Teesson, Maree
2014-06-18
Psychostimulants and cannabis are two of the three most commonly used illicit drugs by young Australians. As such, it is important to deliver prevention for these substances to prevent their misuse and to reduce associated harms. The present study aims to evaluate the feasibility and effectiveness of the universal computer-based Climate Schools: Psychostimulant and Cannabis Module. A cluster randomised controlled trial was conducted with 1734 Year 10 students (mean age = 15.44 years; SD = 0.41) from 21 secondary schools in Australia. Schools were randomised to receive either the six lesson computer-based Climate Schools program or their usual health classes, including drug education, over the year. The Climate Schools program was shown to increase knowledge of cannabis and psychostimulants and decrease pro-drug attitudes. In the short-term the program was effective in subduing the uptake and plateauing the frequency of ecstasy use, however there were no changes in meth/amphetamine use. In addition, females who received the program used cannabis significantly less frequently than students who received drug education as usual. Finally, the Climate Schools program was related to decreasing students' intentions to use meth/amphetamine and ecstasy in the future, however these effects did not last over time. These findings provide support for the use of a harm-minimisation approach and computer technology as an innovative platform for the delivery of prevention education for illicit drugs in schools. The current study indicated that teachers and students enjoyed the program and that it is feasible to extend the successful Climate Schools model to the prevention of other drugs, namely cannabis and psychostimulants. Australian and New Zealand Clinical Trials Registry ACTRN12613000492752.
Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program
NASA Technical Reports Server (NTRS)
Moore, Berrien, III; Sahagian, Dork
1997-01-01
The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.
The Subseasonal Experiment (SubX) to Advance National Weather Service Predictions for Weeks 3-4
NASA Astrophysics Data System (ADS)
Mariotti, A.; Barrie, D.; Archambault, H. M.
2017-12-01
There is great practical interest in developing skillful predictions of extremes for lead times extending beyond the two-week theoretical predictability skill barrier for weather forecasts to the subseasonal-to-seasonal (S2S) time scale. The processes and phenomena specific to S2S are posited to require a unified approach to science, modeling, and predictions that draws expertise from both the weather and climate/seasonal communities. Based on this premise, in 2016, the NOAA Climate Program Office Modeling, Analysis, Predictions and Projections (MAPP) program, in partnership with the National Weather Service Office of Science and Technology Integration, launched a major research and transition initiative to meet NOAA's emerging research and transition needs for developing skillful S2S predictions. A major component of this initiative is an experiment to test single- and multi-model ensembles for subseasonal prediction, called the Subseasonal Experiment (SubX). SubX, which engages six modeling groups, is producing real time experimental forecasts based on weather, climate, and Earth system models for weeks 3-4. The project investigators are evaluating, testing, and optimizing this system, and the hindcast and real time forecast data are available to the broad community. SubX research is targeted at a number of important decision-making contexts including drought and extremes, as well as the broad variety of phenomena that are meaningful at subseasonal timescales (e.g., MJO, ENSO, stratosphere/troposphere coupling, etc.). This presentation will discuss the design and status of SubX in the broader context of MAPP program S2S prediction research.
Worldwide Report, Epidemiology
1985-10-09
would be. In the prevailing climate at least one could imagine a rush for the test by individuals who for reasons that are completely unreasonable...standard model for a control program. Each program must be adapted to the local epidemiological characteristics and the needs and possibilities of the...8217best’ in medical care. The result is an urban-biased, hospital- oriented, curative-care model . The Government of Pakistan has also enhanced his urban
High-End Climate Science: Development of Modeling and Related Computing Capabilities
2000-12-01
toward strengthening research on key scientific issues. The Program has supported research that has led to substantial increases in knowledge , improved...provides overall direction and executive oversight of the USGCRP. Within this framework, agencies manage and coordinate Federally supported scientific...critical for the U.S. Global Change Research Program. Such models can be used to look backward to test the consistency of our knowledge of Earth system
Potential Impact of Climate Change on Streamflow of Major Ethiopian Rivers
NASA Astrophysics Data System (ADS)
Gizaw, M. S.; Zhang, S.; Biftu, G. F.; Gan, T. Y.; Tan, X.; Moges, S. A.; Koivusalo, H.
2017-12-01
In this study, HSPF (Hydrologic Simulation Program-FORTRAN) was used to analyze the potential impact of climate change on the streamflow of four major river basins in Ethiopia: Awash, Baro, Genale and Tekeze. The calibrated and validated HSPF model was forced with daily climate data of 10 CMIP5 (Coupled Model Intercomparison Project phase 5) Global Climate Models (GCMs) for the 1971-2000 control period and the RCP4.5 and RCP8.5 climate projections of 2041-2070 (2050s) and 2071-2100 (2080s). The ensemble median of these 10 GCMs projects the temperature in the four study areas to increase by about 2.3 ˚C (3.3 ˚C) in 2050s (2080s) whereas the mean annual precipitation is projected to increase by about 6% (9%) in 2050s (2080s). This results in about 3% (6%) increase in the projected annual streamflow in Awash, Baro and Tekeze rivers whereas the annual streamflow of Genale river is projected to increase by about 18% (33%) in the 2050s (2080s). However, such projected increase in the mean annual streamflow due to increasing precipitation over Ethiopia contradicts the decreasing trends in mean annual precipitation observed in recent decades. Regional climate models of high resolutions could provide more realistic climate projections for Ethiopia's complex topography, thus reducing the uncertainties in future streamflow projections.
7 CFR 2.74 - Director, Climate Change Program Office.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 1 2014-01-01 2014-01-01 false Director, Climate Change Program Office. 2.74 Section... Director, Climate Change Program Office. (a) Delegations. Pursuant to § 2.29(a)(12), the following delegations of authority are made by the Chief Economist to the Director, Climate Change Program Office: (1...
NASA Astrophysics Data System (ADS)
Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang
2013-04-01
The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.
GEWEX Continental-scale International Project (GCIP)
NASA Technical Reports Server (NTRS)
Try, Paul
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.
NASA Technical Reports Server (NTRS)
Robock, Alan
1991-01-01
Volcanic eruptions which inject large amounts of sulfur-rich gas into the stratosphere produce dust veils which last years and cool the earth's surface. At the same time, these dust veils absorb enough solar radiation to warm the stratosphere. Since these temperature changes at the earth's surface and in the stratosphere are both in the opposite direction of hypothesized effects from greenhouse gases, they act to delay and mask the detection of greenhouse effects on the climate system. Tantalizing recent research results have suggested regional effects of volcanic eruptions, including effects on El Nino/Southern Oscillation (ENSO). In addition, a large portion of the global climate change of the past 100 years may be due to the effects of volcanoes, but a definite answer is not yet clear. While effects of several years were demonstrated with both data studies and numerical models, long-term effects, while found in climate model calculations, await confirmation with more realistic models. Extremely large explosive prehistoric eruptions may have produced severe weather and climate effects, sometimes called a 'volcanic winter'. Complete understanding of the above effects of volcanoes is hampered by inadequacies of data sets on volcanic dust veils and on climate change. Space observations can play an increasingly important role in an observing program in the future. The effects of volcanoes are not adequately separated from ENSO events, and climate modeling of the effects of volcanoes is in its infancy. Specific suggestions are made for future work to improve the knowledge of this important component of the climate system.
NASA Astrophysics Data System (ADS)
Dessens, Olivier
2016-04-01
Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of analysing GCMs with the step-experiments. Acknowledgments: This work is supported by the FP7 HELIX project (www.helixclimate.eu) References: Anandarajah, G., Pye, S., Usher, W., Kesicki, F., & Mcglade, C. (2011). TIAM-UCL Global model documentation. https://www.ucl.ac.uk/energy-models/models/tiam-ucl/tiam-ucl-manual Good, P., Gregory, J. M., Lowe, J. A., & Andrews, T. (2013). Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dynamics, 40(3-4), 1041-1053.
Workshop on early Mars: How warm and how wet, part 2?
NASA Technical Reports Server (NTRS)
Squyres, S. (Editor); Kasting, J. (Editor)
1993-01-01
In 1992 the MSATT program conducted a workshop on modeling of the Martian climate. At that workshop it became clear that a serious problem had arisen concerning the early climate of Mars. Based on the evidence for smallscale fluvial activity, the view had been widely held that early in its history Mars had a climate that was much warmer and wetter than today's. However, most plausible recent climate models have fallen far short of the warm temperatures often inferred from the geologic evidence. Moreover, recent geophysical work has suggested that early geothermal warming may also have played a significant role in allowing fluvial activity. In order to address the issue of just how warm and how wet early Mars was, a workshop was convened in July of 1993, in Breckenridge, Colorado. The results of the workshop are reported here.
CIM-EARTH: Community Integrated Model of Economic and Resource Trajectories for Humankind
NASA Astrophysics Data System (ADS)
Foster, I.; Elliott, J.; Munson, T.; Judd, K.; Moyer, E. J.; Sanstad, A. H.
2010-12-01
We report here on the development of an open source software framework termed CIM-EARTH that is intended to aid decision-making in climate and energy policy. Numerical modeling in support of evaluating policies to address climate change is difficult not only because of inherent uncertainties but because of the differences in scale and modeling approach required for various subcomponents of the system. Economic and climate models are structured quite differently, and while climate forcing can be assumed to be roughly global, climate impacts and the human response to them occur on small spatial scales. Mitigation policies likewise can be applied on scales ranging from the better part of a continent (e.g. a carbon cap-and-trade program for the entire U.S.) to a few hundred km (e.g. statewide renewable portfolio standards and local gasoline taxes). Both spatial and time resolution requirements can be challenging for global economic models. CIM-EARTH is a modular framework based around dynamic general equilibrium models. It is designed as a community tool that will enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of both mitigation policies and unchecked climate change. Modularity enables both integration of highly resolved component sub-models for energy and other key systems and also user-directed choice of tradeoffs between e.g. spatial, sectoral, and time resolution. This poster describes the framework architecture, the current realized version, and plans for future releases. As with other open-source models familiar to the climate community (e.g. CCSM), deliverables will be made publicly available on a regular schedule, and community input is solicited for development of new features and modules.
Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM
NASA Astrophysics Data System (ADS)
Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou
2017-04-01
The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.
Effects of climate change on residential infiltration and air pollution exposure.
Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley
2017-01-01
Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.
Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology
NASA Astrophysics Data System (ADS)
Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.
2015-12-01
Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.
Public Health Climate Change Adaptation Planning Using Stakeholder Feedback.
Eidson, Millicent; Clancy, Kathleen A; Birkhead, Guthrie S
2016-01-01
Public health climate change adaptation planning is an urgent priority requiring stakeholder feedback. The 10 Essential Public Health Services can be applied to adaptation activities. To develop a state health department climate and health adaptation plan as informed by stakeholder feedback. With Centers for Disease Control and Prevention (CDC) funding, the New York State Department of Health (NYSDOH) implemented a 2010-2013 climate and health planning process, including 7 surveys on perceptions and adaptation priorities. New York State Department of Health program managers participated in initial (n = 41, denominator unknown) and follow-up (72.2%) needs assessments. Surveillance system information was collected from 98.1% of surveillance system managers. For adaptation prioritization surveys, participants included 75.4% of NYSDOH leaders; 60.3% of local health departments (LHDs); and 53.7% of other stakeholders representing environmental, governmental, health, community, policy, academic, and business organizations. Interviews were also completed with 38.9% of other stakeholders. In 2011 surveys, 34.1% of state health program directors believed that climate change would impact their program priorities. However, 84.6% of state health surveillance system managers provided ideas for using databases for climate and health monitoring/surveillance. In 2012 surveys, 46.5% of state health leaders agreed they had sufficient information about climate and health compared to 17.1% of LHDs (P = .0046) and 40.9% of other stakeholders (nonsignificant difference). Significantly fewer (P < .0001) LHDs (22.9%) were incorporating or considering incorporating climate and health into planning compared to state health leaders (55.8%) and other stakeholders (68.2%). Stakeholder groups agreed on the 4 highest priority adaptation categories including core public health activities such as surveillance, coordination/collaboration, education, and policy development. Feedback from diverse stakeholders was utilized by NYSDOH to develop its Climate and Health Strategic Map in 2013. The CDC Building Resilience Against Climate Effects (BRACE) framework and funding provides a collaborative model for state climate and health adaptation planning.
Data Integration Plans for the NOAA National Climate Model Portal (NCMP) (Invited)
NASA Astrophysics Data System (ADS)
Rutledge, G. K.; Williams, D. N.; Deluca, C.; Hankin, S. C.; Compo, G. P.
2010-12-01
NOAA’s National Climatic Data Center (NCDC) and its collaborators have initiated a five-year development and implementation of an operational access capability for the next generation weather and climate model datasets. The NOAA National Climate Model Portal (NCMP) is being designed using format neutral open web based standards and tools where users at all levels of expertise can gain access and understanding to many of NOAA’s climate and weather model products. NCMP will closely coordinate with and reside under the emerging NOAA Climate Services Portal (NCSP). To carry out its mission, NOAA must be able to successfully integrate model output and other data and information from all of its discipline specific areas to understand and address the complexity of many environmental problems. The NCMP will be an initial access point for the emerging NOAA Climate Services Portal (NCSP), which is the basis for unified access to NOAA climate products and services. NCMP is currently collaborating with the emerging Environmental Projection Center (EPC) expected to be developed at the Earth System Research Laboratory in Boulder CO. Specifically, NCMP is being designed to: - Enable policy makers and resource managers to make informed national and global policy decisions using integrated climate and weather model outputs, observations, information, products, and other services for the scientist and the non-scientist; - Identify model to observational interoperability requirements for climate and weather system analysis and diagnostics; - Promote the coordination of an international reanalysis observational clearinghouse (i.e.., Reanalysis.org) spanning the worlds numerical processing Center’s for an “Ongoing Analysis of the Climate System”. NCMP will initially provide access capabilities to 3 of NOAA’s high volume Reanalysis data sets of the weather and climate systems: 1) NCEP’s Climate Forecast System Reanalysis (CFS-R); 2) NOAA’s Climate Diagnostics Center/ Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis Project data set (20CR, G. Compo, et al.), a historical reanalysis that will provide climate information dating back to 1850 to the present; and 3) the CPC’s Upper Air Reanlaysis. NCMP will advance the highly successful NOAA National Operational Model Archive and Distribution System (NOMADS, Rutledge, BAMS 2006), and standards already in use including Unidata’s THREDDS (TDS), PMEL’s Live Access Server (LAS) and the GrADS Data Server (GDS) from COLA; the Department of Energy (DOE) Earth System Grid (ESG) and the associated IPCC Climate model archive located at the Program for Climate Model Diagnostics and Inter-comparison (PCMDI) through the ESG; and NOAA’s Unified Access Framework (UAF) effort; and core standards developed by Open Geospatial Consortium (OGC). The format neutral OPeNDAP protocol as used in the NOMADS system will also be a key aspect of the design of NCMP.
Feframing Climate Change for Environmental Health.
Weems, Caitlin; Subramaniam, Prithwi Raj
2017-04-01
Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.
Uncertainty in stormwater drainage adaptation: what matters and how much is too much?
NASA Astrophysics Data System (ADS)
Stack, L. J.; Simpson, M. H.; Moore, T.; Gulliver, J. S.; Roseen, R.; Eberhart, L.; Smith, J. B.; Gruber, J.; Yetka, L.; Wood, R.; Lawson, C.
2014-12-01
Published research continues to report that long-term, local-scale precipitation forecasts are too uncertain to support local-scale adaptation. Numerous studies quantify the range of uncertainty in downscaled model output; compare this with uncertainty from other sources such as hydrological modeling; and propose circumventing uncertainty via "soft" or "low regret" actions, or adaptive management. Yet non-structural adaptations alone are likely insufficient. Structural adaptation requires quantified engineering design specifications. However, the literature does not define a tolerable level of uncertainty. Without such a benchmark, how can we determine whether the climate-change-cognizant design specifications that we are capable of, for example the climate change factors increasingly utilized in European practice, are viable? The presentation will explore this question, in the context of reporting results and observations from an ongoing ten-year program assessing local-scale stormwater drainage system vulnerabilities, required capacities, and adaptation options and costs. This program has studied stormwater systems of varying complexity in a variety of regions, topographies, and levels of urbanization, in northern-New England and the upper-Midwestern United States. These studies demonstrate the feasibility of local-scale design specifications, and provide tangible information on risk to enable valid cost/benefit decisions. The research program has found that stormwater planners and engineers have routinely accepted, in the normal course of professional practice, a level of uncertainty in hydrological modeling comparable to that in long-term precipitation projections. Moreover, the ability to quantify required capacity and related construction costs for specific climate change scenarios, the insensitivity of capacity and costs to uncertainty, and the percentage of pipes and culverts that never require upsizing, all serve to limit the impact of uncertainty inherent in climate change projections.
Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models
NASA Astrophysics Data System (ADS)
Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.
2008-12-01
Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-08-01
Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
Green, Amy E.; Albanese, Brian J.; Cafri, Guy; Aarons, Gregory A.
2014-01-01
The goal of this study was to examine the relationships of transformational leadership and organizational climate with working alliance, in a children's mental health service system. Using multilevel structural equation modeling, the effect of leadership on working alliance was mediated by organizational climate. These results suggest that supervisors may be able to impact quality of care through improving workplace climate. Organizational factors should be considered in efforts to improve public sector services. Understanding these issues is important for program leaders, mental health service providers, and consumers because they can affect both the way services are delivered and ultimately, clinical outcomes. PMID:24323137
Green, Amy E; Albanese, Brian J; Cafri, Guy; Aarons, Gregory A
2014-10-01
The goal of this study was to examine the relationships of transformational leadership and organizational climate with working alliance, in a children's mental health service system. Using multilevel structural equation modeling, the effect of leadership on working alliance was mediated by organizational climate. These results suggest that supervisors may be able to impact quality of care through improving workplace climate. Organizational factors should be considered in efforts to improve public sector services. Understanding these issues is important for program leaders, mental health service providers, and consumers because they can affect both the way services are delivered and ultimately, clinical outcomes.
Holt, Ashley C; Salkeld, Daniel J; Fritz, Curtis L; Tucker, James R; Gong, Peng
2009-01-01
Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions. PMID:19558717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.
The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climatemore » change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.« less
NASA Astrophysics Data System (ADS)
Strigaro, Daniele; Moretti, Massimiliano; Mattavelli, Matteo; Frigerio, Ivan; Amicis, Mattia De; Maggi, Valter
2016-09-01
The aim of this work is to integrate the Minimal Glacier Model in a Geographic Information System Python module in order to obtain spatial simulations of glacier retreat and to assess the future scenarios with a spatial representation. The Minimal Glacier Models are a simple yet effective way of estimating glacier response to climate fluctuations. This module can be useful for the scientific and glaciological community in order to evaluate glacier behavior, driven by climate forcing. The module, called r.glacio.model, is developed in a GRASS GIS (GRASS Development Team, 2016) environment using Python programming language combined with different libraries as GDAL, OGR, CSV, math, etc. The module is applied and validated on the Rutor glacier, a glacier in the south-western region of the Italian Alps. This glacier is very large in size and features rather regular and lively dynamics. The simulation is calibrated by reconstructing the 3-dimensional dynamics flow line and analyzing the difference between the simulated flow line length variations and the observed glacier fronts coming from ortophotos and DEMs. These simulations are driven by the past mass balance record. Afterwards, the future assessment is estimated by using climatic drivers provided by a set of General Circulation Models participating in the Climate Model Inter-comparison Project 5 effort. The approach devised in r.glacio.model can be applied to most alpine glaciers to obtain a first-order spatial representation of glacier behavior under climate change.
Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology
NASA Astrophysics Data System (ADS)
Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.
2009-12-01
Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual wildfire occurrence historically and under the above-cited future climate scenarios, and discuss how these results are being integrated with process-based ecosystem models and field data to model changes in carbon flux across the Greater Yellowstone Ecosystem landscape (8). 1. Westerling, Hidalgo, Cayan, Swetnam, Science 313, 940 (2006). 2. Tymstra, Flannigan, Armitage, Logan, Int’l J. Wildland Fire 16, 153 (2007). 3. U. S. G. A. O. GAO. (2007). 4. Liang, Lettenmaier, Wood, Burges. J. Geophys. Res. 99(D7), 14,415 (1994). 5. Maurer, Wood, Adam, Lettenmaier, Nijssen. J. Climate 15:3237 (2002). 6. Cayan, Maurer, Dettinger, Tyree, Hayhoe. Climatic Change 87(Suppl. 1) 21 (2008). 7. Hidalgo, Dettinger Cayan, CEC Report CEC-500-2007-123 (2008). 8. We acknowledge support from the Joint Fire Science Program (Project ID 09-3-01-47), the NOAA RISA program for California, and the US Forest Service.
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar ) of the Environmental Modeling Center (EMC) conducts a program of research and development in support Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author: EMC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamnes, K.; Ellingson, R.G.; Curry, J.A.
1999-01-01
Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program is designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks, which are believed to be important to the predicted enhanced warming inmore » the Arctic. The most important scientific issues of Arctic, as well as global, significance to be addressed at the NSA-AAO CART site are discussed, and a brief overview of the current approach toward, and status of, site development is provided. ARM radiometric and remote sensing instrumentation is already deployed and taking data in the perennial Arctic ice pack as part of the SHEBA (Surface Heat Budget of the Arctic ocean) experiment. In parallel with ARM`s participation in SHEBA, the NSA-AAO facility near Barrow was formally dedicated on 1 July 1997 and began routine data collection early in 1998. This schedule permits the US Department of Energy`s ARM Program, NASA`s Arctic Cloud program, and the SHEBA program (funded primarily by the National Science Foundation and the Office of Naval Research) to be mutually supportive. In addition, location of the NSA-AAO Barrow facility on National Oceanic and Atmospheric Administration land immediately adjacent to its Climate Monitoring and Diagnostic Laboratory Barrow Observatory includes NOAA in this major interagency Arctic collaboration.« less
NASA Astrophysics Data System (ADS)
Flaounas, Emmanouil; Drobinski, Philippe; Borga, Marco; Calvet, Jean-Christophe; Delrieu, Guy; Morin, Efrat; Tartari, Gianni; Toffolon, Roberta
2012-06-01
This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA&D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean region.
NASA Astrophysics Data System (ADS)
Braun, Marco; Chaumont, Diane
2013-04-01
Using climate model output to explore climate change impacts on hydrology requires several considerations, choices and methods in the post treatment of the datasets. In the effort of producing a comprehensive data base of climate change scenarios for over 300 watersheds in the Canadian province of Québec, a selection of state of the art procedures were applied to an ensemble comprising 87 climate simulations. The climate data ensemble is based on global climate simulations from the Coupled Model Intercomparison Project - Phase 3 (CMIP3) and regional climate simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and operational simulations produced at Ouranos. Information on the response of hydrological systems to changing climate conditions can be derived by linking climate simulations with hydrological models. However, the direct use of raw climate model output variables as drivers for hydrological models is limited by issues such as spatial resolution and the calibration of hydro models with observations. Methods for downscaling and bias correcting the data are required to achieve seamless integration of climate simulations with hydro models. The effects on the results of four different approaches to data post processing were explored and compared. We present the lessons learned from building the largest data base yet for multiple stakeholders in the hydro power and water management sector in Québec putting an emphasis on the benefits and pitfalls in choosing simulations, extracting the data, performing bias corrections and documenting the results. A discussion of the sources and significance of uncertainties in the data will also be included. The climatological data base was subsequently used by the state owned hydro power company Hydro-Québec and the Centre d'expertise hydrique du Québec (CEHQ), the provincial water authority, to simulate future stream flows and analyse the impacts on hydrological indicators. While this submission focuses on the production of climatic scenarios for application in hydrology, the submission « The (cQ)2 project: assessing watershed scale hydrological changes for the province of Québec at the 2050 horizon, a collaborative framework » by Catherine Guay describes how Hydro-Québec and CEHQ put the data into use.
NASA Astrophysics Data System (ADS)
Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; De Mascellis, Roberto; Manna, Piero; Terribile, Fabio
2016-04-01
WeatherProg is a computer program for the semi-automatic handling of data measured at ground stations within a climatic network. The program performs a set of tasks ranging from gathering raw point-based sensors measurements to the production of digital climatic maps. Originally the program was developed as the baseline asynchronous engine for the weather records management within the SOILCONSWEB Project (LIFE08 ENV/IT/000408), in which daily and hourly data where used to run water balance in the soil-plant-atmosphere continuum or pest simulation models. WeatherProg can be configured to automatically perform the following main operations: 1) data retrieval; 2) data decoding and ingestion into a database (e.g. SQL based); 3) data checking to recognize missing and anomalous values (using a set of differently combined checks including logical, climatological, spatial, temporal and persistence checks); 4) infilling of data flagged as missing or anomalous (deterministic or statistical methods); 5) spatial interpolation based on alternative/comparative methods such as inverse distance weighting, iterative regression kriging, and a weighted least squares regression (based on physiography), using an approach similar to PRISM. 6) data ingestion into a geodatabase (e.g. PostgreSQL+PostGIS or rasdaman). There is an increasing demand for digital climatic maps both for research and development (there is a gap between the major of scientific modelling approaches that requires digital climate maps and the gauged measurements) and for practical applications (e.g. the need to improve the management of weather records which in turn raises the support provided to farmers). The demand is particularly burdensome considering the requirement to handle climatic data at the daily (e.g. in the soil hydrological modelling) or even at the hourly time step (e.g. risk modelling in phytopathology). The key advantage of WeatherProg is the ability to perform all the required operations and calculations in an automatic fashion, except the need of a human interaction upon specific issues (such as the decision whether a measurement is an anomaly or not according to the detected temporal and spatial variations with contiguous points). The presented computer program runs from command line and shows peculiar characteristics in the cascade modelling within different contexts belonging to agriculture, phytopathology and environment. In particular, it can be a powerful tool to set up cutting-edge regional web services based on weather information. Indeed, it can support territorial agencies in charge of meteorological and phytopathological bulletins.
Community College Dual Enrollment Faculty Orientation: A Utilization-Focused Approach
ERIC Educational Resources Information Center
Charlier, Hara D.; Duggan, Molly H.
2010-01-01
The current climate of accountability demands that institutions engage in data-driven program evaluation. In order to promote quality dual enrollment (DE) programs, institutions must support the adjunct faculty teaching college courses in high schools. This study uses Patton's utilization-focused model (1997) to conduct a formative evaluation of a…
The Five-Point Plan: A Practical Framework for Campus Cultural Centers
ERIC Educational Resources Information Center
Jenkins, Toby S.
2008-01-01
This article features Paul Robeson Cultural Center (PRCC) at Pennsylvania State University, which uses a model of cultural education and engagement to design and deliver programs and services committed to enhancing the university's cultural climate. This article shares a cultural programming framework that was used to steward change and growth in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, J.R.
1994-06-01
This document contains information about the 1994 meeting of the International Society for Ecological Modelling North American Chapter. The topics discussed include: extinction risk assessment modelling, ecological risk analysis of uranium mining, impacts of pesticides, demography, habitats, atmospheric deposition, and climate change.
ARM Climate Research Facility Annual Report 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyles, J.
2004-12-31
Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency programmore » within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.« less
NASA Astrophysics Data System (ADS)
Weiss, N. K.; Wood, J. H.
2017-12-01
TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.
NASA Astrophysics Data System (ADS)
Cloern, J.
2008-12-01
Programs to ensure sustainability of coastal ecosystems and the biological diversity they harbor require ecological forecasting to assess habitat transformations from the coupled effects of climate change and human population growth. A multidisciplinary modeling project (CASCaDE) was launched in 2007 to develop 21st-century visions of the Sacramento-San Joaquin Delta and San Francisco Bay under four scenarios of climate change and increasing demand for California's water resource. The process begins with downscaled projections of daily weather from GCM's and routes these to a watershed model that computes runoff and an operations model that computes inflows to the Bay-Delta. Hydrologic and climatic outputs, including sea level rise, drive models of tidal hydrodynamics-salinity-temperature in the Delta, sediment inputs and evolving geomorphology of San Francisco Bay. These projected habitat changes are being used to address priority questions asked by resource managers: How will changes in seasonal streamflow, salinity and water temperature, frequency of extreme weather and hydrologic events, and geomorphology influence the sustainability of native species that depend upon the Bay-Delta and the ecosystem services it provides?
