Sample records for climate modelling studies

  1. Impacts of weighting climate models for hydro-meteorological climate change studies

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  2. Atmospheric, Climatic, and Environmental Research

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Gornitz, Vivien M.

    1994-01-01

    The climate and atmospheric modeling project involves analysis of basic climate processes, with special emphasis on studies of the atmospheric CO2 and H2O source/sink budgets and studies of the climatic role Of CO2, trace gases and aerosols. These studies are carried out, based in part on use of simplified climate models and climate process models developed at GISS. The principal models currently employed are a variable resolution 3-D general circulation model (GCM), and an associated "tracer" model which simulates the advection of trace constituents using the winds generated by the GCM.

  3. Selection of climate change scenario data for impact modelling.

    PubMed

    Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.

  4. Beyond a Climate-Centric View of Plant Distribution: Edaphic Variables Add Value to Distribution Models

    PubMed Central

    Beauregard, Frieda; de Blois, Sylvie

    2014-01-01

    Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change. PMID:24658097

  5. Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models.

    PubMed

    Beauregard, Frieda; de Blois, Sylvie

    2014-01-01

    Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839) covering an extent of ∼55,000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study identifies the potential for non-climate aspects of the environment to pose a constraint to range expansion under climate change.

  6. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  7. Assessment of CMIP5 historical simulations of rainfall over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Raghavan, Srivatsan V.; Liu, Jiandong; Nguyen, Ngoc Son; Vu, Minh Tue; Liong, Shie-Yui

    2018-05-01

    We present preliminary analyses of the historical (1986-2005) climate simulations of a ten-member subset of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) global climate models over Southeast Asia. The objective of this study was to evaluate the general circulation models' performance in simulating the mean state of climate over this less-studied climate vulnerable region, with a focus on precipitation. Results indicate that most of the models are unable to reproduce the observed state of climate over Southeast Asia. Though the multi-model ensemble mean is a better representation of the observations, the uncertainties in the individual models are far high. There is no particular model that performed well in simulating the historical climate of Southeast Asia. There seems to be no significant influence of the spatial resolutions of the models on the quality of simulation, despite the view that higher resolution models fare better. The study results emphasize on careful consideration of models for impact studies and the need to improve the next generation of models in their ability to simulate regional climates better.

  8. The Future of Planetary Climate Modeling and Weather Prediction

    NASA Technical Reports Server (NTRS)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  9. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  10. Modeling lakes and reservoirs in the climate system

    USGS Publications Warehouse

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  11. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices

    NASA Astrophysics Data System (ADS)

    Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il

    2018-04-01

    When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.

  12. Intercomparison of the capabilities of simplified climate models to project the effects of aviation CO2 on climate

    NASA Astrophysics Data System (ADS)

    Khodayari, Arezoo; Wuebbles, Donald J.; Olsen, Seth C.; Fuglestvedt, Jan S.; Berntsen, Terje; Lund, Marianne T.; Waitz, Ian; Wolfe, Philip; Forster, Piers M.; Meinshausen, Malte; Lee, David S.; Lim, Ling L.

    2013-08-01

    This study evaluates the capabilities of the carbon cycle and energy balance treatments relative to the effect of aviation CO2 emissions on climate in several existing simplified climate models (SCMs) that are either being used or could be used for evaluating the effects of aviation on climate. Since these models are used in policy-related analyses, it is important that the capabilities of such models represent the state of understanding of the science. We compare the Aviation Environmental Portfolio Management Tool (APMT) Impacts climate model, two models used at the Center for International Climate and Environmental Research-Oslo (CICERO-1 and CICERO-2), the Integrated Science Assessment Model (ISAM) model as described in Jain et al. (1994), the simple Linear Climate response model (LinClim) and the Model for the Assessment of Greenhouse-gas Induced Climate Change version 6 (MAGICC6). In this paper we select scenarios to illustrate the behavior of the carbon cycle and energy balance models in these SCMs. This study is not intended to determine the absolute and likely range of the expected climate response in these models but to highlight specific features in model representations of the carbon cycle and energy balance models that need to be carefully considered in studies of aviation effects on climate. These results suggest that carbon cycle models that use linear impulse-response-functions (IRF) in combination with separate equations describing air-sea and air-biosphere exchange of CO2 can account for the dominant nonlinearities in the climate system that would otherwise not have been captured with an IRF alone, and hence, produce a close representation of more complex carbon cycle models. Moreover, results suggest that an energy balance model with a 2-box ocean sub-model and IRF tuned to reproduce the response of coupled Earth system models produces a close representation of the globally-averaged temperature response of more complex energy balance models.

  13. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  14. Atmospheric, climatic and environmental research

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Gornitz, Vivien M.

    1992-01-01

    Work performed on the three tasks during the report period is summarized. The climate and atmospheric modeling studies included work on climate model development and applications, paleoclimate studies, climate change applications, and SAGE II. Climate applications of Earth and planetary observations included studies on cloud climatology and planetary studies. Studies on the chemistry of the Earth and the environment are briefly described. Publications based on the above research are listed; two of these papers are included in the appendices.

  15. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NASA Technical Reports Server (NTRS)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.

  16. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  17. Significance of hydrological model choice and land use changes when doing climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Bjørnholt Karlsson, Ida; Obel Sonnenborg, Torben; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2014-05-01

    Uncertainty in impact studies arises both from Global Climate Models (GCM), emission projections, statistical downscaling, Regional Climate Models (RCM), hydrological models and calibration techniques (Refsgaard et al. 2013). Some of these uncertainties have been evaluated several times in the literature; however few studies have investigated the effect of hydrological model choice on the assessment results (Boorman & Sefton 1997; Jiang et al. 2007; Bastola et al. 2011). These studies have found that model choice results in large differences, up to 70%, in the predicted discharge changes depending on the climate input. The objective of the study is to investigate the impact of climate change on hydrology of the Odense catchment, Denmark both in response to (a) different climate projections (GCM-RCM combinations); (b) different hydrological models and (c) different land use scenarios. This includes: 1. Separation of the climate model signal; the hydrological model signal and the land use signal 2. How do the different hydrological components react under different climate and land use conditions for the different models 3. What land use scenario seems to provide the best adaptation for the challenges of the different future climate change scenarios from a hydrological perspective? Four climate models from the ENSEMBLES project (Hewitt & Griggs 2004): ECHAM5 - HIRHAM5, ECHAM5 - RCA3, ARPEGE - RM5.1 and HadCM3 - HadRM3 are used, assessing the climate change impact in three periods: 1991-2010 (present), 2041-2060 (near future) and 2081-2100 (far future). The four climate models are used in combination with three hydrological models with different conceptual layout: NAM, SWAT and MIKE SHE. Bastola, S., C. Murphy and J. Sweeney (2011). "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments." Advances in Water Resources 34: 562-576. Boorman, D. B. and C. E. M. Sefton (1997). "Recognising the uncertainty in the quantification of the effects of climate change on hydrological response." Climate Change 35: 415-434. Hewitt, C. D. and D. J. Griggs (2004). "Ensembles-based predictions of climate changes and their impacts." Eos, Transactions American Geophysical Union 85: 1-566. Jiang, T., Y. D. Chen, C. Xu, X. Chen, X. Chen and V. P. Singh (2007). "Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China." Journal of hydrology 336: 316-333. Refsgaard, J. C., K. Arnbjerg-Nielsen, M. Drews, K. Halsnæs, E. Jeppesen, H. Madsen, A. Markandya, J. E. Olesen, J. R. Porter and J. H. Christensen (2013). "The role of uncertainty in climate change adaptation strategies - A Danish water management example." Mitigation and Adaptation Strategies for Global Change 18: 337-359.

  18. Climate Change Impact Study with CMIP5 and Comparison with CMIP3

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.

    2016-12-01

    One of significant uncertainties in climate change impact study is the selection of climate model projection including the choosing of greenhouse gas emission scenarios. With the new generation of climate model projection, CMIP5, coming into use, CCTAG selected 11 climate models and two RCPs (rcp4.5 and rcp8.5) for California. Previous DWR climate change study was based on 6 CMIP3 climate models and two emission scenarios (SRES A2 and B1) which were selected by CAT. It is an unanswered question that how the selection of these climate model projections and emission scenarios affect the assessment of climate change impact on future water supply of California CVP/SWP project. This work will run the water planning model CalSim in DWR with 44 CMIP5 and 12 CMIP3 climate model projections to investigate the sensitivity of climate model impact study on future water supply in the CVP/SWP region to the section of climate model projection. It was found that in 2060 CMIP5 projects the wetting trend in Northern California while CMIP3 projects the drying trend in the entire California on the average. And CMIP5 projects about half-degree more warming than CMIP3. As a result, Sacramento River rim inflow increases by 8% for CMIP5 and reduces by 3% for CMIP3. In spite of this difference in rim inflow, north of Delta carryover storage will be reduced both under CMIP5 (14%) and under CMIP3 (23%) in 2060. And south Delta export will be reduced both for CMIP5 (8%) and for CMIP3 (15%). Thus, The CC impact uncertainty caused by the selection of climate model projection (CMIP3 vs CMIP5) is about 7% in terms of Delta export and about 9% in terms of north of Delta carryover storage. This uncertainty is more than the one caused by the selection of sea level rise in that the climate change impact uncertainty caused by the selection of sea level rise (Zero vs 1.5ft SLR) is about 5% in terms of Delta export and about 4-5% in terms of North of Delta carryover storage.

  19. SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL

    NASA Astrophysics Data System (ADS)

    Tsutsui, Junichi

    A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.

  20. Signal to noise quantification of regional climate projections

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Mote, P.

    2016-12-01

    One of the biggest challenges in interpreting climate model outputs for impacts studies and adaptation planning is understanding the sources of disagreement among models (which is often used imperfectly as a stand-in for system uncertainty). Internal variability is a primary source of uncertainty in climate projections, especially for precipitation, for which models disagree about even the sign of changes in large areas like the continental US. Taking advantage of a large initial-condition ensemble of regional climate simulations, this study quantifies the magnitude of changes forced by increasing greenhouse gas concentrations relative to internal variability. Results come from a large initial-condition ensemble of regional climate model simulations generated by weather@home, a citizen science computing platform, where the western United States climate was simulated for the recent past (1985-2014) and future (2030-2059) using a 25-km horizontal resolution regional climate model (HadRM3P) nested in global atmospheric model (HadAM3P). We quantify grid point level signal-to-noise not just in temperature and precipitation responses, but also the energy and moisture flux terms that are related to temperature and precipitation responses, to provide important insights regarding uncertainty in climate change projections at local and regional scales. These results will aid modelers in determining appropriate ensemble sizes for different climate variables and help users of climate model output with interpreting climate model projections.

  1. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    NASA Astrophysics Data System (ADS)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  2. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  3. The Added Value to Global Model Projections of Climate Change by Dynamical Downscaling: A Case Study over the Continental U.S. using the GISS-ModelE2 and WRF Models

    NASA Technical Reports Server (NTRS)

    Racherla, P. N.; Shindell, D. T.; Faluvegi, G. S.

    2012-01-01

    Dynamical downscaling is being increasingly used for climate change studies, wherein the climates simulated by a coupled atmosphere-ocean general circulation model (AOGCM) for a historical and a future (projected) decade are used to drive a regional climate model (RCM) over a specific area. While previous studies have demonstrated that RCMs can add value to AOGCM-simulated climatologies over different world regions, it is unclear as to whether or not this translates to a better reproduction of the observed climate change therein. We address this issue over the continental U.S. using the GISS-ModelE2 and WRF models, a state-of-the-science AOGCM and RCM, respectively. As configured here, the RCM does not effect holistic improvement in the seasonally and regionally averaged surface air temperature or precipitation for the individual historical decades. Insofar as the climate change between the two decades is concerned, the RCM does improve upon the AOGCM when nudged in the domain proper, but only modestly so. Further, the analysis indicates that there is not a strong relationship between skill in capturing climatological means and skill in capturing climate change. Though additional research would be needed to demonstrate the robustness of this finding in AOGCM/RCM models generally, the evidence indicates that, for climate change studies, the most important factor is the skill of the driving global model itself, suggesting that highest priority should be given to improving the long-range climate skill of AOGCMs.

  4. Uncertainties in the Modelled CO2 Threshold for Antarctic Glaciation

    NASA Technical Reports Server (NTRS)

    Gasson, E.; Lunt, D. J.; DeConto, R.; Goldner, A.; Heinemann, M.; Huber, M.; LeGrande, A. N.; Pollard, D.; Sagoo, N.; Siddall, M.; hide

    2014-01-01

    frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of approximately780 parts per million by volume is based on the study of DeConto and Pollard (2003) using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene-Oligocene transition approximately 34 million years. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from 7 different climate models with Eocene boundary conditions (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, and as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter.

  5. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    NASA Astrophysics Data System (ADS)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system was developed to allow users to easily select the most reliable reference climate data at each target point based on the elevation of grid cell. By constructing the best combination of reference data for the study domain, the accurate and reliable statistically downscaled climate projections could be significantly improved.

  6. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  7. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  8. Efficient design based on perturbed parameter ensembles to identify plausible and diverse variants of a model for climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, A.; Sexton, D.; Murphy, J.

    2017-12-01

    We present exploratory work towards developing an efficient strategy to select variants of a state-of-the-art but expensive climate model suitable for climate projection studies. The strategy combines information from a set of idealized perturbed parameter ensemble (PPE) and CMIP5 multi-model ensemble (MME) experiments, and uses two criteria as basis to select model variants for a PPE suitable for future projections: a) acceptable model performance at two different timescales, and b) maintaining diversity in model response to climate change. We demonstrate that there is a strong relationship between model errors at weather and climate timescales for a variety of key variables. This relationship is used to filter out parts of parameter space that do not give credible simulations of historical climate, while minimizing the impact on ranges in forcings and feedbacks that drive model responses to climate change. We use statistical emulation to explore the parameter space thoroughly, and demonstrate that about 90% can be filtered out without affecting diversity in global-scale climate change responses. This leads to identification of plausible parts of parameter space from which model variants can be selected for projection studies.

  9. Cross-validation of an employee safety climate model in Malaysia.

    PubMed

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  10. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  11. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  12. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    PubMed

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    NASA Astrophysics Data System (ADS)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  14. Watershed scale response to climate change--Yampa River Basin, Colorado

    USGS Publications Warehouse

    Hay, Lauren E.; Battaglin, William A.; Markstrom, Steven L.

    2012-01-01

    General Circulation Model simulations of future climate through 2099 project a wide range of possible scenarios. To determine the sensitivity and potential effect of long-term climate change on the freshwater resources of the United States, the U.S. Geological Survey Global Change study, "An integrated watershed scale response to global change in selected basins across the United States" was started in 2008. The long-term goal of this national study is to provide the foundation for hydrologically based climate change studies across the nation. Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Yampa River Basin at Steamboat Springs, Colorado.

  15. Short-term climate change impacts on Mara basin hydrology

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.

    2017-12-01

    The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).

  16. Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe

    2016-11-01

    Given the ever increasing number of climate change simulations being carried out, it has become impractical to use all of them to cover the uncertainty of climate change impacts. Various methods have been proposed to optimally select subsets of a large ensemble of climate simulations for impact studies. However, the behaviour of optimally-selected subsets of climate simulations for climate change impacts is unknown, since the transfer process from climate projections to the impact study world is usually highly non-linear. Consequently, this study investigates the transferability of optimally-selected subsets of climate simulations in the case of hydrological impacts. Two different methods were used for the optimal selection of subsets of climate scenarios, and both were found to be capable of adequately representing the spread of selected climate model variables contained in the original large ensemble. However, in both cases, the optimal subsets had limited transferability to hydrological impacts. To capture a similar variability in the impact model world, many more simulations have to be used than those that are needed to simply cover variability from the climate model variables' perspective. Overall, both optimal subset selection methods were better than random selection when small subsets were selected from a large ensemble for impact studies. However, as the number of selected simulations increased, random selection often performed better than the two optimal methods. To ensure adequate uncertainty coverage, the results of this study imply that selecting as many climate change simulations as possible is the best avenue. Where this was not possible, the two optimal methods were found to perform adequately.

  17. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less

  18. Professional Development Design Considerations in Climate Change Education: Teacher Enactment and Student Learning

    ERIC Educational Resources Information Center

    Drewes, Andrea; Henderson, Joseph; Mouza, Chrystalla

    2018-01-01

    Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development (PD) model for science educators and its impact on student learning. Using an intrinsic case study methodology,…

  19. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    NASA Technical Reports Server (NTRS)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  20. Climate change effects on agriculture: Economic responses to biophysical shocks

    PubMed Central

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  1. Climate change effects on agriculture: economic responses to biophysical shocks.

    PubMed

    Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-03-04

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  2. Decomposing the uncertainty in climate impact projections of Dynamic Vegetation Models: a test with the forest models LANDCLIM and FORCLIM

    NASA Astrophysics Data System (ADS)

    Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald

    2015-04-01

    Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but not so much at medium elevations. (ii) Considering climate change, the variability that is due to the GCM-RCM chains is much greater than the variability induced by the uncertainty in the initial climatic conditions. (iii) The uncertainties caused by the intrinsic stochasticity in the DVMs and by the random generation of the climate time-series are negligible. Overall, our results indicate that DVMs are quite sensitive to the climate data, highlighting particularly (1) the limitations of using one single multi-model average climate change scenario in climate impact studies and (2) the need to better consider the uncertainty in climate model outputs for projecting future vegetation changes.

  3. On procedures for model selection in providing climate scenario data for impact studies - A challenge to both communities

    NASA Astrophysics Data System (ADS)

    Fox Maule, Cathrine; Sloth Madsen, Marianne; May, Wilhelm; Hesselbjerg Christensen, Jens; Yang, Shuting; Christensen, Ole B.

    2015-04-01

    Climate impact studies are based on climate simulations originating from regional or global climate models, provided either through the climate modeling centers directly or through climate data portals. In order to give the most beneficial results, the climate model data need to fulfill various requirements related to the respective impact models. These requirements, however, are often not well defined and subjected to individual impact models, and hence, can lead to discrepancies between the climate data provided by the climate modeling community and the data required by the impact models. As the climate model data are the first step in a process chain, limitations and problems with these data will affect the studies based on the results by the impact models and, hence, might confine the value of a project working with these results. DMI has over the past years provided climate scenario data for impact studies in several international and national research projects, including ENSEMBLES, WATCH, CRES and HYACINTS as well as the still ongoing projects IMPRESSIONS, IMPACT2C and MODEXTREME, dealing with numerous different impact sectors. Thus DMI has gained experience with a wide range of projects from very different disciplines including agriculture, hydrology, socio-economics, air-pollution and sea-level rise. The lessons learned from all these projects is that there is no standard procedure that can be implemented, but rather that individual solutions have to be constructed on a case-by-case basis for each project. This is due to the fact that the requirements for different impact models differ. For example, some impact models may need monthly input data, while others need daily data. Some need very high horizontal resolution while others may make do with relatively coarse resolution; some operate on global scale while others focus on regional or local scale. Some models need only a few variables as e.g. precipitation and temperature, while others also require e.g. radiation and evaporation. All of these requirements - and many more - shape the outcome of each individual project. Here, we highlight some of the procedures developed in some of the projects we have been involved in, and reason why the given steps were taken in those projects; focus is on MODEXTREME and IMPRESSIONS. We also point out some of the limiting factors that arise in concrete cases, often due to lack of useful observations or simulations. To conclude, we suggest a flow chart for decision as guidance to ease the procedure of providing suitable climate model output data for impact studies in future projects.

  4. Forward modeling of tree-ring data: a case study with a global network

    NASA Astrophysics Data System (ADS)

    Breitenmoser, P. D.; Frank, D.; Brönnimann, S.

    2012-04-01

    Information derived from tree-rings is one of the most powerful tools presently available for studying past climatic variability as well as identifying fundamental relationships between tree-growth and climate. Climate reconstructions are typically performed by extending linear relationships, established during the overlapping period of instrumental and climate proxy archives into the past. Such analyses, however, are limited by methodological assumptions, including stationarity and linearity of the climate-proxy relationship. We investigate climate and tree-ring data using the Vaganov-Shashkin-Lite (VS-Lite) forward model of tree-ring width formation to examine the relations among actual tree growth and climate (as inferred from the simulated chronologies) to reconstruct past climate variability. The VS-lite model has been shown to produce skill comparable to that achieved using classical dendrochronological statistical modeling techniques when applied on simulations of a network of North American tree-ring chronologies. Although the detailed mechanistic processes such as photosynthesis, storage, or cell processes are not modeled directly, the net effect of the dominating nonlinear climatic controls on tree-growth are implemented into the model by the principle of limiting factors and threshold growth response functions. The VS-lite model requires as inputs only latitude, monthly mean temperature and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree-rings to monthly climate conditions obtained from the 20th century reanalysis project back to 1871. These simulated tree-ring chronologies are compared to the climate-driven variability in worldwide observed tree-ring chronologies from the International Tree Ring Database. Results point toward the suitability of the relationship among actual tree growth and climate (as inferred from the simulated chronologies) for use in global palaeoclimate reconstructions.

  5. Dry-bean production under climate change conditions in the north of Argentina: Risk assessment and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feijoo, M.; Mestre, F.; Castagnaro, A.

    This study evaluates the potential effect of climate change on Dry-bean production in Argentina, combining climate models, a crop productivity model and a yield response model estimation of climate variables on crop yields. The study was carried out in the North agricultural regions of Jujuy, Salta, Santiago del Estero and Tucuman which include the largest areas of Argentina where dry beans are grown as a high input crop. The paper combines the output from a crop model with different techniques of analysis. The scenarios used in this study were generated from the output of two General Circulation Models (GCMs): themore » Goddard Institute for Space Studies model (GISS) and the Canadian Climate Change Model (CCCM). The study also includes a preliminary evaluation of the potential changes in monetary returns taking into account the possible variability of yields and prices, using mean-Gini stochastic dominance (MGSD). The results suggest that large climate change may have a negative impact on the Argentine agriculture sector, due to the high relevance of this product in the export sector. The difference negative effect depends on the varieties of dry bean and also the General Circulation Model scenarios considered for double levels of atmospheric carbon dioxide.« less

  6. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps.

  7. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  8. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus)

    PubMed Central

    Shafapour Tehrany, Mahyat; Solhjouy-fard, Samaneh; Kumar, Lalit

    2018-01-01

    Aedes albopictus, the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion. PMID:29576954

  9. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus).

    PubMed

    Shabani, Farzin; Shafapour Tehrany, Mahyat; Solhjouy-Fard, Samaneh; Kumar, Lalit

    2018-01-01

    Aedes albopictus , the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus ? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion.

  10. Generating High Resolution Climate Scenarios Through Regional Climate Modelling Over Southern Africa

    NASA Astrophysics Data System (ADS)

    Ndhlovu, G. Z.; Woyessa, Y. E.; Vijayaraghavan, S.

    2017-12-01

    limate change has impacted the global environment and the Continent of Africa, especially Southern Africa, regarded as one of the most vulnerable regions in Africa, has not been spared from these impacts. Global Climate Models (GCMs) with coarse horizontal resolutions of 150-300 km do not provide sufficient details at the local basin scale due to mismatch between the size of river basins and the grid cell of the GCM. This makes it difficult to apply the outputs of GCMs directly to impact studies such as hydrological modelling. This necessitates the use of regional climate modelling at high resolutions that provide detailed information at regional and local scales to study both climate change and its impacts. To this end, an experiment was set up and conducted with PRECIS, a regional climate model, to generate climate scenarios at a high resolution of 25km for the local region in Zambezi River basin of Southern Africa. The major input data used included lateral and surface boundary conditions based on the GCMs. The data is processed, analysed and compared with CORDEX climate change project data generated for Africa. This paper, highlights the major differences of the climate scenarios generated by PRECIS Model and CORDEX Project for Africa and further gives recommendations for further research on generation of climate scenarios. The climatic variables such as precipitation and temperatures have been analysed for flood and droughts in the region. The paper also describes the setting up and running of an experiment using a high-resolution PRECIS model. In addition, a description has been made in running the model and generating the output variables on a sub basin scale. Regional climate modelling which provides information on climate change impact may lead to enhanced understanding of adaptive water resources management. Understanding the regional climate modelling results on sub basin scale is the first step in analysing complex hydrological processes and a basis for designing of adaptation and mitigation strategies in the region. Key words: Climate change, regional climate modelling, hydrological processes, extremes, scenarios [1] Corresponding author: Email:gndhlovu@cut.ac.za Tel:+27 (0) 51 507 3072

  11. A Regional Climate Model Evaluation System based on contemporary Satellite and other Observations for Assessing Regional Climate Model Fidelity

    NASA Astrophysics Data System (ADS)

    Waliser, D. E.; Kim, J.; Mattman, C.; Goodale, C.; Hart, A.; Zimdars, P.; Lean, P.

    2011-12-01

    Evaluation of climate models against observations is an essential part of assessing the impact of climate variations and change on regionally important sectors and improving climate models. Regional climate models (RCMs) are of a particular concern. RCMs provide fine-scale climate needed by the assessment community via downscaling global climate model projections such as those contributing to the Coupled Model Intercomparison Project (CMIP) that form one aspect of the quantitative basis of the IPCC Assessment Reports. The lack of reliable fine-resolution observational data and formal tools and metrics has represented a challenge in evaluating RCMs. Recent satellite observations are particularly useful as they provide a wealth of information and constraints on many different processes within the climate system. Due to their large volume and the difficulties associated with accessing and using contemporary observations, however, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL and UCLA have developed the Regional Climate Model Evaluation System (RCMES) to help make satellite observations, in conjunction with in-situ and reanalysis datasets, more readily accessible to the regional modeling community. The system includes a central database (Regional Climate Model Evaluation Database: RCMED) to store multiple datasets in a common format and codes for calculating and plotting statistical metrics to assess model performance (Regional Climate Model Evaluation Tool: RCMET). This allows the time taken to compare model data with satellite observations to be reduced from weeks to days. RCMES is a component of the recent ExArch project, an international effort for facilitating the archive and access of massive amounts data for users using cloud-based infrastructure, in this case as applied to the study of climate and climate change. This presentation will describe RCMES and demonstrate its utility using examples from RCMs applied to the southwest US as well as to Africa based on output from the CORDEX activity. Application of RCMES to the evaluation of multi-RCM hindcast for CORDEX-Africa will be presented in a companion paper in A41.

  12. How does the sensitivity of climate affect stratospheric solar radiation management?

    NASA Astrophysics Data System (ADS)

    Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.

    2011-12-01

    If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best-estimate models, and so near-median climate sensitivity, may be ignoring important contingencies associated with implementing SRM in reality. A primary motivation for studying SRM via the injection of aerosols in the stratosphere is to evaluate its potential effectiveness as "insurance" in the case of higher-than-expected climate response to global warming. We find that this is precisely when SRM appears to be least effective in returning regional climates to their baseline states and reducing regional rates of precipitation change. On the other hand, given the very high regional temperature anomalies associated with rising greenhouse gas concentrations in high sensitivity models, it is also where SRM is most effective in reducing rates of change relative to a no SRM alternative.

  13. Climate model biases and statistical downscaling for application in hydrologic model

    USDA-ARS?s Scientific Manuscript database

    Climate change impact studies use global climate model (GCM) simulations to define future temperature and precipitation. The best available bias-corrected GCM output was obtained from Coupled Model Intercomparison Project phase 5 (CMIP5). CMIP5 data (temperature and precipitation) are available in d...

  14. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE PAGES

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    2016-01-01

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  15. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  16. Computer models and the evidence of anthropogenic climate change: An epistemology of variety-of-evidence inferences and robustness analysis.

    PubMed

    Vezér, Martin A

    2016-04-01

    To study climate change, scientists employ computer models, which approximate target systems with various levels of skill. Given the imperfection of climate models, how do scientists use simulations to generate knowledge about the causes of observed climate change? Addressing a similar question in the context of biological modelling, Levins (1966) proposed an account grounded in robustness analysis. Recent philosophical discussions dispute the confirmatory power of robustness, raising the question of how the results of computer modelling studies contribute to the body of evidence supporting hypotheses about climate change. Expanding on Staley's (2004) distinction between evidential strength and security, and Lloyd's (2015) argument connecting variety-of-evidence inferences and robustness analysis, I address this question with respect to recent challenges to the epistemology robustness analysis. Applying this epistemology to case studies of climate change, I argue that, despite imperfections in climate models, and epistemic constraints on variety-of-evidence reasoning and robustness analysis, this framework accounts for the strength and security of evidence supporting climatological inferences, including the finding that global warming is occurring and its primary causes are anthropogenic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. From climate model ensembles to climate change impacts and adaptation: A case study of water resource management in the southwest of England

    NASA Astrophysics Data System (ADS)

    Lopez, Ana; Fung, Fai; New, Mark; Watts, Glenn; Weston, Alan; Wilby, Robert L.

    2009-08-01

    The majority of climate change impacts and adaptation studies so far have been based on at most a few deterministic realizations of future climate, usually representing different emissions scenarios. Large ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. Because of the novelty of this ensemble information, there is little previous experience of practical applications or of the added value of this information for impacts and adaptation decision making. This paper evaluates the value of perturbed physics ensembles of climate models for understanding and planning public water supply under climate change. We deliberately select water resource models that are already used by water supply companies and regulators on the assumption that uptake of information from large ensembles of climate models will be more likely if it does not involve significant investment in new modeling tools and methods. We illustrate the methods with a case study on the Wimbleball water resource zone in the southwest of England. This zone is sufficiently simple to demonstrate the utility of the approach but with enough complexity to allow a variety of different decisions to be made. Our research shows that the additional information contained in the climate model ensemble provides a better understanding of the possible ranges of future conditions, compared to the use of single-model scenarios. Furthermore, with careful presentation, decision makers will find the results from large ensembles of models more accessible and be able to more easily compare the merits of different management options and the timing of different adaptation. The overhead in additional time and expertise for carrying out the impacts analysis will be justified by the increased quality of the decision-making process. We remark that even though we have focused our study on a water resource system in the United Kingdom, our conclusions about the added value of climate model ensembles in guiding adaptation decisions can be generalized to other sectors and geographical regions.

  18. Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu; Kutzbach, J.; Jacob, R.

    2011-12-05

    In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadalmore » climate prediction.« less

  19. Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-02-01

    The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during winter and spring, more discharge shall occur in future (RCP8.5) in Satluj River.

  20. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Treesearch

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  1. EFFECTS OF CLIMATE CHANGE ON WEATHER AND WATER

    EPA Science Inventory

    Information regarding weather and hydrological processes and how they may change in the future is available from a variety of dynamically downscaled climate models. Current studies are helping to improve the use of such models for regional climate impact studies by testing the s...

  2. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  3. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.

  4. Effect of climate variables on cocoa black pod incidence in Sabah using ARIMAX model

    NASA Astrophysics Data System (ADS)

    Ling Sheng Chang, Albert; Ramba, Haya; Mohd. Jaaffar, Ahmad Kamil; Kim Phin, Chong; Chong Mun, Ho

    2016-06-01

    Cocoa black pod disease is one of the major diseases affecting the cocoa production in Malaysia and also around the world. Studies have shown that the climate variables have influenced the cocoa black pod disease incidence and it is important to quantify the black pod disease variation due to the effect of climate variables. Application of time series analysis especially auto-regressive moving average (ARIMA) model has been widely used in economics study and can be used to quantify the effect of climate variables on black pod incidence to forecast the right time to control the incidence. However, ARIMA model does not capture some turning points in cocoa black pod incidence. In order to improve forecasting performance, other explanatory variables such as climate variables should be included into ARIMA model as ARIMAX model. Therefore, this paper is to study the effect of climate variables on the cocoa black pod disease incidence using ARIMAX model. The findings of the study showed ARIMAX model using MA(1) and relative humidity at lag 7 days, RHt - 7 gave better R square value compared to ARIMA model using MA(1) which could be used to forecast the black pod incidence to assist the farmers determine timely application of fungicide spraying and culture practices to control the black pod incidence.

  5. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.

  6. Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, H.; Ruelland, D.; Tramblay, Y.; Bargaoui, Z.

    2017-07-01

    To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that must be fairly reliable under changing climate conditions. The aim of this study was thus to assess the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in northern Tunisia under long-term climate variability, in the light of available future climate scenarios for this region. The robustness of the models was evaluated using a differential split sample test based on a climate classification of the observation period that simultaneously accounted for precipitation and temperature conditions. The study catchments include the main hydrographical basins in northern Tunisia, which produce most of the surface water resources in the country. A 30-year period (1970-2000) was used to capture a wide range of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while model transferability was evaluated based on the Nash-Sutcliffe efficiency criterion and volume error. The three hydrological models were shown to behave similarly under climate variability. The models simulated the runoff pattern better when transferred to wetter and colder conditions than to drier and warmer ones. It was shown that their robustness became unacceptable when climate conditions involved a decrease of more than 25% in annual precipitation and an increase of more than +1.75 °C in annual mean temperatures. The reduction in model robustness may be partly due to the climate dependence of some parameters. When compared to precipitation and temperature projections in the region, the limits of transferability obtained in this study are generally respected for short and middle term. For long term projections under the most pessimistic emission gas scenarios, the limits of transferability are generally not respected, which may hamper the use of conceptual models for hydrological projections in northern Tunisia.

  7. The uncertainty cascade in flood risk assessment under changing climatic conditions - the Biala Tarnowska case study

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata

    2016-04-01

    Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  8. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    NASA Technical Reports Server (NTRS)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  9. Evaluating the sensitivity of agricultural model performance to different climate inputs

    PubMed Central

    Glotter, Michael J.; Moyer, Elisabeth J.; Ruane, Alex C.; Elliott, Joshua W.

    2017-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled to observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections, but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely-used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources – reanalysis, reanalysis bias-corrected with observed climate, and a control dataset – and compared to observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by un-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. However, some issues persist for all choices of climate inputs: crop yields appear oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves. PMID:29097985

  10. Climate and Integrated Assessment Modeling Studies Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund a cooperative agreement to benefit the field of economic and integrated assessment modeling related to climate change through regular collaborations and thedevelopment of model comparison studies.

  11. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  12. Climate and dengue transmission: evidence and implications.

    PubMed

    Morin, Cory W; Comrie, Andrew C; Ernst, Kacey

    2013-01-01

    Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.

  13. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  14. Multi-objective optimization for evaluation of simulation fidelity for precipitation, cloudiness and insolation in regional climate models

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2016-12-01

    Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.

  15. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    PubMed

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/

  17. Multi-model approach to assess the impact of climate change on runoff

    NASA Astrophysics Data System (ADS)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.

  18. Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.

  19. Modeling technical change in climate analysis: evidence from agricultural crop damages.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2017-05-01

    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.

  20. Improving Climate Projections Using "Intelligent" Ensembles

    NASA Technical Reports Server (NTRS)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and that these metrics can be used to evaluate model quality in both current and future climate states. This information will be used to produce new consensus projections and provide communities with improved climate projections for urgent decision-making.

  1. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  2. How do various maize crop models vary in their responses to climate change factors?

    USDA-ARS?s Scientific Manuscript database

    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models give similar grain yield responses to changes in climatic factors, or whether they agr...

  3. An Investigation of Bomb Cyclogenesis in NCEP's CFS Model

    NASA Astrophysics Data System (ADS)

    Alvarez, F. M.; Eichler, T.; Gottschalck, J.

    2008-12-01

    With the concerns, impacts and consequences of climate change increasing, the need for climate models to simulate daily weather is very important. Given the improvements in resolution and physical parameterizations, climate models are becoming capable of resolving extreme weather events. A particular type of extreme event which has large impacts on transportation, industry and the general public is a rapidly intensifying cyclone referred to as a "bomb." In this study, bombs are investigated using the National Center for Environmental Prediction's (NCEP) Climate Forecast System (CFS) model. We generate storm tracks based on 6-hourly sea-level pressure (SLP) from long-term climate runs of the CFS model. Investigation of this dataset has revealed that the CFS model is capable of producing bombs. We show a case study of a bomb in the CFS model and demonstrate that it has characteristics similar to the observed. Since the CFS model is capable of producing bombs, future work will focus on trends in their frequency and intensity so that an assessment of the potential role of the bomb in climate change can be assessed.

  4. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius).

    PubMed

    Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J

    2018-01-01

    Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.

  5. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  6. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    PubMed

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  7. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    NASA Technical Reports Server (NTRS)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  8. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  9. An assessment of global climate model-simulated climate for the western cordillera of Canada (1961-90)

    NASA Astrophysics Data System (ADS)

    Bonsal, Barrie R.; Prowse, Terry D.; Pietroniro, Alain

    2003-12-01

    Climate change is projected to significantly affect future hydrologic processes over many regions of the world. This is of particular importance for alpine systems that provide critical water supplies to lower-elevation regions. The western cordillera of Canada is a prime example where changes to temperature and precipitation could have profound hydro-climatic impacts not only for the cordillera itself, but also for downstream river systems and the drought-prone Canadian Prairies. At present, impact researchers primarily rely on global climate models (GCMs) for future climate projections. The main objective of this study is to assess several GCMs in their ability to simulate the magnitude and spatial variability of current (1961-90) temperature and precipitation over the western cordillera of Canada. In addition, several gridded data sets of observed climate for the study region are evaluated.Results reveal a close correspondence among the four gridded data sets of observed climate, particularly for temperature. There is, however, considerable variability regarding the various GCM simulations of this observed climate. The British, Canadian, German, Australian, and US GFDL models are superior at simulating the magnitude and spatial variability of mean temperature. The Japanese GCM is of intermediate ability, and the US NCAR model is least representative of temperature in this region. Nearly all the models substantially overestimate the magnitude of total precipitation, both annually and on a seasonal basis. An exception involves the British (Hadley) model, which best represents the observed magnitude and spatial variability of precipitation. This study improves our understanding regarding the accuracy of GCM climate simulations over the western cordillera of Canada. The findings may assist in producing more reliable future scenarios of hydro-climatic conditions over various regions of the country. Copyright

  10. The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Stevens, B. B.; Forster, P.; Collins, W.; Ramaswamy, V.

    2014-12-01

    The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies An enormous amount of attention has been paid to the diversity of responses in the CMIP and other multi-model ensembles. This diversity is normally interpreted as a distribution in climate sensitivity driven by some distribution of feedback mechanisms. Identification of these feedbacks relies on precise identification of the forcing to which each model is subject, including distinguishing true error from model diversity. The Radiative Forcing Model Intercomparison Project (RFMIP) aims to disentangle the role of forcing from model sensitivity as determinants of varying climate model response by carefully characterizing the radiative forcing to which such models are subject and by coordinating experiments in which it is specified. RFMIP consists of four activities: 1) An assessment of accuracy in flux and forcing calculations for greenhouse gases under past, present, and future climates, using off-line radiative transfer calculations in specified atmospheres with climate model parameterizations and reference models 2) Characterization and assessment of model-specific historical forcing by anthropogenic aerosols, based on coordinated diagnostic output from climate models and off-line radiative transfer calculations with reference models 3) Characterization of model-specific effective radiative forcing, including contributions of model climatology and rapid adjustments, using coordinated climate model integrations and off-line radiative transfer calculations with a single fast model 4) Assessment of climate model response to precisely-characterized radiative forcing over the historical record, including efforts to infer true historical forcing from patterns of response, by direct specification of non-greenhouse-gas forcing in a series of coordinated climate model integrations This talk discusses the rationale for RFMIP, provides an overview of the four activities, and presents preliminary motivating results.

  11. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    PubMed Central

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants’ hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. Results The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Conclusions Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. PMID:25710968

  12. A transient stochastic weather generator incorporating climate model uncertainty

    NASA Astrophysics Data System (ADS)

    Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.

    2015-11-01

    Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.

  13. Stress testing hydrologic models using bottom-up climate change assessment

    NASA Astrophysics Data System (ADS)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  14. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.

  15. Results from the BRACE 1.5 study: Climate change impacts of 1.5 C and 2 C warming

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Anderson, B.; Monaghan, A. J.; Ren, X.; Sanderson, B.; Tebaldi, C.

    2017-12-01

    In 2015, 195 countries negotiated the Paris Agreement on climate change, which set long-term goals of limiting global mean warming to well below 2 C and possibly 1.5 C. This event stimulated substantial scientific interest in climate outcomes and impacts on society associated with those levels of warming. Recently, the first set of global climate model simulations explicitly designed to meet those targets were undertaken with the Community Earth System Model (CESM) for use by the research community (Sanderson et al, accepted). The BRACE 1.5 project models societal impacts from these climate outcomes, combined with assumptions about future socioeconomic conditions according to the Shared Socioeconomic Pathways. These analyses build on a recently completed study of the Benefits of Reduced Anthropogenic Climate changE (BRACE), published as a set of 20 papers in Climatic Change, which examined the difference in impacts between two higher scenarios resulting in about 2.5 C and 3.7 C warming by late this century. BRACE 1.5 consists of a set of six papers to be submitted to a special collection in Environmental Research Letters that takes a similar approach but focuses on impacts at 1.5 and 2 C warming. We ask whether impacts differ substantially between the two climate scenarios, accounting for uncertainty in climate outcomes through the use of initial condition ensembles of CESM simulations, and in societal conditions by using alternative SSP-based development pathways. Impact assessment focuses on the health and agricultural sectors; modeling approaches include the use of a global mutli-region CGE model for economic analysis, both a process-based and an empirical crop model, a model of spatial population change, a model of climatic suitability for the aedes aegypti mosquito, and an epidemiological model of heat-related mortality. A methodological analysis also evaluates the use of climate model emulation techniques for providing climate information sufficient to support impact assessment in low warming scenarios.

  16. Evaluation of the enhanced integrated climatic model for specification of subgrade soils in Oklahoma : final report.

    DOT National Transportation Integrated Search

    2014-01-01

    The main objective of this study was to collect and evaluate climatic and soil data pertaining to Oklahoma for the climatic model (EICM) in the mechanistic-empirical design guide for pavements. The EICM climatic input files were updated and extended ...