Assessing Impacts of Climate Change on Food Security Worldwide
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua
2015-01-01
The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.
REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)
NASA Astrophysics Data System (ADS)
Bair, A.
2009-12-01
The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and goals.
Paleoclimates: Understanding climate change past and present
Cronin, Thomas M.
2010-01-01
The field of paleoclimatology relies on physical, chemical, and biological proxies of past climate changes that have been preserved in natural archives such as glacial ice, tree rings, sediments, corals, and speleothems. Paleoclimate archives obtained through field investigations, ocean sediment coring expeditions, ice sheet coring programs, and other projects allow scientists to reconstruct climate change over much of earth's history. When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes. This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate. Thomas M. Cronin discusses recent discoveries about past periods of global warmth, changes in atmospheric greenhouse gas concentrations, abrupt climate and sea-level change, natural temperature variability, and other topics directly relevant to controversies over the causes and impacts of climate change. This text is geared toward advanced undergraduate and graduate students and researchers in geology, geography, biology, glaciology, oceanography, atmospheric sciences, and climate modeling, fields that contribute to paleoclimatology. This volume can also serve as a reference for those requiring a general background on natural climate variability.
Multidisciplinary research in the space sciences
NASA Technical Reports Server (NTRS)
Broecker, W. S.; Flynn, G. W.
1983-01-01
Research activities were carried out in the following areas during this reporting period: (1) astrophysics; (2) climate and atmospheric modeling; and (3) climate applications of earth observations & geological studies. An ultra-low-noise 115 GHz receiver based upon a superconducting tunnel diode mixer has been designed and constructed. The first laboratory tests have yielded spectacular results: a single-sideband noise temperature of 75 K considerably more sensitive than any other receiver at this frequency. The receiver will replace that currently in use on the Columbia-GISS CO Sky Survey telescope. The 1.2 meter millimeter-wave telescope at Columbia University has been used to complete two large-scale surveys of molecular matter in the part of the inner galaxy which is visible from the Northern hemisphere (the first galactic quadrant); one of the distant galaxy and one of the solar neighborhood. The research conducted during the past year in the climate and atmospheric modeling programs has been focused on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. During the past year this project has focused on development of 2-channel satellite analysis methods and radiative transfer studies in support of multichannel analysis techniques.
Comparison of In-Person vs. Digital Climate Education Program
NASA Astrophysics Data System (ADS)
Anderson, R. K.; Flora, J. A.; Saphir, M.
2017-12-01
In 2014, ACE (Alliance for Climate Education) evaluated the impact of its 45-minute live climate edutainment education program on the knowledge, attitudes and behavior of high school students with respect to climate change. The results showed gains in knowledge, increased engagement, as well as increased communication about climate change with number of students reporting talking about climate change with friends and family more than doubling. In 2016, ACE launched a digital version of its in-person edutainment education program, a 40-minute video version of the live program. This digital version, Our Climate Our Future (OCOF), has now been used by nearly 4,000 teachers nationwide and viewed by over 150,000 students. We experimentally tested the impact of the digital program (OCOF) compared to the live program and a control group. The experiment was conducted with 709 students in 27 classes at two North Carolina public high schools. Classes were assigned to one of three conditions: digital, live and control. In the digital version, students watched the 40-minute OCOF video featuring the same educator that presented the live program. In the live version, students received an identical 40-minute live presentation by an ACE staff educator The control group received neither treatment. When compared to controls, both programs were effective in positively increasing climate change knowledge, climate justice knowledge, perceived self-efficacy to make climate-friendly behavior changes, and beliefs about climate change (all statistically significant at or above P<.01). In the areas of hope that people can solve climate change and intent to change behavior, only the live program showed significant increases. In these two areas, it may be that an in-person experience is key to affecting change. In light of these positive results, ACE plans to increase the use of OCOF in schools across the country to assist teachers in their efforts to teach about climate change.
Comparison of In-Person vs. Digital Climate Education Program
NASA Astrophysics Data System (ADS)
Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Ben-Naim, D.
2016-12-01
In 2014, ACE (Alliance for Climate Education) evaluated the impact of its 45-minute live climate edutainment education program on the knowledge, attitudes and behavior of high school students with respect to climate change. The results showed gains in knowledge, increased engagement, as well as increased communication about climate change with number of students reporting talking about climate change with friends and family more than doubling. In 2016, ACE launched a digital version of its in-person edutainment education program, a 40-minute video version of the live program. This digital version, Our Climate Our Future (OCOF), has now been used by nearly 4,000 teachers nationwide and viewed by over 150,000 students. We experimentally tested the impact of the digital program (OCOF) compared to the live program and a control group. The experiment was conducted with 709 students in 27 classes at two North Carolina public high schools. Classes were assigned to one of three conditions: digital, live and control. In the digital version, students watched the 40-minute OCOF video featuring the same educator that presented the live program. In the live version, students received an identical 40-minute live presentation by an ACE staff educator The control group received neither treatment. When compared to controls, both programs were effective in positively increasing climate change knowledge, climate justice knowledge, perceived self-efficacy to make climate-friendly behavior changes, and beliefs about climate change (all statistically significant at or above P<.01). In the areas of hope that people can solve climate change and intent to change behavior, only the live program showed significant increases. In these two areas, it may be that an in-person experience is key to affecting change. In light of these positive results, ACE plans to increase the use of OCOF in schools across the country to assist teachers in their efforts to teach about climate change.
A Teacher Professional Development Model for Teaching Socioscientific Issues
ERIC Educational Resources Information Center
Carson, Katherine; Dawson, Vaille
2016-01-01
This paper describes the development and implementation of a three-pillared model for teaching socioscientific issues: teacher professional development; curriculum resources; and classroom support. A professional development program and curriculum resource based on the socioscientific issue of climate change was trialled with 75 Western Australian…
Climate in Context - How partnerships evolve in regions
NASA Astrophysics Data System (ADS)
Parris, A. S.
2014-12-01
In 2015, NOAA's RISA program will celebrate its 20th year of exploration in the development of usable climate information. In the mid-1990s, a vision emerged to develop interdisciplinary research efforts at the regional scale for several important reasons. Recognizable climate patterns, such as the El Nino Southern Oscillation (ENSO), emerge at the regional level where our understanding of observations and models coalesce. Critical resources for society are managed in a context of regional systems, such as water supply and human populations. Multiple scales of governance (local, state, and federal) with complex institutional relationships can be examined across a region. Climate information (i.e. data, science, research etc) developed within these contexts has greater potential for use. All of this work rests on a foundation of iterative engagement between scientists and decision makers. Throughout these interactions, RISAs have navigated diverse politics, extreme events and disasters, socio-economic and ecological disruptions, and advances in both science and technology. Our understanding of information needs is evolving into a richer understanding of complex institutional, legal, political, and cultural contexts within which people can use science to make informed decisions. The outcome of RISA work includes both cases where climate information was used in decisions and cases where capacity for using climate information and making climate resilient decisions has increased over time. In addition to balancing supply and demand of scientific information, RISAs are engaged in a social process of reconciling climate information use with important drivers of society. Because partnerships are critical for sustained engagement, and because engagement is critically important to the use of science, the rapid development of new capacity in regionally-based science programs focused on providing climate decision support is both needed and challenging. New actors can bolster existing partnerships, but also impact trust developed through engagement. Examining other partnership-driven science initiatives, such as Digital Coast or NIDIS, can help identify critical elements of governance and network management that could be applied to the regional climate programs.
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Brisk, A. A.; Grogan, M.; Ledley, T. S.
2012-12-01
Through the Climate Education in an Age of Media (CAM) Project (http://cleanet.org/cced_media/), we have developed approaches to integrate media production by students into climate change education in ways that are engaging, empowering, and can be readily adopted in a wide range of instructional environments. These approaches can be used to overcome many of the challenges that climate change education presents and provide a means to evoke experiential, affective, and social learning pathways. Video production combines many key twenty-first century literacy skills, including content research, writing, an understanding of the power of images and sounds, the ability to use that power, and the ability to manipulate, transform, and distribute digital media. Through collaboration, reflection, and visual expression of concepts, video production facilitates a deeper understanding of material and, potentially, shifts in mental models about climate change. Equally importantly, it provides a means to bridge formal and informal learning by enabling students to educate those beyond the classroom. We have piloted our approach in two intensive summer programs (2011 and 2012) for high school students, during which students learned about climate change science content in lessons that were paired with the production of short media pieces including animations, public service announcements, person-on-the-street interviews, mock trailers, mock news programs, and music videos. Two high school teachers were embedded in the program during the second year, providing feedback and assessment of the feasibility, accessibility, and utility of the approach. The programs culminated with students presenting and discussing their work at public screening events. The media lessons and climate change science content examples used in these programs form the backbone of a toolkit and professional development workshops for middle and high school teachers, in which teachers learn how to incorporate student media-making into their science classes. Here, we share the toolkit, describe the scope and structure of the teacher professional development workshops, and share several of the media products created by YEP participants. The confluence of falling financial and technological barriers to producing media; the need for innovative approaches to meet climate change education challenges; and the potential for media literacy to empower young people to add their voice to the societal discourse about climate change science creates an ideal opportunity for integration of science and media production in education.
Estimating time and spatial distribution of snow water equivalent in the Hakusan area
NASA Astrophysics Data System (ADS)
Tanaka, K.; Matsui, Y.; Touge, Y.
2015-12-01
In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate hydrological model, satellite based precipitation product, GCM output, etc.
Lee, Henry; Reusser, Deborah A; Olden, Julian D; Smith, Scott S; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S; Piorkowski, Robert J; McPhedran, John
2008-06-01
Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.
Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System
NASA Astrophysics Data System (ADS)
Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.
2012-12-01
This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.
Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John
2008-01-01
Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change
Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.
2017-12-01
Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293 And NASA Award NNX17AC81G.
The WASCAL high-resolution climate projection ensemble for West Africa
NASA Astrophysics Data System (ADS)
Kunstmann, Harald; Heinzeller, Dominikus; Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Hamann, Ilse; Salack, Seyni
2017-04-01
With climate change being one of the most severe challenges to rural Africa in the 21st century, West Africa is facing an urgent need to develop effective adaptation and mitigation measures to protect its constantly growing population. We perform ensemble-based regional climate simulations at a high resolution of 12km for West Africa to allow a scientifically sound derivation of climate change adaptation measures. Based on the RCP4.5 scenario, our ensemble consist of three simulation experiments with the Weather Research & Forecasting Tool (WRF) and one additional experiment with the Consortium for Small-scale Modelling Model COSMO in Climate Mode (COSMO-CLM). We discuss the model performance over the validation period 1980-2010, including a novel, station-based precipitation database for West Africa obtained within the WASCAL (West African Science Service Centre for Climate Change and Adapted Land Use) program. Particular attention is paid to the representation of the dynamics of the West African Summer Monsoon and to the added value of our high-resolution models over existing data sets. We further present results on the climate change signal obtained for the two future periods 2020-2050 and 2070-2100 and compare them to current state-of-the-art projections from the CORDEX-Africa project. While the temperature change signal is similar to that obtained within CORDEX-Africa, our simulations predict a wetter future for the Coast of Guinea and the southern Soudano area and a slight drying in the northernmost part of the Sahel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia
Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less
Scaling Climate Change Communication for Behavior Change
NASA Astrophysics Data System (ADS)
Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.
2014-12-01
Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.
NASA Astrophysics Data System (ADS)
Fu, Linyun; Ma, Xiaogang; Zheng, Jin; Goldstein, Justin; Duggan, Brian; West, Patrick; Aulenbach, Steve; Tilmes, Curt; Fox, Peter
2014-05-01
This poster will show how we used a case-driven iterative methodology to develop an ontology to represent the content structure and the associated provenance information in a National Climate Assessment (NCA) report of the US Global Change Research Program (USGCRP). We applied the W3C PROV-O ontology to implement a formal representation of provenance. We argue that the use case-driven, iterative development process and the application of a formal provenance ontology help efficiently incorporate domain knowledge from earth and environmental scientists in a well-structured model interoperable in the context of the Web of Data.
Undocumented migration in response to climate change
Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.
2016-01-01
In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840
Decision analysis of shoreline protection under climate change uncertainty
NASA Astrophysics Data System (ADS)
Chao, Philip T.; Hobbs, Benjamin F.
1997-04-01
If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.
Undocumented migration in response to climate change.
Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M
In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index ( WSDI ) and the precipitation during extremely wet days ( R99PTOT ). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Joyce E.; Zhou, Cheng
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 05/27/2011 at the Southern Great Plains (SGP) measurement site established by Department of Energy's Atmospheric Radiation Measurement (ARM) Program using a single column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAMmore » is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
NASA Astrophysics Data System (ADS)
Mercogliano, P.; Montesarchio, M.; Zollo, A.; Bucchignani, E.
2012-12-01
In the framework of the Italian GEMINA Project (program of expansion and development of the Euro-Mediterranean Center for Climate Change (CMCC), high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes all the Mediterranean Sea, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate patterns but also extremes of the present and future climate, in terms of temperature, precipitation and wind.
CPMIP: measurements of real computational performance of Earth system models in CMIP6
NASA Astrophysics Data System (ADS)
Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett
2017-01-01
A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).
ERIC Educational Resources Information Center
Carey, Cayelan C.; Gougis, Rebekka Darner
2017-01-01
Ecosystem modeling is a critically important tool for environmental scientists, yet is rarely taught in undergraduate and graduate classrooms. To address this gap, we developed a teaching module that exposes students to a suite of modeling skills and tools (including computer programming, numerical simulation modeling, and distributed computing)…
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Weinbeck, R. S.; Moran, J. M.; Nugnes, K. A.
2012-12-01
To better prepare tomorrow's leaders, it is of utmost importance that today's teachers are science literate. To meet that need, the American Meteorological Society (AMS) Education Program offers content-rich, professional development courses and training workshops for precollege teachers in the geosciences. During the fall and spring semesters, the AMS in partnership with NOAA, NASA, and SUNY Brockport, offers a suite of pre-college teacher development courses, DataStreme Atmosphere, DataStreme Ocean and DataStreme Earth's Climate System (ECS). These courses are delivered to small groups of K-12 teachers through Local Implementation Teams (LITs) positioned throughout the U.S. The courses use current, real-world environmental data to investigate the atmosphere, ocean, and climate system and consist of weekly online study materials, weekly mentoring, and several face-to-face meetings, all supplemented by a provided textbook and investigations manual. DataStreme ECS takes an innovative approach to studying climate science, by exploring the fundamental science of Earth's climate system and addressing the societal impacts relevant to today's students and teachers. The course investigates natural and human forcings and feedbacks to examine mitigation and adaptation strategies for the future. Information and data from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA are used throughout the course, including in the online and printed investigations. In addition, participants differentiate between climate, climate variability, and climate change through the AMS Conceptual Energy Model, a basic climate model that follows the flow of energy from space to Earth and back. Participants also have access to NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual research scientists do. Throughout all of the courses, teachers have the opportunity to expand their knowledge in the geosciences and incorporate technology into their classrooms by utilizing state-of-the-art resources from NOAA, NASA, and other lead scientific organizations. Upon completion of each course, teachers receive three free graduate credits from SUNY Brockport. The DataStreme courses have directly trained almost 17,000 teachers, impacting over one million students. The DataStreme courses have increased teachers' geoscience knowledge, pointing them to the resources available online, and building their confidence in understanding dynamic Earth systems. Through courses modeled on scientific inquiry and fashioned to develop critical thinking skills, these teachers become a resource for their classrooms and colleagues.
The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results
NASA Astrophysics Data System (ADS)
Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.
2012-04-01
The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.
Tsushima, Yoko; Brient, Florent; Klein, Stephen A.; ...
2017-11-27
The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsushima, Yoko; Brient, Florent; Klein, Stephen A.
The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less
The Potential Impacts of a Scenario of C02-Induced Climatic Change on Ontafio, Canada.
NASA Astrophysics Data System (ADS)
Cohen, S. J.; Allsopp, T. R.
1988-07-01
In 1984, Environment Canada, Ontario Region, with financial and expert support from the Canadian Climate Program, initiated an interdisciplinary pilot study to investigate the potential impact, on Ontario, of a climate scenario which might be anticipated under doubling of atmospheric C02 conditions.There were many uncertainties involved in the climate scenario development and the impacts modeling. Time and resource constraints restricted this study to one climate scenario and to the selection of several available models that could be adapted to these impact studies. The pilot study emphasized the approach and process required to investigate potential regional impacts in an interdisciplinary manner, rather than to produce a forecast of the future.The climate scenario chosen was adapted from experimental model results produced by the Goddard Institute for Space Studies (GISS), coupled with current climate normals. Gridded monthly mean temperatures and precipitation were then used to develop projected biophysical effects. For example, existing physical and/or statistical models were adapted to determine impacts on the Great Lakes net basin supplies, levels and outflows, streamflow subbasin, snowfall and length of snow season.The second phase of the study addressed the impacts of the climate system scenario on natural resources and resource dependent activities. For example, the impacts of projected decreased lake levels and outflows on commercial navigation and hydroelectric generation were assessed. The impacts of the climate scenario on municipal water use, residential beating and cooling energy requirements opportunities and constraints for food production and tourism and recreation were determined quantitatively where models and methodologies were available, otherwise, qualitatively.First order interdependencies of the biophysical effects of the climate scenario and resource dependent activities were evaluated qualitatively in a workshop format culminating in a series of statements on (i) possible preventive, compensatory and substitution strategies and (ii) an assessment of current knowledge gaps and deficiencies, with recommendations for future areas of research.
Koch, Lisa K; Cunze, Sarah; Werblow, Antje; Kochmann, Judith; Dörge, Dorian D; Mehlhorn, Heinz; Klimpel, Sven
2016-03-01
Climatic changes raise the risk of re-emergence of arthropod-borne virus outbreaks globally. These viruses are transmitted by arthropod vectors, often mosquitoes. Due to increasing worldwide trade and tourism, these vector species are often accidentally introduced into many countries beyond their former distribution range. Aedes albopictus, a well-known disease vector, was detected for the first time in Germany in 2007, but seems to have failed establishment until today. However, the species is known to occur in other temperate regions and a risk for establishment in Germany remains, especially in the face of predicted climate change. Thus, the goal of the study was to estimate the potential distribution of Ae. albopictus in Germany. We used ecological niche modeling in order to estimate the potential habitat suitability for this species under current and projected future climatic conditions. According to our model, there are already two areas in western and southern Germany that appear suitable for Ae. albopictus under current climatic conditions. One of these areas lies in Baden-Wuerttemberg, the other in North-Rhine Westphalia in the Ruhr region. Furthermore, projections under future climatic conditions show an increase of the modeled habitat suitability throughout Germany. Ae. albopictus is supposed to be better acclimated to colder temperatures than other tropical vectors and thus, might become, triggered by climate change, a serious threat to public health in Germany. Our modeling results can help optimizing the design of monitoring programs currently in place in Germany.
Taking the pulse of mountains: Ecosystem responses to climatic variability
Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.
2003-01-01
An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.
NASA Astrophysics Data System (ADS)
Starheim, Fred John
The subject of global warming due to the human addition of greenhouse gases (GHGs) to the atmosphere has been the subject of considerable attention and research in the last two decades. The principal GHG of concern related to human influence is carbon dioxide (CO2). Emissions of this gas have grown rapidly since the industrial revolution in response to the energy and agricultural demands of an increasing world population. Concern exists that the atmospheric concentrations of GHGs may rise sufficiently high so as to impose dangerous interference with the climate system. Numerous methods and measures for the sequestration and avoidance of GHGs have been proposed with the object of decreasing the growth and ultimately stabilizing atmospheric GHG concentrations. The purpose of this work is to examine the effectiveness of one such measure-that of the feasibiltiy of large-scale reforestation/afforestation efforts to mitigate projected global warming. An energy balance global climate model was selected to conduct this work. The model is based on previous work of Pease (1987) in the Annals of the AAG, (77), 450-461, which has been expanded to include dimensions of time and space. The assumed reforestation/afforestation activities are based on a World Resources Institute study by Trexler and Haugen (1995) entitled Keeping it Green Tropical Forest Opportunities for Mitigating Climate Change. The forestry activities are assumed to take place in the tropics where a year-round growing season, plentiful rainfall, and relatively low land development costs should provide the most economically favorable conditions for instituting such a program. The climate model simulations examine the effect of carbon absorption and sequestration in isolation, and then in a subsequent step, examine the combined effect of carbon absorption/sequestration and albedo changes attendant with increased forest cover. Results of the modeling show only small temperature benefits (an approximate 0.1 degree C cooling) associated with implementation of this large-scale reforestation program versus a CO2 doubling case with no forestry programs. Of the approximate 0.1 degree C temperature change, the largest effect was due to CO2 sequestration with the surface albedo effect being negligible (less than 0.01 degree C).
NASA Technical Reports Server (NTRS)
2003-01-01
The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.
NASA Astrophysics Data System (ADS)
Ludwig, Ralf
2014-05-01
According to current climate projections, the Mediterranean area is at high risk for severe changes in the hydrological budget and extremes. With innovative scientific measures, integrated hydrological modeling and novel field geophysical field monitoring techniques, the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins; GA: 244151) assessed the impacts of climate change on the hydrology in seven basins in the Mediterranean area, in Italy, France, Turkey, Tunisia, Egypt and the Gaza Strip, and quantified uncertainties and risks for the main stakeholders of each test site. Intensive climate model auditing selected four regional climate models, whose data was bias corrected and downscaled to serve as climate forcing for a set of hydrological models in each site. The results of the multi-model hydro-climatic ensemble and socio-economic factor analysis were applied to develop a risk model building upon spatial vulnerability and risk assessment. Findings generally reveal an increasing risk for water resources management in the test sites, yet at different rates and severity in the investigated sectors, with highest impacts likely to occur in the transition months. Most important elements of this research include the following aspects: • Climate change contributes, yet in strong regional variation, to water scarcity in the Mediterranean; other factors, e.g. pollution or poor management practices, are regionally still dominant pressures on water resources. • Rain-fed agriculture needs to adapt to seasonal changes; stable or increasing productivity likely depends on additional irrigation. • Tourism could benefit in shoulder seasons, but may expect income losses in the summer peak season due to increasing heat stress. • Local & regional water managers and water users, lack, as yet, awareness of climate change induced risks; emerging focus areas are supplies of domestic drinking water, irrigation, hydropower and livestock. • Data and knowledge gaps in climate change impact and risk assessment are still widespread and ask for extended and coordinated monitoring programs. In order to discover, visualize and provide access the results of the project, the CLIMB-Portal has been established, serving as a platform for dissemination of project results, including communication and planning for local and regional stakeholders.
MIDWESTERN REGIONAL CENTER OF THE DOE NATIONAL INSTITUTE FOR CLIMATIC CHANGE RESEARCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Andrew J.
2014-02-28
The goal of NICCR (National Institute for Climatic Change Research) was to mobilize university researchers, from all regions of the country, in support of the climatic change research objectives of DOE/BER. The NICCR Midwestern Regional Center (MRC) supported work in the following states: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The MRC of NICCR was able to support nearly $8 million in climatic change research, including $6,671,303 for twenty projects solicited and selected by the MRC over five requests for proposals (RFPs) and $1,051,666 for the final year of ten projectsmore » from the discontinued DOE NIGEC (National Institute for Global Environmental Change) program. The projects selected and funded by the MRC resulted in 135 peer-reviewed publications and supported the training of 25 PhD students and 23 Masters students. Another 36 publications were generated by the final year of continuing NIGEC projects supported by the MRC. The projects funded by the MRC used a variety of approaches to answer questions relevant to the DOE’s climate change research program. These included experiments that manipulated temperature, moisture and other global change factors; studies that sought to understand how the distribution of species and ecosystems might change under future climates; studies that used measurements and modeling to examine current ecosystem fluxes of energy and mass and those that would exist under future conditions; and studies that synthesized existing data sets to improve our understanding of the effects of climatic change on terrestrial ecosystems. In all of these efforts, the MRC specifically sought to identify and quantify responses of terrestrial ecosystems that were not well understood or not well modeled by current efforts. The MRC also sought to better understand and model important feedbacks between terrestrial ecosystems, atmospheric chemistry, and regional and global climate systems. The broad variety of projects the MRC has supported gave us a unique opportunity to greatly improve our ability to predict the future health, composition and function of important agricultural and natural terrestrial ecosystems within the Midwestern Region.« less
National Climate Program: Early achievements and future directions
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the National Climate Program since 1978 are reviewed, and outlines new directions which should be emphasized over the next five years or so. These are discussed under the subentities of climate system research; climate impacts; and climatic data, information, and services.
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.
2016-02-01
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.
Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework
NASA Astrophysics Data System (ADS)
Achieng, K. O.; Zhu, J.
2017-12-01
There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?
Increasing Scientific Literacy at Minority Serving Institutions Nationwide
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Moran, J. M.; Mills, E. W.; Nugnes, K. A.
2012-12-01
It is vital to increase the scientific literacy of all students, including those at minority serving institutions (MSIs). With support from NSF, NASA, and NOAA, the American Meteorological Society (AMS) Education Program has developed scientifically authentic, introductory, undergraduate courses that engage students in the geosciences through the use of real-world environmental data. AMS Climate, Weather, and Ocean Studies have already been adopted by more than 600 institutions across the U.S. With additional support from NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the first AMS Climate Studies Diversity Project was held in May 2012 in Washington, D.C. Thirty faculty members from 16 different states, Puerto Rico, and Washington, D.C. attended the week-long workshop. They were immersed in the course materials, received presentations from high-level speakers such as Dr. Thomas Karl, Rear Admiral David Titley, and Dr. Peter Hildebrand, and were trained as change agents for their local institution. Afterwards, faculty work within their MSI to introduce and enhance geoscience curricula and offer the AMS Climate Studies course in the year following workshop attendance. They are also encouraged to implement the AMS Weather and Ocean Studies courses. Subsequent workshops will be held throughout the next 3 years, targeting 100 MSIs. The AMS Climate Studies Diversity Project followed the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects. Evaluation results are extremely favorable with 96% of the participants rating the workshop as outstanding and all would recommend the workshop to other AMS Climate Studies faculty. More in depth results will be discussed in our presentation. AMS Climate Studies explores the fundamental science of Earth's climate system while addressing the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, participants use the AMS Conceptual Energy Model to differentiate between climate variability and climate change. Additionally, the AMS Education Program, James Madison University (JMU), and Los Angeles Valley College (LAVC), are working in collaboration with the Consortium for Ocean Leadership/Integrated Ocean Drilling Program's (IODP) Deep Earth Academy (DEA) to integrate investigations of ocean core data of paleoclimates into course curricula of MSIs. In June 2012, this team participated in a workshop to gain direct experience with ocean core investigations. The goal is to form a trained team to help guide the future, large-scale integration of scientific ocean drilling paleoclimate research into existing MSI geoscience courses, and the development of new course offerings. The AMS is excited to bring meteorology, oceanography, and climate science course work to more students, strengthening the pathway towards advanced geoscience study and careers.
The Software Architecture of Global Climate Models
NASA Astrophysics Data System (ADS)
Alexander, K. A.; Easterbrook, S. M.
2011-12-01
It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.
Graves, D.; Maule, A.
2014-01-01
The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.
Spatial and Climate Literacy: Connecting Urban and Rural Students
NASA Astrophysics Data System (ADS)
Boger, R. A.; Low, R.; Mandryk, C.; Gorokhovich, Y.
2013-12-01
Through a collaboration between the University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, four independent but linked modules were developed and piloted in courses offered at Brooklyn College and UNL simultaneously. Module content includes climate change science and literacy principles, using geospatial technologies (GIS, GPS and remote sensing) as a vehicle to explore issues associated with global, regional, and local climate change in a concrete, quantitative and visual way using Internet resources available through NASA, NOAA, USGS, and a variety of universities and organizations. The materials take an Earth system approach and incorporate sustainability, resilience, water and watersheds, weather and climate, and food security topics throughout the semester. The research component of the project focuses on understanding the role of spatial literacy and authentic inquiry based experiences in climate change understanding and improving confidence in teaching science. In particular, engaging learners in both climate change science and GIS simultaneously provides opportunities to examine questions about the role that data manipulation, mental representation, and spatial literacy plays in students' abilities to understand the consequences and impacts of climate change. Pre and post surveys were designed to discern relationships between spatial cognitive processes and effective acquisition of climate change science concepts in virtual learning environments as well as alignment of teacher's mental models of nature of science and climate system dynamics to scientific models. The courses will again be offered simultaneously in Spring 2014 at Brooklyn College and UNL. Evaluation research will continue to examine the connections between spatial and climate literacy and teacher's mental models (via qualitative textual analysis using MAXQDA text analysis, and UCINET social network analysis programs) as well as how urban-rural learning interactions may influence climate literacy.
Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.
NASA Astrophysics Data System (ADS)
Buja, L.
2016-12-01
Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.
Assessing the agricultural costs of climate change: Combining results from crop and economic models
NASA Astrophysics Data System (ADS)
Howitt, R. E.
2016-12-01
Any perturbation to a resource system used by humans elicits both technical and behavioral changes. For agricultural production, economic criteria and their associated models are usually good predictors of human behavior in agricultural production. Estimation of the agricultural costs of climate change requires careful downscaling of global climate models to the level of agricultural regions. Plant growth models for the dominant crops are required to accurately show the full range of trade-offs and adaptation mechanisms needed to minimize the cost of climate change. Faced with the shifts in the fundamental resource base of agriculture, human behavior can either exacerbate or offset the impact of climate change on agriculture. In addition, agriculture can be an important source of increased carbon sequestration. However the effectiveness and timing of this sequestration depends on agricultural practices and farmer behavior. Plant growth models and economic models have been shown to interact in two broad fashions. First there is the direct embedding of a parametric representation plant growth simulations in the economic model production function. A second and more general approach is to have plant growth and crop process models interact with economic models as they are simulated. The development of more general wrapper programs that transfer information between models rapidly and efficiently will encourage this approach. However, this method does introduce complications in terms of matching up disparate scales both in time and space between models. Another characteristic behavioral response of agricultural production is the distinction between the intensive margin which considers the quantity of resource, for example fertilizer, used for a given crop, and the extensive margin of adjustment that measures how farmers will adjust their crop proportions in response to climate change. Ideally economic models will measure the response to both these margins of adjustment simultaneously. The paper will briefly discuss some examples of the direct embedding of results from plant growth models in economic models.
The Arctic Climate Modeling Program: K-12 Geoscience Professional Development for Rural Educators
NASA Astrophysics Data System (ADS)
Bertram, K. B.
2009-12-01
Helping teachers and students connect with scientists is the heart of the Arctic Climate Modeling Program (ACMP), funded from 2005-09 by the National Science Foundation’s Innovative Technology Experience for Students and Teachers. ACMP offered progressive yearlong science, technology and math (STM) professional development that prepared teachers to train youth in workforce technologies used in Arctic research. ACMP was created for the Bering Strait School District, a geographically isolated area with low standardized test scores, high dropout rates, and poverty. Scientists from around the globe have converged in this region and other areas of the Arctic to observe and measure changes in climate that are significant, accelerating, and unlike any in recorded history. Climate literacy (the ability to understand Earth system science and to make scientifically informed decisions about climate changes) has become essential for this population. Program resources were designed in collaboration with scientists to mimic the processes used to study Arctic climate. Because the Bering Strait School District serves a 98 percent Alaska Native student population, ACMP focused on best practices shown to increase the success of minority students. Significant research indicates that Alaska Native students succeed academically at higher rates when instruction addresses topics of local interest, links education to the students’ physical and cultural environment, uses local knowledge and culture in the curriculum, and incorporates hands-on, inquiry-based lessons in the classroom. A seven-partner consortium of research institutes and Alaska Native corporations created ACMP to help teachers understand their role in nurturing STM talent and motivating students to explore geoscience careers. Research underscores the importance of increasing school emphasis in content areas, such as climate, that facilitate global awareness and civic responsibility, and that foster critical thinking and other 21st century learning skills. Climate studies offer insight into a broad cross-section of STM careers, and provide a natural forum for helping students develop problem-solving skills inherent in STM research. Climate research involves sophisticated technology, a complex set of 21st century skills, and the ability to collaborate with an international community. Professional development that trains teachers in these skills is essential considering that recent research shows 90 percent of U.S. secondary students are taught Earth and physical science by a teacher lacking STM certification. ACMP summative evaluation posed three questions: 1) Did ACMP training meet teachers’ needs? 2) Did ACMP involvement result in more effective teachers and teaching? 3) Did participation in ACMP result in higher Bering Strait School District student achievement? Teachers and students were evaluated using a mixed method design incorporating descriptive components with a before/after design to measure what teachers and students learned. Community members, 165 teachers, and 1,738 individual students participated in the program, which was successful in its goals overall.
IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest
NASA Technical Reports Server (NTRS)
Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua
2016-01-01
Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.
Quantifying How Climate Affects Vegetation in the Amazon Rainforest
NASA Astrophysics Data System (ADS)
Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.
2016-12-01
Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Bogomolov, Vasily; Gordova, Yulia; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2014-05-01
Volumes of environmental data archives are growing immensely due to recent models, high performance computers and sensors development. It makes impossible their comprehensive analysis in conventional manner on workplace using in house computing facilities, data storage and processing software at hands. One of possible answers to this challenge is creation of virtual research environment (VRE), which should provide a researcher with an integrated access to huge data resources, tools and services across disciplines and user communities and enable researchers to process structured and qualitative data in virtual workspaces. VRE should integrate data, network and computing resources providing interdisciplinary climatic research community with opportunity to get profound understanding of ongoing and possible future climatic changes and their consequences. Presented are first steps and plans for development of VRE prototype element aimed at regional climatic and ecological monitoring and modeling as well as at continuous education and training support. Recently developed experimental software and hardware platform aimed at integrated analysis of heterogeneous georeferenced data "Climate" (http://climate.scert.ru/, Gordov et al., 2013; Shulgina et al., 2013; Okladnikov et al., 2013) is used as a VRE element prototype and approach test bench. VRE under development will integrate on the base of geoportal distributed thematic data storage, processing and analysis systems and set of models of complex climatic and environmental processes run on supercomputers. VRE specific tools are aimed at high resolution rendering on-going climatic processes occurring in Northern Eurasia and reliable and found prognoses of their dynamics for selected sets of future mankind activity scenaria. Currently the VRE element is accessible via developed geoportal at the same link (http://climate.scert.ru/) and integrates the WRF and «Planet Simulator» models, basic reanalysis and instrumental measurements data and support profound statistical analysis of storaged and modeled on demand data. In particular, one can run the integrated models, preprocess modeling results data, using dedicated modules for numerical processing perform analysys and visualize obtained results. New functionality recently has been added to the statistical analysis tools set aimed at detailed studies of climatic extremes occurring in Northern Asia. The VRE element is also supporting thematic educational courses for students and post-graduate students of the Tomsk State University. In particular, it allow students to perform on-line thematic laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example (Gordova et al, 2013). We plan to expand the integrated models set and add comprehensive surface and Arctic Ocean description. Developed VRE element "Climate" provides specialists involved into multidisciplinary research projects with reliable and practical instruments for integrated research of climate and ecosystems changes on global and regional scales. With its help even a user without programming skills can process and visualize multidimensional observational and model data through unified web-interface using a common graphical web-browser. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, grant 14-05-00502, and integrated project SB RAS 131. References 1. Gordov E.P., Lykosov V.N., Krupchatnikov V.N., Okladnikov I.G., Titov A.G., Shulgina T.M. Computationaland information technologies for monitoring and modeling of climate changes and their consequences. Novosibirsk: Nauka, Siberian branch, 2013. - 195 p. (in Russian) 2. T.M. Shulgina, E.P. Gordov, I.G. Okladnikov, A.G., Titov, E.Yu. Genina, N.P. Gorbatenko, I.V. Kuzhevskaya,A.S. Akhmetshina. Software complex for a regional climate change analysis. // Vestnik NGU. Series: Information technologies. 2013. Vol. 11. Issue 1. P. 124-131. (in Russian) 3. I.G. Okladnikov, A.G. Titov, T.M. Shulgina, E.P. Gordov, V.Yu. Bogomolov, Yu.V. Martynova, S.P. Suschenko,A.V. Skvortsov. Software for analysis and visualization of climate change monitoring and forecasting data //Numerical methods and programming, 2013. Vol. 14. P. 123-131.(in Russian) 4. Yu.E. Gordova, E.Yu. Genina, V.P. Gorbatenko, E.P. Gordov, I.V. Kuzhevskaya, Yu.V. Martynova , I.G. Okladnikov, A.G. Titov, T.M. Shulgina, N.K. Barashkova Support of the educational process in modern climatology within the web-gis platform «Climate». Open and Distant Education. 2013, No 1(49)., P. 14-19.(in Russian)
Climate programs update: USDA Southwest Regional Climate Hub update
USDA-ARS?s Scientific Manuscript database
PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...
2011-05-01
of monitoring may be necessary to fully characterize and model the impact of major climatic events (e.g., tropical cyclones, major droughts ) and...stressors (past, present, and future) at local and regional scales; take account of extreme climatic events (e.g., hurricanes, droughts ); and integrate...the longleaf pine ( Pinus palustris), savannas, and pocosins (shrub bog) that dominate MCBCL’s terrestrial environments. Variation in the biota and
CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps
NASA Astrophysics Data System (ADS)
Pallamraju, D.; Kozyra, J.; Basu, S.
Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future
What Has Caused Desertification in China?
Feng, Qi; Ma, Hua; Jiang, Xuemei; Wang, Xin; Cao, Shixiong
2015-11-03
Desertification is the result of complex interactions among various factors, including climate change and human activities. However, previous research generally focused on either meteorological factors associated with climate change or human factors associated with human activities, and lacked quantitative assessments of their interaction combined with long-term monitoring. Thus, the roles of climate change and human factors in desertification remain uncertain. To understand the factors that determine whether mitigation programs can contribute to desertification control and vegetation cover improvements in desertified areas of China, and the complex interactions that affect their success, we used a pooled regression model based on panel data to calculate the relative roles of climate change and human activities on the desertified area and on vegetation cover (using the normalized-difference vegetation index, NDVI, which decreases with increasing desertification) from 1983 to 2012. We found similar effect magnitudes for socioeconomic and environmental factors for NDVI but different results for desertification: socioeconomic factors were the dominant factor that affected desertification, accounting for 79.3% of the effects. Climate change accounted for 46.6 and 20.6% of the effects on NDVI and desertification, respectively. Therefore, desertification control programs must account for the integrated effects of both socioeconomic and natural factors.
What Has Caused Desertification in China?
Feng, Qi; Ma, Hua; Jiang, Xuemei; Wang, Xin; Cao, Shixiong
2015-01-01
Desertification is the result of complex interactions among various factors, including climate change and human activities. However, previous research generally focused on either meteorological factors associated with climate change or human factors associated with human activities, and lacked quantitative assessments of their interaction combined with long-term monitoring. Thus, the roles of climate change and human factors in desertification remain uncertain. To understand the factors that determine whether mitigation programs can contribute to desertification control and vegetation cover improvements in desertified areas of China, and the complex interactions that affect their success, we used a pooled regression model based on panel data to calculate the relative roles of climate change and human activities on the desertified area and on vegetation cover (using the normalized-difference vegetation index, NDVI, which decreases with increasing desertification) from 1983 to 2012. We found similar effect magnitudes for socioeconomic and environmental factors for NDVI but different results for desertification: socioeconomic factors were the dominant factor that affected desertification, accounting for 79.3% of the effects. Climate change accounted for 46.6 and 20.6% of the effects on NDVI and desertification, respectively. Therefore, desertification control programs must account for the integrated effects of both socioeconomic and natural factors. PMID:26525278
NASA Astrophysics Data System (ADS)
Tchigriaeva, E.; Lott, C.; Rollins, K.
2013-12-01
We analyze urban residential water demand for Southern Nevada as a part of the Nevada Infrastructure for Climate Change Science, Education, and Outreach project. The Nevada Climate Change project is a statewide interdisciplinary program which has launched joint research, education, and outreach on the effects of regional climate change on ecosystem services in Nevada with a particular focus on water resources. We estimate a random effect multiple regression model of urban residential water demand in order to better understand how residential water use is impacted by weather conditions and landscape characteristics and ultimately to inform predictions of urban water demand. The project develops a methodology of unification for several datasets from various sources including the Las Vegas Valley Water District (LVVWD), the Southern Nevada Water Authority (SNWA), Clark County Assessor, and the National Climatic Data Center (NCDC) resulting in a sample of 3,671,983 observations for 62,237 households with uninterrupted water use history for Las Vegas urban residents for the period from February 2007 to December 2011. The presented results (i) are significantly robust and in accordance with the economics theories, (ii) support basic empirical knowledge of weather and surface influence on water outdoor consumption, (iii) suggest quantitative measurements for predicting future water use due to climate/temperature changes as well as landscape redesign practices, and (iv) provide quantitative evaluation of the effectiveness of the existing water conservation programs by the Southern Nevada Water Authority (SNWA). The further study of conservation programs and analysis of interactions between surfaces and weather using the developed approach looks promising.
Climate Literacy and Cyberlearning: Emerging Platforms and Programs
NASA Astrophysics Data System (ADS)
McCaffrey, M. S.; Wise, S. B.; Buhr, S. M.
2009-12-01
With the release of the Essential Principles of Climate Science Literacy: A Guide for Individuals and Communities in the Spring of 2009, an important step toward an shared educational and communication framework about climate science was achieved. Designed as a living document, reviewed and endorsed by the thirteen federal agencies in the U.S. Climate Change Science Program (now U.S. Global Change Research Program), the Essential Principles of Climate Literacy complement other Earth system literacy efforts. A variety of emerging efforts have begun to build on the framework using a variety of cyberlearning tools, including an online Climate Literacy course developed by Education and Outreach group at CIRES, the Cooperative Institute for Research in Environmental Sciences, and the Independent Learning program of the Continuing Education Division at the University of Colorado at Boulder. The online course, piloted during the Summer of 2009 with formal classroom teachers and informal science educators, made use of the online Climate Literacy Handbook, which was developed by CIRES Education and Outreach and the Encyclopedia of Earth, which is supported by the National Council for Science and the Environment and hosted by Boston University. This paper will explore challenges and opportunities in the use of cyberlearning tools to support climate literacy efforts, highlight the development of the online course and handbook, and note related emerging cyberlearning platforms and programs for climate literacy, including related efforts by the Climate Literacy Network, the NASA Global Climate Change Education programs, the National STEM Education Distributed Learning (NSDL) and AAAS Project 2061.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Brewington, L.; Jaspers, K.
2016-12-01
To build an effective bridge from the climate modeling community to natural resource managers, we assessed the existing landscape to see where different groups diverge in their perceptions of climate data and needs. An understanding of a given community's shared knowledge and differences can help design more actionable science. Resource managers in Hawaii are eager to have future climate projections at spatial scales relevant to the islands. National initiatives to downscale climate data often exclude US insular regions, so researchers in Hawaii have generated regional dynamically and statistically downscaled projections. Projections of precipitation diverge, however, leading to difficulties in communication and use. Recently, a two day workshop was held with scientists and managers to evaluate available models and determine a set of best practices for moving forward with decision-relevant downscaling in Hawaii. To seed the discussion, the Pacific Regional Integrated Sciences and Assessments (RISA) program conducted a pre-workshop survey (N=65) of climate modelers and freshwater, ecosystem, and wildfire managers working in Hawaii. Scientists reported spending less than half of their time on operational research, although the majority was eager to partner with managers on specific projects. Resource managers had varying levels of familiarity with downscaled climate projections, but reported needing more information about uncertainty for decision making, and were less interested in the technical model details. There were large differences between groups of managers, with 41.7% of freshwater managers reporting that they used climate projections regularly, while a majority of ecosystem and wildfire managers reported having "no familiarity". Scientists and managers rated which spatial and temporal scales were most relevant to decision making. Finally, when asked to compare how confident they were in projections of specific climate variables between the dynamical and statistical data, 80-90% of managers responded that they had no opinion. Workshop attendees were very interested in the survey results, adding to evidence of a need for sustained engagement between modeler and user groups, as well as different strategies for working with different types of resource managers.
Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems
NASA Astrophysics Data System (ADS)
Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.
2012-12-01
Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions. Specifics of the importance of the scientific methodology e.g. RCM ensemble modeling (using OLAM, RAMS and WRF); combining RCM runs with agriculture modeling system (specifically APSIM); bringing different RCM setups to as close as possible common framework, etc., and important science results (e.g. the significance of Gulf of CA SST for precipitation over dry regions; the AR landfall impacts on precipitation; etc.) are described in our work. We emphasize that the methodology is significant in order to advance the state of the art climate change impacts at regional levels; and to implement our methodology for realistic impact analysis on the natural and managed (agriculture) ecosystems, beyond the SW US.
Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.
Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang
2017-06-01
Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.
NASA Astrophysics Data System (ADS)
Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.
2015-12-01
It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to promote the utilization of environmental information and to develop human resources while using DIAS (Data Integration and Analysis System) which has been built by MEXT.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Penner, Joyce E.
2017-01-01
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir
2010-05-01
The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.
This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 Californiamore » climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.« less
Adaptation to climate change: changes in farmland use and stocking rate in the U.S.
Mu, Jianhong E.; McCarl, Bruce A.; Wein, Anne M.
2013-01-01
This paper examines possible adaptations to climate change in terms of pasture and crop land use and stocking rate in the United States (U.S.). Using Agricultural Census and climate data in a statistical model, we find that as temperature and precipitation increases agricultural commodity producers respond by reducing crop land and increasing pasture land. In addition, cattle stocking rate decreases as the summer Temperature-humidity Index (THI) increases and summer precipitation decreases. Using the statistical model with climate data from four General Circulation Models (GCMs), we project that land use shifts from cropping to grazing and the stocking rate declines, and these adaptations are more pronounced in the central and the southeast regions of the U.S. Controlling for other farm production variables, crop land decreases by 6 % and pasture land increases by 33 % from the baseline. Correspondingly, the associated economic impact due to adaptation is around -14 and 29 million dollars to crop producers and pasture producers by the end of this century, respectively. The national and regional results have implications for farm programs and subsidy policies.
Medium term hurricane catastrophe models: a validation experiment
NASA Astrophysics Data System (ADS)
Bonazzi, Alessandro; Turner, Jessica; Dobbin, Alison; Wilson, Paul; Mitas, Christos; Bellone, Enrica
2013-04-01
Climate variability is a major source of uncertainty for the insurance industry underwriting hurricane risk. Catastrophe models provide their users with a stochastic set of events that expands the scope of the historical catalogue by including synthetic events that are likely to happen in a defined time-frame. The use of these catastrophe models is widespread in the insurance industry but it is only in recent years that climate variability has been explicitly accounted for. In the insurance parlance "medium term catastrophe model" refers to products that provide an adjusted view of risk that is meant to represent hurricane activity on a 1 to 5 year horizon, as opposed to long term models that integrate across the climate variability of the longest available time series of observations. In this presentation we discuss how a simple reinsurance program can be used to assess the value of medium term catastrophe models. We elaborate on similar concepts as discussed in "Potential Economic Value of Seasonal Hurricane Forecasts" by Emanuel et al. (2012, WCAS) and provide an example based on 24 years of historical data of the Chicago Mercantile Hurricane Index (CHI), an insured loss proxy. Profit and loss volatility of a hypothetical primary insurer are used to score medium term models versus their long term counterpart. Results show that medium term catastrophe models could help a hypothetical primary insurer to improve their financial resiliency to varying climate conditions.
NASA Astrophysics Data System (ADS)
Tian, B.
2017-12-01
The Coupled Model Intercomparison Project (CMIP) has become a central element of national and international assessments of climate change. The CMIP Phase 6 (CMIP6) model experiments will be the foundation for the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), scheduled for publication around 2021. To increase the fidelity of the IPCC AR6, the CMIP6 model experiments need rigorous evaluation. The "Observations for Model Intercomparison Projects" (Obs4MIPs) collects, organizes and publishes various well-established satellite data sets for CMIP model evaluation. The Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU), the NASA's temperature and humidity sounding system on the Aqua satellite, has provided over a decade-long high-quality tropospheric temperature and moisture sounding data. Under the current support of the NASA Data for Operation and Assessment (NDOA) program, we are generating and publishing the AIRS Obs4MIPs V2 data set including the monthly mean tropospheric air temperature, specific humidity, and relative humidity profiles from September 2002 to September 2016. This will provide the latest AIRS data in Obs4MIPs and assist the climate modeling community to better use the AIRS data for CMIP (including CMIP3, CMIP5, and CMIP6) model evaluation. In this presentation, we will discuss the AIRS Obs4MIPs V2 data set and their possible use for CMIP6 climate model evaluation.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Randall, D.; Denning, S.; Russell, R.; Gardiner, L.; Hatheway, B.; Genyuk, J.; Bergman, J.
2008-12-01
The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its third year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences through its affiliation with the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). W2U web pages are written at three levels in English and Spanish. This information targets learners at all levels, educators, and families who seek to understand and share resources and information about the nature of weather and the climate system, and career role models from related research fields. This resource can also be helpful to educators who are building bridges in the classroom between the sciences, the arts, and literacy. Visitors to the W2U's CMMAP web portal can access a beautiful new clouds image gallery; information about each cloud type and the atmospheric processes that produce them; a Clouds in Art interactive; collections of weather-themed poetry, art, and myths; links to games and puzzles for children; and extensive classroom- ready resources and activities for K-12 teachers. Biographies of CMMAP scientists and graduate students are featured. Basic science concepts important to understanding the atmosphere, such as condensation, atmosphere pressure, lapse rate, and more have been developed, as well as 'microworlds' that enable students to interact with experimental tools while building fundamental knowledge. These resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.
NASA Astrophysics Data System (ADS)
Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.
2014-12-01
A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and frequency. The complete calibrated HSPF model will use future climate scenarios to make projections of potential hydrologic and sediment trends to the SFBD from 2000-2100.
An ARM data-oriented diagnostics package to evaluate the climate model simulation
NASA Astrophysics Data System (ADS)
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
Integrated Models of School-Based Prevention: Logic and Theory
ERIC Educational Resources Information Center
Domitrovich, Celene E.; Bradshaw, Catherine P.; Greenberg, Mark T.; Embry, Dennis; Poduska, Jeanne M.; Ialongo, Nicholas S.
2010-01-01
School-based prevention programs can positively impact a range of social, emotional, and behavioral outcomes. Yet the current climate of accountability pressures schools to restrict activities that are not perceived as part of the core curriculum. Building on models from public health and prevention science, we describe an integrated approach to…
Performance of the SWEEP model affected by estimates of threshold friction velocity
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) is a process-based model and needs to be verified under a broad range of climatic, soil, and management conditions. Occasional failure of the WEPS erosion submodel (Single-event Wind Erosion Evaluation Program or SWEEP) to simulate erosion in the Columbia Pl...
Daniel B. Fagre; David L. Peterson
2000-01-01
An integrated program of ecosystem modeling and extensive field studies at Glacier and Olympic National Parks has quantified many of the ecological processes affected by climatic variability and disturbance. Models have successfully estimated snow distribution, annual watershed discharge, and stream temperature variation based on seven years of monitoring. Various...
NASA Astrophysics Data System (ADS)
Lappe, M.; Flora, J.; Saphir, M.; Roser-Renouf, C.; Maibach, E.; Leiserowitz, A.
2013-12-01
The Alliance for Climate Education educates high school students on the science of climate change and inspires them to create effective solutions. Since 2009, ACE has reached over 1.6 million students nationwide with its multi media assembly presentation. In this paper, we evaluate the climate science knowledge, beliefs, attitudes, behavior and communication impact of the ACE Assembly program in a random sample of 49 schools (from population of 779) and a panel of 1,241 high school students. Pre and post assembly surveys composed of questions from the Global Warming Six Americas segmentation and intervention specific questions were administered in classrooms. We demonstrate that exposure to climate science in an engaging edutainment format changes youths' beliefs, involvement, and behavior positively and moves them to more climate science literate audience segments. The net impact of scaled and engaging programs for youth could be a population shift in climate science literacy and positive engagement in the issue of climate change. In addition, such programs can empower youth for deeper engagement in school programs, personal action, political and consumer advocacy.
ERIC Educational Resources Information Center
Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.
2016-01-01
To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…
NASA Astrophysics Data System (ADS)
Williams, D. N.
2015-12-01
Progress in understanding and predicting climate change requires advanced tools to securely store, manage, access, process, analyze, and visualize enormous and distributed data sets. Only then can climate researchers understand the effects of climate change across all scales and use this information to inform policy decisions. With the advent of major international climate modeling intercomparisons, a need emerged within the climate-change research community to develop efficient, community-based tools to obtain relevant meteorological and other observational data, develop custom computational models, and export analysis tools for climate-change simulations. While many nascent efforts to fill these gaps appeared, they were not integrated and therefore did not benefit from collaborative development. Sharing huge data sets was difficult, and the lack of data standards prevented the merger of output data from different modeling groups. Thus began one of the largest-ever collaborative data efforts in climate science, resulting in the Earth System Grid Federation (ESGF), which is now used to disseminate model, observational, and reanalysis data for research assessed by the Intergovernmental Panel on Climate Change (IPCC). Today, ESGF is an open-source petabyte-level data storage and dissemination operational code-base that manages secure resources essential for climate change study. It is designed to remain robust even as data volumes grow exponentially. The internationally distributed, peer-to-peer ESGF "data cloud" archive represents the culmination of an effort that began in the late 1990s. ESGF portals are gateways to scientific data collections hosted at sites around the globe that allow the user to register and potentially access the entire ESGF network of data and services. The growing international interest in ESGF development efforts has attracted many others who want to make their data more widely available and easy to use. For example, the World Climate Research Program, which provides governance for CMIP, has now endorsed the ESGF software foundation to be used for ~70 other model intercomparison projects (MIPs), such as obs4MIPs, TAMIP, CFMIP, and GeoMIP. At present, more than 40 projects disseminate their data via ESGF.
Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review
NASA Astrophysics Data System (ADS)
Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van
2013-04-01
Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118
Making Scientific Data Available to Adaptation Practitioners - the Wallace Initiative
NASA Astrophysics Data System (ADS)
Price, J. T.; Warren, R. F.; Vanderwal, J.; Shoo, L.; Ramirez, J.; Jarvis, A.; Goswami, S.
2010-12-01
Conservation strategies have largely been developed under an assumption of a stationary climate. These strategies may fail with changing climates, especially when acting with existing anthropogenic pressures. The Wallace Initiative is a global effort to rapidly assess the potential impacts of climate change on nearly 50,000 plant and animal species. Climate change data from the Community Integrated Assessment System (CIAS) is then used to look at different future climate change scenarios. Governments and conservation organizations have dedicated extensive resources to protect biodiversity. These investments are at risk and efforts will need to take into account a dynamic climate. We used the species models to calculate projected changes in percent species richness - looking at areas likely to be refugia and areas likely to undergo the greatest loss. This information can provide guidance to natural resource managers on how they may need to adapt to climate change to avoid biodiversity loss. Managers will also need to take into account issues with spatial scale. While these models might project a species being “lost” in a 0.5° x 0.5° grid, thermal buffering (e.g., taking into account elevation, slope, aspect, distance to stream and canopy cover) provides guidance on areas that may allow a species to persist at more local scales (1-5 km). This approach may help alleviate the issues of downscaling climate and climate change data in data-poor areas. Understanding the vulnerability of biodiversity requires an understanding of the climate and projected climate changes. Thus, developing long term adaptation options requires robust vulnerability analyses at appropriate scales. These assessments are often hindered by data quality and availability, capacity and an understanding of appropriate scales, methods and tools. The program ClimaScope has been designed to help provide better access to climate data for modelers and practitioners, data that has also been linked to impacts. ClimaScope is a data visualization engine providing easy access to data without running the models. For a selected GCM pattern and emissions scenario, ClimaScope provides maps, charts and data on the projected climate changes with some indication of uncertainty range. Variables available include terrestrial temperature change (maximum, minimum and average), total precipitation, wet-day frequency, and sea-surface temperature. This data can be presented both as observed climate and/or projected climate for a user defined time period. Some of these data have been used in the Wallace Initiative and data from the Wallace Initiative are also available to users. So, practitioners can select family, genus, species, dispersal model, climate model, emission model, and time slice and get maps showing projected range of the species over time. These tools have been designed to help make scientific data more readily available to adaptation practitioners around the world, especially in developing countries.