  17. Study of Regional Downscaled Climate and Air Quality in the United States

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Fu, J. S.; Drake, J.; Lamarque, J.; Lam, Y.; Huang, K.

    2011-12-01

    Due to the increasing anthropogenic greenhouse gas emissions, the global and regional climate patterns have significantly changed. Climate change has exerted strong impact on ecosystem, air quality and human life. The global model Community Earth System Model (CESM v1.0) was used to predict future climate and chemistry under projected emission scenarios. Two new emission scenarios, Representative Community Pathways (RCP) 4.5 and RCP 8.5, were used in this study for climate and chemistry simulations. The projected global mean temperature will increase 1.2 and 1.7 degree Celcius for the RCP 4.5 and RCP 8.5 scenarios in 2050s, respectively. In order to take advantage of local detailed topography, land use data and conduct local climate impact on air quality, we downscaled CESM outputs to 4 km by 4 km Eastern US domain using Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality modeling system (CMAQ). The evaluations between regional model outputs and global model outputs, regional model outputs and observational data were conducted to verify the downscaled methodology. Future climate change and air quality impact were also examined on a 4 km by 4 km high resolution scale.

  18. Evaluation of the multi-model CORDEX-Africa hindcast using RCMES

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.

    2011-12-01

    Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed data. The model evaluation is quantified in terms of widely used metrics. Details on the conceptual outline and architecture of RCMES is presented in two companion papers "The Regional climate model Evaluation System (RCMES) based on contemporary satellite and other observations for assessing regional climate model fidelity" and "A Reusable Framework for Regional Climate Model Evaluation" in GC07 and IN30, respectively.

  19. Climate change effects on agriculture: Economic responses to biophysical shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments inmore » yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.« less

  20. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.

  1. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    NASA Astrophysics Data System (ADS)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  2. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review.

    PubMed

    Sanderson, Michael; Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete

    2017-01-01

    Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality.

  3. An observational and modeling study of the August 2017 Florida climate extreme event.

    NASA Astrophysics Data System (ADS)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  4. A method for physically based model analysis of conjunctive use in response to potential climate changes

    USGS Publications Warehouse

    Hanson, R.T.; Flint, L.E.; Flint, A.L.; Dettinger, M.D.; Faunt, C.C.; Cayan, D.; Schmid, W.

    2012-01-01

    Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.

  5. The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata.

    PubMed

    Güizado-Rodríguez, Martha Anahí; Ballesteros-Barrera, Claudia; Casas-Andreu, Gustavo; Barradas-Miranda, Victor Luis; Téllez-Valdés, Oswaldo; Salgado-Ugarte, Isaías Hazarmabeth

    2012-12-01

    The ectothermic nature of reptiles makes them especially sensitive to global warming. Although climate change and its implications are a frequent topic of detailed studies, most of these studies are carried out without making a distinction between populations. Here we present the first study of an Aspidoscelis species that evaluates the effects of global warming on its distribution using ecological niche modeling. The aims of our study were (1) to understand whether predicted warmer climatic conditions affect the geographic potential distribution of different climatic groups of Aspidoscelis costata costata and (2) to identify potential altitudinal changes of these groups under global warming. We used the maximum entropy species distribution model (MaxEnt) to project the potential distributions expected for the years 2020, 2050, and 2080 under a single simulated climatic scenario. Our analysis suggests that some climatic groups of Aspidoscelis costata costata will exhibit reductions and in others expansions in their distribution, with potential upward shifts toward higher elevation in response to climate warming. Different climatic groups were revealed in our analysis that subsequently showed heterogeneous responses to climatic change illustrating the complex nature of species geographic responses to environmental change and the importance of modeling climatic or geographic groups and/or populations instead of the entire species' range treated as a homogeneous entity.

  6. Modelling climate impact on floods under future emission scenarios using an ensemble of climate model projections

    NASA Astrophysics Data System (ADS)

    Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.

    2012-04-01

    Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.

  7. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    NASA Technical Reports Server (NTRS)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.

  8. Future Climate Change in the Baltic Sea Area

    NASA Astrophysics Data System (ADS)

    Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak

    2015-04-01

    Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to downscaling and impact models is relatively small, but more are emerging. A large number of coupled climate-environmental scenario simulations for the Baltic Sea have been performed within the BONUS+ projects (ECOSUPPORT, INFLOW, AMBER and Baltic-C (2009-2011)), using various combinations of output from GCMs, RCMs, hydrological models and scenarios for load and emission of nutrients as forcing for Baltic Sea models. Such a large ensemble of scenario simulations for the Baltic Sea has never before been produced and enables for the first time an estimation of uncertainties.

  9. Impacts of climate change and internal climate variability on french rivers streamflows

    NASA Astrophysics Data System (ADS)

    Dayon, Gildas; Boé, Julien; Martin, Eric

    2016-04-01

    The assessment of the impacts of climate change often requires to set up long chains of modeling, from the model to estimate the future concentration of greenhouse gases to the impact model. Throughout the modeling chain, sources of uncertainty accumulate making the exploitation of results for the development of adaptation strategies difficult. It is proposed here to assess the impacts of climate change on the hydrological cycle over France and the associated uncertainties. The contribution of the uncertainties from greenhouse gases emission scenario, climate models and internal variability are addressed in this work. To have a large ensemble of climate simulations, the study is based on Global Climate Models (GCM) simulations from the Coupled Model Intercomparison Phase 5 (CMIP5), including several simulations from the same GCM to properly assess uncertainties from internal climate variability. Simulations from the four Radiative Concentration Pathway (RCP) are downscaled with a statistical method developed in a previous study (Dayon et al. 2015). The hydrological system Isba-Modcou is then driven by the downscaling results on a 8 km grid over France. Isba is a land surface model that calculates the energy and water balance and Modcou a hydrogeological model that routes the surface runoff given by Isba. Based on that framework, uncertainties uncertainties from greenhouse gases emission scenario, climate models and climate internal variability are evaluated. Their relative importance is described for the next decades and the end of this century. In a last part, uncertainties due to internal climate variability on streamflows simulated with downscaled GCM and Isba-Modcou are evaluated against observations and hydrological reconstructions on the whole 20th century. Hydrological reconstructions are based on the downscaling of recent atmospheric reanalyses of the 20th century and observations of temperature and precipitation. We show that the multi-decadal variability of streamflows observed in the 20th century is generally weaker in the hydrological simulations done with the historical simulations from climate models. References: Dayon et al. (2015), Transferability in the future climate of a statistical downscaling mehtod for precipitation in France, J. Geophys. Res. Atmos., 120, 1023-1043, doi:10.1002/2014JD022236

  10. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  11. Simulation of Climate Change Impacts on Wheat-Fallow Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    Agricultural system simulation models are predictive tools for assessing climate change impacts on crop production. In this study, RZWQM2 that contains the DSSAT 4.0-CERES model was evaluated for simulating climate change impacts on wheat growth. The model was calibrated and validated using data fro...

  12. A simple technique for obtaining future climate data inputs for natural resource models

    USDA-ARS?s Scientific Manuscript database

    Those conducting impact studies using natural resource models need to be able to quickly and easily obtain downscaled future climate data from multiple models, scenarios, and timescales for multiple locations. This paper describes a method of quickly obtaining future climate data over a wide range o...

  13. Using climate models to estimate the quality of global observational data sets.

    PubMed

    Massonnet, François; Bellprat, Omar; Guemas, Virginie; Doblas-Reyes, Francisco J

    2016-10-28

    Observational estimates of the climate system are essential to monitoring and understanding ongoing climate change and to assessing the quality of climate models used to produce near- and long-term climate information. This study poses the dual and unconventional question: Can climate models be used to assess the quality of observational references? We show that this question not only rests on solid theoretical grounds but also offers insightful applications in practice. By comparing four observational products of sea surface temperature with a large multimodel climate forecast ensemble, we find compelling evidence that models systematically score better against the most recent, advanced, but also most independent product. These results call for generalized procedures of model-observation comparison and provide guidance for a more objective observational data set selection. Copyright © 2016, American Association for the Advancement of Science.

  14. Climate change and watershed mercury export: a multiple projection and model analysis

    USGS Publications Warehouse

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  15. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    PubMed Central

    Van der Fels-Klerx, H. J.; van Asselt, Esther D.; Madsen, Marianne S.; Olesen, Jørgen E.

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards. PMID:24066059

  16. Climate change impacts on crop yield in the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Ceglar, Andrej; Dentener, Frank; Niemeyer, Stefan; Dosio, Alessandro; Fumagalli, Davide

    2017-04-01

    Agriculture is strongly influenced by climate variability, climate extremes and climate changes. Recent studies on past decades have identified and analysed the effects of climate variability and extremes on crop yields in the Euro-Mediterranean region. As these effects could be amplified in a changing climate context, it is essential to analyse available climate projections and investigate the possible impacts on European agriculture in terms of crop yield. In this study, five model runs from the Euro-CORDEX initiative under two scenarios (RCP4.5 and RCP8.5) have been used. Climate model data have been bias corrected and then used to feed a mechanistic crop growth model. The crop model has been run under different settings to better sample the intrinsic uncertainties. Among the main results, it is worth to report a weak but significant and spatially homogeneous increase in potential wheat yield at mid-century (under a CO2 fertilisation effect scenario). While more complex changes seem to characterise potential maize yield, with large areas in the region showing a weak-to-moderate decrease.

  17. Climate change unlikely to increase malaria burden in West Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2016-11-01

    The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.

  18. Predicting the Impact of Climate Change on Threatened Species in UK Waters

    PubMed Central

    Jones, Miranda C.; Dye, Stephen R.; Fernandes, Jose A.; Frölicher, Thomas L.; Pinnegar, John K.; Warren, Rachel; Cheung, William W. L.

    2013-01-01

    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina). PMID:23349829

  19. Predicting the impact of climate change on threatened species in UK waters.

    PubMed

    Jones, Miranda C; Dye, Stephen R; Fernandes, Jose A; Frölicher, Thomas L; Pinnegar, John K; Warren, Rachel; Cheung, William W L

    2013-01-01

    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).

  20. Quantifying the importance of model-to-model variability in integrated assessments of 21st century climate

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.

    2016-12-01

    The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.

  1. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.

  2. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.

    PubMed

    Yihdego, Yohannes; Webb, John

    2016-05-01

    Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water resources.

  3. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  4. An Investigation of Secondary Students' Mental Models of Climate Change and the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Varela, Begoña; Sesto, Vanessa; García-Rodeja, Isabel

    2018-03-01

    There are several studies dealing with students' conceptions on climate change, but most of them refer to understanding before instruction. In contrast, this study investigates students' conceptions and describes the levels of sophistication of their mental models on climate change and the greenhouse effect. The participants were 40 secondary students (grade 7) in Spain. As a method of data collection, a questionnaire was designed with open-ended questions focusing on the mechanism, causes, and actions that could be useful in reducing climate change. Students completed the same questionnaire before and after instruction. The students' conceptions and mental models were identified by an inductive and iterative analysis of the participants' explanations. With regard to the students' conceptions, the results show that they usually link climate change to an increase in temperature, and they tend to mention, even after instruction, generic actions to mitigate climate change, such as not polluting. With regard to the students' mental models, the results show an evolution of models with little consistency and coherence, such as the models on level 1, towards higher levels of sophistication. The paper concludes with educational implications proposed for solving learning difficulties regarding the greenhouse effect and climate change.

  5. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  6. On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.

  7. Extracting climate memory using Fractional Integrated Statistical Model: A new perspective on climate prediction

    PubMed Central

    Yuan, Naiming; Fu, Zuntao; Liu, Shida

    2014-01-01

    Long term memory (LTM) in climate variability is studied by means of fractional integral techniques. By using a recently developed model, Fractional Integral Statistical Model (FISM), we in this report proposed a new method, with which one can estimate the long-lasting influences of historical climate states on the present time quantitatively, and further extract the influence as climate memory signals. To show the usability of this method, two examples, the Northern Hemisphere monthly Temperature Anomalies (NHTA) and the Pacific Decadal Oscillation index (PDO), are analyzed in this study. We find the climate memory signals indeed can be extracted and the whole variations can be further decomposed into two parts: the cumulative climate memory (CCM) and the weather-scale excitation (WSE). The stronger LTM is, the larger proportion the climate memory signals will account for in the whole variations. With the climate memory signals extracted, one can at least determine on what basis the considered time series will continue to change. Therefore, this report provides a new perspective on climate prediction. PMID:25300777

  8. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake.

    PubMed

    Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R

    2014-01-01

    Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.

  9. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

    NASA Astrophysics Data System (ADS)

    Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.

    2018-01-01

    The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and, consequently, in the prediction of future discharge and maximum probable flood.

  10. Investigating the Sensitivity of Streamflow and Water Quality to Climate Change and Urbanization in 20 U.S. Watersheds

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.

    2011-12-01

    Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.

  11. The Potential Impacts of a Scenario of C02-Induced Climatic Change on Ontafio, Canada.

    NASA Astrophysics Data System (ADS)

    Cohen, S. J.; Allsopp, T. R.

    1988-07-01

    In 1984, Environment Canada, Ontario Region, with financial and expert support from the Canadian Climate Program, initiated an interdisciplinary pilot study to investigate the potential impact, on Ontario, of a climate scenario which might be anticipated under doubling of atmospheric C02 conditions.There were many uncertainties involved in the climate scenario development and the impacts modeling. Time and resource constraints restricted this study to one climate scenario and to the selection of several available models that could be adapted to these impact studies. The pilot study emphasized the approach and process required to investigate potential regional impacts in an interdisciplinary manner, rather than to produce a forecast of the future.The climate scenario chosen was adapted from experimental model results produced by the Goddard Institute for Space Studies (GISS), coupled with current climate normals. Gridded monthly mean temperatures and precipitation were then used to develop projected biophysical effects. For example, existing physical and/or statistical models were adapted to determine impacts on the Great Lakes net basin supplies, levels and outflows, streamflow subbasin, snowfall and length of snow season.The second phase of the study addressed the impacts of the climate system scenario on natural resources and resource dependent activities. For example, the impacts of projected decreased lake levels and outflows on commercial navigation and hydroelectric generation were assessed. The impacts of the climate scenario on municipal water use, residential beating and cooling energy requirements opportunities and constraints for food production and tourism and recreation were determined quantitatively where models and methodologies were available, otherwise, qualitatively.First order interdependencies of the biophysical effects of the climate scenario and resource dependent activities were evaluated qualitatively in a workshop format culminating in a series of statements on (i) possible preventive, compensatory and substitution strategies and (ii) an assessment of current knowledge gaps and deficiencies, with recommendations for future areas of research.

  12. Climate change projections for Greek viticulture as simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos

    2017-07-01

    Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.

  13. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    NASA Astrophysics Data System (ADS)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  14. Possible implications of global climate change on global lightning distributions and frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.

  15. Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Chan, A.

    2013-12-01

    Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.

  16. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)

    NASA Astrophysics Data System (ADS)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2013-12-01

    This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen climate parameters provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century changes in global mean surface air temperature from previous work with the IGSM. Because the IGSM-CAM framework only considers one particular climate model, it cannot be used to assess the structural modeling uncertainty arising from differences in the parameterization suites of climate models. However, comparison of the IGSM-CAM projections with simulations of 31 CMIP5 models under the RCP4.5 and RCP8.5 scenarios show that the range of warming at the continental scale shows very good agreement between the two ensemble simulations, except over Antarctica, where the IGSM-CAM overestimates the warming. This demonstrates that by sampling the climate system response, the IGSM-CAM, even though it relies on one single climate model, can essentially reproduce the range of future continental warming simulated by more than 30 different models. Precipitation changes projected in the IGSM-CAM simulations and the CMIP5 multi-model ensemble both display a large uncertainty at the continental scale. The two ensemble simulations show good agreement over Asia and Europe. However, the ranges of precipitation changes do not overlap - but display similar size - over Africa and South America, two continents where models generally show little agreement in the sign of precipitation changes and where CCSM3 tends to be an outlier. Overall, the IGSM-CAM provides an efficient and consistent framework to explore the large uncertainty in future projections of global and regional climate change associated with uncertainty in the climate response and projected emissions.

  17. The Pliocene Model Intercomparison Project - Phase 2

    NASA Astrophysics Data System (ADS)

    Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Hunter, Stephen; Lunt, Daniel; Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate, and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilised for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilise state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land/ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  18. The relative impacts of climate and land-use change on conterminous United States bird species from 2001 to 2075

    USGS Publications Warehouse

    Sohl, Terry L.

    2014-01-01

    Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be "suitable" for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges.

  19. The Relative Impacts of Climate and Land-Use Change on Conterminous United States Bird Species from 2001 to 2075

    PubMed Central

    Sohl, Terry L.

    2014-01-01

    Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be “suitable” for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges. PMID:25372571

  20. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    USGS Publications Warehouse

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, G. Page; Mueller, C.; Calvin, Katherine V.

    This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to themore » GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.« less

  2. Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain

    2015-09-01

    Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.

  3. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  4. Improving niche projections of plant species under climate change: Silene acaulis on the British Isles as a case study

    NASA Astrophysics Data System (ADS)

    Ferrarini, Alessandro; Alsafran, Mohammed H. S. A.; Dai, Junhu; Alatalo, Juha M.

    2018-04-01

    Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.

  5. Modelling Impacts of Climate Change: Case Studies using the New Generation of Erosion Models

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to impact upon a number of soil erosion drivers and processes, which should be taken into account when designing a modelling strategy. The fourth assessment report of the Intergovernmental Panel for Climate Change (IPCC) (Parry et al., 2007; Solomon et al., 2007) reviews a...

  6. Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach

    NASA Astrophysics Data System (ADS)

    Huang, M.

    2016-12-01

    Earth System models (ESMs) are effective tools for investigating the water-energy-food system interactions under climate change. In this presentation, I will introduce research efforts at the Pacific Northwest National Laboratory towards quantifying impacts of LULCC on the water-energy-food nexus in a changing climate using an integrated regional Earth system modeling framework: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Two studies will be discussed to showcase the capability of PRIMA: (1) quantifying changes in terrestrial hydrology over the Conterminous US (CONUS) from 2005 to 2095 using the Community Land Model (CLM) driven by high-resolution downscaled climate and land cover products from PRIMA, which was designed for assessing the impacts of and potential responses to climate and anthropogenic changes at regional scales; (2) applying CLM over the CONUS to provide the first county-scale model validation in simulating crop yields and assessing associated impacts on the water and energy budgets using CLM. The studies demonstrate the benefits of incorporating and coupling human activities into complex ESMs, and critical needs to account for the biogeophysical and biogeochemical effects of LULCC in climate impacts studies, and in designing mitigation and adaptation strategies at a scale meaningful for decision-making. Future directions in quantifying LULCC impacts on the water-energy-food nexus under a changing climate, as well as feedbacks among climate, energy production and consumption, and natural/managed ecosystems using an Integrated Multi-scale, Multi-sector Modeling framework will also be discussed.

  7. Selecting climate simulations for impact studies based on multivariate patterns of climate change.

    PubMed

    Mendlik, Thomas; Gobiet, Andreas

    In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.

  8. Potential impacts of climate change on birds and trees of the eastern United States: newest climate scenarios and species abundance modelling techniques

    Treesearch

    L.R. Iverson; A.M. Prasad; S.N. Matthews; M.P. Peters

    2007-01-01

    Climate change is affecting an increasing number of species the world over, and evidence is mounting that these changes will continue to accelerate. There have been many studies that use a modelling approach to predict the effects of future climatic change on ecological systems, including by us (Iverson et al. 1999, Matthews et al. 2004); this modelling approach uses a...

  9. Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox-Rabinovitz, M. S.

    The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.

  10. Climate impacts on palm oil yields in the Nigerian Niger Delta

    NASA Astrophysics Data System (ADS)

    Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil

    2016-04-01

    Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.

  11. Interactions of changing climate and shifts in forest composition on stand carbon balance

    Treesearch

    Chiang Jyh-Min; Louis Iverson; Anantha Prasad; Kim Brown

    2006-01-01

    Given that climate influences forest biogeographic distribution, many researchers have created models predicting shifts in tree species range with future climate change scenarios. The objective of this study is to investigate the forest carbon consequences of shifts in stand species composition with current and future climate scenarios using such a model.