NASA Astrophysics Data System (ADS)
Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.
2017-12-01
The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate uncertainty.
ERIC Educational Resources Information Center
Dupigny-Giroux, Lesley-Ann; Toolin, Regina; Hogan, Stephen; Fortney, Michael D.
2012-01-01
In July 2008, a new professional development program called Satellites, Weather and Climate (SWAC) began at the University of Vermont. Its goal was to enhance the competency of in-service K-12 science and mathematics Vermont teachers in the atmospheric, climate, and geospatial sciences. The pilot program ran until 2010, during which time 14…
The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng; Klein, Stephen A.
Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the conceptmore » of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are difficult for the CloudSat radar to detect due to surface contamination (Mace et al. 2007; Marchand et al. 2008). Therefore, the ARM ground-based cloud observations can provide important observations of clouds that complement measurements from space.« less
Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States
NASA Astrophysics Data System (ADS)
Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.
2013-12-01
Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate the number of annual excess deaths attributable to increased summer temperatures. Warmer average temperatures are expected to cause 173 additional deaths due to cardiovascular stress, while higher minimum temperatures will cause 67 additional deaths. This work particularly improves on the spatial resolution of published analyses of heat-related mortality in the US.
Climate threat on the Macaronesian endemic bryophyte flora.
Patiño, Jairo; Mateo, Rubén G; Zanatta, Florian; Marquet, Adrien; Aranda, Silvia C; Borges, Paulo A V; Dirkse, Gerard; Gabriel, Rosalina; Gonzalez-Mancebo, Juana M; Guisan, Antoine; Muñoz, Jesús; Sim-Sim, Manuela; Vanderpoorten, Alain
2016-07-05
Oceanic islands are of fundamental importance for the conservation of biodiversity because they exhibit high endemism rates coupled with fast extinction rates. Nowhere in Europe is this pattern more conspicuous than in the Macaronesian biogeographic region. A large network of protected areas within the region has been developed, but the question of whether these areas will still be climatically suitable for the globally threatened endemic element in the coming decades remains open. Here, we make predictions on the fate of the Macaronesian endemic bryophyte flora in the context of ongoing climate change. The potential distribution of 35 Macaronesian endemic bryophyte species was assessed under present and future climate conditions using an ensemble modelling approach. Projections of the models under different climate change scenarios predicted an average decrease of suitable areas of 62-87% per species and a significant elevational increase by 2070, so that even the commonest species were predicted to fit either the Vulnerable or Endangered IUCN categories. Complete extinctions were foreseen for six of the studied Macaronesian endemic species. Given the uncertainty regarding the capacity of endemic species to track areas of suitable climate within and outside the islands, active management associated to an effective monitoring program is suggested.
Climate threat on the Macaronesian endemic bryophyte flora
Patiño, Jairo; Mateo, Rubén G.; Zanatta, Florian; Marquet, Adrien; Aranda, Silvia C.; Borges, Paulo A. V.; Dirkse, Gerard; Gabriel, Rosalina; Gonzalez-Mancebo, Juana M.; Guisan, Antoine; Muñoz, Jesús; Sim-Sim, Manuela; Vanderpoorten, Alain
2016-01-01
Oceanic islands are of fundamental importance for the conservation of biodiversity because they exhibit high endemism rates coupled with fast extinction rates. Nowhere in Europe is this pattern more conspicuous than in the Macaronesian biogeographic region. A large network of protected areas within the region has been developed, but the question of whether these areas will still be climatically suitable for the globally threatened endemic element in the coming decades remains open. Here, we make predictions on the fate of the Macaronesian endemic bryophyte flora in the context of ongoing climate change. The potential distribution of 35 Macaronesian endemic bryophyte species was assessed under present and future climate conditions using an ensemble modelling approach. Projections of the models under different climate change scenarios predicted an average decrease of suitable areas of 62–87% per species and a significant elevational increase by 2070, so that even the commonest species were predicted to fit either the Vulnerable or Endangered IUCN categories. Complete extinctions were foreseen for six of the studied Macaronesian endemic species. Given the uncertainty regarding the capacity of endemic species to track areas of suitable climate within and outside the islands, active management associated to an effective monitoring program is suggested. PMID:27377592
Addressing socioeconomic and political challenges posed by climate change
NASA Astrophysics Data System (ADS)
Fernando, Harindra Joseph; Klaic, Zvjezdana Bencetic
2011-08-01
NATO Advanced Research Workshop: Climate Change, Human Health and National Security; Dubrovnik, Croatia, 28-30 April 2011; Climate change has been identified as one of the most serious threats to humanity. It not only causes sea level rise, drought, crop failure, vector-borne diseases, extreme events, degradation of water and air quality, heat waves, and other phenomena, but it is also a threat multiplier wherein concatenation of multiple events may lead to frequent human catastrophes and intranational and international conflicts. In particular, urban areas may bear the brunt of climate change because of the amplification of climate effects that cascade down from global to urban scales, but current modeling and downscaling capabilities are unable to predict these effects with confidence. These were the main conclusions of a NATO Advanced Research Workshop (ARW) sponsored by the NATO Science for Peace and Security program. Thirty-two invitees from 17 counties, including leading modelers; natural, political, and social scientists; engineers; politicians; military experts; urban planners; industry analysts; epidemiologists; and health care professionals, parsed the topic on a common platform.
Flood Control Structures Research Program. Annotated Bibliography on Grade Control Structures
1991-09-01
evaluating the effects of geology, geomorphology, soils, land use, and climate on runoff and sediment production from major source areas; (4...Otto, and ,t:iji, Ahmed. 1987. "Theoret- ical Flow Model for Drop Structures," -’. aulic ’ngineering, Proceed- ings of the 1987 National Confere’,ce on...Facilities for Unique Flood Problems," Journal of the-Waterways and Harbors Division, ASCE, Vol 97, No. WWI, pp 185-203. The unusual climatic
The relationship between organizational climate and quality of chronic disease management.
Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C
2011-06-01
To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. © Health Research and Educational Trust.
Momentum and Energy Assessments with NASA and Other Model and Data Assimilation Systems
NASA Technical Reports Server (NTRS)
Salstein, David; Nelson, Peter; Hu, Wen-Jie
2001-01-01
Support from the NASA Global Modeling and Analysis Program has been used for the following research objectives: 1) the study of aspects of dynamics of torques and angular momentum based on the Goddard GEOS and other analyses; 2) the study of how models participating in the second Atmospheric Model Intercomparison Project (AMIP-2) have success in simulating certain large-scale quantities; 3) the study of the energetics and momentum cycle from certain runs from the Goddard Laboratory for Atmospheres and other models as well; 4) the assessment of changes in diabatic heating and related energetics in the community climate model (CCM3); 5) the analysis of modes of climate of the atmosphere, especially the Arctic and North Atlantic Oscillations. Further information on these endeavors will be provided in published works and the Final Report of the project.
Cloud-Enabled Climate Analytics-as-a-Service using Reanalysis data: A case study.
NASA Astrophysics Data System (ADS)
Nadeau, D.; Duffy, D.; Schnase, J. L.; McInerney, M.; Tamkin, G.; Potter, G. L.; Thompson, J. H.
2014-12-01
The NASA Center for Climate Simulation (NCCS) maintains advanced data capabilities and facilities that allow researchers to access the enormous volume of data generated by weather and climate models. The NASA Climate Model Data Service (CDS) and the NCCS are merging their efforts to provide Climate Analytics-as-a-Service for the comparative study of the major reanalysis projects: ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, JMA JRA25, and JRA55. These reanalyses have been repackaged to netCDF4 file format following the CMIP5 Climate and Forecast (CF) metadata convention prior to be sequenced into the Hadoop Distributed File System ( HDFS ). A small set of operations that represent a common starting point in many analysis workflows was then created: min, max, sum, count, variance and average. In this example, Reanalysis data exploration was performed with the use of Hadoop MapReduce and accessibility was achieved using the Climate Data Service(CDS) application programming interface (API) created at NCCS. This API provides a uniform treatment of large amount of data. In this case study, we have limited our exploration to 2 variables, temperature and precipitation, using 3 operations, min, max and avg and using 30-year of Reanalysis data for 3 regions of the world: global, polar, subtropical.
Toward a Climate OSSE for NASA Earth Sciences
NASA Astrophysics Data System (ADS)
Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.
2016-12-01
In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth Sciences will require answers from the climate research community to basic questions, such as whether a COSSE capability should be centralized or de-centralized. Most importantly, the quantified scientific objective of a proposed mission must be defined with extreme specificity for a COSSE to be applied.
Communication and marketing as climate change-intervention assets a public health perspective.
Maibach, Edward W; Roser-Renouf, Connie; Leiserowitz, Anthony
2008-11-01
The understanding that global climate change represents a profound threat to the health and well-being of human and nonhuman species worldwide is growing. This article examines the potential of communication and marketing interventions to influence population behavior in ways consistent with climate change prevention and adaptation objectives. Specifically, using a framework based on an ecologic model of public health, the paper examines: (1) the potential of communication and marketing interventions to influence population behaviors of concern, including support for appropriate public policies; (2) potential target audiences for such programs; and (3) the attributes of effective climate change messages. Communication and marketing interventions appear to have considerable potential to promote important population behavior change objectives, but there is an urgent need for additional translational research to effectively harvest this potential to combat climate change.
NASA Tools for Climate Impacts on Water Resources
NASA Technical Reports Server (NTRS)
Toll, David; Doorn, Brad
2010-01-01
Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented.
Brown, Theresa C; Fry, Mary D
2014-06-01
The purpose of this study was to examine the association between members' perceptions of staffs behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested. Members (N = 5,541) of a national group-fitness studio franchise completed a survey regarding their class experiences. The survey included questions that measured participants' perceptions of the motivational climate (caring, task-involving, ego-involving), perceptions of staff's behaviors, their own behaviors, commitment to exercise, and life satisfaction. Structural equation modeling was used to assess both the association between variables and the theoretically driven predictive relationships. The participants perceived the environment as highly caring and task-involving and low ego-involving. They reported high exercise commitment and moderately high life satisfaction and perceived that the staffs and their own behaviors reflected caring, task-involving characteristics. Structural equation modeling demonstrated that those who perceived a higher caring, task-involving climate and lower ego-involving climate were more likely to report more task-involving, caring behaviors among the staff and themselves as well as greater commitment to exercise. In addition, a theory-driven mediational model suggested that staff behaviors may be an antecedent to members' exercise experiences by impacting their perceptions of the climate. The results of this study give direction to specific behaviors in which staff of group-fitness programs might engage to positively influence members' exercise experiences.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-01-01
Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
ERIC Educational Resources Information Center
Bertram, Kathryn Berry
2008-01-01
The National Science Foundation-funded Arctic Climate Modeling Program (ACMP) provides "curriculum resource-based professional development" materials that combine current science information with practical classroom instruction embedded with "best practice" techniques for teaching science to diverse students. The Sea Ice Board…
NASA Astrophysics Data System (ADS)
Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.
2014-12-01
The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.
Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience
NASA Astrophysics Data System (ADS)
Spellman, K.; Sparrow, E.
2017-12-01
Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this presentation, we report the progress of community teams currently engaged in this program from throughout Alaska.
Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)
NASA Astrophysics Data System (ADS)
Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.
2013-12-01
We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.
Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project
NASA Astrophysics Data System (ADS)
Keener, V. W.; Brewington, L.; Finucane, M.
2015-12-01
For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.
PyMCT: A Very High Level Language Coupling Tool For Climate System Models
NASA Astrophysics Data System (ADS)
Tobis, M.; Pierrehumbert, R. T.; Steder, M.; Jacob, R. L.
2006-12-01
At the Climate Systems Center of the University of Chicago, we have been examining strategies for applying agile programming techniques to complex high-performance modeling experiments. While the "agile" development methodology differs from a conventional requirements process and its associated milestones, the process remain a formal one. It is distinguished by continuous improvement in functionality, large numbers of small releases, extensive and ongoing testing strategies, and a strong reliance on very high level languages (VHLL). Here we report on PyMCT, which we intend as a core element in a model ensemble control superstructure. PyMCT is a set of Python bindings for MCT, the Fortran-90 based Model Coupling Toolkit, which forms the infrastructure for the inter-component communication in the Community Climate System Model (CCSM). MCT provides a scalable model communication infrastructure. In order to take maximum advantage of agile software development methodologies, we exposed MCT functionality to Python, a prominent VHLL. We describe how the scalable architecture of MCT allows us to overcome the relatively weak runtime performance of Python, so that the performance of the combined system is not severely impacted. To demonstrate these advantages, we reimplemented the CCSM coupler in Python. While this alone offers no new functionality, it does provide a rigorous test of PyMCT functionality and performance. We reimplemented the CPL6 library, presenting an interesting case study of the comparison between conventional Fortran-90 programming and the higher abstraction level provided by a VHLL. The powerful abstractions provided by Python will allow much more complex experimental paradigms. In particular, we hope to build on the scriptability of our coupling strategy to enable systematic sensitivity tests. Our most ambitious objective is to combine our efforts with Bayesian inverse modeling techniques toward objective tuning at the highest level, across model architectures.
NASA Astrophysics Data System (ADS)
Pearce, M. D.
2017-12-01
CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and programing that improve STEM instruction, increase and sustain youth and public engagement in STEM, enhance STEM experience of undergraduate students, better serve groups under-represented groups in STEM fields and design graduate education for tomorrow's STEM workforce.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Carbone, L.; Gardiner, L.; Johnson, R.; Russell, R.; Advisory Committee, S.; Ammann, C.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.
2005-12-01
The Climate Discovery Exhibit at the National Center for Atmospheric Research (NCAR) Mesa Lab provides an exciting conceptual outline for the integration of several EPO activities with other well-established NCAR educational resources and programs. The exhibit is organized into four topic areas intended to build understanding among NCAR's 80,000 annual visitors, including 10,000 school children, about Earth system processes and scientific methods contributing to a growing body of knowledge about climate and global change. These topics include: 'Sun-Earth Connections,' 'Climate Now,' 'Climate Past,' and 'Climate Future.' Exhibit text, graphics, film and electronic media, and interactives are developed and updated through collaborations between NCAR's climate research scientists and staff in the Office of Education and Outreach (EO) at the University Corporation for Atmospheric Research (UCAR). With funding from NCAR, paleoclimatologists have contributed data and ideas for a new exhibit Teachers' Guide unit about 'Climate Past.' This collection of middle-school level, standards-aligned lessons are intended to help students gain understanding about how scientists use proxy data and direct observations to describe past climates. Two NASA EPO's have funded the development of 'Sun-Earth Connection' lessons, visual media, and tips for scientists and teachers. Integrated with related content and activities from the NASA-funded Windows to the Universe web site, these products have been adapted to form a second unit in the Climate Discovery Teachers' Guide about the Sun's influence on Earth's climate. Other lesson plans, previously developed by on-going efforts of EO staff and NSF's previously-funded Project Learn program are providing content for a third Teachers' Guide unit on 'Climate Now' - the dynamic atmospheric and geological processes that regulate Earth's climate. EO has plans to collaborate with NCAR climatologists and computer modelers in the next year to develop lessons and ancillary exhibit interactives and visualizations for the final Teachers' Guide unit about 'Climate Future.' Units developed so far are available in downloadable format on the NCAR EO and Windows to the Universe web sites for dissemination to educators and the general public public. Those web sites are, respectively, (http://eo.ucar.edu/educators/ClimateDiscovery) and (http://www.windows.ucar.edu). Encouragement from funding agencies to integrate and relate resources and growing pressure to implement efficiencies in educational programs have created excellent opportunities which will be described from the viewpoints of EO staff and scientists'. Challenges related to public and student perceptions about climate and global change, the scientific endeavor, and how to establish successful dialogues between educators and scientists will also be discussed.
Sotomayor-Peterson, Marcela; Figueredo, Aurelio J; Christensen, Donna H; Taylor, Angela R
2012-06-01
This study tested a model of shared parenting as its centerpiece that incorporates cultural values as predictors and family emotional climate as the outcome variable of interest. We aimed to assess the predictive power of the Mexican cultural values of familismo and simpatia over couples' shared parenting practices. We anticipated that higher levels of shared parenting would predict family emotional climate. The participants were 61 Mexican American, low income couples, with at least one child between 3 and 4 years of age, recruited from a home-based Head Start program. The predictive model demonstrated excellent goodness of fit, supporting the hypothesis that a positive emotional climate within the family is fostered when Mexican American couples practice a sufficient level of shared parenting. Empirical evidence was previously scarce on this proposition. The findings also provide evidence for the role of cultural values, highlighting the importance of family solidarity and avoidance of confrontation as a pathway to shared parenting within Mexican American couples. © FPI, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
...] Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global Climate Change... Program; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. To enhance the...; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. EDA will publish separate...
Development of a Cloud Resolving Model for Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.
2017-12-01
A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.
NASA Technical Reports Server (NTRS)
Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John
2015-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.
NASA Astrophysics Data System (ADS)
Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.
2015-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.
NASA Astrophysics Data System (ADS)
Wildhaber, M. L.; Wikle, C. K.; Anderson, C. J.; Franz, K. J.; Moran, E. H.; Dey, R.
2012-12-01
Recent decades have brought substantive changes in land use and climate across the earth, prompting a need to think of population and community ecology not as a static entity, but as a dynamic process. Increasingly there is evidence of ecological changes due to climate change. Although much of this evidence comes from ground-truth observations of biogeographic data, there is increasing reliance on models that relate climate variables to biological systems. Such models can then be used to explore potential changes to population and community level ecological systems in response to climate scenarios as obtained from global climate models (GCMs). A key issue associated with modeling ecosystem response to climate is GCM downscaling to regional and local ecological/biological response models that can be used in vulnerability and risk assessments of the potential effects of climate change. The need is for an explicit means for scaling results up or down multiple hierarchical levels and an effective assessment of the level of uncertainty surrounding current knowledge, data, and data collection methods with these goals identified as in need of acceleration in the U.S. Climate Change Science Program FY2009 Implementation Priorities. In the end, such work should provide the information needed to develop adaptation and mitigation methodologies to minimize the effects of directional and nonlinear climate change on the Nation's land, water, ecosystems, and biological populations. We are working to develop an approach that includes multi-scale and hierarchical Bayesian modeling of Missouri River sturgeon population dynamics. Statistical linkages are defined to quantify implications of climate on fish populations of the Missouri River ecosystem. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. The model must include linkages between climate and habitat, and between habitat and population. A key advantage of the hierarchical approach used in this study is that it incorporates various sources of observations and includes established scientific knowledge, and associated uncertainties. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. The predictive modeling system being developed will be a powerful tool for evaluating management options for coping with global change consequences and assessing uncertainty of those evaluations. Specifically for the endangered pallid sturgeon (Scaphirhynchus albus), we are already able to assess potential effects of any climate scenario on growth and population size distribution. Future models will incorporate survival and reproduction. Ultimately, these models provide guidance for successful recovery and conservation of the pallid sturgeon. Here we present a basic outline of the approach we are developing and a simple pallid sturgeon example to demonstrate how multiple scales and parameter uncertainty are incorporated.
Uncertainty in Climate Change Research: An Integrated Approach
NASA Astrophysics Data System (ADS)
Mearns, L.
2017-12-01
Uncertainty has been a major theme in research regarding climate change from virtually the very beginning. And appropriately characterizing and quantifying uncertainty has been an important aspect of this work. Initially, uncertainties were explored regarding the climate system and how it would react to future forcing. A concomitant area of concern was viewed in the future emissions and concentrations of important forcing agents such as greenhouse gases and aerosols. But, of course we know there are important uncertainties in all aspects of climate change research, not just that of the climate system and emissions. And as climate change research has become more important and of pragmatic concern as possible solutions to the climate change problem are addressed, exploring all the relevant uncertainties has become more relevant and urgent. More recently, over the past five years or so, uncertainties in impacts models, such as agricultural and hydrological models, have received much more attention, through programs such as AgMIP, and some research in this arena has indicated that the uncertainty in the impacts models can be as great or greater than that in the climate system. Still there remains other areas of uncertainty that remain underexplored and/or undervalued. This includes uncertainty in vulnerability and governance. Without more thoroughly exploring these last uncertainties, we likely will underestimate important uncertainties particularly regarding how different systems can successfully adapt to climate change . In this talk I will discuss these different uncertainties and how to combine them to give a complete picture of the total uncertainty individual systems are facing. And as part of this, I will discuss how the uncertainty can be successfully managed even if it is fairly large and deep. Part of my argument will be that large uncertainty is not the enemy, but rather false certainty is the true danger.
A Model for Collaborative Learning in Undergraduate Climate Change Courses
NASA Astrophysics Data System (ADS)
Teranes, J. L.
2008-12-01
Like several colleges and universities across the nation, the University of California, San Diego, has introduced climate change topics into many existing and new undergraduate courses. I have administered a program in this area at UCSD and have also developed and taught a new lower-division UCSD course entitled "Climate Change and Society", a general education course for non-majors. This class covers the basics of climate change, such as the science that explains it, the causes of climate change, climate change impacts, and mitigation strategies. The teaching methods for this course stress interdisciplinary approaches. I find that inquiry-based and collaborative modes of learning are particularly effective when applied to science-based climate, environmental and sustainability topics. Undergraduate education is often dominated by a competitive and individualistic approach to learning. In this approach, individual success is frequently perceived as contingent on others being less successful. Such a model is at odds with commonly stated goals of teaching climate change and sustainability, which are to equip students to contribute to the debate on global environmental change and societal adaptation strategies; and to help students become better informed citizens and decision makers. I present classroom-tested strategies for developing collaborative forms of learning in climate change and environmental courses, including team projects, group presentations and group assessment exercises. I show how critical thinking skills and long-term retention of information can benefit in the collaborative mode of learning. I find that a collaborative learning model is especially appropriate to general education courses in which the enrolled student body represents a wide diversity of majors, class level and expertise. I also connect collaborative coursework in interdisciplinary environmental topics directly to applications in the field, where so much "real-world" achievement in research, education, government and business is effectively accomplished in collaborative teams.
Climate Change Impacts on Migration in the Vulnerable Countries
NASA Astrophysics Data System (ADS)
An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem
2014-05-01
This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.
Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects
NASA Astrophysics Data System (ADS)
Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.
2014-12-01
Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).
Climate Literacy: Springboard to Action
NASA Astrophysics Data System (ADS)
Long, B.; Bader, D.
2011-12-01
Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation (Ocean Project, 2009). The Aquarium of the Pacific is using NOAA's Science on a Sphere (SOS)° and linked flat screens to convey climate concepts to the public and serve as a model for how aquariums can promote climate literacy. The Ocean Science Center houses the SOS and is designed to immerse our visitors in an experience that extends from the sphere, to our live animals, and to our public programming. The first SOS exhibit, the sea level rise story, opened as the cornerstone of an aquarium-wide climate literacy strategy. Large panels next to the SOS prompts visitors to pledge actions to reduce their personal carbon footprint. The exhibit objectives were to provide a visual presentation that conveys a dramatic story about sea level rise, and to engage the audience in confronting the impact of sea level rise, and the local implications. The Aquarium utilized Yale's Six Americas survey instrument during summer 2010 to measure our audience interpretations of and responses to climate change. The survey showed that 78% of visitors categorized themselves as either alarmed or concerned about climate change, greater than the national average. Thus our climate literacy programs do not focus on convincing visitors of climate change and its causes, but on encouraging adaptive responses to varying scenarios. University of California, Berkeley, Lawrence Hall of Science Center for Research Evaluation and Assessment (REA) conducted a pre-opening evaluation of the exhibit's impact. The participants, 58% of whom were families with children, did not want to know more about climate change, but wanted tangible activities they could engage in to mitigate human induced effects, and more details about the impact of climate change on marine animals. REA stated that, "the sea level rise programs (both facilitated and non-facilitated) are well positioned to be successful and effective at the goal of helping visitors understand the very real threat of sea level rise and inspiring them to take action." (REA, May 2011). REA also found that 31% of the Spanish-speaking visitors thought the Spanish captioning was important. Census data indicates that the local Hispanic population has grown 27.8% over the past decade, so translation will continue to be an important way to reach a diverse spectrum of peoples. The Six Americas survey of the Aquarium did not sample enough Spanish speaking visitors to produce meaningful results, and the Aquarium is working to resolve that issue. The Aquarium is developing another program for the SOS, marine ecosystems, connecting climate literacy messages to the live animal collection. REA will complete its evaluation of both programs in 2012, and the Aquarium will again conduct the Six Americas survey. Conveying climate literacy in an impactful way requires innovation and constant updates. The Aquarium uses informal education methodology combined with scientific discipline to bring actionable solutions to over 1.4 million visitors each year.
A cross-assessment of CCI-ECVs and RCSM simulations over the Mediterranean area
NASA Astrophysics Data System (ADS)
D'Errico, Miriam; Planton, Serge; Nabat, Pierre
2017-04-01
A first objective of this study, conducted in the framework of the Climate Modelling Users Group (CMUG), one of the projects of the European Space Agency Climate Change Initiative (ESA CCI) program, is a cross-assessment of simulations of a Med-CORDEX regional climate system model (CNRM-RCSM5) and a sub-set of atmosphere, marine and surface interrelated Satellite-Derived Essential Climate Variables (CCI-ECVs) (i.e. sea surface temperature, sea level, aerosols and soil moisture content) over the Mediterranean area. The consistency between the model and the CCI-ECVs is evaluated through the analysis of a climate specific event that can be observed with the CCI-ECVs, in atmospheric reanalysis and reproduced in the RCSM simulations. In this presentation we focus on the July 2006 heat wave that affected the western part of the Mediterranean continental and marine area. The application of a spectral nudging method using ERA-Interim reanalysis in our simulation allows to reproduce this event with a proper chronology. As a result we show that the consistency between the simulated model aerosol optical depth and the ECV products (being produced by the ESA Aerosol CCI project consortium) depends on the choice of the algorithm used to infer the variable from the satellite observations. In particular the heat wave main characteristics become consistent between the model and the satellite-derived observations for sea surface temperature, soil moisture and sea level. The link between the atmospheric circulation and the aerosols distribution is also investigated.
Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Years 2004 and 2005
2004-07-01
physical, biological, social, and economic sciences. In February 2003, this committee reported its recommendations, which provided invaluable assistance...related environmental systems, and the options proposed to adapt to or mitigate these changes, may have substantial environmental, economic , and societal...adaptive management, and policymaking.The program also will encourage development of new methods, models, and other resources that facilitate economic
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2013-04-01
Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through unified graphical web-interface. Partial support of RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2 and Projects 69, 131, 140 and APN CBA2012-16NSY project is acknowledged.
The Impact of Climate Projection Method on the Analysis of Climate Change in Semi-arid Basins
NASA Astrophysics Data System (ADS)
Halper, E.; Shamir, E.
2016-12-01
In small basins with arid climates, rainfall characteristics are highly variable and stream flow is tightly coupled with the nuances of rainfall events (e.g. hourly precipitation patterns Climate change assessments in these basins typically employ CMIP5 projections downscaled with Bias Corrected Statistical Downscaling and Bias Correction/Constructed Analogs (BCSD-BCCA) methods, but these products have drawbacks. Specifically, BCSD-BCCA these projections do not explicitly account for localized physical precipitation mechanisms (e.g. monsoon and snowfall) that are essential to many hydrological systems in the U. S. Southwest. An investigation of the impact of different types of precipitation projections for two kinds of hydrologic studies is being conducted under the U.S. Bureau of Reclamation's Science and Technology Grant Program. An innovative modeling framework consisting of a weather generator of likely hourly precipitation scenarios, coupled with rainfall-runoff, river routing and groundwater models, has been developed in the Nogales, Arizona area. This framework can simulate the impact of future climate on municipal water operations. This framework allows the rigorous comparison of the BCSD-BCCA methods with alternative approaches including rainfall output from dynamical downscaled Regional Climate Models (RCM), a stochastic rainfall generator forced by either Global Climate Models (GCM) or RCM, and projections using historical records conditioned on either GCM or RCM. The results will provide guide for the use of climate change projections into hydrologic studies of semi-arid areas. The project extends this comparison to analyses of flood control. Large flows on the Bill Williams River are a concern for the operation of dams along the Lower Colorado River. After adapting the weather generator for this region, we will evaluate the model performance for rainfall and stream flow, with emphasis on statistical features important to the specific needs of flood management. The end product of the research is to develop a test to guide selection of a precipitation projection method (including downscaling procedure) for a given region and objective.
NASA Astrophysics Data System (ADS)
Odell, M. R.; Charlevoix, D. J.; Kennedy, T.
2011-12-01
The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE is supported in countries around the world through bi-lateral agreements between U.S. Department of state and national governments.
Interagency Collaboration in Support of Climate Change Education
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Chambers, L. H.; Karsten, J. L.; McDougall, C.; Campbell, D.
2011-12-01
NASA, NOAA and NSF support climate change education (CCE) through their grant programs. As the agencies' investment in CCE has grown, coordination among the agencies has become increasingly important. Although the political landscape and budgets continue to change, the agencies are committed to continued coordination and collaboration. To date, this has taken the form of jointly hosted principal investigator (PI) meetings, the largest of which was held last February (see Eos Vol. 92, No. 24, 14 June 2011). The joint goals are: (1) increased collaboration among grantees and across programs; (2) building capacity among grantees in areas of mutual interest; (3) identification of gaps in investments to date; and (4) identification of opportunities for coordination of evaluation efforts. NOAA's primary funding opportunity for CCE projects is its Environmental Literacy Grant (ELG) Program. Although not exclusively focused on climate, there has been increased emphasis on this area since 2009. Through ELG, NOAA encourages the use of NOAA assets (data, facilities, educational resources, and people) in grantees' work. Thirty awards with a primary focus on CCE have been awarded to institutions of higher education, informal science education, and non-profit organizations involved in K-12 and informal/non-formal education. We anticipate this funding opportunity will continue to support the improvement of climate literacy among various audiences of learners in the future. NASA supported efforts in CCE in an ad hoc way for years. It became a focus area in 2008 with the launch of the NASA Global Climate Change Education (GCCE) Project. This project funded 57 awards in 2008-2010, the vast majority of them in teacher professional development, or use of data, models, or simulations. Beginning in FY11, NASA moved the project into the Minority University Research and Education Program. Fourteen awards were made to minority higher education institutions, non-profit organizations, and community colleges. These efforts are expected to continue in FY12 and beyond under NASA Innovations in Climate Education (NICE). A solicitation for the NICE project is currently anticipated in Summer 2012. Through its core programs, NSF supports a variety of efforts designed to improve teaching and learning about CCE in formal and informal settings, often through leveraging NSF-supported climate research. In 2009, dedicated CCE funding supported 10 new awards aimed at focusing NSF investments in key areas: preparing innovators for the workforce; strategies for scaling up and disseminating effective curricula and instructional resources; assessment of student learning of complex climate issues; and, increasing access to CCE and professional development for learners, educators, and policymakers. Phase I of the Climate Change Education Partnership (CCEP) program, launched in 2010, supports strategic planning activities within 15 regional and thematic partnerships that bring together climate scientists, learning scientists, and education practitioners. A solicitation for CCEP Phase II implementation is anticipated in Fall 2011. We will discuss agency funding opportunities, examples of collaborations, and common metrics/sharing tools for evaluation of CCE projects.
Hope, Interpreter Self-efficacy, and Social Impacts: Assessment of the NNOCCI Training
NASA Astrophysics Data System (ADS)
Fraser, J.; Swim, J.
2012-12-01
Conservation educators at informal science learning centers are well-positioned to teach climate science and motivate action but have resisted the topic. Our research demonstrates their resist is due to self-doubt about climate science facts and the belief they will encounter negative audience feedback. Further, this self-doubt and self-silencing is emotional taxing. As a result we have developed a National Network for Ocean Climate Change Interpretation's (NNOCCI) program that addresses educators' needs for technical training and emotional scaffolding to help them fully engage with this work. The evaluation of this program sought to understand how to support educators interested in promoting public literacy on climate change through engagement with a structured training program aimed at increased the efficacy of interpreters through teaching strategic framing strategies. The program engaged educator dyads from informal science learning sites to attend an online and in-person program that initiated a new community of practice focused on sharing techniques and tools for ocean climate change interpretation. The presentation will summarize a model for embedded assessment across all aspects of a program and how social vectors, based upon educators' interpersonal and professional relationships, impact the understanding of an educator's work across their life-world. This summary will be followed by results from qualitative front-end research that demonstrated the psychologically complex emotional conditions that describe the experience of being an environmental educator. The project evaluators will then present results from their focus groups and social network analysis to demonstrate how training impacted in-group relationships, skill development, and the layered social education strategies that help communities engage with the content. Results demonstrated that skill training increased educator's hope--in the form of increased perceived agency and plans for educational objectives. Subsequent to the program, educators experienced socially supportive feedback from colleagues and peers and increased actions to engage the public in productive discussions about climate change at informal science learning venues. The front-end and formative assessment of this program suggests new strategies for measuring interpreter training, and a way of thinking holistically about an educator's impact in their community. The results challenge the concept that interpretation is limited to the workplace and suggest that the increased likelihood of effectiveness in interpretation across all social vectors is more likely to result in changed public understanding of climate science in ways that will promote public action toward remediation strategies.Emotions before and after study circlet; Personal hope scale was rescaled to range from 1 "strongly disagree"; 4 "strongly agree"; Distress, Anxiety vs. hopeful and Energized vs. Overwhelmed range from 1 "not at all" to 4 "very much."
A Climate Ready Estuaries Vulnerability Assessment
The purpose of the the Climate Ready Estuaries program is to build capacity in the National Estuary Programs (NEPs) for local leadership and expertise to adapt to the effects of climate change through a joint effort with the NEPs and EPA.
A review on regional convection permitting climate modeling
NASA Astrophysics Data System (ADS)
van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin
2016-04-01
With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing <4 km, is that they better resolve complex orography and land use. The regional climate model COSMO-CLM is frequently applied for CPM simulations, due to its non-hydrostatic dynamics and open international network of scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light of using CPMs to study climate change it is necessary that these deficiencies are addressed in future research. Coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs. Brisson, E., K. Van Weverberg, M. Demuzere, A. Devis, S. Saeed, M. Stengel, N.P.M. van Lipzig, 2016. How well can a convection-permitting climate model reproduce 1 decadal statistics of precipitation, temperature and cloud characteristics? Clim. Dyn. (minor revisions). Prein, Andreas F., Wolfgang Langhans, Giorgia Fosser, Andrew Ferrone, Nikolina Ban, Klaus Goergen, Michael Keller, Merja Tölle, Oliver Gutjahr, Frauke Feser, Erwan Brisson, Stefan Kollet, Juerg Schmidli, Nicole P. M. van Lipzig, Ruby Leung. (2015) A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics 53:10.1002/rog.v53.2, 323-361
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Averyt, K. B.; Deheza, V.; Udall, B.
2008-12-01
In 2007 Colorado's Governor Ritter issued a Colorado Climate Action Plan, in response to the risks associated with climate change and sets a goal to adapt to those climate changes "that cannot be avoided." The Western Water Assessment, a NOAA funded RISA program, was commissioned to do a synthesis of the science on climate change aimed at planners, decisionmakers, and policymakers in water in Colorado. Changes in Colorado's climate and implications for water resources are occurring in a global context. The objective of the report is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources, and to support state efforts to develop a water adaptation plan. However, the identification of specific climate change impacts on water resources is beyond the scope of this report. Water managers have a long history of adapting to changing circumstances, including changes in economies and land use, environmental concerns, and population growth. Climate change will further affect the decisions made about use of water. However, current water management practices may not be robust enough to cope with this climate change. This presentation reports on the process of developing the report and challenges we faced. We developed the report based on ongoing interactions with the water management community and discussions with them about their decision processes and needs. A second presentation (see Barsugli et al) presents the synthesis findings from the report. We followed the IPCC WG1 model of observations, attribution, and projections. However, many published studies and datasets include information about Colorado, there are few climate studies that focus only on the state. Consequently, many important scientific analyses for Colorado have not been done, and Colorado- specific information is often imbedded in or averaged with studies of the larger Western U.S. We used findings from peer-reviewed regional studies, and conducted new analyses derived from existing datasets and model projections, and took advantage of new regional analyses. In addition to the IPCC Fourth Assessment, we also took advantage of very new Climate Change Science Program Assessments. Many water managers, although often technically savvy engineers, hydrologists and other professionals, but are not trained as climate or atmospheric scientists, and seeks to complexity by using Fahrenheit units, minimizing use of or defining jargon terms, and re-plotting published figures/data for simplicity. The report is written at a less technical level than the IPCC reports, and some features are intended to raise the level of climate literacy of our audience about climate and how climate science is done. For example, the report includes a primer on climate models and theory that situates Colorado in the context of global climate change and describes how the unique features of the state -- such as the complex topography -- relate to interpreting and using climate change projections. This report responds to Colorado state agencies' and water management community needs to understanding of climate change and is an initial step in establishing Colorado's water-related adaptation needs. Another impact of this report is as an experiment in climate services for climate change information and exploring the challenges of communicating the information to diverse decisionmakers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loulou, Richard; Waaub, Jean-Philippe; Zaccour, Georges
2005-07-01
This volume on energy and environmental modeling describes a broad variety of modeling methodologies. It includes chapters covering: The Sustainability of Economic Growth by Cabo, Martin-Herran & Martinez-Garcia; Abatement Scenarios in the Swiss Housing Sector by L. Drouet and others; Support and Planning for Off-Site Emergency Management, by Geldermann and others; Hybrid Energy-Economy Models, by Jaccard; The World-MARKAL Model and Its Application, by Kanudia and others; Methodology for Evaluating a Market of Tradable CO{sub 2}-Permits, by Kunsch and Springael; MERGE - A Model for Global Climate Change, by Manne and Richels; A Linear Programming Model for Capacity Expansion in anmore » Autonomous Power Generation System, by Mavrotas and Diakoulaki; Transport and Climate Policy Modeling in the Transport Sector, by Paltsev and others; Analysis of Ontario Electricity Capacity Requirements and Emissions, by Pineau and Schott; Environmental Damage in Energy/Environmental Policy Evaluation, by Van Regemorter. 71 figs.« less
A Web-Based Polar Firn Model to Motivate Interest in Climate Change
NASA Astrophysics Data System (ADS)
Harris, P. D.; Lundin, J.; Stevens, C.; Leahy, W.; Waddington, E. D.
2013-12-01
How long would you have to dig straight down in Greenland before you reached solid ice? This is one of many questions that could be answered by a typical high school student using our online firn model. Firn is fallen snow that compacts under its own weight and eventually turns into glacial ice. The Herron and Langway (1980) firn model describes this process. An important component of predicting future climate change is researching past climate change. Some details of our past climate are discovered by analyzing polar ice and the firn process. Firn research can also be useful for understanding how changes in ice surface levels reflect changes in the ice mass. We have produced an online version of the Herron and Langway model that provides a simple way for students to learn how polar snow turns into ice. As a user, you can enter some climatic conditions (accumulation rate, temperature, and surface density) into our graphical user interface and press 'Submit'. We take the numbers you enter in your internet browser, send them to the model written in Python that is running on our server, and provide links to your results, all within seconds. The model produces firn depth, density, and age data. The results appear on the webpage in both text and graphical format. We have developed an example lesson plan appropriate for a high-school physics or environmental science class. The online model offers students an opportunity to apply their scientific knowledge in order to understand real-world physical processes. Additionally, students learn about scientific research and the tools scientists use to conduct it. The model can be used as a standalone lesson or as a part of a larger climate-science unit. The online model was created with funding from the Washington NASA Space Grant Consortium and the National Science Foundation's Partnerships for International Research and Education program.
The NASA Earth Science Program and Small Satellites
NASA Technical Reports Server (NTRS)
Neeck, Steven P.
2015-01-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions. Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.
Evaluation and prediction of shrub cover in coastal Oregon forests (USA)
Becky K. Kerns; Janet L. Ohmann
2004-01-01
We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...
Application priority of GSHP systems in the climate conditions of the United States
Cho, Soolyeon; Ray, Saurabh; Im, Piljae; ...
2017-05-15
Building energy-performance simulation programs are powerful tools for many aspects of feasibility studies regarding ground source heat pump (GSHP). However, the understanding of the limitations of the energy modelling programs, their capability of predicting energy performance early in the design process, and the complicated functionality of these programs makes the software programs harder to use and less practical. The interactive tool developed in this study seeks to provide analysis information in a straightforward manner that is inexpensive, convenient, and sophisticated. This tool uses an inclusive approach to assess the feasibility of GSHPs by prescreening critical factors such as climate conditions,more » ground temperatures, energy use, and cost savings. It is interactive and enables the user to do a feasibility analysis with a weighting factor for each feasibility criterion based on the user’s preference and interests. The application of the tool explains feasibility scores of 15 representative cities in various climatic conditions across the US. Results for commercial buildings show that the GSHP systems are more feasible in cold and dry, cool and humid, and very cold areas than warm and dry, very hot and humid, and mixed marine areas, and that most feasibility levels are located on good and moderate.« less
Practical Theory in Correctional Education.
ERIC Educational Resources Information Center
Semmens, Robert A.
1989-01-01
Argues for learner motivation emphasis in teaching practice, application of school organization and classroom climate findings to prisoner education program development, and a cooperative administrative approach. Urges implementation of a social interaction learning model to achieve state educational aims for all students. (LAM)
Jones, Tamara Bertrand; Guthrie, Kathy L; Osteen, Laura
2016-12-01
This chapter introduces the critical domains of culturally relevant leadership learning. The model explores how capacity, identity, and efficacy of student leaders interact with dimensions of campus climate. © 2016 Wiley Periodicals, Inc., A Wiley Company.
HydroClimATe: hydrologic and climatic analysis toolkit
Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.
2014-01-01
The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.
Southern Foresters' Perceptions of Climate Change: Implications for Educational Program Development
ERIC Educational Resources Information Center
Boby, Leslie; Hubbard, William; Megalos, Mark; Morris, Hilary L. C.
2016-01-01
An understanding of foresters' perceptions of climate change is important for developing effective educational programs on adaptive forest management. We surveyed 1,398 foresters in the southern United States regarding their perceptions of climate change, observations and concerns about climatic and forest conditions, and knowledge of and interest…
Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.
2012-12-01
The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.
2015-01-01
How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely. PMID:26244662
Land use allocation model considering climate change impact
NASA Astrophysics Data System (ADS)
Lee, D. K.; Yoon, E. J.; Song, Y. I.
2017-12-01
In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"
Garcia-Castellanos, Daniel; Jiménez-Munt, Ivone
2015-01-01
How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the development of steady-state topography at the continental scale unlikely.
NASA Astrophysics Data System (ADS)
Holzhauer, B.; Mooney, M. E.
2012-12-01
How can non-formal education programs effectively blend hands-on, place-based field science lessons with technology and digital media to teach abstract global concepts in a local setting? Using climate change as an overarching concept, the Aldo Leopold Nature Center (ALNC) in Madison, WI, is developing exhibits and digital curricula, strengthened through partnerships with local and national experts from scientific and education fields, to effectively increase the public's interest in and understanding of science and technology, how the world works, and what we can do to adapt, mitigate, and innovate sustainable solutions. The exhibits and multimedia content, centered on topics such as climate, energy, weather, and phenology, have been developed in consultation with partners like the National Academy of Sciences and various departments at the University of Wisconsin (UW). Outdoor "high-touch" programs are complemented with "high-tech" exhibits and media, including touchscreen kiosks and the National Oceanic and Atmospheric Administration's (NOAA) Science On a Sphere® global display system, tying together multimedia experiences with peer-reviewed cutting-edge science to ensure maximum comprehension by appealing and connecting to learners of all ages and learning modalities. The curriculum is being developed in alignment with local and national education standards and science and climate literacy frameworks (such as "The Essential Principles of Climate Sciences," U.S. Global Change Research Program / U.S. Climate Change Science Program). Its digital format allows it to be easily adapted to visitors' learning styles and cognitive levels and updated with relevant new content such as real-time climate data or current visualizations from the UW Cooperative Institute for Meteorological Satellite Studies. Drawing upon ALNC's award-winning environmental education experiences, professional development networks such as NOAA's Climate Stewards Education Program, and existing resources for teaching through formal STEM education, ALNC has combined the unique benefits of place-based outdoor citizen-science in the community setting with digital, multimedia, and interactive components to address local, regional, and global scientific concepts with all audiences of all ages. This innovative, replicable and broadly accessible approach, geared towards formal school groups and the general public in a non-formal educational setting, is being piloted, evaluated, and disseminated through a variety of networks and professional development in order to serve as a model of continued collaborative education.;
NASA Technical Reports Server (NTRS)
Tamkin, Glenn S. (Inventor); Duffy, Daniel Q. (Inventor); Schnase, John L. (Inventor)
2016-01-01
A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.
NASA Astrophysics Data System (ADS)
Hewitson, B.; Jack, C. D.; Gutowski, W. J., Jr.
2014-12-01
Possibly the leading complication for users of climate information for policy and adaptation is the confusing mix of contrasting data sets that offer widely differing (and often times fundamentally contradictory) indications of the magnitude and direction of past and future regional climate change. In this light, the most pressing scientific-societal challenge is the need to find new ways to understand the sources of conflicting messages from multi-model, multi-method and multi-scale disparities, to develop and implement new analytical methodologies to address this difficulty and so to advance the interpretation and communication of robust climate information to decision makers. Compounding this challenge is the growth of climate services which, in view of the confusing mix of climate change messages, raises serious concerns as to the ethics of communication and dissemination of regional climate change data.The Working Group on Regional Climate (WGRC) of the World Climate Research Program (WCRP) oversees the CORDEX downscaling program which offers a systematic approach to compare the CMIP5 GCMs alongside RCMs and Empirical-statistical (ESD) downscaling within a common experimental design, and which facilitates the evaluation and assessment of the relative information content and sources of error. Using results from the CORDEX RCM and ESD evaluation experiment, and set against the regional messages from the CMIP5 GCMs, we examine the differing messages that arise from each data source. These are then considered in terms of the implications of consequence if each data source were to be independently adopted in a real world use-case scenario. This is then cast in the context of the emerging developments on the distillation dilemma - where the pressing need is for multi-method integration - and how this relates to the WCRP regional research grand challenges.
Milanovich, Joseph R; Peterman, William E; Nibbelink, Nathan P; Maerz, John C
2010-08-16
Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO(2) scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO(2) emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO(2) emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands.
Impacts of oak pollen on allergic asthma in the United States ...
Oak pollen season length for moderate (RCP4.5) and severe climate change scenarios (RCP8.5) are estimated through 2090 using five climate models and published relationships between temperature, precipitation, and oak pollen season length. We calculated asthma ED visit counts associated with 1994-2010 average oak pollen concentrations and simulated future oak pollen season length changes using the Environmental Benefits Mapping and Analysis Program (BenMAP-CE), driven by epidemiologically-derived concentration-response relationships. Future climate change is expected to lengthen and intensify pollen seasons in the U.S., potentially increasing incidence of allergic asthma. We developed a proof-of-concept approach for estimating asthma emergency department (ED) visits in the U.S. associated with present-day and climate-induced changes in oak pollen.
Empowering Pre-College Students To Engage In Climate Change Solutions
NASA Astrophysics Data System (ADS)
Haine, D. B.
2014-12-01
Developing and implementing solutions to environmental challenges, such as climate change, depend upon the cultivation of STEM knowledge and skills among today's youth. Furthermore, STEM instruction enhances learning by providing tools to investigate and analyze environmental issues, making the issue real and tangible to students. That said, educators engaged in the climate literacy movement are aware that possession of knowledge about Earth's climate and the causes and consequences of climate change is not sufficient to empower individuals to contribute to solutions that promote a sustainable future. By framing the issue of climate change in the context of energy, by utilizing STEM instructional strategies and by showcasing scientists and others working on solutions to address climate change, the Climate Leadership and Energy Awareness Program (Climate LEAP) at the University of North Carolina (UNC) at Chapel Hill is cultivating a network of youth who are not only informed about society's use of energy and the implication for Earth's climate but also empowered to be part of the solution as society shifts to a low carbon economy. During this year-long science enrichment program, 9th-12thgraders learn about our fossil fuel based economy, meet scientists who are working to expand the use of renewable energy sources, and develop communication and leadership skills. Experienced educators with UNC's Institute for the Environment, the Morehead Planetarium and Science Center and the Alliance for Climate Education partner with scientists to implement Climate LEAP. In addition to increasing knowledge of climate science and of the solutions proposed to address climate change, program participants are invited to engage members of their community through implementation of a solutions-oriented community outreach project. Now in its fifth year, 168 students have completed Climate LEAP, with approximately 2/3 completing at least one community outreach project. A survey of program alumni indicated that 90% of respondents were motivated by the program to make at least one behavior change to conserve energy in their daily life. This session will include a description of the program evaluation plan, which includes assessment of student learning..
Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.
2013-01-01
A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.
NASA Astrophysics Data System (ADS)
Thakali, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.
2016-12-01
In the spring of 2016 the City of Las Vegas and the Southern Illinois University began collaborating on a project that seeks to assess the city's current vulnerability to drought, extreme heat, and extreme precipitation patterns, as well as the response mechanisms that are already in place within its jurisdiction. The document analyzes a series of scenarios to assess to what extent the vulnerability of four Key Planning Areas will change in the long term (30-50 years), what will be the most affected city operations, and what mechanisms the City will need to put into place to adapt to such changes. As part of the vulnerability report, this study assessed the impacts of climate change in the existing stormwater system of the Gowan watershed within City of Las Vegas, NV, by assessing projected design storms. The climate change projection for the region was evaluated using the high-resolution North American Regional Climate Change Assessment Program (NARCCAP) climate model data. The design storms (6h 100y) were calculated using the best fitted probability distribution among twenty-seven distributions for the historic and future NARCCAP climate model projection. North American Regional Reanalysis (NARR) data were used to assess the performance of NARCCAP data. The projected design storms were implemented in an existing U.S. Army Corps of Engineers' Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) model developed by Clark County Regional Flood Control District (CCRFCD), Las Vegas. The simulation results showed an increase in the design storms which exceeded the capacity of existing stormwater infrastructure.
NASA Astrophysics Data System (ADS)
Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.
2011-12-01
As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and program officers? How do they contribute to best practices in climate science education? These questions are important to ask about STEM and climate literacy work more generally; the NICE portfolio provides a broad test case for thinking strategically, critically, and progressively about evaluation in our community. Our findings can inform the STEM education, communication, and public outreach communities, and prompt us to consider a broad range of informative evaluation options. During this presentation, we will consider the breadth, depth and utility of evaluations conducted through a NASA climate education funding opportunity. We will examine the relationship between what we want to know about education programs, what we want to achieve with our interventions, and what we ask in our evaluations.
NASA Astrophysics Data System (ADS)
Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.
2013-12-01
As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and program officers? How do they contribute to best practices in climate science education? These questions are important to ask about STEM and climate literacy work more generally; the NICE portfolio provides a broad test case for thinking strategically, critically, and progressively about evaluation in our community. Our findings can inform the STEM education, communication, and public outreach communities, and prompt us to consider a broad range of informative evaluation options. During this presentation, we will consider the breadth, depth and utility of evaluations conducted through a NASA climate education funding opportunity. We will examine the relationship between what we want to know about education programs, what we want to achieve with our interventions, and what we ask in our evaluations.
The role of clouds and oceans in global greenhouse warming. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffert, M.I.
1996-10-01
This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic changemore » from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.« less
Kaplan, Deanna M; deBlois, Madeleine; Dominguez, Violeta; Walsh, Michele E
2016-10-01
Recent research suggests that school-based kindness education programs may benefit the learning and social-emotional development of youth and may improve school climate and school safety outcomes. However, how and to what extent kindness education programming influences positive outcomes in schools is poorly understood, and such programs are difficult to evaluate in the absence of a conceptual model for studying their effectiveness. In partnership with Kind Campus, a widely adopted school-based kindness education program that uses a bottom-up program framework, a methodology called concept mapping was used to develop a conceptual model for evaluating school-based kindness education programs from the input of 123 middle school students and approximately 150 educators, school professionals, and academic scholars. From the basis of this model, recommendations for processes and outcomes that would be useful to assess in evaluations of kindness education programs are made, and areas where additional instrument development may be necessary are highlighted. The utility of the concept mapping method as an initial step in evaluating other grassroots or non-traditional educational programming is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Convergence in France facing Big Data era and Exascale challenges for Climate Sciences
NASA Astrophysics Data System (ADS)
Denvil, Sébastien; Dufresne, Jean-Louis; Salas, David; Meurdesoif, Yann; Valcke, Sophie; Caubel, Arnaud; Foujols, Marie-Alice; Servonnat, Jérôme; Sénési, Stéphane; Derouillat, Julien; Voury, Pascal
2014-05-01
The presentation will introduce a french national project : CONVERGENCE that has been funded for four years. This project will tackle big data and computational challenges faced by climate modeling community in HPC context. Model simulations are central to the study of complex mechanisms and feedbacks in the climate system and to provide estimates of future and past climate changes. Recent trends in climate modelling are to add more physical components in the modelled system, increasing the resolution of each individual component and the more systematic use of large suites of simulations to address many scientific questions. Climate simulations may therefore differ in their initial state, parameter values, representation of physical processes, spatial resolution, model complexity, and degree of realism or degree of idealisation. In addition, there is a strong need for evaluating, improving and monitoring the performance of climate models using a large ensemble of diagnostics and better integration of model outputs and observational data. High performance computing is currently reaching the exascale and has the potential to produce this exponential increase of size and numbers of simulations. However, post-processing, analysis, and exploration of the generated data have stalled and there is a strong need for new tools to cope with the growing size and complexity of the underlying simulations and datasets. Exascale simulations require new scalable software tools to generate, manage and mine those simulations ,and data to extract the relevant information and to take the correct decision. The primary purpose of this project is to develop a platform capable of running large ensembles of simulations with a suite of models, to handle the complex and voluminous datasets generated, to facilitate the evaluation and validation of the models and the use of higher resolution models. We propose to gather interdisciplinary skills to design, using a component-based approach, a specific programming environment for scalable scientific simulations and analytics, integrating new and efficient ways of deploying and analysing the applications on High Performance Computing (HPC) system. CONVERGENCE, gathering HPC and informatics expertise that cuts across the individual partners and the broader HPC community, will allow the national climate community to leverage information technology (IT) innovations to address its specific needs. Our methodology consists in developing an ensemble of generic elements needed to run the French climate models with different grids and different resolution, ensuring efficient and reliable execution of these models, managing large volume and number of data and allowing analysis of the results and precise evaluation of the models. These elements include data structure definition and input-output (IO), code coupling and interpolation, as well as runtime and pre/post-processing environments. A common data and metadata structure will allow transferring consistent information between the various elements. All these generic elements will be open source and publicly available. The IPSL-CM and CNRM-CM climate models will make use of these elements that will constitute a national platform for climate modelling. This platform will be used, in its entirety, to optimise and tune the next version of the IPSL-CM model and to develop a global coupled climate model with a regional grid refinement. It will also be used, at least partially, to run ensembles of the CNRM-CM model at relatively high resolution and to run a very-high resolution prototype of this model. The climate models we developed are already involved in many international projects. For instance we participate to the CMIP (Coupled Model Intercomparison Project) project that is very demanding but has a high visibility: its results are widely used and are in particular synthesised in the IPCC (Intergovernmental Panel on Climate Change) assessment reports. The CONVERGENCE project will constitute an invaluable step for the French climate community to prepare and better contribute to the next phase of the CMIP project.
Empirically Supported Treatment’s Impact on Organizational Culture and Climate
Patterson-Silver Wolf, David A.; Dulmus, Catherine N.; Maguin, Eugene
2012-01-01
Objectives With the continued push to implement empirically supported treatments (ESTs) into community-based organizations, it is important to investigate whether working condition disruptions occur during this process. While there are many studies investigating best practices and how to adopt them, the literature lacks studies investigating the working conditions in programs that currently use ESTs. Method This study compared the culture and climate scores of a large organization’s programs that use ESTs and those programs indicating no EST usage. Results Of the total 55 different programs (1,273 frontline workers), 27 programs used ESTs. Results indicate that the programs offering an EST had significantly more rigid and resistant cultures, compared to those without any ESTs. In regard to climate, programs offering an EST were significantly less engaged, less functional, and more stressed. Conclusion Outcomes indicate a significant disruption in organizational culture and climate for programs offering ESTs. PMID:23243379
Empirically Supported Treatment's Impact on Organizational Culture and Climate.