  12. Climate Modeling and Causal Identification for Sea Ice Predictability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less

  13. An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources

    NASA Astrophysics Data System (ADS)

    Feng, Dapeng; Zheng, Yi; Mao, Yixin; Zhang, Aijing; Wu, Bin; Li, Jinguo; Tian, Yong; Wu, Xin

    2018-02-01

    Water resources in coastal areas can be profoundly influenced by both climate change and human activities. These climatic and human impacts are usually intertwined and difficult to isolate. This study developed an integrated model-based approach for detection and attribution of climatic and human impacts and applied this approach to the Luanhe Plain, a typical coastal area in northern China. An integrated surface water-groundwater model was developed for the study area using GSFLOW (coupled groundwater and surface-water flow). Model calibration and validation were performed for background years between 1975 and 2000. The variation in water resources between the 1980s and 1990s was then quantitatively attributed to climate variability, groundwater pumping and changes in upstream inflow. Climate scenarios for future years (2075-2100) were also developed by downscaling the projections in CMIP5. Potential water resource responses to climate change, as well as their uncertainty, were then investigated through integrated modeling. The study results demonstrated the feasibility and value of the integrated modeling-based analysis for water resource management in areas with complex surface water-groundwater interaction. Specific findings for the Luanhe Plain included the following: (1) During the historical period, upstream inflow had the most significant impact on river outflow to the sea, followed by climate variability, whereas groundwater pumping was the least influential. (2) The increase in groundwater pumping had a dominant influence on the decline in groundwater change, followed by climate variability. (3) Synergetic and counteractive effects among different impacting factors, while identified, were not significant, which implied that the interaction among different factors was not very strong in this case. (4) It is highly probable that future climate change will accelerate groundwater depletion in the study area, implying that strict regulations for groundwater pumping are imperative for adaptation.

  14. Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.; hide

    2015-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.

  15. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    NASA Astrophysics Data System (ADS)

    Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.

    2017-11-01

    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.

  16. Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies

    NASA Astrophysics Data System (ADS)

    Shellito, Cindy J.; Sloan, Lisa C.

    2006-02-01

    Models that allow vegetation to respond to and interact with climate provide a unique method for addressing questions regarding feedbacks between the ecosystem and climate in pre-Quaternary time periods. In this paper, we consider how Dynamic Global Vegetation Models (DGVMs), which have been developed for simulations with present day climate, can be used for paleoclimate studies. We begin with a series of tests in the NCAR Land Surface Model (LSM)-DGVM with Eocene geography to examine (1) the effect of removing C 4 grasses from the available plant functional types in the model; (2) model sensitivity to a change in soil texture; and (3), model sensitivity to a change in the value of pCO 2 used in the photosynthetic rate equations. The tests were designed to highlight some of the challenges of using these models and prompt discussion of possible improvements. We discuss how lack of detail in model boundary conditions, uncertainties in the application of modern plant functional types to paleo-flora simulations, and inaccuracies in the model climatology used to drive the DGVM can affect interpretation of model results. However, we also review a number of DGVM features that can facilitate understanding of past climates and offer suggestions for improving paleo-DGVM studies.

  17. Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo

    2017-04-01

    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  18. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW)more » Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews’s ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).« less

  19. Semiannual progress report, April - September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Research conducted during the past year in the climate and modeling programs has concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols, and the solar constant on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree by 1 degree resolution has now been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method has been developed to simulate the hydraulic behavior of the soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water throughout the planet.

  20. Coupling climate and hydrological models to evaluate the impact of climate change on run of the river hydropower schemes from UK study sites

    NASA Astrophysics Data System (ADS)

    Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen

    2015-04-01

    As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.

  1. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review

    PubMed Central

    Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete

    2017-01-01

    Background and objectives Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. Methods The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. Results A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Conclusions Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality. PMID:28686743

  2. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US

    USGS Publications Warehouse

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.

    2011-01-01

    The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.

  3. Climate change and watershed mercury export: a multiple projection and model analysis.

    PubMed

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  4. Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation

    NASA Technical Reports Server (NTRS)

    Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)

    2002-01-01

    The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.

  5. A new framework for climate sensitivity and prediction: a modelling perspective

    NASA Astrophysics Data System (ADS)

    Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank

    2016-03-01

    The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.

  6. Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty.

    PubMed

    Leedale, Joseph; Tompkins, Adrian M; Caminade, Cyril; Jones, Anne E; Nikulin, Grigory; Morse, Andrew P

    2016-03-31

    The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.

  7. Latest research related to climate change analysis with applications in impact studies over the territory of Serbia

    NASA Astrophysics Data System (ADS)

    Vukovic, Ana; Vujadinovic, Mirjam; Djurdjevic, Vladimir; Cvetkovic, Bojan; Djordjevic, Marija; Ruml, Mirjana; Rankovic-Vasic, Zorica; Przic, Zoran; Stojicic, Djurdja; Krzic, Aleksandra; Rajkovic, Borivoj

    2015-04-01

    Serbia is a country with relatively small scale terrain features with economy mostly based on local landowners' agricultural production. Climate change analysis must be downscaled accordingly, to recognize climatological features of the farmlands. Climate model simulations and impact studies significantly contribute to the future strategic planning in economic development and therefore impact analysis must be approached with high level of confidence. This paper includes research related to climate change and impacts in Serbia resulted from cooperative work of the modeling and user community. Dynamical downscaling of climate projections for the 21st century with multi-model approach and statistical bias correction are done in order to prepare model results for impact studies. Presented results are from simulations performed using regional EBU-POM model, which is forced with A1B and A2 SRES/IPCC (2007) with comparative analysis with other regional models and from the latest high resolution NMMB simulations forced with RCP8.5 IPCC scenario (2012). Application of bias correction of the model results is necessary when calculated indices are not linearly dependent on the model results and delta approach in presenting results with respect to present climate simulations is insufficient. This is most important during the summer over the north part of the country where model bias produce much higher temperatures and less precipitation, which is known as "summer drying problem" and is common in regional models' simulations over the Pannonian valley. Some of the results, which are already observed in present climate, like higher temperatures and disturbance in the precipitation pattern, lead to present and future advancement of the start of the vegetation period toward earlier dates, associated with an increased risk of the late spring frost, extended vegetation period, disturbed preparation for the rest period, increased duration and frequency of the draught periods, etc. Based on the projected climate changes an application is proposed of the ensemble seasonal forecasts for early preparation in case of upcoming unfavorable weather conditions. This paper was realized as a part of the projects "Studying climate change and its influence on the environment: impacts, adaptation and mitigation" (43007) and "Assessment of climate change impacts on water resources in Serbia" (37005) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011-2015.

  8. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.

  9. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  10. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.

  11. A framework for modeling uncertainty in regional climate change

    EPA Science Inventory

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework ...

  12. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  13. Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change

    PubMed Central

    Porfirio, Luciana L.; Harris, Rebecca M. B.; Lefroy, Edward C.; Hugh, Sonia; Gould, Susan F.; Lee, Greg; Bindoff, Nathaniel L.; Mackey, Brendan

    2014-01-01

    Choice of variables, climate models and emissions scenarios all influence the results of species distribution models under future climatic conditions. However, an overview of applied studies suggests that the uncertainty associated with these factors is not always appropriately incorporated or even considered. We examine the effects of choice of variables, climate models and emissions scenarios can have on future species distribution models using two endangered species: one a short-lived invertebrate species (Ptunarra Brown Butterfly), and the other a long-lived paleo-endemic tree species (King Billy Pine). We show the range in projected distributions that result from different variable selection, climate models and emissions scenarios. The extent to which results are affected by these choices depends on the characteristics of the species modelled, but they all have the potential to substantially alter conclusions about the impacts of climate change. We discuss implications for conservation planning and management, and provide recommendations to conservation practitioners on variable selection and accommodating uncertainty when using future climate projections in species distribution models. PMID:25420020

  14. Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bellafiore, D.; Bucchignani, E.; Umgiesser, G.

    2010-09-01

    One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more realistic forcing for hydrodynamic simulations. After this analysis, effects on water level variations, under different wind forcing, has been analyzed to define what is the local effect on sea level changes in the coastal area of the North Adriatic. Surge statistics produced from different climate model forcings for the IPCC A1B scenario have been studied to provide local information on climate change effects on coastal hydrodynamics due to meteorological effect. This typology of application has been considered a suitable tool for coastal management and can be considered a study field that will increase its importance in the more general investigation on scale interaction processes as the effects of global scale climate phenomena on local areas.

  15. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  16. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  17. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe.

    PubMed

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.

  18. The Relationship between Goal Orientations, Motivational Climate and Selfreported Discipline in Physical Education

    PubMed Central

    Moreno-Murcia, Juan A.; Sicilia, Alvaro; Cervelló, Eduardo; Huéscar, Elisa; Dumitru, Delia C.

    2011-01-01

    The purpose of this study was to test a motivational model on the links between situational and dispositional motivation and self-reported indiscipline/discipline based on the achievement goals theory. The model postulates that a task-involving motivational climate facilitates self-reported discipline, either directly or mediated by task orientation. In contrast, an ego-involving motivational climate favors self-reported indiscipline, either directly or by means of ego orientation. An additional purpose was to examine gender differences according to the motivational model proposed. Children (n = 565) from a large Spanish metropolitan school district were participants in this study and completed questionnaires assessing goal orientations, motivational climates and self-reported discipline. The results from the analysis of structural equation model showed the direct effect of motivational climates on self-reported discipline and provided support to the model. Furthermore, the gender differences found in self-reported discipline were associated with the differences found in the students’ dispositional and situational motivation pursuant to the model tested. The implications of these results with regard to teaching instructional actions in physical education classes are discussed. Key points A task-involving motivational climate predicts self-reported discipline behaviors, either directly or mediated by task orientation. An ego-involving motivational climate favors self-reported undisciplined, either directly or mediated by ego orientation. A significant gender difference was found in the motivational disposition perceived climate and self-reported discipline. PMID:24149304

  19. Simulated impact of climate change on hydrology of multiple watersheds using traditional and recommended snowmelt runoff model methodology

    USDA-ARS?s Scientific Manuscript database

    For more than three decades, researchers have utilized the Snowmelt Runoff Model (SRM) to test the impacts of climate change on streamflow of snow-fed systems. In this study, the hydrological effects of climate change are modeled over three sequential years using SRM with both typical and recommende...

  20. The added value of dynamical downscaling in a climate change scenario simulation:A case study for European Alps and East Asia

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo

    2010-05-01

    Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.

  1. Steady-state solutions of a diffusive energy-balance climate model and their stability

    NASA Technical Reports Server (NTRS)

    Ghil, M.

    1975-01-01

    A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.

  2. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.

    1990-01-01

    The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.

  3. A comparison of metrics for assessing state-of-the-art climate models and implications for probabilistic projections of climate change

    NASA Astrophysics Data System (ADS)

    Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko

    2018-03-01

    A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.

  4. Development and comparison of metrics for evaluating climate models and estimation of projection uncertainty

    NASA Astrophysics Data System (ADS)

    Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko

    2017-04-01

    The COMEPRO project (Comparison of Metrics for Probabilistic Climate Change Projections of Mediterranean Precipitation), funded by the Deutsche Forschungsgemeinschaft (DFG), is dedicated to the development of new evaluation metrics for state-of-the-art climate models. Further, we analyze implications for probabilistic projections of climate change. This study focuses on the results of 4-field matrix metrics. Here, six different approaches are compared. We evaluate 24 models of the Coupled Model Intercomparison Project Phase 3 (CMIP3), 40 of CMIP5 and 18 of the Coordinated Regional Downscaling Experiment (CORDEX). In addition to the annual and seasonal precipitation the mean temperature is analysed. We consider both 50-year trend and climatological mean for the second half of the 20th century. For the probabilistic projections of climate change A1b, A2 (CMIP3) and RCP4.5, RCP8.5 (CMIP5,CORDEX) scenarios are used. The eight main study areas are located in the Mediterranean. However, we apply our metrics to globally distributed regions as well. The metrics show high simulation quality of temperature trend and both precipitation and temperature mean for most climate models and study areas. In addition, we find high potential for model weighting in order to reduce uncertainty. These results are in line with other accepted evaluation metrics and studies. The comparison of the different 4-field approaches reveals high correlations for most metrics. The results of the metric-weighted probabilistic density functions of climate change are heterogeneous. We find for different regions and seasons both increases and decreases of uncertainty. The analysis of global study areas is consistent with the regional study areas of the Medeiterrenean.

  5. Evaluation of GCMs in the context of regional predictive climate impact studies.

    NASA Astrophysics Data System (ADS)

    Kokorev, Vasily; Anisimov, Oleg

    2016-04-01

    Significant improvements in the structure, complexity, and general performance of earth system models (ESMs) have been made in the recent decade. Despite these efforts, the range of uncertainty in predicting regional climate impacts remains large. The problem is two-fold. Firstly, there is an intrinsic conflict between the local and regional scales of climate impacts and adaptation strategies, on one hand, and larger scales, at which ESMs demonstrate better performance, on the other. Secondly, there is a growing understanding that majority of the impacts involve thresholds, and are thus driven by extreme climate events, whereas accent in climate projections is conventionally made on gradual changes in means. In this study we assess the uncertainty in projecting extreme climatic events within a region-specific and process-oriented context by examining the skills and ranking of ESMs. We developed a synthetic regionalization of Northern Eurasia that accounts for the spatial features of modern climatic changes and major environmental and socio-economical impacts. Elements of such fragmentation could be considered as natural focus regions that bridge the gap between the spatial scales adopted in climate-impacts studies and patterns of climate change simulated by ESMs. In each focus region we selected several target meteorological variables that govern the key regional impacts, and examined the ability of the models to replicate their seasonal and annual means and trends by testing them against observations. We performed a similar evaluation with regard to extremes and statistics of the target variables. And lastly, we used the results of these analyses to select sets of models that demonstrate the best performance at selected focus regions with regard to selected sets of target meteorological parameters. Ultimately, we ranked the models according to their skills, identified top-end models that "better than average" reproduce the behavior of climatic parameters, and eliminated the outliers. Since the criteria of selecting the "best" models are somewhat loose, we constructed several regional ensembles consisting of different number of high-ranked models and compared results from these optimized ensembles with observations and with the ensemble of all models. We tested our approach in specific regional application of the terrestrial Russian Arctic, considering permafrost and Artic biomes as key regional climate-dependent systems, and temperature and precipitation characteristics governing their state as target meteorological parameters. Results of this case study are deposited on the web portal www.permafrost.su/gcms

  6. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  7. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    PubMed

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.

  8. Towards a threshold climate for emergency lower respiratory hospital admissions.

    PubMed

    Islam, Muhammad Saiful; Chaussalet, Thierry J; Koizumi, Naoru

    2017-02-01

    Identification of 'cut-points' or thresholds of climate factors would play a crucial role in alerting risks of climate change and providing guidance to policymakers. This study investigated a 'Climate Threshold' for emergency hospital admissions of chronic lower respiratory diseases by using a distributed lag non-linear model (DLNM). We analysed a unique longitudinal dataset (10 years, 2000-2009) on emergency hospital admissions, climate, and pollution factors for the Greater London. Our study extends existing work on this topic by considering non-linearity, lag effects between climate factors and disease exposure within the DLNM model considering B-spline as smoothing technique. The final model also considered natural cubic splines of time since exposure and 'day of the week' as confounding factors. The results of DLNM indicated a significant improvement in model fitting compared to a typical GLM model. The final model identified the thresholds of several climate factors including: high temperature (≥27°C), low relative humidity (≤ 40%), high Pm10 level (≥70-µg/m 3 ), low wind speed (≤ 2 knots) and high rainfall (≥30mm). Beyond the threshold values, a significantly higher number of emergency admissions due to lower respiratory problems would be expected within the following 2-3 days after the climate shift in the Greater London. The approach will be useful to initiate 'region and disease specific' climate mitigation plans. It will help identify spatial hot spots and the most sensitive areas and population due to climate change, and will eventually lead towards a diversified health warning system tailored to specific climate zones and populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Modeling Earth system changes of the past

    NASA Technical Reports Server (NTRS)

    Kutzbach, John E.

    1992-01-01

    This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.

  10. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  11. Assessing Portuguese Guadiana Basin water management impacts under climate change and paleoclimate variability

    NASA Astrophysics Data System (ADS)

    Maia, Rodrigo; Oliveira, Bruno; Ramos, Vanessa; Brekke, Levi

    2014-05-01

    The water balance in each reservoir and the subsequent, related, water resource management decisions are, presently, highly information dependent and are therefore often limited to a reactive response (even if aimed towards preventing future issues regarding the water system). Taking advantage of the availability of scenarios for climate projections, it is now possible to estimate the likely future evolution of climate which represents an important stepping stone towards proactive, adaptative, water resource management. The purpose of the present study was to assess the potential effects of climate change in terms of temperature, precipitation, runoff and water availability/scarcity for application in water resource management decisions. The analysis here presented was applied to the Portuguese portion of the Guadiana River Basin, using a combination of observed climate and runoff data and the results of the Global Climate Models. The Guadiana River Basin was represented by its reservoirs on the Portuguese portion of the basin and, for the future period, an estimated value of the inflows originating in the Spanish part of the Basin. The change in climate was determined in terms of relative and absolute variations of climate (precipitation and temperature) and hydrology (runoff and water balance related information). Apart from the previously referred data, an hydrological model and a water management model were applied so as to obtain an extended range of data regarding runoff generation (calibrated to observed data) and water balance in the reservoirs (considering the climate change impacts in the inflows, outflows and water consumption). The water management model was defined in order to represent the reservoirs interaction including upstream to downstream discharges and water transfers. Under the present climate change context, decision-makers and stakeholders are ever more vulnerable to the uncertainties of climate. Projected climate in the Guadiana basin indicates an increase in temperatures and a reduction of the precipitation values which go well beyond the observed values and, therefore, must be forcefully included in any realistic proactive water resource management decision. Using the results of this study it is possible to estimate future water availability and consumption satisfaction allowing for the elaboration of informed management decisions. In this study, the CMIP 3 Global Climate Models were considered for the definition of the effects of climate change, using the median and extreme tendencies based on the range of variation of the multiple climate projection scenarios. The observed climate variability, along with these model-derived tendencies, were used to inform the hydrology and water management models for the historical and future periods, respectively. Additionally, for a more comprehensive analysis on climate variability, a stochastic model was implemented based on the paleoclimate variability obtained from tree-ring records.

  12. Using Coupled Groundwater-Surface Water Models to Simulate Eco-Regional Differences in Climate Change Impacts on Hydrological Drought Regimes in British Columbia

    NASA Astrophysics Data System (ADS)

    Dierauer, J. R.; Allen, D. M.

    2016-12-01

    Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.

  13. Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick

    2013-04-01

    Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. We reveal that LAI-driven evapotranspiration feedback may reduced rainfall in parts of Africa, vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa. Keywords: vegetation-climate feedback, regional climate model, evapotranspiration, CORDEX. References: Betts, R.A., Cox, P.M., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78: 157-175. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. Samuelsson, P., Jones, C., Wilĺen, U., Gollvik, S., Hansson, U. and coauthors. 2011. The Rossby Centre Regional Climate Model RCA3:Model description and performance. Tellus 63A, 4-23. Smith, B., Prentice, I. C. and Sykes, M. T. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeog. 10, 621-637 Smith, B., Samuelsson, P., Wramneby, A. & Rummukainen, M. 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus 63A: 87-106.

  14. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  15. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

    PubMed Central

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879

  16. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

    PubMed

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

  17. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    PubMed

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Finding "Models" in Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Ruby

    2017-05-01

    Internationally recognized Climate Scientist Ruby Leung is a cloud gazer. But rather than looking for shapes, Ruby’s life’s calling is to develop regional atmospheric models to better predict and understand the effects of global climate change at scales relevant to humans and the environment. Ruby’s accomplishments include developing novel methods for modeling mountain clouds and precipitation in climate models, and improving understanding of hydroclimate variability and change. She also has led efforts to develop regional climate modeling capabilities in the Weather Research and Forecasting model that is widely adopted by scientists worldwide. Ruby is part of a team of PNNLmore » researchers studying the impacts of global warming.« less

  19. High Resolution Climate Modeling of the Water Cycle over the Contiguous United States Including Potential Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Rasmussen, R.; Ikeda, K.; Liu, C.; Gochis, D.; Chen, F.; Barlage, M. J.; Dai, A.; Dudhia, J.; Clark, M. P.; Gutmann, E. D.; Li, Y.

    2015-12-01

    The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km. A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA, as well as the very dominant role of convection in the eastern half of the USA. The high resolution WRF-downscaled climate change data will also become a valuable community resource for many university groups who are interested in studying regional climate changes and impacts but unable to perform such long-duration and high-resolution WRF-based downscaling simulations of their own. The scientific goals and details of the model dataset will be presented including some preliminary results.

  20. Climate data induced uncertainty in model-based estimations of terrestrial primary productivity

    NASA Astrophysics Data System (ADS)

    Wu, Zhendong; Ahlström, Anders; Smith, Benjamin; Ardö, Jonas; Eklundh, Lars; Fensholt, Rasmus; Lehsten, Veiko

    2017-06-01

    Model-based estimations of historical fluxes and pools of the terrestrial biosphere differ substantially. These differences arise not only from differences between models but also from differences in the environmental and climatic data used as input to the models. Here we investigate the role of uncertainties in historical climate data by performing simulations of terrestrial gross primary productivity (GPP) using a process-based dynamic vegetation model (LPJ-GUESS) forced by six different climate datasets. We find that the climate induced uncertainty, defined as the range among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 11 Pg C yr-1 globally (9% of mean GPP). We also assessed a hypothetical maximum climate data induced uncertainty by combining climate variables from different datasets, which resulted in significantly larger uncertainties of 41 Pg C yr-1 globally or 32% of mean GPP. The uncertainty is partitioned into components associated to the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (climate data range) and the apparent sensitivity of the modeled GPP to the driver (apparent model sensitivity). We find that LPJ-GUESS overestimates GPP compared to empirically based GPP data product in all land cover classes except for tropical forests. Tropical forests emerge as a disproportionate source of uncertainty in GPP estimation both in the simulations and empirical data products. The tropical forest uncertainty is most strongly associated with shortwave radiation and precipitation forcing, of which climate data range contributes higher to overall uncertainty than apparent model sensitivity to forcing. Globally, precipitation dominates the climate induced uncertainty over nearly half of the vegetated land area, which is mainly due to climate data range and less so due to the apparent model sensitivity. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than apparent model sensitivity to forcing. Our study highlights the need to better constrain tropical climate, and demonstrates that uncertainty caused by climatic forcing data must be considered when comparing and evaluating carbon cycle model results and empirical datasets.