Patterson-Silver Wolf, David A; Dulmus, Catherine N; Maguin, Eugene
2012-11-01
OBJECTIVES: With the continued push to implement empirically supported treatments (ESTs) into community-based organizations, it is important to investigate whether working condition disruptions occur during this process. While there are many studies investigating best practices and how to adopt them, the literature lacks studies investigating the working conditions in programs that currently use ESTs. METHOD: This study compared the culture and climate scores of a large organization's programs that use ESTs and those programs indicating no EST usage. RESULTS: Of the total 55 different programs (1,273 frontline workers), 27 programs used ESTs. Results indicate that the programs offering an EST had significantly more rigid and resistant cultures, compared to those without any ESTs. In regard to climate, programs offering an EST were significantly less engaged, less functional, and more stressed. CONCLUSION: Outcomes indicate a significant disruption in organizational culture and climate for programs offering ESTs.
Climate Masters of Nebraska: An Innovative Action-Based Approach for Climate Change Education
ERIC Educational Resources Information Center
Pathak, Tapan B.; Bernadt, Tonya; Umphlett, Natalie
2014-01-01
Climate Masters of Nebraska is an innovative educational program that strategically trains community volunteers about climate change science and corresponding ways to reduce greenhouse gas emissions in an interactive and action-based teaching environment. As a result of the program, 91% of participants indicated that they made informed changes in…
Lens on Climate Change: Making Climate Meaningful through Student-Produced Videos
ERIC Educational Resources Information Center
Gold, Anne U.; Oonk, David J.; Smith, Lesley; Boykoff, Maxwell T.; Osnes, Beth; Sullivan, Susan B.
2015-01-01
Learning about climate change is tangible when it addresses impacts that can be observed close to home. In this program, sixty-four diverse middle and high school students produced videos about locally relevant climate change topics. Graduate and undergraduate students provided mentorship. The program engaged students in research and learning…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Alaigh, Kunal
Two multifamily buildings planned in Climate Zone 4 were analyzed to determine the cost, energy and performance implications of redesigning them to comply with Zero Energy Ready Home, a recognition program of the U.S. Department of Energy. Energy modeling was conducted on one representative apartment in each building using BEopt.
Zhou, Cheng; Penner, Joyce E.
2017-01-02
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
Constraints and Opportunities in GCM Model Development
NASA Technical Reports Server (NTRS)
Schmidt, Gavin; Clune, Thomas
2010-01-01
Over the past 30 years climate models have evolved from relatively simple representations of a few atmospheric processes to complex multi-disciplinary system models which incorporate physics from bottom of the ocean to the mesopause and are used for seasonal to multi-million year timescales. Computer infrastructure over that period has gone from punchcard mainframes to modern parallel clusters. Constraints of working within an ever evolving research code mean that most software changes must be incremental so as not to disrupt scientific throughput. Unfortunately, programming methodologies have generally not kept pace with these challenges, and existing implementations now present a heavy and growing burden on further model development as well as limiting flexibility and reliability. Opportunely, advances in software engineering from other disciplines (e.g. the commercial software industry) as well as new generations of powerful development tools can be incorporated by the model developers to incrementally and systematically improve underlying implementations and reverse the long term trend of increasing development overhead. However, these methodologies cannot be applied blindly, but rather must be carefully tailored to the unique characteristics of scientific software development. We will discuss the need for close integration of software engineers and climate scientists to find the optimal processes for climate modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Cheng; Penner, Joyce E.
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
Climate Considerations Of The Electricity Supply Systems In Industries
NASA Astrophysics Data System (ADS)
Asset, Khabdullin; Zauresh, Khabdullina
2014-12-01
The study is focused on analysis of climate considerations of electricity supply systems in a pellet industry. The developed analysis model consists of two modules: statistical data of active power losses evaluation module and climate aspects evaluation module. The statistical data module is presented as a universal mathematical model of electrical systems and components of industrial load. It forms a basis for detailed accounting of power loss from the voltage levels. On the basis of the universal model, a set of programs is designed to perform the calculation and experimental research. It helps to obtain the statistical characteristics of the power losses and loads of the electricity supply systems and to define the nature of changes in these characteristics. Within the module, several methods and algorithms for calculating parameters of equivalent circuits of low- and high-voltage ADC and SD with a massive smooth rotor with laminated poles are developed. The climate aspects module includes an analysis of the experimental data of power supply system in pellet production. It allows identification of GHG emission reduction parameters: operation hours, type of electrical motors, values of load factor and deviation of standard value of voltage.
Arctic Freshwater Synthesis: Summary of key emerging issues
NASA Astrophysics Data System (ADS)
Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.
2015-10-01
In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutowski, William J.
This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less
Impact of Experience Corps(®) participation on school climate.
Parisi, Jeanine M; Ramsey, Christine M; Carlson, Michelle C; Xue, Qian-Li; Huang, Jin; Romani, William A; McGill, Sylvia; Seeman, Teresa E; Tanner, Elizabeth K; Barron, Jeremy; Tan, Erwin J; Gruenewald, Tara L; Diibor, Ike; Fried, Linda P; Rebok, George W
2015-07-01
We examined the impact of the Experience Corps(®) (EC) program on school climate within Baltimore City public elementary schools. In this program, teams of older adult volunteers were placed in high intensity (>15 h per week), meaningful roles in public elementary schools, to improve the educational outcomes of children as well as the health and well-being of volunteers. During the first year of EC participation, school climate was perceived more favorably among staff and students in EC schools as compared to those in comparison schools. However, with a few notable exceptions, perceived school climate did not differ for staff or students in intervention and comparison schools during the second year of exposure to the EC program. These findings suggest that perceptions of school climate may be altered by introducing a new program into elementary schools; however, research examining how perceptions of school climate are impacted over a longer period is warranted.
Impact of Experience Corps® Participation on School Climate
Parisi, Jeanine M.; Ramsey, Christine M.; Carlson, Michelle C.; Xue, Qian-Li; Huang, Jin; Romani, William A.; McGill, Sylvia; Seeman, Teresa E.; Tanner, Elizabeth K.; Barron, Jeremy; Tan, Erwin; Gruenewald, Tara L.; Diibor, Ike; Fried, Linda P.; Rebok, George W.
2015-01-01
We examined the impact of the Experience Corps® (EC) program on school climate within Baltimore City public elementary schools. In this program, teams of older adult volunteers were placed in high intensity (>15 hours per week), meaningful roles in public elementary schools, to improve the educational outcomes of children as well as the health and well-being of volunteers. During the first year of EC participation, school climate was perceived more favorably among staff and students in EC schools as compared to those in comparison schools. However, with a few notable exceptions, perceived school climate did not differ for staff or students in intervention and comparison schools during the second year of exposure to the EC program. These findings suggest that perceptions of school climate may be altered by introducing a new program into elementary schools; however, research examining how perceptions of school climate are impacted over a longer period is warranted. PMID:25708453
Arking, A.; Ridgeway, B.; Clough, T.; Iacono, M.; Fomin, B.; Trotsenko, A.; Freidenreich, S.; Schwarzkopf, D.
1994-01-01
The intercomparison of Radiation Codes in Climate Models (ICRCCM) study was launched under the auspices of the World Meteorological Organization and with the support of the U.S. Department of Energy to document differences in results obtained with various radiation codes and radiation parameterizations in general circulation models (GCMs). ICRCCM produced benchmark, longwave, line-by-line (LBL) fluxes that may be compared against each other and against models of lower spectral resolution. During ICRCCM, infrared fluxes and cooling rates for several standard model atmospheres with varying concentrations of water vapor, carbon dioxide, and ozone were calculated with LBL methods at resolutions of 0.01 cm-1 or higher. For comparison with other models, values were summed for the IR spectrum and given at intervals of 5 or 10 cm-1. This archive contains fluxes for ICRCCM-prescribed clear-sky cases. Radiative flux and cooling-rate profiles are given for specified atmospheric profiles for temperature, water vapor, and ozone-mixing ratios. The archive contains 328 files, including spectral summaries, formatted data files, and a variety of programs (i.e., C-shell scripts, FORTRAN codes, and IDL programs) to read, reformat, and display data. Collectively, these files require approximately 59 MB of disk space.
rpe v5: an emulator for reduced floating-point precision in large numerical simulations
NASA Astrophysics Data System (ADS)
Dawson, Andrew; Düben, Peter D.
2017-06-01
This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.
The Relationship between Organizational Climate and Quality of Chronic Disease Management
Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C
2011-01-01
Objective To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Data Sources/Study Setting Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Study Design Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. Data Collection/Extraction Methods All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Principal Findings Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. Conclusions The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. PMID:21210799
NASA Astrophysics Data System (ADS)
Hatzaki, M.; Flocas, H. A.; Kouroutzoglou, J.; Keay, K.; Simmonds, I.; Giannakopoulos, C. A.; Brikolas, V.
2011-12-01
A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of Mediterranean cyclones, including temporal and spatial variations of frequency of cyclonic tracks, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the MPI-HH regional coupled climate model of the Max Planck Institute for Meteorology is employed consisting of the REgional atmosphere MOdel (REMO), the Max-Planck-Institute for Meteorology ocean model (MPI-OM) and the Hydrological Discharge Model (HD Model). A 25 km resolution domain is established on a rotated latitude-longitude coordinate system, while the physical parameterizations are taken from the global climate model ECHAM-4. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. The model results for the present climate are evaluated against ERA-40 Reanalysis (available through ECMWF), for the period 1962-2001. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with the results of previous studies. However, new findings reveal with respect to the dynamic/kinematic characteristics of the cyclonic tracks. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region. The study of the kinematic and dynamic parameters of the cyclonic tracks according to their origin domain show that the vast majority originate within the examined area itself. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.
NASA Astrophysics Data System (ADS)
Van Grouw, B.
2016-12-01
The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.
Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.
2014-01-01
We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379
Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.
2014-01-01
We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.
Potential impact of global climate change on malaria risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, W.J.M.; Rotmans, J.; Niessen, L.W.
The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due tomore » expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.« less
Data-Model Comparison of Pliocene Sea Surface Temperature
NASA Astrophysics Data System (ADS)
Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.
2013-12-01
The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.
Comparison of current and paleorecharge on the Yucatan Peninsula, Mexico
NASA Astrophysics Data System (ADS)
Van Pelt, S.; Allen, D. M.; Kohfeld, K. E.
2016-12-01
During the Terminal Classic Period (TCP) 800-1000 AD, the Yucatan Peninsula is thought to have experienced a 150-year long series of droughts that contributed to the demise of the Mayan civilization. The occurrence of this type of event suggests that similar precipitation extremes could occur again, and severely impact water supplies. Studying the past occurrence of droughts may provide more insight into the possible timing and intensity of droughts. However, observed data of the past climate is limited to proxy records, which are not detailed enough for groundwater modeling. The goals of this study were two-fold: (a) to generate a daily paleoclimate time series for use in a recharge model, and (b) to compare current and past recharge on the Yucatan Peninsula. Past temperature and precipitation were reconstructed using a novel backwards shift factor approach using output from two experiments of the Community Climate System Model Version 4 (CCSM4). Shift factors were applied using two approaches: (1) application of shift factors to a stochastic weather series based on the observed climate, and (2) application of shift factors directly to the observed climate. The second method (direct shift factor approach) was found to be more suitable for the Yucatan Peninsula, as the observed median annual precipitation was poorly reproduced in the stochastic data. The reconstructed precipitation was used in the recharge model, which used the unsaturated component of the modeling program MIKE SHE. The comparison of the TCP and the current climate models indicated that on average, 1.74% more recharge occurred annually during the TCP. The seasonal water balance components showed that the majority of this higher recharge occurred during the wet season, with little to no increase in recharge during the dry season. Due to issues with the CCSM4 model data, changes in climate variability were not able to be incorporated into this study. If variability were incorporated, the TCP climate may have had more extreme precipitation values which are not represented in the recharge model, and the Yucatan Peninsula may have been susceptible to dry season droughts.
NASA Astrophysics Data System (ADS)
Leckey, E.; Littrell-Baez, M.; Tayne, K.; Gold, A. U.; Okochi, C.; Oonk, D.; Smith, L. K.; Lynds, S. E.
2017-12-01
Storytelling is a powerful way for students to engage with science topics, particularly topics that may initially seem too broad to impact their lives, like climate change. Empowering students to telling a personal story about climate change's effects and helping them turn their story into a film is powerful approach. Especially because these films can be shared globally and gives students a voice around a complex topic like climate change. Here, we present impacts of the Lens on Climate Change program (LOCC), which engages middle and high school students in producing short films featuring how climate change impacts their communities. LOCC is offered as an intensive week-long summer program and as an extracurricular program during the school year. The majority of student participants are recruited from historically underserved communities and come from ethnical and socioeconomically diverse backgrounds. Survey data revealed that LOCC participants had a significant increase in their belief in the reality of climate change after participation in their program relative to students in a demographically-matched control groups. Furthermore, participant responses on reflection surveys given after the program included statements that suggest that students had begun thinking more deeply about climate change as a serious global challenge and felt empowered to take actions to mitigate climate change and/or spread awareness in their communities. The majority of students in the LOCC program also reported being very proud of their film and intended to share their film with their friends and family. Additionally, we explored the long-term impacts of participation by interviewing students a year after the program and offered them the opportunity to make a subsequent film. Students in this "advanced group" reported being more aware of climate change in their community following making their films and were enthusiastic to increase their filmmaking skills through producing additional films. We suggest that the combination of storytelling and filmmaking gives students a means to become part of the climate change narrative and to engage in thinking about and acting on climate change at a broader level than they might otherwise be comfortable doing.
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino
2015-04-01
To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.
NASA Astrophysics Data System (ADS)
Xie, X.; Liang, S.
2013-12-01
The Three-North region of China, including the northeastern, northern, and northwestern areas, covers an area of more than three million square kilometers. This region is featured for its arid and semiarid environments with annual rainfall less than 450 mm. During the past few decades, the Three-North region has experienced noticeable water-cycle variations owing to the climate and land use changes. Typically, several large-scale forestation programs such as the Three Norths Forest Shelterbelt Program began since late 1970s, have been implemented across this region in order to solve desertification and dust storm problems, and to combat the loss of water and soil. These programs raised debates, however, because their effectiveness does not likely achieve what was expected and they even imposed negative influences on the eco-hydrologic system in some areas. Currently most studies were based on in-situ measurements and individual catchments and primarily attributed the water-cycle variations to the forestation. In this study we attempt to evaluate the impact of combined climate and land use changes using remote sensing data and a sophisticated land surface model, i.e., the Three-Layer Variable Infiltration Capacity (VIC-3L). Four land use maps derived from Landsat TM images for 1990, 1995, 2000 and 2005 were used to detect the land use changes in the three-north regions, and leaf area index (LAI) from the Global Land Surface Satellite (GLASS) LAI product was employed to assess the land cover change and the effect of forestation programs. After model calibration and validation based on gauged streamflow and evapotranspiration from China FluxNet, a series of simulation scenarios were designed to examine the impacts of climate and land use changes on soil moisture, runoff and evapotranspiration and to identify each contribution to water fluxes. It was found that within the study area as a whole, LAI shows an increasing trend during 1980-2009 in response to the forestation programs. However, the hydrologic variables (i.e., the soil moisture, runoff and evapotranspiration) in northern and northwestern regions are more significantly affected by the precipitation and temperature than by the land use changes, although the impacts of land use change are uneven across the entire region. So, the forestation probably plays a modest role in the hydrologic system.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug
2016-04-01
We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.
Fish habitat regression under water scarcity scenarios in the Douro River basin
NASA Astrophysics Data System (ADS)
Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa
2015-04-01
Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the interplay of flow reduction, increase of temperature and transversal barriers. This species is therefore a good indicator of climate change impacts in rivers and therefore we recommend using this species as a target of monitoring programs to be implemented in the context of climate change adaptation strategies.
Statistical Surrogate Models for Estimating Probability of High-Consequence Climate Change
NASA Astrophysics Data System (ADS)
Field, R.; Constantine, P.; Boslough, M.
2011-12-01
We have posed the climate change problem in a framework similar to that used in safety engineering, by acknowledging that probabilistic risk assessments focused on low-probability, high-consequence climate events are perhaps more appropriate than studies focused simply on best estimates. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We have developed specialized statistical surrogate models (SSMs) that can be used to make predictions about the tails of the associated probability distributions. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field, that is, a random variable for every fixed location in the atmosphere at all times. The SSM can be calibrated to available spatial and temporal data from existing climate databases, or to a collection of outputs from general circulation models. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework was also developed to provide quantitative measures of confidence, via Bayesian credible intervals, to assess these risks. To illustrate the use of the SSM, we considered two collections of NCAR CCSM 3.0 output data. The first collection corresponds to average December surface temperature for years 1990-1999 based on a collection of 8 different model runs obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI). We calibrated the surrogate model to the available model data and make various point predictions. We also analyzed average precipitation rate in June, July, and August over a 54-year period assuming a cyclic Y2K ocean model. We applied the calibrated surrogate model to study the probability that the precipitation rate falls below certain thresholds and utilized the Bayesian approach to quantify our confidence in these predictions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia
NASA Astrophysics Data System (ADS)
Klavs, G.; Rekis, J.
2016-12-01
The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).
Interdisciplinary MSc and Doctoral Education in Climate System Science at the University of Hamburg
NASA Astrophysics Data System (ADS)
Dilly, Oliver; Stammer, Detlef; Pfeiffer, Eva-Maria
2010-05-01
Modern education in climate system sciences is based on a number of disciplines such as meteorology, geophysics, oceanography, geosciences and also economics and social sciences. Facts across these disciplines are required to address the faced key issues related to climate change effectively. Climate experts need to have profound knowledge that can only be achieved in interdisciplinary MSc and PhD programs. In Europe, graduate students who completed a BSc degree are typically proceeding with MSc programs to increase knowledge and qualification. Afterwards, the participation in a doctoral program may follow. Many doctoral programs include courses supporting disciplinary methodological and scientific background in particular. Those courses derive either from advanced MSc programs or specific trainings. Typically, interdisciplinary exchange is difficult to achieve at any stage of disciplinary graduate programs. Recent developments showed the need to educate climate experts in interdisciplinary MSc programs in climate system sciences for both researchers and professionals outside the university. The University of Hamburg offers an interdisciplinary 2-yr MSc program in Integrated System Sciences with 120 ECTS (30 compulsory, 90 eligible) in English language. If the MSc student decides to proceed with a PhD thesis, he/she may not necessarily complete the MSc program but may start to work on a specific and disciplinary doctoral thesis for 3 years. Each doctoral student is guided by an advisory panel (AP) which meets at least bi-annually. The AP consists of a Principal Advisor, a Co-Advisor and a Chair of the panel who come from neighboring disciplines. The structured doctoral program with only 12 CPs includes interdisciplinary compulsory courses and tailor-made eligible expert courses. Summer schools and soft skill courses add to both MSc and doctoral programs. Accordingly, the new graduate school concepts in climate system sciences at the University of Hamburg supports starting with the interdisciplinary MSc program Integrated Climate System Sciences and then get in-depth disciplinary expertise during PhD studies. The completion of the total MSc curriculum may not be essential. Advantages and limitations of this concept will be discussed.
NASA Technical Reports Server (NTRS)
1979-01-01
Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.
NASA Astrophysics Data System (ADS)
Tsunematsu, N.; Dairaku, K.; Hirano, J.
2013-12-01
To investigate future changes in summertime precipitation amounts over the Japanese islands and their relations to the topographical heights, this study analyzed 20 km horizontal grid-spacing regional climate model downscalings of MIROC3.2-hires 20C3M and SRES-A1B scenario data for the periods of 1981-2000 and 2081-2100. Results indicate the remarkable increases in June-July-August mean daily precipitation in the west and south sides (windward sides) of the mountainous regions, especially in western Japan where heavy rainfall is frequently observed in the recent climate. The remarkable increases in summertime precipitation are likely to occur not only in high altitude areas but also at low altitudes. The occurrence frequencies of precipitation greater than 100 mm/day would also increase in such areas. The intensification of southwesterly moist air flows in the lower troposphere is considered to be one of the main causes of those precipitation changes because the intensified southwesterly moist air flows impinging on the western and southern slopes of the mountains can generate stronger upslope flows and well-developed clouds, leading to increased precipitation. Also, the results show that future precipitation changes in the lee sides of the mountainous regions (e.g., the Tokyo metropolitan area) would be comparatively small. These results indicate large influences of topography and prevailing wind direction on future precipitation changes. Acknowledgments: This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan. We thank the regional climate modeling groups (MRI/NIED/Univ. Tsukuba) for producing and making available their model output. Their work was supported by the Environment Research and Technology Development Fund (S5-3) of the Ministry of the Environment, Japan.
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kunst, O.; Cubasch, U.
2014-12-01
The project 'Integrated Data and Evaluation System for Decadal Scale Prediction' (INTEGRATION) as part of the German decadal prediction project MiKlip develops a central evaluation system. The fully operational hybrid features a HPC shell access and an user friendly web-interface. It employs one common system with a variety of verification tools and validation data from different projects in- and outside of MiKlip. The evaluation system is located at the German Climate Computing Centre (DKRZ) and has direct access to the bulk of its ESGF node including millions of climate model data sets, e.g. from CMIP5 and CORDEX. The database is organized by the international CMOR standard using the meta information of the self-describing model, reanalysis and observational data sets. Apache Solr is used for indexing the different data projects into one common search environment. This implemented meta data system with its advanced but easy to handle search tool supports users, developers and their tools to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitating the provision and usage of tools and climate data increases automatically the number of scientists working with the data sets and identify discrepancies. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a MySQL database. Configurations and results of the tools can be shared among scientists via shell or web-system. Therefore, plugged-in tools gain automatically from transparency and reproducibility. Furthermore, when configurations match while starting a evaluation tool, the system suggests to use results already produced by other users-saving CPU time, I/O and disk space. This study presents the different techniques and advantages of such a hybrid evaluation system making use of a Big Data HPC in climate science. website: www-miklip.dkrz.de visitor-login: guest password: miklip
NASA Astrophysics Data System (ADS)
Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Ulbrich, Uwe; Cubasch, Ulrich
2015-04-01
The project 'Integrated Data and Evaluation System for Decadal Scale Prediction' (INTEGRATION) as part of the German decadal prediction project MiKlip develops a central evaluation system. The fully operational hybrid features a HPC shell access and an user friendly web-interface. It employs one common system with a variety of verification tools and validation data from different projects in- and outside of MiKlip. The evaluation system is located at the German Climate Computing Centre (DKRZ) and has direct access to the bulk of its ESGF node including millions of climate model data sets, e.g. from CMIP5 and CORDEX. The database is organized by the international CMOR standard using the meta information of the self-describing model, reanalysis and observational data sets. Apache Solr is used for indexing the different data projects into one common search environment. This implemented meta data system with its advanced but easy to handle search tool supports users, developers and their tools to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitating the provision and usage of tools and climate data increases automatically the number of scientists working with the data sets and identify discrepancies. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a MySQL database. Configurations and results of the tools can be shared among scientists via shell or web-system. Therefore, plugged-in tools gain automatically from transparency and reproducibility. Furthermore, when configurations match while starting a evaluation tool, the system suggests to use results already produced by other users-saving CPU time, I/O and disk space. This study presents the different techniques and advantages of such a hybrid evaluation system making use of a Big Data HPC in climate science. website: www-miklip.dkrz.de visitor-login: click on "Guest"
Advances in Understanding Decadal Climate Variability
NASA Technical Reports Server (NTRS)
Busalaacchi, Antonio J.
1998-01-01
Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.
Advances in Understanding Decadal Climate Variability
NASA Technical Reports Server (NTRS)
Busalacchi, Antonio J.
1999-01-01
Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar conducts a program of research and development in support of the National Centers for Environmental Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park
Downscaling GCM Output with Genetic Programming Model
NASA Astrophysics Data System (ADS)
Shi, X.; Dibike, Y. B.; Coulibaly, P.
2004-05-01
Climate change impact studies on watershed hydrology require reliable data at appropriate spatial and temporal resolution. However, the outputs of the current global climate models (GCMs) cannot be used directly because GCM do not provide hourly or daily precipitation and temperature reliable enough for hydrological modeling. Nevertheless, we can get more reliable data corresponding to future climate scenarios derived from GCM outputs using the so called 'downscaling techniques'. This study applies Genetic Programming (GP) based technique to downscale daily precipitation and temperature values at the Chute-du-Diable basin of the Saguenay watershed in Canada. In applying GP downscaling technique, the objective is to find a relationship between the large-scale predictor variables (NCEP data which provide daily information concerning the observed large-scale state of the atmosphere) and the predictand (meteorological data which describes conditions at the site scale). The selection of the most relevant predictor variables is achieved using the Pearson's coefficient of determination ( R2) (between the large-scale predictor variables and the daily meteorological data). In this case, the period (1961 - 2000) is identified to represent the current climate condition. For the forty years of data, the first 30 years (1961-1990) are considered for calibrating the models while the remaining ten years of data (1991-2000) are used to validate those models. In general, the R2 between the predictor variables and each predictand is very low in case of precipitation compared to that of maximum and minimum temperature. Moreover, the strength of individual predictors varies for every month and for each GP grammar. Therefore, the most appropriate combination of predictors has to be chosen by looking at the output analysis of all the twelve months and the different GP grammars. During the calibration of the GP model for precipitation downscaling, in addition to the mean daily precipitation and daily precipitation variability for each month, monthly average dry and wet-spell lengths are also considered as performance criteria. For the cases of Tmax and Tmin, means and variances of these variables corresponding to each month were considered as performance criteria. The GP downscaling results show satisfactory agreement between the observed daily temperature (Tmax and Tmin) and the simulated temperature. However, the downscaling results for the daily precipitation still require some improvement - suggesting further investigation of other grammars. KEY WORDS: Climate change; GP downscaling; GCM.
Development of climate data storage and processing model
NASA Astrophysics Data System (ADS)
Okladnikov, I. G.; Gordov, E. P.; Titov, A. G.
2016-11-01
We present a storage and processing model for climate datasets elaborated in the framework of a virtual research environment (VRE) for climate and environmental monitoring and analysis of the impact of climate change on the socio-economic processes on local and regional scales. The model is based on a «shared nothings» distributed computing architecture and assumes using a computing network where each computing node is independent and selfsufficient. Each node holds a dedicated software for the processing and visualization of geospatial data providing programming interfaces to communicate with the other nodes. The nodes are interconnected by a local network or the Internet and exchange data and control instructions via SSH connections and web services. Geospatial data is represented by collections of netCDF files stored in a hierarchy of directories in the framework of a file system. To speed up data reading and processing, three approaches are proposed: a precalculation of intermediate products, a distribution of data across multiple storage systems (with or without redundancy), and caching and reuse of the previously obtained products. For a fast search and retrieval of the required data, according to the data storage and processing model, a metadata database is developed. It contains descriptions of the space-time features of the datasets available for processing, their locations, as well as descriptions and run options of the software components for data analysis and visualization. The model and the metadata database together will provide a reliable technological basis for development of a high- performance virtual research environment for climatic and environmental monitoring.
NASA Astrophysics Data System (ADS)
Hatzaki, M.; Flocas, H. A.; Giannakopoulos, C.; Kostopoulou, E.; Kouroutzoglou, I.; Keay, K.; Simmonds, I.
2010-09-01
In this study, a comparison of a reanalysis driven simulation to a GCM driven simulation of a regional climate model is performed in order to assess the model's ability to capture the climatic characteristics of cyclonic tracks in the Mediterranean in the present climate. The ultimate scope of the study will be to perform a future climate projection related to cyclonic tracks in order to better understand and assess climate change in the Mediterranean. The climatology of the cyclonic tracks includes inter-monthly variations, classification of tracks according to their origin domain, dynamic and kinematic characteristics, as well as trend analysis. For this purpose, the ENEA model is employed based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the ERA402 with lateral Boundary conditions from ERA40 for the 43-year period 1958-2000, and b) the EH5OM_20C3M where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region, consistent with previous studies. The classification of the tracks according to their origin domain show that the vast majority originate within the examined area itself. The study of the kinematic and dynamic parameters of tracks according to their origin demonstrate that deeper cyclones follow the SW track. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.
Youth Climate Summits: Empowering & Engaging Youth to Lead on Climate Change
NASA Astrophysics Data System (ADS)
Kretser, J.
2017-12-01
The Wild Center's Youth Climate Summits is a program that engages youth in climate literacy from knowledge and understanding to developing action in their schools and communities. Each Youth Climate Summit is a one to three day event that brings students and teachers together to learn about climate change science, impacts and solutions at a global and local level. Through speakers, workshops and activities, the Summit culminates in a student-driven Climate Action Plan that can be brought back to schools and communities. The summits have been found to be powerful vehicles for inspiration, learning, community engagement and youth leadership development. Climate literacy with a focus on local climate impacts and solutions is a key component of the Youth Climate Summit. The project-based learning surrounding the creation of a unique, student driven, sustainability and Climate Action Plan promotes leadership skills applicable and the tools necessary for a 21st Century workforce. Student driven projects range from school gardens and school energy audits to working with NYS officials to commit to going 100% renewable electricty at the three state-owned downhill ski facilities. The summit model has been scaled and replicated in other communities in New York State, Vermont, Ohio, Michigan and Washington states as well as internationally in Finland, Germany and Sri Lanka.
Future change of water vaiables from HadGEM2-AO simulation
NASA Astrophysics Data System (ADS)
Kim, Moon-Hyun; Kang, Hyun-Suk; Lee, Johan; Baek, Hee-Jeong; Cho, Chunho
2013-04-01
Complex global models developed for climate prediction are now applied to the future climate projection in a number of global modeling centers around the world. In climate prediction aspects, an atmosphere-ocean coupled model (one-tier climate system) has been recognized to exhibit useful skill for a global or certain regions (Graham et al., 2005). Wang et al. (2005) demonstrates that an AGCM coupled with an ocean model, simulates realistic SST-rainfall relationships for the Asia during the summer period. Also the transition from two-tier to one-tier approach in climate prediction are mainly caused by recent progresses in development of coupled climate models and enlargement of understanding air-sea interactions obtained from international collaborative efforts such as TOGA (the Tropical Ocean-Global Atmosphere) program (Wang et al., 2009). Meanwhile, water resource including river outflow in association with surface and sub-surface water flow is an important part of the global hydrological cycle, and is affected by climate variability and change through recharge processes (Chen et al., 2002), as well as by human interventions in many locations (Petheram et al., 2001). Also, water is critical resource to the social, economic and environmental aspects, and advances of these core elements requires improved water resource management. Better management and use of water need to abundant real time hydro-meteorological (river and weather) information as well as accurate water resource forecasting (Barrett, 1990). For this reason, many studies have recently carrying out the water resource prediction and estimation using hydrology and climate model. For example, Shiklomanov et al. (2011) predicted that water resource in Russian territory increases about 8-10% during 2010-2020 using the unit hydrograph (UH) model based on hydrologic rainfall-runoff model. Anderson et al. (2000) explained the probabilistic seasonal prediction of drought with a simplified climate model coupled hydrology-atmosphere for water resource planning. Arora et al. (1999) and Oki and Sud (1998) developed a method for routing river flows through GCM grid cells. Accordingly, reliable forecasts are expected to help water managers and users with long lead time decisions, leading to greater water use efficiency and better risk management (Wang, 2012). SO, we analysed hydrological cycle and drought index from precipitation, evaporation, runoff, soil moisture, river outflow, and so on using atmosphere-ocean coupled model which called by HadGEM2-AO. Details and added information by this climate projection system about the future water cycle's change will be presented at the workshop. Acknowledgments: This research has been supported by project NIMR-2013-B-2 of the National Institute of Meteorological Research in Korea Meteorological Administration.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
... Activities; Proposed Collection; Comment Request; Reporting Requirements Under EPA's Climate Leaders...: John Sottong, Climate Protection Partnerships Division, Office of Atmospheric Programs, (6202J... Inventory Pilot started during EPA's Climate Leaders Program. Title: Reporting Requirements Under EPA's...
Stenling, Andreas; Tafvelin, Susanne
2016-10-01
Leadership development programs are common in sports, but seldom evaluated; hence, we have limited knowledge about what the participants actually learn and the impact these programs have on sports clubs' daily operations. The purpose of the current study was to integrate a transfer of training model with self-determination theory to understand predictors of learning and training transfer, following a leadership development program among organizational leaders in Swedish sports clubs. Bayesian multilevel path analysis showed that autonomous motivation and an autonomy-supportive implementation of the program positively predicted near transfer (i.e., immediately after the training program) and that perceiving an autonomy-supportive climate in the sports club positively predicted far transfer (i.e., 1 year after the training program). This study extends previous research by integrating a transfer of training model with self-determination theory and identified important motivational factors that predict near and far training transfer.
Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.
2011-01-01
The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.
Studying Weather and Climate Using Atmospheric Retrospective Analyses
NASA Astrophysics Data System (ADS)
Bosilovich, M. G.
2014-12-01
Over the last 35 years, tremendous amounts of satellite observations of the Earth's atmosphere have been collected along side the much longer and diverse record of in situ measurements. The satellite data records have disparate qualities, structure and uncertainty which make comparing weather from the 80s and 2000s a challenging prospect. Likewise, in-situ data records lack complete coverage of the earth in both space and time. Atmospheric reanalyses use the observations with numerical models and data assimilation to produce continuous and consistent weather data records for periods longer than decades. The result is a simplified data format with a relatively straightforward learning curve that includes many more variables available (through the modeling component of the system), but driven by a full suite of observational data. The simplified data format allows introduction into weather and climate data analysis. Some examples are provided from undergraduate meteorology program internship projects. We will present the students progression through the projects from their initial understanding and competencies to some final results and the skills learned along the way. Reanalyses are a leading research tool in weather and climate, but can also provide an introductory experience as well, allowing students to develop an understanding of the physical system while learning basic programming and analysis skills.
Introduction The Role of the Agricultural Model Intercomparison and Improvement Project
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia; Hillel, Daniel
2015-01-01
Climate impacts on agriculture are of increasing concern in both the scientific and policy communities because of the need to ensure food security for a growing population. A special challenge is posed by the changes in the frequency and intensity of heat-waves, droughts, and episodic rainstorms already underway in many parts of the world. Changes in production are directly linked to such variations in temperature and precipitation during the growing season, and often to offseason changes in weather affecting soil-water storage and availability to crops. This is not an isolated problem but one of both global and regional importance, because of impacts on the livelihoods of smallholder farmers as well as consequences for the world food trade system. This two-part set the Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Crop and Economic Assessments is the first to be entirely devoted to AgMIP (www.agmip.org). AgMIP is a major international research program focused on climate change and agriculture. The goal of the two parts is to advance the field by providing detailed information on new simulation techniques and assessments being conducted by this program. It presents information about new methods of global and regional integrated assessment, results from agricultural regions, and adaptation strategies for maintaining food security under changing climate conditions.
NASA Astrophysics Data System (ADS)
Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.
2010-12-01
In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.
NASA Astrophysics Data System (ADS)
Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.
2016-02-01
As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.
Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record
NASA Astrophysics Data System (ADS)
Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.
2015-12-01
A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.
Jacobs, Sara R; Weiner, Bryan J; Reeve, Bryce B; Hofmann, David A; Christian, Michael; Weinberger, Morris
2015-01-22
The failure rates for implementing complex innovations in healthcare organizations are high. Estimates range from 30% to 90% depending on the scope of the organizational change involved, the definition of failure, and the criteria to judge it. The innovation implementation framework offers a promising approach to examine the organizational factors that determine effective implementation. To date, the utility of this framework in a healthcare setting has been limited to qualitative studies and/or group level analyses. Therefore, the goal of this study was to quantitatively examine this framework among individual participants in the National Cancer Institute's Community Clinical Oncology Program using structural equation modeling. We examined the innovation implementation framework using structural equation modeling (SEM) among 481 physician participants in the National Cancer Institute's Community Clinical Oncology Program (CCOP). The data sources included the CCOP Annual Progress Reports, surveys of CCOP physician participants and administrators, and the American Medical Association Physician Masterfile. Overall the final model fit well. Our results demonstrated that not only did perceptions of implementation climate have a statistically significant direct effect on implementation effectiveness, but physicians' perceptions of implementation climate also mediated the relationship between organizational implementation policies and practices (IPP) and enrollment (p <0.05). In addition, physician factors such as CCOP PI status, age, radiological oncologists, and non-oncologist specialists significantly influenced enrollment as well as CCOP organizational size and structure, which had indirect effects on implementation effectiveness through IPP and implementation climate. Overall, our results quantitatively confirmed the main relationship postulated in the innovation implementation framework between IPP, implementation climate, and implementation effectiveness among individual physicians. This finding is important, as although the model has been discussed within healthcare organizations before, the studies have been predominately qualitative in nature and/or at the organizational level. In addition, our findings have practical applications. Managers looking to increase implementation effectiveness of an innovation should focus on creating an environment that physicians perceive as encouraging implementation. In addition, managers should consider instituting specific organizational IPP aimed at increasing positive perceptions of implementation climate. For example, IPP should include specific expectations, support, and rewards for innovation use.
Cities as Water Supply Catchments to deliver microclimate benefits
NASA Astrophysics Data System (ADS)
Beringer, J.; Tapper, N. J.; Coutts, A.; Loughnan, M.
2010-12-01
Urban development extensively modifies the natural hydrology, biodiversity, carbon balance, air quality and climate of the local and regional environment mainly due to increased impervious surface area (roads, pavements, roofs, etc.). Impervious surface are a legacy of urban infrastructure planning based on a ‘drained city’ to minimise flood risk. The result is a modification of the microclimate around buildings and on a city scale results in the Urban Heat Island (UHI) effect where the urban areas are much hotter than the surrounding rural areas. Such heating comes on top of 20th century human induced climate change, namely decreased rainfall and higher temperatures. Drought conditions have triggered water restrictions in many Australian cities that have dramatically reduced ‘irrigation’ in urban areas. Ironically the drying influence from climate change has now been compounded by the drying influence of water restrictions and the efficient removal of stormwater resulting in desert like climates during summer. This will be further exacerbated by the projected increases in hot days, extreme hot days, heat waves, etc. In turn this excessive heating will compromise the health and liveability of urban dwellers. Stormwater is a potential critical resource that could be used to keep water in the landscape to irrigate urban areas to improve urban micro-climates, sustain vegetation and provide other multiple benefits to create more liveable and resilient urban environments. In Australia's major cities, stormwater harvesting has the potential to provide a low cost, low energy, fit-for-purpose source of water to help secure city supplies. Stormwater reuse not only provides a potential mitigation tool for the UHI and global climate change but has multiple benefits to provide resilience such as 1) Improved human thermal comfort to reduce heat related stress and mortality, 2) Healthy and productive vegetation and increased carbon sequestration, 3) Decreased stormwater runoff and reduced infrastructure cost, 4) Improved air quality through deposition, 5) Improved amenity of the landscape and improved water regimes for urban waterways. We present an overview of a major national research program called ‘Cities as Water Supply Catchments' that has been funded by industry stakeholders and all levels of Government across four major cities. The program is aimed at providing a strong evidence base for mainstreaming stormwater harvesting in Australia. This 5-year inter-disciplinary program involves 8 sub-projects including: the design of sustainable stormwater harvesting technologies; new governance, policy mechanisms and servicing models; and an assessment of the micro-climatic benefits of stormwater harvesting and management solutions. We then focus on the ‘green cities and micro-climates sub-project’ that will undertake a combination of observational and modelling approaches to measure, demonstrate, and project the effectiveness of stormwater harvesting and water sensitive urban design as an approach for improving urban micro-climates.
Strategies for reforestation under uncertain future climates: guidelines for Alberta, Canada.
Gray, Laura K; Hamann, Andreas
2011-01-01
Commercial forestry programs normally use locally collected seed for reforestation under the assumption that tree populations are optimally adapted to local environments. However, in western Canada this assumption is no longer valid because of climate trends that have occurred over the last several decades. The objective of this study is to show how we can arrive at reforestation recommendations with alternative species and genotypes that are viable under a majority of climate change scenarios. In a case study for commercially important tree species of Alberta, we use an ecosystem-based bioclimate envelope modeling approach for western North America to project habitat for locally adapted populations of tree species using multi-model climate projections for the 2020s, 2050s and 2080s. We find that genotypes of species that are adapted to drier climatic conditions will be the preferred planting stock over much of the boreal forest that is commercially managed. Interestingly, no alternative species that are currently not present in Alberta can be recommended with any confidence. Finally, we observe large uncertainties in projections of suitable habitat that make reforestation planning beyond the 2050s difficult for most species. More than 50,000 hectares of forests are commercially planted every year in Alberta. Choosing alternative planting stock, suitable for expected future climates, could therefore offer an effective climate change adaptation strategy at little additional cost. Habitat projections for locally adapted tree populations under observed climate change conform well to projections for the 2020s, which suggests that it is a safe strategy to change current reforestation practices and adapt to new climatic realities through assisted migration prescriptions.
NASA Astrophysics Data System (ADS)
Crimi, Pietro
2017-04-01
In education to issues of environmental sustainability and the use of renewable energy resources, there are the existing laboratory teaching methodologies in Superior School "A. Volta" in Palermo (Italy) for acquisition, processing and control network of agro-meteorological data on the local area. This station was planned to allow students practical multidisciplinary learning experiences in the field of agro-meteorological applications. The School started a few months ago a project of MIUR (Italian Ministry of Education) that updates the lab through the most innovative digital technologies in the field of mechatronics, domotic and sustainable energy, that are supported by the latest needs of scientific-educational multimedia. It is an educational training that intends to implement a data collection center agro-meteorological on "digital platforms," informational purposes and applications, on current issues of climate changes and their consequences in Sicily (Italy). This active learning will interconnect the data collected from the station weather and climate of the school with those locally and regionally, with "weather-climatic patterns" correlations that are implemented in the Mediterranean area (International Program "GAW-Global Atmosphere Watch"). For this reason were enabled synergies with two major public scientific research and acquisition services-data disclosure (ENEA and SIAS-Agrometeorological Information Service, Sicily Region), both to energy efficiency of the School Station, both to support data and digital applications in GIS, with agro-meteorological services to companies operating in the agricultural and environmental sustainability, high consideration themes in European Programming. A branch of this training course is the entrepreneurship education, carried out by a few years in School with the development of "experimental models" for the creation of "innovation clusters" to make entrepreneurial experience since school, creating/managing mini-companies. In the European educational program (Erasmus + KA3) called "Innovation Cluster for Entrepreneurship Education (ICEE)", aimed at enhancing the students' creativity and entrepreneurship, one of the mini-companies, created by students at the Institute, has developed and produced with innovative software a prototype automated system, a mini-greenhouse powered by solar energy, capable of recreating the habitat suitable for house plants, through the automated control of numerous agricultural micro-climatic parameters. Creating multimedia systems such as web platforms, advanced software and app/QR-code for mobile devices, defines the most innovative tools in computer science outreach phases. This experimental approach incorporates the teaching methods that are defined by the curriculum of the "Liceo delle Scienze Applicate" that exists in the School, with the proposition of experimental models that besides being "learning models" can switch into "knowledge models" correlated with scientific and technical-scientific models that exist in the world of research. La Natura non distrugge, che per creare, e non crea, che per distruggere (Storia dell'Astronomia, 1813 - Giacomo Leopardi)
Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review
NASA Technical Reports Server (NTRS)
Kreins, E. R. (Editor)
1979-01-01
The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.
Teaching the Intersection of Climate and Society
NASA Astrophysics Data System (ADS)
Thomson, C.; Ting, M.; Orlove, B. S.
2014-12-01
As the first program of its kind, the M.A. in Climate and Society at Columbia University educates students on how climate affects society and vice versa. The 12-month interdisciplinary Master's program is designed to allow students from a wide variety of backgrounds to gain knowledge in climate science and a deep understanding of social sciences and how they related to climate. There are currently more than 250 alumni applying their skills in fields including energy, economics, disaster mitigation, journalism and climate research in more than a dozen countries worldwide. The presentation will highlight three key components of the program that have contributed to its growth and helped alumni become brokers that can effectively put climate science in the hands of the public and policymakers for the benefit of society. Those components include working with other academic departments at Columbia to successfully integrate social science classes into the curriculum; the development of the course Applications in Climate and Society to help students make an overt link between climate and its impacts on society; and providing students with hands-on activities with practitioners in climate-related fields.
Impact of climate change on electricity systems and markets
NASA Astrophysics Data System (ADS)
Chandramowli, Shankar N.
Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan (Section 111 (d)) rules for the U.S. Northeast region. This dissertation applies an analytical model and an optimization model to investigate the implications of co-implementing an emission cap and an RPS policy for this region. A simplified analytical model of LP-CEM is specified and the first order optimality conditions are derived. The results from this analytical model are corroborated by running LP-CEM simulations under different carbon cap and RPS policy assumptions. A combination of these policies is shown to have a long-term beneficial effect for the final ratepayers in the region. This research conceptually explores the future implications of climate change and extreme weather events on the regional electricity market framework. The significant findings from this research and future policy considerations are discussed in the conclusion chapter.
Post Milestone B Funding Climate and Cost Growth in Major Defense Acquisition Programs
2017-03-01
by P-5126 supposes that most of the growth in unit cost shown by programs that pass MS B in a bust funding climate is “ baked into” the baselines...that most of the growth in unit cost shown by programs that pass MS B in a bust funding climate is “ baked into” the baselines established at MS B
Evaluation of Statistical Downscaling Skill at Reproducing Extreme Events
NASA Astrophysics Data System (ADS)
McGinnis, S. A.; Tye, M. R.; Nychka, D. W.; Mearns, L. O.
2015-12-01
Climate model outputs usually have much coarser spatial resolution than is needed by impacts models. Although higher resolution can be achieved using regional climate models for dynamical downscaling, further downscaling is often required. The final resolution gap is often closed with a combination of spatial interpolation and bias correction, which constitutes a form of statistical downscaling. We use this technique to downscale regional climate model data and evaluate its skill in reproducing extreme events. We downscale output from the North American Regional Climate Change Assessment Program (NARCCAP) dataset from its native 50-km spatial resolution to the 4-km resolution of University of Idaho's METDATA gridded surface meterological dataset, which derives from the PRISM and NLDAS-2 observational datasets. We operate on the major variables used in impacts analysis at a daily timescale: daily minimum and maximum temperature, precipitation, humidity, pressure, solar radiation, and winds. To interpolate the data, we use the patch recovery method from the Earth System Modeling Framework (ESMF) regridding package. We then bias correct the data using Kernel Density Distribution Mapping (KDDM), which has been shown to exhibit superior overall performance across multiple metrics. Finally, we evaluate the skill of this technique in reproducing extreme events by comparing raw and downscaled output with meterological station data in different bioclimatic regions according to the the skill scores defined by Perkins et al in 2013 for evaluation of AR4 climate models. We also investigate techniques for improving bias correction of values in the tails of the distributions. These techniques include binned kernel density estimation, logspline kernel density estimation, and transfer functions constructed by fitting the tails with a generalized pareto distribution.
PIPOR - A Programme for International Polar Oceans Research
NASA Technical Reports Server (NTRS)
Gudmandsen, P.; Carsey, F.; Mcnutt, L.
1989-01-01
The Programme for International Polar Oceans Research is accepted as a part of the ERS-1 mission which will be initiated with the launch of the ERS-1 earth observation satellite by the European Space Agency in 1990. It is a bipolar program with participation by institutions engaged in studies of the atmosphere-ocean-sea ice interaction and the application of remote sensing data for operational uses. The program objectives are to develop the application of microwave data for studies and modeling of sea ice dynamics and for operational uses in sea ice infested areas. As such, it is closely connected with ongoing and forthcoming research in the Arctic and the Antarctic. With sea ice being a sensitive indicator of climate perturbations, PIPOR addresses objectives of the World Climate Research Programme.
NASA cancels carbon monitoring research program
NASA Astrophysics Data System (ADS)
Voosen, Paul
2018-05-01
The administration of President Donald Trump has waged a broad attack on climate science conducted by NASA, including proposals to cut the budget of earth science research and kill off the Orbiting Carbon Observatory 3 mission. Congress has fended these attacks off—with one exception. NASA has moved ahead with plans to end the Carbon Monitoring System, a $10-million-a-year research line that has helped stitch together observations of sources and sinks of methane and carbon dioxide into high-resolution models of the planet's flows of carbon, the agency confirmed to Science. The program, begun in 2010, has developed tools to improve estimates of carbon stocks in forests, especially, from Alaska to Indonesia. Ending it, researchers say, will complicate future efforts to monitor and verify national emission cuts stemming from the Paris climate deal.
2012-01-01
regressive Integrated Moving Average ( ARIMA ) model for the data, eliminating the need to identify an appropriate model through trial and error alone...06 .11 13.67 16 .62 16 .14 .11 8.06 16 .95 * Based on the asymptotic chi-square approximation. 8 In general, ARIMA models address three...performance standards and measurement processes and a prevailing climate of organizational trust were important factors. Unfortunately, uneven
High School Athletes' Perceptions of the Motivational Climate in Their Off-Season Training Programs.
Chamberlin, Jacob M; Fry, Mary D; Iwasaki, Susumu
2017-03-01
Chamberlin, JM, Fry, MD, and Iwasaki, S. High school athletes' perceptions of the motivational climate in their off-season training programs. J Strength Cond Res 31(3): 736-742, 2017-Athletes benefit tremendously from working hard in off-season training (OST) because it sets them up to avoid injuries and perform their best during the season. Ironically, many athletes struggle to stay motivated to participate regularly in this training. Research has highlighted the benefits for athletes perceiving a caring and task-involving climate, where they gauge their success based on their personal effort and improvement, and perceive each member of the team is treated with mutual kindness and respect. Athletes who perceive a caring and task-involving climate on their teams are more likely to report greater adaptive motivational responses. Research has not currently examined athletes' perceptions of the climate in OST programs. The purpose of this study was to examine the relationship between athletes' perceptions of the climate in an OST program and their motivational responses. High school athletes (N = 128; 90 males 35 females; mean age = 15.3 years) participating in summer OST programs completed a survey that included measures of intrinsic motivation, commitment, their valuing OST, feeling like it is their decision to participate in OST, their perceptions that their teammates take OST seriously, and attendance. A canonical correlation revealed that athletes, who perceived a highly caring and task-involving climate reported higher intrinsic motivation, value of and commitment to OST; attendance; and perceived teammates take OST seriously. Results suggest that creating a caring and task-involving climate in OST programs may help athletes optimize their motivation to participate in important strength and conditioning programs.
State Roles in the Global Climate Change Issue.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1995-02-01
Events in 1988 helped focus the attention of several states on the global climate change issue. Consequently, the National Governors' Association conducted an assessment in 1989 and recommended various actions. By 1994, 22 states have enacted laws or regulations and/or established research programs addressing climate change. Most of these "no regrets" actions are set up to conserve energy or improve energy efficiency and also to reduce greenhouse gas emissions. Illinois has adopted an even broader program by 1) establishing a Global Climate Change Office to foster research and provide information and 2) forming a task force to address a wide array of issues including state input to federal policies such as the Clinton administration's 1993 Climate Change Action Plan and to the research dimensions of the U.S. Global Climate Change Research Program. The Illinois program calls for increased attention to studies of regional impacts, including integrated assessments, and to research addressing means to adapt to future climate change. These various state efforts to date help show the direction of policy development and should be useful to those grappling with these issues.
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Tubman, S.; Grazul, K.; Bluth, G.; Huntoon, J. E.
2017-12-01
Michigan Science Teaching and Assessment Reform (Mi-STAR) is developing an NGSS-aligned integrated science middle school curriculum and associated teacher professional learning program that addresses all performance expectations for the 6-8 grade-band. The Mi-STAR instructional model is a unit- and lesson-level model that scaffolds students in using science practices to investigate scientific phenomena and apply engineering principles to address a real-world challenge. Mi-STAR has developed an 8th grade unit on climate change based on the Mi-STAR instructional model and NGSS performance expectations. The unit was developed in collaboration with Michigan teachers, climate scientists, and curriculum developers. The unit puts students in the role of advisers to local officials who need an evidence-based explanation of climate change and recommendations about community-based actions to address it. Students discover puzzling signs of global climate change, ask questions about these signs, and engage in a series of investigations using simulations and real data to develop scientific models for the mechanisms of climate change. Students use their models as the basis for evidence-based arguments about the causes and impacts of climate change and employ engineering practices to propose local actions in their community to address climate change. Dedicated professional learning supports teachers before and during implementation of the unit. Before implementing the unit, all teachers complete an online self-paced "unit primer" during which they assume the role of their students as they are introduced to the unit challenge. During this experience, teachers experience science as a practice by using real data and simulations to develop a model of the causes of climate change, just as their students will later do. During unit implementation, teachers are part of a professional learning community led by a teacher facilitator in their local area or school. This professional learning community serves as a resource both for implementing student-directed pedagogy and for the development of content knowledge. Eight teachers pilot tested the unit with more than 500 students in spring 2017, and teachers who participated in the first professional learning cohort are currently implementing the unit around Michigan.
Particulate Air Pollution from Wildfires in the Western US under Climate Change
Liu, Jia Coco; Mickley, Loretta J.; Sulprizio, Melissa P.; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F. A.; Bravo, Mercedes A.; Bell, Michelle L.
2016-01-01
Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM2.5) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term “Smoke Wave,” defined as ≥2 consecutive days with high wildfire-specific PM2.5, to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM2.5 standards, wildfires contributed an average of 71.3% of total PM2.5. Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health. PMID:28642628
Particulate Air Pollution from Wildfires in the Western US under Climate Change.
Liu, Jia Coco; Mickley, Loretta J; Sulprizio, Melissa P; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F A; Bravo, Mercedes A; Bell, Michelle L
2016-10-01
Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM 2.5 ) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term "Smoke Wave," defined as ≥2 consecutive days with high wildfire-specific PM 2.5 , to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM 2.5 standards, wildfires contributed an average of 71.3% of total PM 2.5 . Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.
NASA Astrophysics Data System (ADS)
DeFrancis, G.; Haynes, R.; Schroer, K.
2017-12-01
The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.
Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannesson, G
2010-03-17
Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that themore » average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.« less
Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.
NASA Astrophysics Data System (ADS)
Chilton, L. A.; Rindge, H.
2017-12-01
Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.
ERIC Educational Resources Information Center
Aragon, Steven R., Ed.
2000-01-01
This edition of New Directions for Community Colleges offers community college educators alternative models, approaches, and perspectives to consider in working with ethnic minority students. The volume addresses issues of assessment, career and educational goals, learning enhancement, success courses, mentoring programs, campus climate,…
Possible future changes in extreme events over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Scott, Jeffery
2013-04-01
In this study, we investigate possible future climate change over Northern Eurasia and its impact on extreme events. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. Furthermore, severe permafrost degradation associated with climate change could result in peatlands releasing large amounts of carbon dioxide and methane. Meanwhile, changes in the frequency and magnitude of extreme events, such as extreme precipitation, heat waves or frost days are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response and changes in extreme events. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. In this study, regional change is investigated using the MIT IGSM-CAM framework that links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). New modules were developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations presented in this paper were carried out for two emission scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization, which are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol forcing used in the simulations within the IGSM-CAM framework provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. With these simulations, we investigate the role of emissions scenarios (climate policies), the global climate response (climate sensitivity) and natural variability (initial conditions) on the uncertainty in future climate changes over Northern Eurasia. A particular emphasis is made on future changes in extreme events, including frost days, extreme summer temperature and extreme summer and winter precipitation.
NASA Astrophysics Data System (ADS)
Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.
2007-12-01
The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research questions from local to global scales with both present and future environmental conditions.
Earth Experiments in a Virtual World: Introducing Climate & Coding to High School Girls
NASA Astrophysics Data System (ADS)
Singh, H. A.; Twedt, J. R.