  1. Organizational Climate Partially Mediates the Effect of Culture on Work Attitudes and Staff Turnover in Mental Health Services

    PubMed Central

    Aarons, Gregory A.; Sawitzky, Angelina C.

    2006-01-01

    Staff turnover in mental health service organizations is an ongoing problem with implications for staff morale, productivity, organizational effectiveness, and implementation of innovation. Recent studies in public sector services have examined the impact of organizational culture and climate on work attitudes (i.e., job satisfaction and organizational commitment) and, ultimately, staff turnover. However, mediational models of the impact of culture and climate on work attitudes have not been examined. The present study examined full and partial mediation models of the effects of culture and climate on work attitudes and the subsequent impact of work attitudes on staff turnover. Multilevel structural equation models supported a partial mediation model in which organizational culture had both direct influence on work attitudes and indirect influence through organizational climate. Work attitudes significantly predicted one-year staff turnover rates. These findings support the contention that both culture and climate impact work attitudes and subsequent staff turnover. PMID:16544205

  2. Organizational climate partially mediates the effect of culture on work attitudes and staff turnover in mental health services.

    PubMed

    Aarons, Gregory A; Sawitzky, Angelina C

    2006-05-01

    Staff turnover in mental health service organizations is an ongoing problem with implications for staff morale, productivity, organizational effectiveness, and implementation of innovation. Recent studies in public sector services have examined the impact of organizational culture and climate on work attitudes (i.e., job satisfaction and organizational commitment) and, ultimately, staff turnover. However, mediational models of the impact of culture and climate on work attitudes have not been examined. The present study examined full and partial mediation models of the effects of culture and climate on work attitudes and the subsequent impact of work attitudes on staff turnover. Multilevel structural equation models supported a partial mediation model in which organizational culture had both direct influence on work attitudes and indirect influence through organizational climate. Work attitudes significantly predicted one-year staff turnover rates. These findings support the contention that both culture and climate impact work attitudes and subsequent staff turnover.

  3. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  4. The challenges associated with applying global models in heterogeneous landscapes: A case study using MOD17 GPP estimates in Hawaii

    NASA Astrophysics Data System (ADS)

    Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.

    2016-12-01

    In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.

  5. Using Four Downscaling Techniques to Characterize Uncertainty in Updating Intensity-Duration-Frequency Curves Under Climate Change

    NASA Astrophysics Data System (ADS)

    Cook, L. M.; Samaras, C.; McGinnis, S. A.

    2017-12-01

    Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.

  6. Streamflow Bias Correction for Climate Change Impact Studies: Harmless Correction or Wrecking Ball?

    NASA Astrophysics Data System (ADS)

    Nijssen, B.; Chegwidden, O.

    2017-12-01

    Projections of the hydrologic impacts of climate change rely on a modeling chain that includes estimates of future greenhouse gas emissions, global climate models, and hydrologic models. The resulting streamflow time series are used in turn as input to impact studies. While these flows can sometimes be used directly in these impact studies, many applications require additional post-processing to remove model errors. Water resources models and regulation studies are a prime example of this type of application. These models rely on specific flows and reservoir levels to trigger reservoir releases and diversions and do not function well if the unregulated streamflow inputs are significantly biased in time and/or amount. This post-processing step is typically referred to as bias-correction, even though this step corrects not just the mean but the entire distribution of flows. Various quantile-mapping approaches have been developed that adjust the modeled flows to match a reference distribution for some historic period. Simulations of future flows are then post-processed using this same mapping to remove hydrologic model errors. These streamflow bias-correction methods have received far less scrutiny than the downscaling and bias-correction methods that are used for climate model output, mostly because they are less widely used. However, some of these methods introduce large artifacts in the resulting flow series, in some cases severely distorting the climate change signal that is present in future flows. In this presentation, we discuss our experience with streamflow bias-correction methods as part of a climate change impact study in the Columbia River basin in the Pacific Northwest region of the United States. To support this discussion, we present a novel way to assess whether a streamflow bias-correction method is merely a harmless correction or is more akin to taking a wrecking ball to the climate change signal.

  7. Potential Effects of Drought on Tree Dieback in Great Britain and Implications for Forest Management in Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Yu, Jianjun; Berry, Pam

    2017-04-01

    The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.

  8. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  9. Do Leadership Style, Unit Climate, and Safety Climate Contribute to Safe Medication Practices?

    PubMed

    Farag, Amany; Tullai-McGuinness, Susan; Anthony, Mary K; Burant, Christopher

    2017-01-01

    This study aims at: examining if leadership style and unit climate predict safety climate; and testing the direct, indirect, and total effect of leadership style, unit climate, and safety climate on nurses' safe medication practices. The Institute of Medicine and nursing scholars propose that safety climate is a prerequisite to safety practices. However, there is limited empirical evidence about factors contributing to the development of safety climate and about the association with nurses' safe medication practices. This cross-sectional study used survey data from 246 RNs working in a Magnet® hospital. Leadership style and unit climate predicted 20% to 50% of variance on all safety climate dimensions. Model testing revealed the indirect impact of leadership style and unit climate on nurses' safe medication practices. Our hypothesized model explained small amount of the variance on nurses' safe medication practices. This finding suggests that nurses' safe medication practices are influenced by multiple contextual and personal factors that should be further examined.

  10. Modelling the climate and ice sheets of the mid-Pliocene warm period: a test of model dependency

    NASA Astrophysics Data System (ADS)

    Dolan, Aisling; Haywood, Alan; Lunt, Daniel; Hill, Daniel

    2010-05-01

    The mid-Pliocene warm period (MPWP; c. 3.0 - 3.3 million years ago) has been the subject of a large number of published studies during the last decade. It is an interval in Earth history, where conditions were similar to those predicted by climate models for the end of the 21st Century. Not only is it important to increase our understanding of the climate dynamics in a warmer world, it is also important to determine exactly how well numerical models can retrodict a climate significantly different from the present day, in order to have confidence in them for predicting the future climate. Previous General Circulation Model (GCM) simulations have indicated that MPWP mean annual surface temperatures were on average 2 to 3˚C warmer than the pre-industrial era. Coastal stratigraphy and benthic oxygen isotope records suggest that terrestrial ice volumes were reduced when compared to modern. Ice sheet modelling studies have supported this decrease in cryospheric extent. Generally speaking, both climate and ice sheet modelling studies have only used results from one numerical model when simulating the climate of the MPWP. However, recent projects such as PMIP (the Palaeoclimate Modelling Intercomparison Project) have emphasised the need to explore the dependency of past climate predictions on the specific climate model which is used. Here we present a comparison of MPWP climatologies produced by three atmosphere only GCMs from the Goddard Institute of Space Studies (GISS), the National Centre for Atmospheric Research (NCAR) and the Hadley Centre for Climate Prediction and Research (GCMAM3, CAM3-CLM and HadAM3 respectively). We focus on the ability of the GCMs to simulate climate fields needed to drive an offline ice sheet model to assess whether there are any significant differences between the climatologies. By taking the different temperature and precipitation predictions simulated by the three models as a forcing, and adopting GCM-specific topography, we have used the British Antarctic Survey thermomechanically coupled ice sheet model (BASISM) to test the extent to which equilibrium state ice sheets in the Northern Hemisphere are GCM dependent. Initial results which do not use GCM-specific topography suggest that employing different GCM climatologies with only small differences in surface air temperature and precipitation has a dramatic effect on the resultant Greenland ice sheet, where the end-member ice sheets vary from near modern to almost zero ice volume. As an extension of this analysis, we will also present results using a second ice sheet model (Glimmer), with a view to testing the degree to which end-member ice sheets are ice sheet model dependent, something which has not previously been addressed. Initially, BASISM and Glimmer will be internally optimised for performance, but we will also present a comparison where BASISM will be configured to the Glimmer model setup in a further test of ice sheet model dependency.

  11. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.

  12. Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions

    PubMed Central

    Post, Ellen S.; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Leung, Lai-Yung; Nolte, Christopher G.; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee

    2012-01-01

    Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Methods: Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration–response functions. Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration–response functions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O3. Results: Different combinations of methodological choices produced a range of estimates of national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O3-related human health effects resulting from climate change. PMID:22796531

  13. Responses of Terrestrial Ecosystems’ Net Primary Productivity to Future Regional Climate Change in China

    PubMed Central

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325

  14. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    PubMed

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  15. Assessment of bias correction under transient climate change

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2015-04-01

    Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.

  16. On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.

  17. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra

    2017-06-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.Plain Language SummaryClimate model projections of Sahel rainfall remain notoriously uncertain; understanding the physical processes responsible for this uncertainty is thus crucial. Our study focuses on analyzing the feedbacks of soil moisture changes on model projections of the West African Monsoon under global warming. Soil moisture-atmosphere interactions have been shown in prior studies to play an important role in this region, but the potential feedbacks of long-term soil moisture changes on projected precipitation changes have not been investigated specifically. To isolate these feedbacks, we use targeted simulations from five climate models, with and without soil moisture change. Importantly, we find that climate models exhibit soil moisture-precipitation feedbacks of different sign in this region: in some models soil moisture changes amplify precipitation changes (positive feedback), in others they dampen them (negative feedback). The impact of those feedbacks is in some cases of comparable amplitude to the projected precipitation changes themselves. In other words, we show, over a subset of climate models, how land-atmosphere interactions may be a cause of uncertainty in model projections of precipitation; we emphasize the need to evaluate these processes carefully in current and next-generation climate model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CNSNS..22...70S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CNSNS..22...70S"><span>Arctic melt ponds and bifurcations in the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sudakov, I.; Vakulenko, S. A.; Golden, K. M.</p> <p>2015-05-01</p> <p>Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a bifurcation point - an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a bifurcation analysis of the energy balance climate model with ice-albedo feedback as the key mechanism driving the system to bifurcation points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22940008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22940008"><span>Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A</p> <p>2012-12-01</p> <p>Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5829L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5829L"><span>Smart climate ensemble exploring approaches: the example of climate impacts on air pollution in Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemaire, Vincent; Colette, Augustin; Menut, Laurent</p> <p>2016-04-01</p> <p>Because of its sensitivity to weather patterns, climate change will have an impact on air pollution so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, at present, such impact assessment lack multi-model ensemble approaches to address uncertainties because of the substantial computing cost. Therefore, as a preliminary step towards exploring large climate ensembles with air quality models, we developed an ensemble exploration technique in order to point out the climate models that should be investigated in priority. By using a training dataset from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed statistical models that could be used to estimate future air pollutant concentrations. Applying this statistical model to the whole EuroCordex ensemble of climate projection, we find a climate penalty for six subregions out of eight (Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy). On the contrary, a climate benefit for PM2.5 was identified for three regions (Eastern Europe, Mid Europe and Northern Italy). The uncertainty of this statistical model challenges limits however the confidence we can attribute to associated quantitative projections. This technique allows however selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections to propose an adequate coverage of uncertainties. We are thereby proposing a smart ensemble exploration strategy that can also be used for other impacts studies beyond air quality.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29238528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29238528"><span>Trends and uncertainties in budburst projections of Norway spruce in Northern Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olsson, Cecilia; Olin, Stefan; Lindström, Johan; Jönsson, Anna Maria</p> <p>2017-12-01</p> <p>Budburst is regulated by temperature conditions, and a warming climate is associated with earlier budburst. A range of phenology models has been developed to assess climate change effects, and they tend to produce different results. This is mainly caused by different model representations of tree physiology processes, selection of observational data for model parameterization, and selection of climate model data to generate future projections. In this study, we applied (i) Bayesian inference to estimate model parameter values to address uncertainties associated with selection of observational data, (ii) selection of climate model data representative of a larger dataset, and (iii) ensembles modeling over multiple initial conditions, model classes, model parameterizations, and boundary conditions to generate future projections and uncertainty estimates. The ensemble projection indicated that the budburst of Norway spruce in northern Europe will on average take place 10.2 ± 3.7 days earlier in 2051-2080 than in 1971-2000, given climate conditions corresponding to RCP 8.5. Three provenances were assessed separately (one early and two late), and the projections indicated that the relationship among provenance will remain also in a warmer climate. Structurally complex models were more likely to fail predicting budburst for some combinations of site and year than simple models. However, they contributed to the overall picture of current understanding of climate impacts on tree phenology by capturing additional aspects of temperature response, for example, chilling. Model parameterizations based on single sites were more likely to result in model failure than parameterizations based on multiple sites, highlighting that the model parameterization is sensitive to initial conditions and may not perform well under other climate conditions, whether the change is due to a shift in space or over time. By addressing a range of uncertainties, this study showed that ensemble modeling provides a more robust impact assessment than would a single phenology model run.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC13D1178Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC13D1178Z"><span>Biases in simulation of the rice phenology models when applied in warmer climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, T.; Li, T.; Yang, X.; Simelton, E.</p> <p>2015-12-01</p> <p>The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512371L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512371L"><span>Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang</p> <p>2013-04-01</p> <p>The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28885979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28885979"><span>Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer</p> <p>2017-08-16</p> <p>Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........71P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........71P"><span>Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsons, Luke Alexander</p> <p></p> <p>Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). In Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014). In Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limon) record indicates that precipitation variability in western Amazonia is 'red' (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly 'white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving how we simulate climate extremes as we enter a warmer (and often drier) world in the coming centuries; if climate models underestimate low-frequency variability, we will underestimate the risk of future abrupt change and extreme events, such as megadroughts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H13G1391S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H13G1391S"><span>Impacts of Considering Climate Variability on Investment Decisions in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strzepek, K.; Block, P.; Rosegrant, M.; Diao, X.</p> <p>2005-12-01</p> <p>In Ethiopia, climate extremes, inducing droughts or floods, are not unusual. Monitoring the effects of these extremes, and climate variability in general, is critical for economic prediction and assessment of the country's future welfare. The focus of this study involves adding climate variability to a deterministic, mean climate-driven agro-economic model, in an attempt to understand its effects and degree of influence on general economic prediction indicators for Ethiopia. Four simulations are examined, including a baseline simulation and three investment strategies: simulations of irrigation investment, roads investment, and a combination investment of both irrigation and roads. The deterministic model is transformed into a stochastic model by dynamically adding year-to-year climate variability through climate-yield factors. Nine sets of actual, historic, variable climate data are individually assembled and implemented into the 12-year stochastic model simulation, producing an ensemble of economic prediction indicators. This ensemble allows for a probabilistic approach to planning and policy making, allowing decision makers to consider risk. The economic indicators from the deterministic and stochastic approaches, including rates of return to investments, are significantly different. The predictions of the deterministic model appreciably overestimate the future welfare of Ethiopia; the predictions of the stochastic model, utilizing actual climate data, tend to give a better semblance of what may be expected. Inclusion of climate variability is vital for proper analysis of the predictor values from this agro-economic model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790024626','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790024626"><span>Earth Radiation Budget Science, 1978. [conferences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B33E0566R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B33E0566R"><span>Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ray, A. J.; Ojima, D. S.; Morisette, J. T.</p> <p>2012-12-01</p> <p>The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..560..326C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..560..326C"><span>Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.</p> <p>2018-05-01</p> <p>Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed hydrology. However, a thorough validation and a comparison with other methods are recommended before using the JBC method, since it may perform worse than the IBC method for some cases due to bias nonstationarity of climate model outputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1327127-uncertainty-quantification-climate-modeling-projection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1327127-uncertainty-quantification-climate-modeling-projection"><span>Uncertainty Quantification in Climate Modeling and Projection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qian, Yun; Jackson, Charles; Giorgi, Filippo</p> <p></p> <p>The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for assessing reliability and uncertainties of climate change information. An alternative approach is to generate similar ensembles by perturbing parameters within a single-model framework. One of workshop’s objectives was to give participants a deeper understanding of these approaches within a Bayesian statistical framework. However, there remain significant challenges still to be resolved before UQ can be applied in a convincing way to climate models and their projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008966','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008966"><span>Atmospheric Composition Change: Climate-Chemistry Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140008966'); toggleEditAbsImage('author_20140008966_show'); toggleEditAbsImage('author_20140008966_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140008966_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140008966_hide"></p> <p>2011-01-01</p> <p>Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2378M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2378M"><span>Mixed precipitation occurrences over southern Québec, Canada, under warmer climate conditions using a regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matte, Dominic; Thériault, Julie M.; Laprise, René</p> <p>2018-05-01</p> <p>Winter weather events with temperatures near 0°C are often associated with freezing rain. They can have major impacts on the society by causing power outages and disruptions to the transportation networks. Despite the catastrophic consequences of freezing rain, very few studies have investigated how their occurrences could evolve under climate change. This study aims to investigate the change of freezing rain and ice pellets over southern Québec using regional climate modeling at high resolution. The fifth-generation Canadian Regional Climate Model with climate scenario RCP 8.5 at 0.11° grid mesh was used. The precipitation types such as freezing rain, ice pellets or their combination are diagnosed using five methods (Cantin and Bachand, Bourgouin, Ramer, Czys and, Baldwin). The occurrences of the diagnosed precipitation types for the recent past (1980-2009) are found to be comparable to observations. The projections for the future scenario (2070-2099) suggested a general decrease in the occurrences of mixed precipitation over southern Québec from October to April. This is mainly due to a decrease in long-duration events (≥6 h ). Overall, this study contributes to better understand how the distribution of freezing rain and ice pellets might change in the future using high-resolution regional climate model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1607F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1607F"><span>Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frigola, Amanda; Prange, Matthias; Schulz, Michael</p> <p>2018-04-01</p> <p>The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ˜ 15-13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51J1397G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51J1397G"><span>Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gampe, D.; Ludwig, R.</p> <p>2017-12-01</p> <p>Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and detect potential model biases with respect to each reference data set. The RCMs are then ranked based on various statistical measures for each indicator and a score matrix is derived to select a subset of RCMs. We show the impact and importance of the reference data set with respect to the resulting climate change signal on the catchment scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23M..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23M..06T"><span>Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taner, M. U.; Wi, S.; Brown, C.</p> <p>2017-12-01</p> <p>The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED31B0285B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED31B0285B"><span>Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.</p> <p>2017-12-01</p> <p>Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing computational models to develop their own evidence-based claims about the Earth's climate system. We describe how epistemological investigations can be conducted using EzGCM to bring the scientific process and authentic climate science practice to middle and high school classrooms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26960564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26960564"><span>Local control on precipitation in a fully coupled climate-hydrology model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C</p> <p>2016-03-10</p> <p>The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH51A1861N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH51A1861N"><span>Understanding scale dependency of climatic processes with diarrheal disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.</p> <p>2015-12-01</p> <p>The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4785381','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4785381"><span>Local control on precipitation in a fully coupled climate-hydrology model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin; Butts, Michael B.; Refsgaard, Jens C.</p> <p>2016-01-01</p> <p>The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/36417','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/36417"><span>Projections of suitable habitat for rare species under global warming scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>F. Thomas Ledig; Gerald E. Rehfeldt; Cuauhtemoc Saenz-Romero; Flores-Lopez Celestino</p> <p>2010-01-01</p> <p>Premise of the study: Modeling the contemporary and future climate niche for rare plants is a major hurdle in conservation, yet such projections are necessary to prevent extinctions that may result from climate change. Methods: We used recently developed spline climatic models and modifi ed Random Forests...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335467&keyword=Wrf&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335467&keyword=Wrf&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Sensitivity of WRF Regional Climate Simulations to Choice of Land Use Dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The goal of this study is to assess the sensitivity of regional climate simulations run with the Weather Research and Forecasting (WRF) model to the choice of datasets representing land use and land cover (LULC). Within a regional climate modeling application, an accurate repres...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150018280','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150018280"><span>Representing Extremes in Agricultural Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruane, Alex</p> <p>2015-01-01</p> <p>AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2437D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2437D"><span>Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daniel, M.; Lemonsu, Aude; Déqué, M.; Somot, S.; Alias, A.; Masson, V.</p> <p>2018-06-01</p> <p>Most climate models do not explicitly model urban areas and at best describe them as rock covers. Nonetheless, the very high resolutions reached now by the regional climate models may justify and require a more realistic parameterization of surface exchanges between urban canopy and atmosphere. To quantify the potential impact of urbanization on the regional climate, and evaluate the benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity study was carried out over France at a 12-km horizontal resolution with the ALADIN-Climate regional model for 1980-2009 time period. Different descriptions of land use and urban modeling were compared, corresponding to an explicit modeling of cities with the urban canopy model TEB, a conventional and simpler approach representing urban areas as rocks, and a vegetated experiment for which cities are replaced by natural covers. A general evaluation of ALADIN-Climate was first done, that showed an overestimation of the incoming solar radiation but satisfying results in terms of precipitation and near-surface temperatures. The sensitivity analysis then highlighted that urban areas had a significant impact on modeled near-surface temperature. A further analysis on a few large French cities indicated that over the 30 years of simulation they all induced a warming effect both at daytime and nighttime with values up to + 1.5 °C for the city of Paris. The urban model also led to a regional warming extending beyond the urban areas boundaries. Finally, the comparison to temperature observations available for Paris area highlighted that the detailed urban canopy model improved the modeling of the urban heat island compared with a simpler approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B31D0348W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B31D0348W"><span>Diagnosis and Quantification of Climatic Sensitivity of Carbon Fluxes in Ensemble Global Ecosystem Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.</p> <p>2011-12-01</p> <p>Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53M..05Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53M..05Z"><span>Estimation of the global climate effect of brown carbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.</p> <p>2017-12-01</p> <p>Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048367','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048367"><span>Climate downscaling effects on predictive ecological models: a case study for threatened and endangered vertebrates in the southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.</p> <p>2013-01-01</p> <p>High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12..663H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12..663H"><span>The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich</p> <p>2016-03-01</p> <p>The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160009147&hterms=Experimental+design&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DExperimental%2Bdesign','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160009147&hterms=Experimental+design&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DExperimental%2Bdesign"><span>The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160009147'); toggleEditAbsImage('author_20160009147_show'); toggleEditAbsImage('author_20160009147_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160009147_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160009147_hide"></p> <p>2016-01-01</p> <p>The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26293893','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26293893"><span>Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kara, Fatih; Yucel, Ismail</p> <p>2015-09-01</p> <p>This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change"><span>Future global mortality from changes in air pollution attributable to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; ...</p> <p>2017-07-31</p> <p>Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27478878','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27478878"><span>A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby</p> <p>2015-06-01</p> <p>Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RvGeo..53..323P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RvGeo..53..323P"><span>A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prein, Andreas F.; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P. M.; Leung, Ruby</p> <p>2015-06-01</p> <p>Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007838&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DChange%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007838&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DChange%2Bclimate"><span>Future Global Mortality from Changes in Air Pollution Attributable to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007838'); toggleEditAbsImage('author_20170007838_show'); toggleEditAbsImage('author_20170007838_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007838_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007838_hide"></p> <p>2017-01-01</p> <p>Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change"><span>Future global mortality from changes in air pollution attributable to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François</p> <p></p> <p>Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=234244&keyword=nudging&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=234244&keyword=nudging&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711175B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711175B"><span>Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier</p> <p>2015-04-01</p> <p>At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43P..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43P..02R"><span>High Resolution Climate Modeling of the Water Cycle over the Western United States Including Potential Climate Change Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasmussen, R.; Liu, C.; Ikeda, K.</p> <p>2016-12-01</p> <p>The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km (see figure below). A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA. This study will examine the water cycle over Western U.S. seven U.S. mountain ranges, including likely changes to amount of snowpack and spring melt-off, critical to agriculture in the western U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3986908','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3986908"><span>Climate change and dengue: a critical and systematic review of quantitative modelling approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Background Many studies have found associations between climatic conditions and dengue transmission. However, there is a debate about the future impacts of climate change on dengue transmission. This paper reviewed epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission. Methods A literature search was conducted in October 2012, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search focused on peer-reviewed journal articles published in English from January 1991 through October 2012. Results Sixteen studies met the inclusion criteria and most studies showed that the transmission of dengue is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. Studies on the potential impacts of climate change on dengue indicate increased climatic suitability for transmission and an expansion of the geographic regions at risk during this century. A variety of quantitative modelling approaches were used in the studies. Several key methodological issues and current knowledge gaps were identified through this review. Conclusions It is important to assemble spatio-temporal patterns of dengue transmission compatible with long-term data on climate and other socio-ecological changes and this would advance projections of dengue risks associated with climate change. PMID:24669859</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H11F0882H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H11F0882H"><span>Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsiao, J.; Chang, L.; Ho, C.; Niu, M.</p> <p>2010-12-01</p> <p>Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of climate change, the additional plans, especially the “cross-basin water transport” plan, for water supply could significantly increase the supply of water for public use. The proposed simulation model and results of analysis in this study could provide valuable reference for decision-makers in regards to risk analysis of regional water supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5313W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5313W"><span>Time variation of effective climate sensitivity in GCMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, K. D.; Ingram, W. J.; Gregory, J. M.</p> <p>2009-04-01</p> <p>Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of General Circulation Model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-timescale variations of effective climate sensitivity during stabilisation to a forcing can be considered an artefact of using conventional forcings which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on timescales which are short compared to the climate stabilisation timescale then there is little centennial timescale evolution of effective climate sensitivity in any of the GCMs. We suggest that much of the apparent variation in effective climate sensitivity identified in previous studies is actually due to the comparatively fast forcing adjustment. Persistent differences are found in the strength of the feedbacks between the coupled atmosphere - ocean (AO) versions and their atmosphere - mixed-layer ocean (AML) counterparts, (the latter are often assumed to give the equilibrium climate sensitivity of the AOGCM). The AML model can typically only estimate the equilibrium climate sensitivity of the parallel AO version to within about 0.5K. The adjustment to the forcing to account for comparatively fast processes varies in magnitude and sign between GCMs, as well as differing between AO and AML versions of the same model. There is evidence from one AOGCM that the forcing adjustment may take a couple of decades, with implications for observationally based estimates of equilibrium climate sensitivity. We suggest that at least some of the spread in 21st century global temperature predictions between GCMs is due to differing adjustment processes, hence work to understand these differences should be a priority.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/of00-332/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/of00-332/"><span>An assessment of irrigation needs and crop yield for the United States under potential climate changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brumbelow, Kelly; Georgakakos, Aris P.</p> <p>2000-01-01</p> <p>Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC31D..07T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC31D..07T"><span>Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, F.; Rötter, R.</p> <p>2013-12-01</p> <p>Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for better informed decision-making on adaptation strategies. References 1. Coumou, D. & Rahmstorf, S. A decade of extremes. Nature Clim. Change, 2, 491-496 (2012). 2. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change, 1, 175-177 (2011). 3. Asseng, S. et al., Uncertainty in simulating wheat yields under climate change. Nature Clim. Change. 10.1038/nclimate1916. (2013). 4. Porter, J.R., & Semenov, M., Crop responses to climatic variation . Trans. R. Soc. B., 360, 2021-2035 (2005). 5. Porter, J.R. & Christensen, S. Deconstructing crop processes and models via identities. Plant, Cell and Environment . doi: 10.1111/pce.12107 (2013). 6. Boogaard, H.L., van Diepen C.A., Rötter R.P., Cabrera J.M. & van Laar H.H. User's guide for the WOFOST 7.1 crop growth simulation model and Control Center 1.5, Alterra, Wageningen, The Netherlands. (1998) 7. Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol., 170, 146-165. (2013).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJBm...61..785D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJBm...61..785D"><span>Spatio-temporal dynamic climate model for Neoleucinodes elegantalis using CLIMEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; da Silva, Ezio Marques; da Silva Galdino, Tarcisio Visintin; Picanço, Marcelo Coutinho</p> <p>2017-05-01</p> <p>Seasonal variations are important components in understanding the ecology of insect population of crops. Ecological studies through modeling may be a useful tool for enhancing knowledge of seasonal patterns of insects on field crops as well as seasonal patterns of favorable climatic conditions for species. Recently CLIMEX, a semi-mechanistic niche model, was upgraded and enhanced to consider spatio-temporal dynamics of climate suitability through time. In this study, attempts were made to determine monthly variations of climate suitability for Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) in five commercial tomato crop localities through the latest version of CLIMEX. We observed that N. elegantalis displays seasonality with increased abundance in tomato crops during summer and autumn, corresponding to the first 6 months of the year in monitored areas in this study. Our model demonstrated a strong accord between the CLIMEX weekly growth index (GIw) and the density of N. elegantalis for this period, thus indicating a greater confidence in our model results. Our model shows a seasonal variability of climatic suitability for N. elegantalis and provides useful information for initiating methods for timely management, such as sampling strategies and control, during periods of high degree of suitability for N. elegantalis. In this study, we ensure that the simulation results are valid through our verification using field data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H41C1353K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H41C1353K"><span>Comparative Synthesis of Current and Future Urban Stormwater Runoff Scenarios in Tampa Bay Basin under a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, M.; Abdul-Aziz, O. I.</p> <p>2016-12-01</p> <p>Changes in climatic regimes and basin characteristics such as imperviousness, roughness and land use types would lead to potential changes in stormwater budget. In this study we quantified reference sensitivities of stormwater runoff to the potential climatic and land use/cover changes by developing a large-scale, mechanistic rainfall-runoff model for the Tampa Bay Basin of Florida using the US EPA Storm Water Management Model (SWMM 5.1). Key processes of urban hydrology, its dynamic interactions with groundwater and sea level, hydro-climatic variables and land use/cover characteristics were incorporated within the model. The model was calibrated and validated with historical streamflow data. We then computed the historical (1970-2000) and potential 2050s stormwater budgets for the Tampa Bay Basin. Climatic scenario projected by the global climate models (GCMs) and the regional climate models (RCMs), along with sea level and land use/cover projections, were utilized to anticipate the future stormwater budget. The comparative assessment of current and future stormwater scenario will aid a proactive management of stormwater runoff under a changing climate in the Tampa Bay Basin and similar urban basins around the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1330744','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1330744"><span>Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maslowski, Wieslaw</p> <p></p> <p>This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate throughmore » polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26178157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26178157"><span>Tempo and mode of climatic niche evolution in Primates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duran, Andressa; Pie, Marcio R</p> <p>2015-09-01</p> <p>Climatic niches have increasingly become a nexus in our understanding of a variety of ecological and evolutionary phenomena, from species distributions to latitudinal diversity gradients. Despite the increasing availability of comprehensive datasets on species ranges, phylogenetic histories, and georeferenced environmental conditions, studies on the evolution of climate niches have only begun to understand how niches evolve over evolutionary timescales. Here, using primates as a model system, we integrate recently developed phylogenetic comparative methods, species distribution patterns, and climatic data to explore primate climatic niche evolution, both among clades and over time. In general, we found that simple, constant-rate models provide a poor representation of how climatic niches evolve. For instance, there have been shifts in the rate of climatic niche evolution in several independent clades, particularly in response to the increasingly cooler climates of the past 10 My. Interestingly, rate accelerations greatly outnumbered rate decelerations. These results highlight the importance of considering more realistic evolutionary models that allow for the detection of heterogeneity in the tempo and mode of climatic niche evolution, as well as to infer possible constraining factors for species distributions in geographical space. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919449D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919449D"><span>Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou</p> <p>2017-04-01</p> <p>The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H13C1223R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H13C1223R"><span>Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ranatunga, T.; Tong, S.; Yang, J.</p> <p>2011-12-01</p> <p>Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15056394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15056394"><span>Population response to climate change: linear vs. non-linear modeling approaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ellis, Alicia M; Post, Eric</p> <p>2004-03-31</p> <p>Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29245185','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29245185"><span>Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tao, Fulu; Rötter, Reimund P; Palosuo, Taru; Gregorio Hernández Díaz-Ambrona, Carlos; Mínguez, M Inés; Semenov, Mikhail A; Kersebaum, Kurt Christian; Nendel, Claas; Specka, Xenia; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Cammarano, Davide; Schulman, Alan H</p> <p>2018-03-01</p> <p>Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.A51G..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.A51G..05F"><span>Testing for the linearity of responses to multiple anthropogenic climate forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, C. E.; Stone, P. H.; Sokolov, A. P.</p> <p>2001-12-01</p> <p>To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4447M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4447M"><span>Performance evaluation of a non-hydrostatic regional climate model over the Mediterranean/Black Sea area and climate projections for the XXI century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercogliano, Paola; Bucchignani, Edoardo; Montesarchio, Myriam; Zollo, Alessandra Lucia</p> <p>2013-04-01</p> <p>In the framework of the Work Package 4 (Developing integrated tools for environmental assessment) of PERSEUS Project, high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes the Mediterranean and Black Seas, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate trend but also extremes of the present and future climate, in terms of temperature, precipitation and wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A41H0076M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A41H0076M"><span>Assessment of temperature and precipitation over Mediterranean Area and Black Sea with non hydrostatic high resolution regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercogliano, P.; Montesarchio, M.; Zollo, A.; Bucchignani, E.