2017-12-01
In our increasingly technologically-driven and information-saturated world, literacy in STEM fields can be crucial for career advancement. Nevertheless, both systemic and interpersonal barriers can prevent individuals, particularly members of under-represented groups, from engaging in these fields. Here, we present a high school-level workshop developed to foster basic understanding of climate science while exposing students to the Python programming language. For the past four years, the workshop has been a part of the annual Expanding Your Horizons conference for high school girls, whose mission is to spark interest in STEM fields. Moving through current events in the realm of global climate policy, the fundamentals of climate, and the mathematical representation of planetary energy balance, the workshop culminates in an under-the-hood exploration of a basic climate model coded in the Python programming language. Students interact directly with the underlying code to run `virtual world' experiments that explore the impact of solar insolation, planetary albedo, the greenhouse effect, and meridional energy transport on global temperatures. Engagement with Python is through the Jupyter Notebook interface, which permits direct interaction with the code but is more user-friendly for beginners than a command-line approach. We conclude with further ideas for providing online access to workshop materials for educators, and additional venues for presenting such workshops to under-represented groups in STEM.
AMS Climate Studies: Improving climate literacy through undergraduate education
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P., Jr.; Ruwe, E. E.
2009-12-01
In working to promote scientific literacy among the public, the American Meteorological Society (AMS) has produced a suite of introductory college-level courses that engage students by investigating relevant topics in Earth science, and utilizing the most current, real-world environmental data. The newest of these courses, AMS Climate Studies, is a turnkey package which will be licensed by individual colleges for local offering in online, blended, or traditional lecture/lab settings. The course will place students in a dynamic learning environment where they will investigate Earth’s climate system using real-world data. This will allow the course to keep a strong focus on the science, while still addressing many of the societal impacts that draw the attention of today’s students. In this way, the course will serve as a great primer in preparing students to become responsible, scientifically-literate participants in discussions of climate science and climate change. Developed with major support from NASA, AMS Climate Studies will encourage students to investigate the atmosphere and world ocean as components of a larger Earth system. More than 500 colleges and universities throughout the United States have already offered AMS Weather Studies and AMS Ocean Studies, after which AMS Climate Studies will be modeled. The learning system will consist of a fully-integrated set of printed and online learning materials focused around a brand new, hardcover 15-chapter textbook, Climate Studies: Introduction to Climate Science and an Investigations Manual with 30 lab-style activities that will emphasize the use of authentic science data. The package will also include a course website providing weekly Current Climate Studies activities along with access to environmental data streams, including an impressive suite of NASA and NOAA images and products. The development and testing of AMS Climate Studies is currently nearing completion. A number of college and university professors have been selected to pilot the program in Spring 2010, with major emphasis placed on representing a diverse array of institution types, degree programs, course delivery methods, academic backgrounds, etc. The materials will be vigorously tested and updated accordingly. AMS Climate Studies will be available for implementation at your institution beginning Fall 2010.
NASA Astrophysics Data System (ADS)
Ozbay, G.; Fox-Lykens, R.; Veron, D. E.; Rogers, M.; Merrill, J.; Harcourt, P.; Mead, H.
2015-12-01
Delaware State University is working toward infusing undergraduate education with climate change science and enhancing the climate change learning content of pre-service teacher preparation programs as part of the MADE-CLEAR project (www.madeclear.org). Faculty development workshops have been conducted to prepare and educate a cadre of faculty from different disciplines in global climate science literacy. Following the workshops, the faculty participants have integrated climate literacy tenets into their existing curriculum. Follow up meetings have helped the faculty members to use specific content in their curriculum such as greenhouse gases, atmospheric CO2, sea level rise, etc. Additional training provided to the faculty participants in pedagogical methods of climate change instruction to identify common misconceptions and barriers to student understanding. Some pre-service teachers were engaged in summer internships and learned how to become messenger of climate change science by the state parks staff during the summer. Workshops were offered to other pre-service teachers to teach them specific climate change topics with enhanced hands-on laboratory activities. The participants were provided examples of lesson plans and guided to develop their own lesson plans and present them. Various pedagogical methods have been explored for teaching climate change content to the participants. The pre-service teachers found the climate content very challenging and confusing. Training activities were modified to focus on targeted topics and modeling of pedagogical techniques for the faculty and pre-service teachers. Program evaluation confirms that the workshop participant show improved understanding of the workshop materials by the participants if they were introduced few climate topics. Learning how to use hands-on learning tools and preparing lesson plans are two of the challenges successfully implemented by the pre-service teachers. Our next activity includes pre-service teachers to use their lesson plans to teach the climate change content in the middle school science classes. This will mutually help the middle school science teachers' to learn and use the materials provided by the pre-service teachers and also pre-service teachers' to improve their teaching skills on climate change content.
The statistical analysis of global climate change studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, J.W.
1992-01-01
The focus of this work is to contribute to the enhancement of the relationship between climatologists and statisticians. The analysis of global change data has been underway for many years by atmospheric scientists. Much of this analysis includes a heavy reliance on statistics and statistical inference. Some specific climatological analyses are presented and the dependence on statistics is documented before the analysis is undertaken. The first problem presented involves the fluctuation-dissipation theorem and its application to global climate models. This problem has a sound theoretical niche in the literature of both climate modeling and physics, but a statistical analysis inmore » which the data is obtained from the model to show graphically the relationship has not been undertaken. It is under this motivation that the author presents this problem. A second problem concerning the standard errors in estimating global temperatures is purely statistical in nature although very little materials exists for sampling on such a frame. This problem not only has climatological and statistical ramifications, but political ones as well. It is planned to use these results in a further analysis of global warming using actual data collected on the earth. In order to simplify the analysis of these problems, the development of a computer program, MISHA, is presented. This interactive program contains many of the routines, functions, graphics, and map projections needed by the climatologist in order to effectively enter the arena of data visualization.« less
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, M.; Son, Y.; Lee, W. K.
2017-12-01
Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported by Korean Ministry of Environment (2014001310008).
Space-based observatories providing key data for climate change applications
NASA Astrophysics Data System (ADS)
Lecomte, J.; Juillet, J. J.
2016-12-01
The Sentinel-1 & 3 mission are part of the Copernicus program, previously known as GMES (Global Monitoring for Environment and Security), whose overall objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. This European Earth Observation program is led by the European Commission and the space infrastructure is developed under the European Space Agency leadership. Many services will be developed through the Copernicus program among different thematic areas. The climate change is one of this thematic area and the Sentinel-1 & 3 satellites will provide key space-based observations in this area. The Sentinel-1 mission is based on a constellation of 2 identical satellites each one embarking C-SAR Instrument and provides capability for continuous radar mapping of the Earth with enhanced revisit frequency, coverage, timeliness and reliability for operational services and applications requiring long time series. In particular, Sentinel 1 provides all-weather, day-and-night estimates of soil moisture, wind speed and direction, sea ice, continental ice sheets and glaciers. The Sentinel-3 mission will mainly be devoted to the provision of Ocean observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. Among these data, very accurate surface temperatures and topography measurements will be provided and will constitute key indicators, once ingested in climate change models, for identifying climate drivers and expected climate impacts. The paper will briefly recall the satellite architectures, their main characteristics and performance. The inflight performance and key features of their images or data of the 3 satellites namely Sentinel 1A, 1B and 3A will be reviewed to demonstrate the quality and high scientific potential of the data as well as their availability to the user community. The short, medium and long term will be described. The first satellites are now in operation in orbit. Long-term plan foresees 2 add't recurrent satellites currently under prod, then a new gen in long term. Long term is crucial for climate change analysis & forecast, which is the goal of the Copernicus program.
The NASA Earth Science Flight Program: an update
NASA Astrophysics Data System (ADS)
Neeck, Steven P.
2015-10-01
Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some examples are the NASA-ISRO Synthetic Aperture Radar (NISAR), Surface Water and Ocean Topography (SWOT), ICESat-2, SAGE III on ISS, Gravity Recovery and Climate Experiment Follow On (GRACE FO), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Cyclone Global Navigation Satellite System (CYGNSS), ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), and Global Ecosystem Dynamics Investigation (GEDI) Lidar missions. An overview of plans and current status will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banner, Jay L.; Jackson, Charles S.; Yang, Zong-Liang
2010-09-01
Texas comprises the eastern portion of the Southwest region, where the convergence of climatological and geopolitical forces has the potential to put extreme stress on water resources. Geologic records indicate that Texas experienced large climate changes on millennial time scales in the past, and over the last thousand years, tree-ring records indicate that there were significant periods of drought in Texas. These droughts were of longer duration than the 1950s 'drought of record' that is commonly used in planning, and they occurred independently of human-induced global climate change. Although there has been a negligible net temperature increase in Texas overmore » the past century, temperatures have increased more significantly over the past three decades. Under essentially all climate model projections, Texas is susceptible to significant climate change in the future. Most projections for the 21st century show that with increasing atmospheric greenhouse gas concentrations, there will be an increase in temperatures across Texas and a shift to a more arid average climate. Studies agree that Texas will likely become significantly warmer and drier, yet the magnitude, timing, and regional distribution of these changes are uncertain. There is a large uncertainty in the projected changes in precipitation for Texas for the 21st century. In contrast, the more robust projected increase in temperature with its effect on evaporation, which is a dominant component in the region's hydrologic cycle, is consistent with model projections of frequent and extended droughts throughout the state. For these reasons, we recommend that Texas invest resources to investigate and anticipate the impacts of climate change on Texas water resources, with the goal of providing data to inform resource planning. This investment should support development of (1) research programs that provide policy-relevant science; (2) education programs to engage future researchers and policy-makers; and (3) connections between policy-makers, scientists, water resource managers, and other stakeholders. It is proposed that these goals may be achieved through the establishment of a Texas Climate Consortium, consisting of representatives from academia, industry, government agencies, water authorities, and other stakeholders. The mission of this consortium would be to develop the capacity to provide decision makers with the information needed to develop adaptation strategies in the face of future climate change and uncertainty.« less
NASA Astrophysics Data System (ADS)
Mani, N. J.; Waliser, D. E.; Jiang, X.
2014-12-01
While the boreal summer monsoon intraseasonal variability (BSISV) exerts profound influence on the south Asian monsoon, the capability of present day dynamical models in simulating and predicting the BSISV is still limited. The global model evaluation project on vertical structure and diabatic processes of the Madden Julian Oscillations (MJO) is a joint venture, coordinated by the Working Group on Numerical Experimentation (WGNE) MJO Task Force and GEWEX Atmospheric System Study (GASS) program, for assessing the model deficiencies in simulating the ISV and for improving our understanding of the underlying processes. In this study the simulation of the northward propagating BSISV is investigated in 26 climate models with special focus on the vertical diabatic heating structure and clouds. Following parallel lines of inquiry as the MJO Task Force has done with the eastward propagating MJO, we utilize previously proposed and newly developed model performance metrics and process diagnostics and apply them to the global climate model simulations of BSISV.
Advances of NOAA Training Program in Climate Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.
2012-12-01
Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging partnership with climate services providers; and, (3) applying 3H training approach, where the first H stands for Head (trusted science), the second H stands for Heart (make it easy), and the third H for Hand (support with applications).
NASA Astrophysics Data System (ADS)
Niemand, C.; Kuhn, K.; Schwarze, R.
2010-12-01
SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for management actions. The model comparisons within reference areas showed significant differences in outcome. The values of water balance components calculated with different models partially fluctuate by a multiple of their value. The SHARP project was prepared in several previous projects that were testing suitable water balance models and is now able to assist the knowledge transfer.
Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles
NASA Astrophysics Data System (ADS)
Mini, C.; Hogue, T. S.; Pincetl, S.
2012-04-01
Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A genetic algorithm based model (Shuffled Complex Evolution-UA; SCE-UA) is also being developed to provide estimates of the predictions and parameters uncertainties and to compare against the linear regression models. Ultimately, models will be selected to undertake predictions for a range of climate change and landscape scenarios. Finally, project results will contribute to a better understanding of water demand to help predict future water use and implement targeted landscaping conservation programs to maintain sustainable water needs for a growing population under uncertain climate variability.
NASA Astrophysics Data System (ADS)
Kawazoe, S.; Gutowski, W. J., Jr.
2015-12-01
We analyze the ability of regional climate models (RCMs) to simulate very heavy daily precipitation and supporting processes for both contemporary and future-scenario simulations during summer (JJA). RCM output comes from North American Regional Climate Change Assessment Program (NARCCAP) simulations, which are all run at a spatial resolution of 50 km. Analysis focuses on the upper Mississippi basin for summer, between 1982-1998 for the contemporary climate, and 2052-2068 during the scenario climate. We also compare simulated precipitation and supporting processes with those obtained from observed precipitation and reanalysis atmospheric states. Precipitation observations are from the University of Washington (UW) and the Climate Prediction Center (CPC) gridded dataset. Utilizing two observational datasets helps determine if any uncertainties arise from differences in precipitation gridding schemes. Reanalysis fields come from the North American Regional Reanalysis. The NARCCAP models generally reproduce well the precipitation-vs.-intensity spectrum seen in observations, while producing overly strong precipitation at high intensity thresholds. In the future-scenario climate, there is a decrease in frequency for light to moderate precipitation intensities, while an increase in frequency is seen for the higher intensity events. Further analysis focuses on precipitation events exceeding the 99.5 percentile that occur simultaneously at several points in the region, yielding so-called "widespread events". For widespread events, we analyze local and large scale environmental parameters, such as 2-m temperature and specific humidity, 500-hPa geopotential heights, Convective Available Potential Energy (CAPE), vertically integrated moisture flux convergence, among others, to compare atmospheric states and processes leading to such events in the models and observations. The results suggest that an analysis of atmospheric states supporting very heavy precipitation events is a more fruitful path for understanding and detecting changes than simply looking at precipitation itself.
NASA Astrophysics Data System (ADS)
Padgett, D.
2017-12-01
Tennessee State University (TSU) is a member of the "Global Learning and Observations to Benefit the Environment (GLOBE) Mission Earth" project. The World Regional Geography (GEOG 1010/1020) courses are required for Education majors. Pre-service teachers must complete several exercises to be certified in the GLOBE Atmosphere Protocols. The pre-service teachers are required to develop GLOBE-based lessons to high school students. The exercise theme is "Exploring the Impacts of Urban Heat Islands (UHI) using Geospatial Technology." Surface temperature, ambient air temperature, and cloud cover data are collected. Sample point locations are logged using Garmin GPS receivers and then mapped using ArcGIS Online (http://arcg.is/1oiD379). The service learning outreach associated with this experience requires collegians to thoroughly understand the physical, social, and health science content associated with UHIs and then impart the information to younger learners. The precollegiate students are motivated due to their closeness in age and social context to the college students. All of the students have the advantage of engaging in hands-on problem-based learning of complex meteorology, climate science, and geospatial technology concepts. The optimal result is to have pre-service teachers enroll in the Weather and Climate (GEOG 3500) course, which is supported by the American Meteorological Society (AMS) Weather and Climate Studies Curriculum. Tennessee State University faculty have completed training to deliver the curriculum through the AMS Diversity Program. The AMS Weather Studies and Climate Studies programs have been institutionalized at Tennessee State University (TSU) since fall 2005. Approximately 250 undergraduate students have been exposed to the interactive AMS learning materials over the past 10-plus years. Non-STEM, and education majors are stimulated by the real-time course content and are encouraged to think critically about atmospheric systems science, and perhaps pursue further study at the graduate level. The "vertical integration" model being developed herein is designed to be replicated at other HBCUs and MSIs as an effective vehicle for drawing students from underrepresented groups into the STEM education pipeline, particularly those planning careers in teaching.
Web-GIS approach for integrated analysis of heterogeneous georeferenced data
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Shulgina, Tamara
2014-05-01
Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales [1]. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required [2]. Dedicated information-computational system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is presented. It is based on combination of Web and GIS technologies according to Open Geospatial Consortium (OGC) standards, and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library (http://www.geoext.org), ExtJS Framework (http://www.sencha.com/products/extjs) and OpenLayers software (http://openlayers.org). The main advantage of the system lies in it's capability to perform integrated analysis of time series of georeferenced data obtained from different sources (in-situ observations, model results, remote sensing data) and to combine the results in a single map [3, 4] as WMS and WFS layers in a web-GIS application. Also analysis results are available for downloading as binary files from the graphical user interface or can be directly accessed through web mapping (WMS) and web feature (WFS) services for a further processing by the user. Data processing is performed on geographically distributed computational cluster comprising data storage systems and corresponding computational nodes. Several geophysical datasets represented by NCEP/NCAR Reanalysis II, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, reanalysis of Monitoring atmospheric composition and climate (MACC) Collaborated Project, NOAA-CIRES Twentieth Century Global Reanalysis Version II, NCEP Climate Forecast System Reanalysis (CFSR), meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others are available for processing by the system. The Web-GIS information-computational system for heterogeneous geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for integrated research of climate and ecosystems changes on global and regional scales. With its help even an unskilled in programming user is able to process and visualize multidimensional observational and model data through unified web-interface using a common graphical web-browser. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant #13-05-12034, grant #14-05-00502, and integrated project SB RAS #131. References 1. Gordov E.P., Lykosov V.N., Krupchatnikov V.N., Okladnikov I.G., Titov A.G., Shulgina T.M. Computational and information technologies for monitoring and modeling of climate changes and their consequences. - Novosibirsk: Nauka, Siberian branch, 2013. - 195 p. (in Russian) 2. Felice Frankel, Rosalind Reid. Big data: Distilling meaning from data // Nature. Vol. 455. N. 7209. P. 30. 3. T.M. Shulgina, E.P. Gordov, I.G. Okladnikov, A.G., Titov, E.Yu. Genina, N.P. Gorbatenko, I.V. Kuzhevskaya, A.S. Akhmetshina. Software complex for a regional climate change analysis. // Vestnik NGU. Series: Information technologies. 2013. Vol. 11. Issue 1. P. 124-131 (in Russian). 4. I.G. Okladnikov, A.G. Titov, T.M. Shulgina, E.P. Gordov, V.Yu. Bogomolov, Yu.V. Martynova, S.P. Suschenko, A.V. Skvortsov. Software for analysis and visualization of climate change monitoring and forecasting data // Numerical methods and programming, 2013. Vol. 14. P. 123-131 (in Russian).
Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa
2017-01-01
Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen's (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host's risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations.
Serra-Varela, María Jesús; Alía, Ricardo; Pórtoles, Javier; Gonzalo, Julián; Soliño, Mario; Grivet, Delphine; Raposo, Rosa
2017-01-01
Climate change is gravely affecting forest ecosystems, resulting in large distribution shifts as well as in increasing infection diseases and biological invasions. Accordingly, forest management requires an evaluation of exposure to climate change that should integrate both its abiotic and biotic components. Here we address the implications of climate change in an emerging disease by analysing both the host species (Pinus pinaster, Maritime pine) and the pathogen’s (Fusarium circinatum, pitch canker) environmental suitability i.e. estimating the host’s risk of habitat loss and the disease`s future environmental range. We constrained our study area to the Spanish Iberian Peninsula, where accurate climate and pitch canker occurrence databases were available. While P. pinaster is widely distributed across the study area, the disease has only been detected in its north-central and north-western edges. We fitted species distribution models for the current distribution of the conifer and the disease. Then, these models were projected into nine Global Climate Models and two different climatic scenarios which totalled to 18 different future climate predictions representative of 2050. Based on the level of agreement among them, we created future suitability maps for the pine and for the disease independently, which were then used to assess exposure of current populations of P. pinaster to abiotic and biotic effects of climate change. Almost the entire distribution of P. pinaster in the Spanish Iberian Peninsula will be subjected to abiotic exposure likely to be driven by the predicted increase in drought events in the future. Furthermore, we detected a reduction in exposure to pitch canker that will be concentrated along the north-western edge of the study area. Setting up breeding programs is recommended in highly exposed and productive populations, while silvicultural methods and monitoring should be applied in those less productive, but still exposed, populations. PMID:28192454
Code of Federal Regulations, 2014 CFR
2014-01-01
... CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.1 General. (a) Purpose... under the Climate Leaders or Climate VISION programs to reduce its entity-wide emissions relative to a... (incorporated by reference, see § 300.13) and base its registered reductions on an assessment of annual changes...
Code of Federal Regulations, 2012 CFR
2012-01-01
... CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.1 General. (a) Purpose... under the Climate Leaders or Climate VISION programs to reduce its entity-wide emissions relative to a... (incorporated by reference, see § 300.13) and base its registered reductions on an assessment of annual changes...
Code of Federal Regulations, 2013 CFR
2013-01-01
... CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.1 General. (a) Purpose... under the Climate Leaders or Climate VISION programs to reduce its entity-wide emissions relative to a... (incorporated by reference, see § 300.13) and base its registered reductions on an assessment of annual changes...
Code of Federal Regulations, 2011 CFR
2011-01-01
... CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.1 General. (a) Purpose... under the Climate Leaders or Climate VISION programs to reduce its entity-wide emissions relative to a... (incorporated by reference, see § 300.13) and base its registered reductions on an assessment of annual changes...
Code of Federal Regulations, 2010 CFR
2010-01-01
... CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.1 General. (a) Purpose... under the Climate Leaders or Climate VISION programs to reduce its entity-wide emissions relative to a... (incorporated by reference, see § 300.13) and base its registered reductions on an assessment of annual changes...
ARS NP212 Climate change, soils and emissions program update
USDA-ARS?s Scientific Manuscript database
The Agricultural Research Service National Program 212 (Climate Change, Soils, and Emissions) has a significant component focused on air quality studies. Presented here for the Agricultural Air Quality Task Force is an update on the status of ARS programs with focus on air quality. National Program ...
Western Mountain Initiative - Research Links
Parks programS Forest Service Climate Change Resource Center (CCRC) North American Nitrogen Center to be told." US Global Change Research Program (GlobalChange.gov) USGS Climate and Land Use Rocky Mountain Science Center Global Change Research Program -- A Focus on Mountain Ecosystems Western
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Spellman, K. V.; Fabbri, C.; Comiso, J. C.; Chase, M.; Fochesatto, G. J.; Butcher, C. E.; Jones, D.; Bacsujlaky, M.; Yoshikawa, K.; Gho, C. L.; Wegner, K.
2016-12-01
To build capacity in navigating challenges associated with a changing climate, learning in Arctic communities must not only increase STEM and climate change literacy, but also generate new knowledge as the rapid changes occur. Among the new NASA Science Mission Directorate Science Education projects, Arctic and Earth SIGNs (STEM Integrating GLOBE and NASA assets) is providing opportunities for K-12 pre-service and in-service teachers, their students, and lifelong learners to engage in citizen science using the Global Learning and Observations to Benefit the Environment (GLOBE) methods and culturally responsive learning to help address climate change challenges within their unique community, and contribute to hypothesis driven research. This project will weave traditional knowledge and western science, and use ground observations and satellite data and best teaching practices in STEM learning, supported through a NASA cooperative agreement and collaborative partnerships. Implementation will begin in rural Alaska and grow within Alaska and throughout the United States to reach underserved and STEM underrepresented populations, through face-to-face and on-line teaching and learning as well as building partnerships among educators, scientists, local and indigenous experts, institutions, agencies, and learning communities. Partners include research and teaching institutions at the University of Alaska Fairbanks, the Association of Interior Native Educators, the North Slope Borough School District and other school districts, the Kenaitze Tribe Environmental Education program, NASA science education and research programs as well as those of NOAA and NSF, the GLOBE Implementation Office, the 4-H program and others. The program resources and model will be shared and disseminated within the United States and globally through partners for local, national and worldwide use in STEM climate change education and citizen empowerment.
NASA Astrophysics Data System (ADS)
White, D.; Trainor, S.; Walsh, J.; Gerlach, C.
2008-12-01
The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and resource managers to document traditional ecological knowledge (TEK) and integrate this knowledge with Western science for crafting adaptation response to climate impacts in rural Native Alaska.
Cullen, K W; Baranowski, T; Baranowski, J; Hebert, D; deMoor, C; Hearn, M D; Resnicow, K
1999-11-01
Researchers assessed the possible moderating effects of school organizational characteristics (school climate, school health, and job satisfaction) on outcomes of a teacher health behavior change program. Thirty-two public schools were matched and randomly assigned either to treatment or control conditions. Organizational, dietary, and physiologic data were collected from third to fifth grade teachers over three years. Treatment schools received a teacher wellness program for two years. Psychometrics of most organizational scales achieved acceptable levels of reliability. Mixed model analyses were conducted to test for moderating effects. Treatment schools with high organizational climate and health scores reported higher fruit and juice and vegetable consumption at Year 2 compared with intervention schools with low scores. Treatment schools with high job satisfaction scores reported higher fruit and juice and lower-fat food consumption at Year 3 compared with intervention schools with low scores. These measures may be used as a tool to assess the environment in which school health promotion programs are presented. Future interventions may need to be tailored to the organizational characteristics of schools.
Using the Maxent program for species distribution modelling to assess invasion risk
Jarnevich, Catherine S.; Young, Nicholas E.; Venette, R.C
2015-01-01
MAXENT is a software package used to relate known species occurrences to information describing the environment, such as climate, topography, anthropogenic features or soil data, and forecast the presence or absence of a species at unsampled locations. This particular method is one of the most popular species distribution modelling techniques because of its consistent strong predictive performance and its ease to implement. This chapter discusses the decisions and techniques needed to prepare a correlative climate matching model for the native range of an invasive alien species and use this model to predict the potential distribution of this species in a potentially invaded range (i.e. a novel environment) by using MAXENT for the Burmese python (Python molurus bivittatus) as a case study. The chapter discusses and demonstrates the challenges that are associated with this approach and examines the inherent limitations that come with using MAXENT to forecast distributions of invasive alien species.
Climate consequences of large-scale land-use changes as climate engineering tools
NASA Astrophysics Data System (ADS)
Mayer, Dorothea; Kracher, Daniela; Reick, Christian; Pongratz, Julia
2015-04-01
Terrestrial carbon sinks are much-discussed as climate engineering methods both in politics and science. The debate focuses mostly on their potential for carbon sequestration and fossil-fuel substitution, whereas other effects such as changes in heat and water fluxes are often ignored. We assess potentials and side-effects of two different land-use types suggested as climate engineering tools, forest and herbaceous biomass plantations. We integrate herbaceous biomass plantations as new plant functional types into the land component (JSBACH) of the Max-Planck-Institute Earth System Model (MPI-ESM). Herbaceous biomass plantations alter surface albedo, carbon and water cycles compared to forests. We adapted the JSBACH carbon cycle (assimilation and respiration) to reflect a highly productive biomass grass and the phenology to account for harvests just before the beginning of the growing season. The harvested material is transferred to a separate pool that can be adapted to reflect different biomass utilization pathways. Where possible, the model was validated using yield measurements and water-use efficiency calculations available from literature data. We compare the potentials and side-effects of afforestation and herbaceous biomass plantations in a plausible global scenario: under the representative concentration pathway (RCP) 4.5, large areas of agricultural lands are projected to be abandoned as food production intensifies on the most productive soils. We intend to model the climatic consequences of using these abandoned croplands for afforestation or biomass plantations, under an RCP 8.5 forcing (high CO2 emissions). We emphasize differences between biogeochemical and biogeophysical effects of land-use on climate and how these factors interact on the local and global scale. Apart from direct climatic effects (energy, water, and carbon fluxes), we attempt to consistently account for fossil-fuel substitution effects of biomass plantations in a coupled model. This study comprises the fist part of a larger project analyzing four different land-use types: unmanaged forest, managed forest, woody biomass plantations and herbaceous biomass plantations. Our study is part of the interdisciplinary program 'Climate Engineering: Risks, Challenges and Opportunities?' which allows for a consistent comparison of land-based climate engineering to other methods such as solar radiation management or ocean alkalinization.
Cloud-Scale Numerical Modeling of the Arctic Boundary Layer
NASA Technical Reports Server (NTRS)
Krueger, Steven K.
1998-01-01
The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.
Development of a Regional U.S. MARKAL Database for Energy and Emissions Modeling
The U.S. Climate Change Science Program (CCSP) is a collaborative effort among 13 agencies of the U.S. federal government. From the CCSP's 2003 strategic plan, its mission is to: "facilitate the creation and application of knowledge of the earth's global environment through resea...