</p> <p>2012-12-01</p> <p>In the framework of the Italian GEMINA Project (program of expansion and development of the Euro-Mediterranean Center for Climate Change (CMCC), high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes all the Mediterranean Sea, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate patterns but also extremes of the present and future climate, in terms of temperature, precipitation and wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26947322','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26947322"><span>Global and regional health effects of future food production under climate change: a modelling study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Garnett, Tara; Godfray, H Charles J; Gollin, Douglas; Rayner, Mike; Ballon, Paola; Scarborough, Peter</p> <p>2016-05-07</p> <p>One of the most important consequences of climate change could be its effects on agriculture. Although much research has focused on questions of food security, less has been devoted to assessing the wider health impacts of future changes in agricultural production. In this modelling study, we estimate excess mortality attributable to agriculturally mediated changes in dietary and weight-related risk factors by cause of death for 155 world regions in the year 2050. For this modelling study, we linked a detailed agricultural modelling framework, the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), to a comparative risk assessment of changes in fruit and vegetable consumption, red meat consumption, and bodyweight for deaths from coronary heart disease, stroke, cancer, and an aggregate of other causes. We calculated the change in the number of deaths attributable to climate-related changes in weight and diets for the combination of four emissions pathways (a high emissions pathway, two medium emissions pathways, and a low emissions pathway) and three socioeconomic pathways (sustainable development, middle of the road, and more fragmented development), which each included six scenarios with variable climatic inputs. The model projects that by 2050, climate change will lead to per-person reductions of 3·2% (SD 0·4%) in global food availability, 4·0% (0·7%) in fruit and vegetable consumption, and 0·7% (0·1%) in red meat consumption. These changes will be associated with 529,000 climate-related deaths worldwide (95% CI 314,000-736,000), representing a 28% (95% CI 26-33) reduction in the number of deaths that would be avoided because of changes in dietary and weight-related risk factors between 2010 and 2050. Twice as many climate-related deaths were associated with reductions in fruit and vegetable consumption than with climate-related increases in the prevalence of underweight, and most climate-related deaths were projected to occur in south and east Asia. Adoption of climate-stabilisation pathways would reduce the number of climate-related deaths by 29-71%, depending on their stringency. The health effects of climate change from changes in dietary and weight-related risk factors could be substantial, and exceed other climate-related health impacts that have been estimated. Climate change mitigation could prevent many climate-related deaths. Strengthening of public health programmes aimed at preventing and treating diet and weight-related risk factors could be a suitable climate change adaptation strategy. Oxford Martin Programme on the Future of Food. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..521A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..521A"><span>Constructing optimal ensemble projections for predictive environmental modelling in Northern Eurasia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anisimov, Oleg; Kokorev, Vasily</p> <p>2013-04-01</p> <p>Large uncertainties in climate impact modelling are associated with the forcing climate data. This study is targeted at the evaluation of the quality of GCM-based climatic projections in the specific context of predictive environmental modelling in Northern Eurasia. To accomplish this task, we used the output from 36 CMIP5 GCMs from the IPCC AR-5 data base for the control period 1975-2005 and calculated several climatic characteristics and indexes that are most often used in the impact models, i.e. the summer warmth index, duration of the vegetation growth period, precipitation sums, dryness index, thawing degree-day sums, and the annual temperature amplitude. We used data from 744 weather stations in Russia and neighbouring countries to analyze the spatial patterns of modern climatic change and to delineate 17 large regions with coherent temperature changes in the past few decades. GSM results and observational data were averaged over the coherent regions and compared with each other. Ultimately, we evaluated the skills of individual models, ranked them in the context of regional impact modelling and identified top-end GCMs that "better than average" reproduce modern regional changes of the selected meteorological parameters and climatic indexes. Selected top-end GCMs were used to compose several ensembles, each combining results from the different number of models. Ensembles were ranked using the same algorithm and outliers eliminated. We then used data from top-end ensembles for the 2000-2100 period to construct the climatic projections that are likely to be "better than average" in predicting climatic parameters that govern the state of environment in Northern Eurasia. The ultimate conclusions of our study are the following. • High-end GCMs that demonstrate excellent skills in conventional atmospheric model intercomparison experiments are not necessarily the best in replicating climatic characteristics that govern the state of environment in Northern Eurasia, and independent model evaluation on regional level is necessary to identify "better than average" GCMs. • Each of the ensembles combining results from several "better than average" models replicate selected meteorological parameters and climatic indexes better than any single GCM. The ensemble skills are parameter-specific and depend on models it consists of. The best results are not necessarily those based on the ensemble comprised by all "better than average" models. • Comprehensive evaluation of climatic scenarios using specific criteria narrows the range of uncertainties in environmental projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC53A0493D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC53A0493D"><span>Probabilistic Climate Scenario Information for Risk Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dairaku, K.; Ueno, G.; Takayabu, I.</p> <p>2014-12-01</p> <p>Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28111497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28111497"><span>Impacts of uncertainties in European gridded precipitation observations on regional climate analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prein, Andreas F; Gobiet, Andreas</p> <p>2017-01-01</p> <p>Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio-temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan-European data sets and a set that combines eight very high-resolution station-based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post-processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small-scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate-mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G31D0934A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G31D0934A"><span>A global validation of ERA-Interim integrated water vapor estimates using ground-based GNSS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmed, F.; Dousa, J.; Hunegnaw, A.; Teferle, F. N.; Bingley, R.</p> <p>2017-12-01</p> <p>Integrated water vapor (IWV) derived from climate reanalysis models, such as the European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis-Interim (ERA-Interim), is widely used in many atmospheric applications. Therefore, it is of interest to assess the quality of this reanalysis product using available observations. Observations from Global Navigation Satellite Systems (GNSS) are, as of now, available for a period of over 2 decades and their global availability makes it possible to validate the IWV obtained from climate reanalysis models in different geographical and climatic regions. In this study, primarily, three 5-year long homogeneously reprocessed GNSS-derived IWV datasets containing over 400 globally distributed ground-based GNSS stations have been used to validate the IWV estimates obtained from the ERA-Interim climate reanalysis model in 25 different climate zones. The IWV from ERA-Interim has been obtained by vertically integrating the specific humidity at all model levels above the locations of GNSS stations. It has been studied how the difference between the ERA-Interim IWV and the GNSS-derived IWV varies with respect to the different climate zones as well as with respect to the difference in the model orography and latitude. The results show a dependence of the ability of ERA-Interim to model the IWV on difference in climate types and latitude. This dependence, however, is dictated by the concentration of water vapor in different climate zones and at different latitudes. Furthermore, as a secondary focus of this study, the weighted mean atmospheric temperature (Tm) obtained from ERA-Interim has been compared to its equivalent obtained using two widely used approximations globally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8888B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8888B"><span>Why inputs matter: Selection of climatic variables for species distribution modelling in the Himalayan region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bobrowski, Maria; Schickhoff, Udo</p> <p>2017-04-01</p> <p>Betula utilis is a major constituent of alpine treeline ecotones in the western and central Himalayan region. The objective of this study is to provide first time analysis of the potential distribution of Betula utilis in the subalpine and alpine belts of the Himalayan region using species distribution modelling. Using Generalized Linear Models (GLM) we aim at examining climatic factors controlling the species distribution under current climate conditions. Furthermore we evaluate the prediction ability of climate data derived from different statistical methods. GLMs were created using least correlated bioclimatic variables derived from two different climate models: 1) interpolated climate data (i.e. Worldclim, Hijmans et al., 2005) and 2) quasi-mechanistical statistical downscaling (i.e. Chelsa; Karger et al., 2016). Model accuracy was evaluated by the ability to predict the potential species distribution range. We found that models based on variables of Chelsa climate data had higher predictive power, whereas models using Worldclim climate data consistently overpredicted the potential suitable habitat for Betula utilis. Although climatic variables of Worldclim are widely used in modelling species distribution, our results suggest to treat them with caution when remote regions like the Himalayan mountains are in focus. Unmindful usage of climatic variables for species distribution models potentially cause misleading projections and may lead to wrong implications and recommendations for nature conservation. References: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N., Linder, H.P. & Kessler, M. (2016) Climatologies at high resolution for the earth land surface areas. arXiv:1607.00217 [physics].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1000040','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1000040"><span>Regional-Scale Climate Change: Observations and Model Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bradley, Raymond S; Diaz, Henry F</p> <p>2010-12-14</p> <p>This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EnMan..58..343H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EnMan..58..343H"><span>Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois</p> <p>2016-08-01</p> <p>Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27179801','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27179801"><span>Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois</p> <p>2016-08-01</p> <p>Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.206...87O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.206...87O"><span>Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent</p> <p>2018-07-01</p> <p>In this study, we investigate changes in seasonal temperature and precipitation climatology of CORDEX Middle East and North Africa (MENA) region for three periods of 2010-2040, 2040-2070 and 2070-2100 with respect to the control period of 1970-2000 by using regional climate model simulations. Projections of future climate conditions are modeled by forcing Regional Climate Model, RegCM4.4 of the International Centre for Theoretical Physics (ICTP) with two different CMIP5 global climate models. HadGEM2-ES global climate model of the Met Office Hadley Centre and MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were used to generate 50 km resolution data for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 13. We test the seasonal time-scale performance of RegCM4.4 in simulating the observed climatology over domain of the MENA by using the output of two different global climate models. The projection results show relatively high increase of average temperatures from 3 °C up to 9 °C over the domain for far future (2070-2100). A strong decrease in precipitation is projected in almost all parts of the domain according to the output of the regional model forced by scenario outputs of two global models. Therefore, warmer and drier than present climate conditions are projected to occur more intensely over the CORDEX-MENA domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27457660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27457660"><span>Projections of increased and decreased dengue incidence under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, C R; Mincham, G; Faddy, H; Viennet, E; Ritchie, S A; Harley, D</p> <p>2016-10-01</p> <p>Dengue is the world's most prevalent mosquito-borne disease, with more than 200 million people each year becoming infected. We used a mechanistic virus transmission model to determine whether climate warming would change dengue transmission in Australia. Using two climate models each with two carbon emission scenarios, we calculated future dengue epidemic potential for the period 2046-2064. Using the ECHAM5 model, decreased dengue transmission was predicted under the A2 carbon emission scenario, whereas some increases are likely under the B1 scenario. Dengue epidemic potential may decrease under climate warming due to mosquito breeding sites becoming drier and mosquito survivorship declining. These results contradict most previous studies that use correlative models to show increased dengue transmission under climate warming. Dengue epidemiology is determined by a complex interplay between climatic, human host, and pathogen factors. It is therefore naive to assume a simple relationship between climate and incidence, and incorrect to state that climate warming will uniformly increase dengue transmission, although in general the health impacts of climate change will be negative.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25858027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25858027"><span>Time-lag effects of global vegetation responses to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian</p> <p>2015-09-01</p> <p>Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA43B2195L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA43B2195L"><span>Anticipating impacts of climate change on fish habitat to support decisionmaking in hydropower licensing: a climate risk study for the Hiram Dam, Saco River, ME</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lagron, C. S.; Ray, A. J.; Barsugli, J. J.</p> <p>2016-12-01</p> <p>The Federal Energy Regulatory Commission (FERC) issues licenses for non-federal hydropower projects through its Integrated Licensing Process (ILP). Through this multi-stage, multi-year decision process, NOAA National Marine Fisheries Service (NMFS) can request studies needed to prescribe license conditions to mitigate dams' effects on trust resources, e.g. fish passages and flow requirements. NMFS must understand the combined effects of hydropower projects and climate change to fulfill its mandates to maintain fisheries and protected species. Although 30-50 year hydropower licenses and renewals are within the time frame of anticipated risks from changing climate, FERC has consistently rejected NMFS' climate study requests, stating climate science is "too uncertain," and therefore not actionable. The ILP is an opportunity to incorporate climate change risks in this decision process, and to make decisions now to avoid failures later in the system regarding both hydropower reliability (the concern of FERC and the applicant) and ecosystem health (NMFS's concern). NMFS has partnered with climate scientists at the ESRL Physical Sciences Division to co-produce a climate study request for the relicensing of the Hiram Project on the Saco River in Southern Maine. The Saco hosts Atlantic salmon (Salmo salar) runs which are not currently self-sustaining. This presentation will describe basin-to-basin variability in both historic river analyses (Hydro-Climate Data Network, HCDN) and projected hydrologic responses of New England rivers to climate forcings using statewide Precipitation-Runoff Modeling System (PRMS) demonstrate the need to develop Saco-specific watershed models. Furthermore, although methods for projecting fishery-relevant metrics (heat waves, flood annual exceedance probabilities) have been proven in nearby basins, this modeling has not been conducted at fishery-relevant thresholds. Climate study requests are an example of bridging between science and applications. We argue that the current state of climate science provides actionable information on climate risks in the region, and will articulate the need and required elements for a Saco-specific climate study request.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026132','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026132"><span>Evaluating models of climate and forest vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, James S.</p> <p>1992-01-01</p> <p>Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237543-changes-concurrent-precipitation-temperature-extremes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237543-changes-concurrent-precipitation-temperature-extremes"><span>Changes in Concurrent Precipitation and Temperature Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.</p> <p>2013-08-01</p> <p>While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19625300','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19625300"><span>Integrating bioclimate with population models to improve forecasts of species extinctions under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brook, Barry W; Akçakaya, H Resit; Keith, David A; Mace, Georgina M; Pearson, Richard G; Araújo, Miguel B</p> <p>2009-12-23</p> <p>Climate change is already affecting species worldwide, yet existing methods of risk assessment have not considered interactions between demography and climate and their simultaneous effect on habitat distribution and population viability. To address this issue, an international workshop was held at the University of Adelaide in Australia, 25-29 May 2009, bringing leading species distribution and population modellers together with plant ecologists. Building on two previous workshops in the UK and Spain, the participants aimed to develop methodological standards and case studies for integrating bioclimatic and metapopulation models, to provide more realistic forecasts of population change, habitat fragmentation and extinction risk under climate change. The discussions and case studies focused on several challenges, including spatial and temporal scale contingencies, choice of predictive climate, land use, soil type and topographic variables, procedures for ensemble forecasting of both global climate and bioclimate models and developing demographic structures that are realistic and species-specific and yet allow generalizations of traits that make species vulnerable to climate change. The goal is to provide general guidelines for assessing the Red-List status of large numbers of species potentially at risk, owing to the interactions of climate change with other threats such as habitat destruction, overexploitation and invasive species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5783656','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5783656"><span>Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer</p> <p>2017-01-01</p> <p>Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634 PMID:28885979</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcGeo.tmp...37G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcGeo.tmp...37G"><span>Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garijo, Carlos; Mediero, Luis</p> <p>2018-04-01</p> <p>Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1130216-agriculture-climate-change-global-scenarios-why-don-models-agree','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1130216-agriculture-climate-change-global-scenarios-why-don-models-agree"><span>Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal</p> <p></p> <p>Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. Bymore » providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN41A1391Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN41A1391Y"><span>A Computing Infrastructure for Supporting Climate Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, C.; Bambacus, M.; Freeman, S. M.; Huang, Q.; Li, J.; Sun, M.; Xu, C.; Wojcik, G. S.; Cahalan, R. F.; NASA Climate @ Home Project Team</p> <p>2011-12-01</p> <p>Climate change is one of the major challenges facing us on the Earth planet in the 21st century. Scientists build many models to simulate the past and predict the climate change for the next decades or century. Most of the models are at a low resolution with some targeting high resolution in linkage to practical climate change preparedness. To calibrate and validate the models, millions of model runs are needed to find the best simulation and configuration. This paper introduces the NASA effort on Climate@Home project to build a supercomputer based-on advanced computing technologies, such as cloud computing, grid computing, and others. Climate@Home computing infrastructure includes several aspects: 1) a cloud computing platform is utilized to manage the potential spike access to the centralized components, such as grid computing server for dispatching and collecting models runs results; 2) a grid computing engine is developed based on MapReduce to dispatch models, model configuration, and collect simulation results and contributing statistics; 3) a portal serves as the entry point for the project to provide the management, sharing, and data exploration for end users; 4) scientists can access customized tools to configure model runs and visualize model results; 5) the public can access twitter and facebook to get the latest about the project. This paper will introduce the latest progress of the project and demonstrate the operational system during the AGU fall meeting. It will also discuss how this technology can become a trailblazer for other climate studies and relevant sciences. It will share how the challenges in computation and software integration were solved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=266823','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=266823"><span>The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED21A0257B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED21A0257B"><span>Global Climate Models for the Classroom: The Educational Impact of Student Work with a Key Tool of Climate Scientists</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bush, D. F.; Sieber, R.; Seiler, G.; Chandler, M. A.; Chmura, G. L.</p> <p>2017-12-01</p> <p>Efforts to address climate change require public understanding of Earth and climate science. To meet this need, educators require instructional approaches and scientific technologies that overcome cultural barriers to impart conceptual understanding of the work of climate scientists. We compared student inquiry learning with now ubiquitous climate education toy models, data and tools against that which took place using a computational global climate model (GCM) from the National Aeronautics and Space Administration (NASA). Our study at McGill University and John Abbott College in Montreal, QC sheds light on how best to teach the research processes important to Earth and climate scientists studying atmospheric and Earth system processes but ill-understood by those outside the scientific community. We followed a pre/post, control/treatment experimental design that enabled detailed analysis and statistically significant results. Our research found more students succeed at understanding climate change when exposed to actual climate research processes and instruments. Inquiry-based education with a GCM resulted in significantly higher scores pre to post on diagnostic exams (quantitatively) and more complete conceptual understandings (qualitatively). We recognize the difficulty in planning and teaching inquiry with complex technology and we also found evidence that lectures support learning geared toward assessment exams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ACPD...10.7421J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ACPD...10.7421J"><span>Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, A.; Haywood, J.; Boucher, O.; Kravitz, B.; Robock, A.</p> <p>2010-03-01</p> <p>We examine the response of the Met Office Hadley Centre's HadGEM2-AO climate model to simulated geoengineering by continuous injection of SO2 into the lower stratosphere, and compare the results with those from the Goddard Institute for Space Studies ModelE. The HadGEM2 simulations suggest that the SO2 injection rate considered here (5 Tg[SO2] yr-1) could defer the amount of global warming predicted under the Intergovernmental Panel on Climate Change's A1B scenario by approximately 30-35 years, although both models indicate rapid warming if geoengineering is not sustained. We find a broadly similar geographic distribution of the response to geoengineering in both models in terms of near-surface air temperature and mean June-August precipitation. The simulations also suggest that significant changes in regional climate would be experienced even if geoengineering was successful in maintaining global-mean temperature near current values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..785K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..785K"><span>Intercomparison of model response and internal variability across climate model ensembles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Devashish; Ganguly, Auroop R.</p> <p>2017-10-01</p> <p>Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3243388','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3243388"><span>Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Guis, Helene; Caminade, Cyril; Calvete, Carlos; Morse, Andrew P.; Tran, Annelise; Baylis, Matthew</p> <p>2012-01-01</p> <p>Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate's impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT's emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT's recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT's emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change's impact on the future of such diseases. PMID:21697167</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22..305Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22..305Z"><span>Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi</p> <p>2018-01-01</p> <p>As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1421346-impacts-future-climate-change-urban-flood-volumes-hohhot-northern-china-benefits-climate-change-mitigation-adaptations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1421346-impacts-future-climate-change-urban-flood-volumes-hohhot-northern-china-benefits-climate-change-mitigation-adaptations"><span>Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi</p> <p>2018-01-15</p> <p>As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1421346','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1421346"><span>Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi</p> <p></p> <p>As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GPC...152..152P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GPC...152..152P"><span>Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattnayak, K. C.; Kar, S. C.; Dalal, Mamta; Pattnayak, R. K.</p> <p>2017-05-01</p> <p>Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project (CMIP5) models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC43C1192Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC43C1192Z"><span>Evaluation of Historical and Projected Agricultural Climate Risk Over the Continental US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, X.; Troy, T. J.; Devineni, N.</p> <p>2016-12-01</p> <p>Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural systems. In addition, in the past decade climate extremes have highlighted the vulnerability of our agricultural production to climate variability. Quantitative analyses in the climate-agriculture research field have been performed in many studies. However, climate risk still remains difficult to evaluate at large scales yet shows great potential of help us better understand historical climate change impacts and evaluate the future risk given climate projections. In this study, we developed a framework to evaluate climate risk quantitatively by applying statistical methods such as Bayesian regression, distribution fitting, and Monte Carlo simulation. We applied the framework over different climate regions in the continental US both historically and for modeled climate projections. The relative importance of any major growing season climate index, such as maximum dry period or heavy precipitation, was evaluated to determine what climate indices play a role in affecting crop yields. The statistical modeling framework was applied using county yields, with irrigated and rainfed yields separated to evaluate the different risk. This framework provides estimates of the climate risk facing agricultural production in the near-term that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. In particular, the method provides robust estimates of importance of irrigation in mitigating agricultural climate risk. The results of this study can contribute to decision making about crop choice and water use in an uncertain climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=survey&pg=4&id=EJ1169588','ERIC'); return false;" href="https://eric.ed.gov/?q=survey&pg=4&id=EJ1169588"><span>Beyond Sexual Assault Surveys: A Model for Comprehensive Campus Climate Assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McMahon, Sarah; Stepleton, Kate; Cusano, Julia; O'Connor, Julia; Gandhi, Khushbu; McGinty, Felicia</p> <p>2018-01-01</p> <p>The White House Task Force to Protect Students from Sexual Assault identified campus climate surveys as "the first step" for addressing campus sexual violence. Through a process case study, this article presents one model for engaging in a comprehensive, action-focused campus climate assessment process. Rooted in principles of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=college+AND+student+AND+drop&pg=3&id=EJ782660','ERIC'); return false;" href="https://eric.ed.gov/?q=college+AND+student+AND+drop&pg=3&id=EJ782660"><span>Institutional Climate and Student Departure: A Multinomial Multilevel Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Yi, Pyong-sik</p> <p>2008-01-01</p> <p>This study applied a multinomial HOLM technique to examine the extent to which the institutional climate for diversity influences the different types of college student withdrawal, such as stop out, drop out, and transfer. Based on a reformulation of Tinto's model along with the conceptualization of institutional climate for diversity by Hurtado…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100015392','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100015392"><span>Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.</p> <p>2010-01-01</p> <p>Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGC44A..10B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGC44A..10B"><span>Amazon collapse in the next century: exploring the sensitivity to climate and model formulation uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Booth, B.; Collins, M.; Harris, G.; Chris, H.; Jones, C.</p> <p>2007-12-01</p> <p>A number of recent studies have highlighted the risk of abrupt dieback of the Amazon Rain Forest as the result of climate changes over the next century. The recent 2005 Amazon drought brought wider acceptance of the idea that that climate drivers will play a significant role in future rain forest stability, yet that stability is still subject to considerable degree of uncertainty. We present a study which seeks to explore some of the underlying uncertainties both in the climate drivers of dieback and in the terrestrial land surface formulation used in GCMs. We adopt a perturbed physics approach which forms part of a wider project which is covered in an accompanying abstract submitted to the multi-model ensembles session. We first couple the same interactive land surface model to a number of different versions of the Hadley Centre atmosphere-ocean model that exhibit a wide range of different physical climate responses in the future. The rainforest extent is shown to collapse in all model cases but the timing of the collapse is dependent on the magnitude of the climate drivers. In the second part, we explore uncertainties in the terrestrial land surface model using the perturbed physics ensemble approach, perturbing uncertain parameters which have an important role in the vegetation and soil response. Contrasting the two approaches enables a greater understanding of the relative importance of climatic and land surface model uncertainties in Amazon dieback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4063477','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4063477"><span>Predicting future coexistence in a North American ant community</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bewick, Sharon; Stuble, Katharine L; Lessard, Jean-Phillipe; Dunn, Robert R; Adler, Frederick R; Sanders, Nathan J</p> <p>2014-01-01</p> <p>Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well-studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate-related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat-sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade-offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change. PMID:24963378</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H23O..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H23O..06S"><span>The integrated effects of future climate and hydrologic uncertainty on sustainable flood risk management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steinschneider, S.; Wi, S.; Brown, C. M.</p> <p>2013-12-01</p> <p>Flood risk management performance is investigated within the context of integrated climate and hydrologic modeling uncertainty to explore system robustness. The research question investigated is whether structural and hydrologic parameterization uncertainties are significant relative to other uncertainties such as climate change when considering water resources system performance. Two hydrologic models are considered, a conceptual, lumped parameter model that preserves the water balance and a physically-based model that preserves both water and energy balances. In the conceptual model, parameter and structural uncertainties are quantified and propagated through the analysis using a Bayesian modeling framework with an innovative error model. Mean climate changes and internal climate variability are explored using an ensemble of simulations from a stochastic weather generator. The approach presented can be used to quantify the sensitivity of flood protection adequacy to different sources of uncertainty in the climate and hydrologic system, enabling the identification of robust projects that maintain adequate performance despite the uncertainties. The method is demonstrated in a case study for the Coralville Reservoir on the Iowa River, where increased flooding over the past several decades has raised questions about potential impacts of climate change on flood protection adequacy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6931B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6931B"><span>Creating "Intelligent" Ensemble Averages Using a Process-Based Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, Noel; Taylor, Patrick</p> <p>2014-05-01</p> <p>The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4564280','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4564280"><span>Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J.; Matulla, Christoph; Schueler, Silvio</p> <p>2015-01-01</p> <p>Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate. PMID:26288363</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18818152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18818152"><span>Introduction. Progress in Earth science and climate studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, J Michael T</p> <p>2008-12-28</p> <p>In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013440','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013440"><span>Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Druyan, Leonard M.</p> <p>2012-01-01</p> <p>Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24257163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24257163"><span>Redesigning mental healthcare delivery: is there an effect on organizational climate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joosten, T C M; Bongers, I M B; Janssen, R T J M</p> <p>2014-02-01</p> <p>Many studies have investigated the effect of redesign on operational performance; fewer studies have evaluated the effects on employees' perceptions of their working environment (organizational climate). Some authors state that redesign will lead to poorer organizational climate, while others state the opposite. The goal of this study was to empirically investigate this relation. Organizational climate was measured in a field experiment, before and after a redesign intervention. At one of the sites, a redesign project was conducted. At the other site, no redesign efforts took place. Two Dutch child- and adolescent-mental healthcare providers. Professionals that worked at one of the units at the start and/or the end of the intervention period. The main intervention was a redesign project aimed at improving timely delivery of services (modeled after the breakthrough series). Scores on the four models of the organizational climate measure, a validated questionnaire that measures organizational climate. Our analysis showed that climate at the intervention site changed on factors related to productivity and goal achievement (rational goal model). The intervention group scored worse than the comparison group on the part of the questionnaire that focuses on sociotechnical elements of organizational climate. However, observed differences were so small, that their practical relevance seems rather limited. Redesign efforts in healthcare, so it seems, do not influence organizational climate as much as expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813211K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813211K"><span>Evaluation of climatic changes in South-Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjellstrom, Erik; Rana, Arun; Grigory, Nikulin; Renate, Wilcke; Hansson, Ulf; Kolax, Michael</p> <p>2016-04-01</p> <p>Literature has sufficient evidences of climate change impact all over the world and its impact on various sectors. In light of new advancements made in climate modeling, availability of several climate downscaling approaches, the more robust bias correction methods with varying complexities and strengths, in the present study we performed a systematic evaluation of climate change impact over South-Asia region. We have used different Regional Climate Models (RCMs) (from CORDEX domain), (Global Climate Models GCMs) and gridded observations for the study area to evaluate the models in historical/control period (1980-2010) and changes in future period (2010-2099). Firstly, GCMs and RCMs are evaluated against the Gridded observational datasets in the area using precipitation and temperature as indicative variables. Observational dataset are also evaluated against the reliable set of observational dataset, as pointed in literature. Bias, Correlation, and changes (among other statistical measures) are calculated for the entire region and both the variables. Eventually, the region was sub-divided into various smaller domains based on homogenous precipitation zones to evaluate the average changes over time period. Spatial and temporal changes for the region are then finally calculated to evaluate the future changes in the region. Future changes are calculated for 2 Representative Concentration Pathways (RCPs), the middle emission (RCP4.5) and high emission (RCP8.5) and for both climatic variables, precipitation and temperature. Lastly, Evaluation of Extremes is performed based on precipitation and temperature based indices for whole region in future dataset. Results have indicated that the whole study region is under extreme stress in future climate scenarios for both climatic variables i.e. precipitation and temperature. Precipitation variability is dependent on the location in the area leading to droughts and floods in various regions in future. Temperature is hinting towards a constant increase throughout the region regardless of location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B21B0439W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B21B0439W"><span>Climate data induced uncertainty in model based estimations of terrestrial primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.; Ahlström, A.; Smith, B.; Ardö, J.; Eklundh, L.; Fensholt, R.; Lehsten, V.</p> <p>2016-12-01</p> <p>Models used to project global vegetation and carbon cycle differ in their estimates of historical fluxes and pools. These differences arise not only from differences between models but also from differences in the environmental and climatic data that forces the models. Here we investigate the role of uncertainties in historical climate data, encapsulated by a set of six historical climate datasets. We focus on terrestrial gross primary productivity (GPP) and analyze the results from a dynamic process-based vegetation model (LPJ-GUESS) forced by six different climate datasets and two empirical datasets of GPP (derived from flux towers and remote sensing). We find that the climate induced uncertainty, defined as the difference among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 33 Pg C yr-1 globally (19% of mean GPP). The uncertainty is partitioned into the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (the data range) and the sensitivity of the modeled GPP to the driver (the ecosystem sensitivity). The analysis is performed globally and stratified into five land cover classes. We find that the dynamic vegetation model overestimates GPP, compared to empirically based GPP data over most areas, except for the tropical region. Both the simulations and empirical estimates agree that the tropical region is a disproportionate source of uncertainty in GPP estimation. This is mainly caused by uncertainties in shortwave radiation forcing, of which climate data range contributes slightly higher uncertainty than ecosystem sensitivity to shortwave radiation. We also find that precipitation dominated the climate induced uncertainty over nearly half of terrestrial vegetated surfaces, which is mainly due to large ecosystem sensitivity to precipitation. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than ecosystem sensitivity. Our study highlights the need to better constrain tropical climate and demonstrate that uncertainty caused by climatic forcing data must be considered when comparing and evaluating model results and empirical datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4593T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4593T"><span>Can we trust climate models to realistically represent severe European windstorms?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trzeciak, Tomasz M.; Knippertz, Peter; Owen, Jennifer S. R.</p> <p>2014-05-01</p> <p>Despite the enormous advances made in climate change research, robust projections of the position and the strength of the North Atlantic stormtrack are not yet possible. In particular with respect to damaging windstorms, this incertitude bears enormous risks to European societies and the (re)insurance industry. Previous studies have addressed the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data and found that there is large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such statistical evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms. Compensating effects between the two might conceal errors and suggest higher reliability than there really is. A possible way to separate influences of fast and slow processes in climate projections is through a "seamless" approach of hindcasting historical, severe storms with climate models started from predefined initial conditions and run in a numerical weather prediction mode on the time scale of several days. Such a cost-effective case-study approach, which draws from and expands on the concepts from the Transpose-AMIP initiative, has recently been undertaken in the SEAMSEW project at the University of Leeds funded by the AXA Research Fund. Key results from this work focusing on 20 historical storms and using different lead times and horizontal and vertical resolutions include: (a) Tracks are represented reasonably well by most hindcasts. (b) Sensitivity to vertical resolution is low. (c) There is a systematic underprediction of cyclone depth for a coarse resolution of T63, but surprisingly no systematic bias is found for higher-resolution runs using T127, showing that climate models are in fact able to represent the storm dynamics well, if given the correct initial conditions. Combined with a too low number of deep cyclones in many climate models, this points too an insufficient number of storm-prone initial conditions in free-running climate runs. This question will be addressed in future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24418218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24418218"><span>Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R</p> <p>2014-09-15</p> <p>Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23F..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23F..04C"><span>Variance decomposition shows the importance of human-climate feedbacks in the Earth system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.</p> <p>2017-12-01</p> <p>The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27185925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27185925"><span>Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Medeiros, Brian; Nuijens, Louise</p> <p>2016-05-31</p> <p>Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4896687','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4896687"><span>Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nuijens, Louise</p> <p>2016-01-01</p> <p>Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1329440-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1329440-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity"><span>Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...</p> <p>2016-10-20</p> <p>Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1329440-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1329440-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity"><span>Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel</p> <p></p> <p>Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53D1471W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53D1471W"><span>Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, S.; Kim, H.; Utsumi, N.</p> <p>2017-12-01</p> <p>This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150019930&hterms=biome&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbiome','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150019930&hterms=biome&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbiome"><span>Challenges in Quantifying Pliocene Terrestrial Warming Revealed by Data-Model Discord</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salzmann, Ulrich; Dolan, Aisling M.; Haywood, Alan M.; Chan, Wing-Le; Voss, Jochen; Hill, Daniel J.; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Bragg, Frances J.; Chandler, Mark A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150019930'); toggleEditAbsImage('author_20150019930_show'); toggleEditAbsImage('author_20150019930_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150019930_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150019930_hide"></p> <p>2013-01-01</p> <p>Comparing simulations of key warm periods in Earth history with contemporaneous geological proxy data is a useful approach for evaluating the ability of climate models to simulate warm, high-CO2 climates that are unprecedented in the more recent past. Here we use a global data set of confidence-assessed, proxy-based temperature estimates and biome reconstructions to assess the ability of eight models to simulate warm terrestrial climates of the Pliocene epoch. The Late Pliocene, 3.6-2.6 million years ago, is an accessible geological interval to understand climate processes of a warmer world4. We show that model-predicted surface air temperatures reveal a substantial cold bias in the Northern Hemisphere. Particularly strong data-model mismatches in mean annual temperatures (up to 18 C) exist in northern Russia. Our model sensitivity tests identify insufficient temporal constraints hampering the accurate configuration of model boundary conditions as an important factor impacting on data- model discrepancies. We conclude that to allow a more robust evaluation of the ability of present climate models to predict warm climates, future Pliocene data-model comparison studies should focus on orbitally defined time slices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17428594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17428594"><span>Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bürger, C M; Kolditz, O; Fowler, H J; Blenkinsop, S</p> <p>2007-08-01</p> <p>Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52791','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52791"><span>Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang</p> <p>2015-01-01</p> <p>Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H33D0903C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H33D0903C"><span>A blueprint for using climate change predictions in an eco-hydrological study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caporali, E.; Fatichi, S.; Ivanov, V. Y.</p> <p>2009-12-01</p> <p>There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMGC21B0171R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMGC21B0171R"><span>Modeling the Impacts of Global Climate and Regional Land Use Change on Regional Climate, Air Quality and Public Health in the New York Metropolitan Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.</p> <p>2002-12-01</p> <p>There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human exposures and responses to heat stress and air quality differ as a function of socio-economic status and race/ethnicity across the region? The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Regional Atmospheric Modeling System (RAMS) and PennState/NCAR MM5 mesoscale meteorological models; the SLEUTH land use model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); the Community Multiscale Air Quality (CMAQ) and Comprehensive Air Quality Model with Extensions (CAMx) models for simulating regional air quality; and exposure-risk coefficients for assessing population health impacts based on exposure to extreme heat, fine particulates (PM2.5) and ozone. Two different IPCC global emission scenarios and two different regional land use growth scenarios are considered in the simulations, spanning a range of possible futures. In addition to base simulations for selected time periods in the decade 1990 - 2000, the integrated model is used to simulate future scenarios in the 2020s, 2050s, and 2080s. Predictions from both the meteorological models and the air quality models are compared against available observations for the simulations in the 1990s to establish baseline model performance. A series of sensitivity tests will address whether changes in meteorology due to global climate change, changes in regional land use, or changes in emissions have the largest impact on predicted ozone and particulate matter concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9347A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9347A"><span>Inter-model variability in hydrological extremes projections for Amazonian sub-basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier</p> <p>2014-05-01</p> <p>Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29023503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29023503"><span>Model uncertainties do not affect observed patterns of species richness in the Amazon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael</p> <p>2017-01-01</p> <p>Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5638225','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5638225"><span>Model uncertainties do not affect observed patterns of species richness in the Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo</p> <p>2017-01-01</p> <p>Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1088032','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1088032"><span>Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smyth, Padhraic</p> <p>2013-07-22</p> <p>This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies ofmore » climate variability in terms of the dynamics of atmospheric flow regimes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....14090V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....14090V"><span>Effect of climate change on marine ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.</p> <p>2003-04-01</p> <p>As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23438320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23438320"><span>Means and extremes: building variability into community-level climate change experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula</p> <p>2013-06-01</p> <p>Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3700863','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3700863"><span>Using Citizen Science Data to Model the Distributions of Common Songbirds of Turkey Under Different Global Climatic Change Scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit</p> <p>2013-01-01</p> <p>In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23844151','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23844151"><span>Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit</p> <p>2013-01-01</p> <p>In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24D..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24D..04S"><span>Scientific Uncertainties in Climate Change Detection and Attribution Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santer, B. D.</p> <p>2017-12-01</p> <p>It has been claimed that the treatment and discussion of key uncertainties in climate science is "confined to hushed sidebar conversations at scientific conferences". This claim is demonstrably incorrect. Climate change detection and attribution studies routinely consider key uncertainties in observational climate data, as well as uncertainties in model-based estimates of natural variability and the "fingerprints" in response to different external forcings. The goal is to determine whether such uncertainties preclude robust identification of a human-caused climate change fingerprint. It is also routine to investigate the impact of applying different fingerprint identification strategies, and to assess how detection and attribution results are impacted by differences in the ability of current models to capture important aspects of present-day climate. The exploration of the uncertainties mentioned above will be illustrated using examples from detection and attribution studies with atmospheric temperature and moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A21G0180N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A21G0180N"><span>Analysis of the Effect of Interior Nudging on Temperature and Precipitation Distributions of Multi-year Regional Climate Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nolte, C. G.; Otte, T. L.; Bowden, J. H.; Otte, M. J.</p> <p>2010-12-01</p> <p>There is disagreement in the regional climate modeling community as to the appropriateness of the use of internal nudging. Some investigators argue that the regional model should be minimally constrained and allowed to respond to regional-scale forcing, while others have noted that in the absence of interior nudging, significant large-scale discrepancies develop between the regional model solution and the driving coarse-scale fields. These discrepancies lead to reduced confidence in the ability of regional climate models to dynamically downscale global climate model simulations under climate change scenarios, and detract from the usability of the regional simulations for impact assessments. The advantages and limitations of interior nudging schemes for regional climate modeling are investigated in this study. Multi-year simulations using the WRF model driven by reanalysis data over the continental United States at 36km resolution are conducted using spectral nudging, grid point nudging, and for a base case without interior nudging. The means, distributions, and inter-annual variability of temperature and precipitation will be evaluated in comparison to regional analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007061&hterms=semantic+web&qs=Ntf%3DAll%257Csemantic%2Bweb%257Cmode%2Bmatchall%257C2%26N%3D0%26No%3D10','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007061&hterms=semantic+web&qs=Ntf%3DAll%257Csemantic%2Bweb%257Cmode%2Bmatchall%257C2%26N%3D0%26No%3D10"><span>Climate Model Diagnostic Analyzer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei</p> <p>2015-01-01</p> <p>The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439707-agmip-framework-improved-agricultural-representation-integrated-assessment-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439707-agmip-framework-improved-agricultural-representation-integrated-assessment-models"><span>An AgMIP framework for improved agricultural representation in integrated assessment models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold</p> <p></p> <p>Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agriculturalmore » Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12l5003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12l5003R"><span>An AgMIP framework for improved agricultural representation in integrated assessment models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.</p> <p>2017-12-01</p> <p>Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26626704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26626704"><span>A mixed model for the relationship between climate and human cranial form.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katz, David C; Grote, Mark N; Weaver, Timothy D</p> <p>2016-08-01</p> <p>We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20497802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20497802"><span>Making work safer: testing a model of social exchange and safety management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G</p> <p>2010-04-01</p> <p>This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23828689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23828689"><span>An exploration of workplace social capital as an antecedent of occupational safety and health climate and outcomes in the Chinese education sector.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Jessica Janice; Leka, Stavroula; Hunt, Nigel; MacLennan, Sara</p> <p>2014-07-01</p> <p>It is widely acknowledged that teachers are at greater risk of work-related health problems. At the same time, employee perceptions of different dimensions of organizational climate can influence their attitudes, performance, and well-being at work. This study applied and extended a safety climate model in the context of the education sector in Hong Kong. Apart from safety considerations alone, the study included occupational health considerations and social capital and tested their relationships with occupational safety and health (OSH) outcomes. Seven hundred and four Hong Kong teachers completed a range of questionnaires exploring social capital, OSH climate, OSH knowledge, OSH performance (compliance and participation), general health, and self-rated health complaints and injuries. Structural equation modeling (SEM) was used to analyze the relationships between predictive and outcome variables. SEM analysis revealed a high level of goodness of fit, and the hypothesized model including social capital yielded a better fit than the original model. Social capital, OSH climate, and OSH performance were determinants of both positive and negative outcome variables. In addition, social capital not only significantly predicted general health directly, but also had a predictive effect on the OSH climate-behavior-outcome relationship. This study makes a contribution to the workplace social capital and OSH climate literature by empirically assessing their relationship in the Chinese education sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC33B1286C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC33B1286C"><span>Suggestions for Forest Conservation Policy under Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.</p> <p>2015-12-01</p> <p>Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916879M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916879M"><span>Expansion of the Lyme Disease Vector Ixodes scapularis in Canada inferred from CMIP5 Climate Projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McPherson, Michelle Yvonne; García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Hansen-Ketchum, Patti; MacDougall, Donna; Hume Ogden, Nicholas</p> <p>2017-04-01</p> <p>A number of studies have assessed possible climate change impacts on the Lyme disease vector, Ixodes scapularis. However, most have used surface air temperature from only one climate model simulation and/or one emission scenario, representing only one possible climate future. We quantified effects of different Representative Concentration Pathway (RCP) and climate model outputs on the projected future changes in the basic reproduction number (R0) of I. scapularis to explore uncertainties in future R0 estimates. We used surface air temperature generated by a complete set of General Circulation Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to hindcast historical and forecast future effects of climate change on the R0 of I. scapularis. As in previous studies, R0 of I. scapularis increased with a warming climate under future projected climate. Increases in the multi-model mean R0 values showed significant changes over time under all RCP scenarios, however; only the estimated R0 mean values between RCP6.0 and RCP8.5 showed statistically significant differences. Our results highlight the potential for climate change to have an effect on future Lyme disease risk in Canada even if the Paris Agreement's goal to keep global warming below 2°C is achieved, although mitigation reducing emissions from RCP8.5 levels to those of RCP6.0 or less would be expected to slow tick invasion after the 2030s. On-going planning is needed to inform and guide adaptation in light of the projected range of possible futures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53E1346B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53E1346B"><span>Assessing the Role of Climate Variability on Liver Fluke Risk in the UK Through Mechanistic Hydro-Epidemiological Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beltrame, L.; Dunne, T.; Rose, H.; Walker, J.; Morgan, E.; Vickerman, P.; Wagener, T.</p> <p>2016-12-01</p> <p>Liver fluke is a flatworm parasite infecting grazing animals worldwide. In the UK, it causes considerable production losses to cattle and sheep industries and costs farmers millions of pounds each year due to reduced growth rates and lower milk yields. Large part of the parasite life-cycle takes place outside of the host, with its survival and development strongly controlled by climatic and hydrologic conditions. Evidence of climate-driven changes in the distribution and seasonality of fluke disease already exists, as the infection is increasingly expanding to new areas and becoming a year-round problem. Therefore, it is crucial to assess current and potential future impacts of climate variability on the disease to guide interventions at the farm scale and mitigate risk. Climate-based fluke risk models have been available since the 1950s, however, they are based on empirical relationships derived between historical climate and incidence data, and thus are unlikely to be robust for simulating risk under changing conditions. Moreover, they are not dynamic, but estimate risk over large regions in the UK based on monthly average climate conditions, so they do not allow investigating the effects of climate variability for supporting farmers' decisions. In this study, we introduce a mechanistic model for fluke, which represents habitat suitability for disease development at 25m resolution with a daily time step, explicitly linking the parasite life-cycle to key hydro-climate conditions. The model is used on a case study in the UK and sensitivity analysis is performed to better understand the role of climate variability on the space-time dynamics of the disease, while explicitly accounting for uncertainties. Comparisons are presented with experts' knowledge and a widely used empirical model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020054204&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020054204&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming"><span>Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p>A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24129317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24129317"><span>A mediation model linking dispatcher leadership and work ownership with safety climate as predictors of truck driver safety performance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zohar, Dov; Huang, Yueng-hsiang; Lee, Jin; Robertson, Michelle</p> <p>2014-01-01</p> <p>The study was designed to test the effect of safety climate on safety behavior among lone employees whose work environment promotes individual rather than consensual or shared climate perceptions. The paper presents a mediation path model linking psychological (individual-level) safety climate antecedents and consequences as predictors of driving safety of long-haul truck drivers. Climate antecedents included dispatcher (distant) leadership and driver work ownership, two contextual attributes of lone work, whereas its proximal consequence included driving safety. Using a prospective design, safety outcomes, consisting of hard-braking frequency (i.e. traffic near-miss events) were collected six months after survey completion, using GPS-based truck deceleration data. Results supported the hypothesized model, indicating that distant leadership style and work ownership promote psychological safety climate perceptions, with subsequent prediction of hard-braking events mediated by driving safety. Theoretical and practical implications for studying safety climate among lone workers in general and professional drivers in particular are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27513565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27513565"><span>Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R</p> <p>2016-01-01</p> <p>Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.995a2003C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.995a2003C"><span>Spatio-temporal modelling of dengue fever incidence in Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Che-Him, Norziha; Ghazali Kamardan, M.; Saifullah Rusiman, Mohd; Sufahani, Suliadi; Mohamad, Mahathir; @ Kamariah Kamaruddin, Nafisah</p> <p>2018-04-01</p> <p>Previous studies reported significant relationship between dengue incidence rate (DIR) and both climatic and non-climatic factors. Therefore, this study proposes a generalised additive model (GAM) framework for dengue risk in Malaysia by using both climatic and non-climatic factors. The data used is monthly DIR for 12 states of Malaysia from 2001 to 2009. In this study, we considered an annual trend, seasonal effects, population, population density and lagged DIR, rainfall, temperature, number of rainy days and El Niño-Southern Oscillation (ENSO). The population density is found to be positively related to monthly DIR. There are generally weak relationships between monthly DIR and climate variables. A negative binomial GAM shows that there are statistically significant relationships between DIR with climatic and non-climatic factors. These include mean rainfall and temperature, the number of rainy days, sea surface temperature and the interaction between mean temperature (lag 1 month) and sea surface temperature (lag 6 months). These also apply to DIR (lag 3 months) and population density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001BAMS...82.2357B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001BAMS...82.2357B"><span>The Community Climate System Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blackmon, Maurice; Boville, Byron; Bryan, Frank; Dickinson, Robert; Gent, Peter; Kiehl, Jeffrey; Moritz, Richard; Randall, David; Shukla, Jagadish; Solomon, Susan; Bonan, Gordon; Doney, Scott; Fung, Inez; Hack, James; Hunke, Elizabeth; Hurrell, James; Kutzbach, John; Meehl, Jerry; Otto-Bliesner, Bette; Saravanan, R.; Schneider, Edwin K.; Sloan, Lisa; Spall, Michael; Taylor, Karl; Tribbia, Joseph; Washington, Warren</p> <p>2001-11-01</p> <p>The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users. The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a flux coupler that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1% per year. In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several pro-jections of the climate of the twenty-first century. The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model. Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC13C1209E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC13C1209E"><span>Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.</p> <p>2016-12-01</p> <p>Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1027816-complex-networks-unified-framework-descriptive-analysis-predictive-modeling-climate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1027816-complex-networks-unified-framework-descriptive-analysis-predictive-modeling-climate"><span>Complex networks as a unified framework for descriptive analysis and predictive modeling in climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R</p> <p></p> <p>The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25321875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25321875"><span>Future climate data from RCP 4.5 and occurrence of malaria in Korea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo</p> <p>2014-10-15</p> <p>Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001-2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4210996','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4210996"><span>Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P.; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo</p> <p>2014-01-01</p> <p>Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future. PMID:25321875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001271','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001271"><span>IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua</p> <p>2016-01-01</p> <p>Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN11B1621D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN11B1621D"><span>Quantifying How Climate Affects Vegetation in the Amazon Rainforest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.</p> <p>2016-12-01</p> <p>Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=statistics+AND+populations+AND+poverty&pg=4&id=EJ841326','ERIC'); return false;" href="https://eric.ed.gov/?q=statistics+AND+populations+AND+poverty&pg=4&id=EJ841326"><span>Student Background, School Climate, School Disorder, and Student Achievement: An Empirical Study of New York City's Middle Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chen, Greg; Weikart, Lynne A.</p> <p>2008-01-01</p> <p>This study develops and tests a school disorder and student achievement model based upon the school climate framework. The model was fitted to 212 New York City middle schools using the Structural Equations Modeling Analysis method. The analysis shows that the model fits the data well based upon test statistics and goodness of fit indices. The…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5099/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5099/"><span>Projected climate and vegetation changes and potential biotic effects for Fort Benning, Georgia; Fort Hood, Texas; and Fort Irwin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.</p> <p>2012-01-01</p> <p>The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2308Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2308Y"><span>On climate prediction: how much can we expect from climate memory?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg</p> <p>2018-03-01</p> <p>Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27242862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27242862"><span>Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A</p> <p>2016-01-01</p> <p>Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in our simulations revealed the importance of the climate constraints on SOC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC22D..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC22D..07A"><span>Regional Climate Change Impact on Agricultural Land Use in West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmed, K. F.; Wang, G.; You, L.</p> <p>2014-12-01</p> <p>Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes in land use pattern are robust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA43B0321D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA43B0321D"><span>Examining the Performance of Statistical Downscaling Methods: Toward Matching Applications to Data Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dixon, K. W.; Lanzante, J. R.; Adams-Smith, D.</p> <p>2017-12-01</p> <p>Several challenges exist when seeking to use future climate model projections in a climate impacts study. A not uncommon approach is to utilize climate projection data sets derived from more than one future emissions scenario and from multiple global climate models (GCMs). The range of future climate responses represented in the set is sometimes taken to be indicative of levels of uncertainty in the projections. Yet, GCM outputs are deemed to be unsuitable for direct use in many climate impacts applications. GCM grids typically are viewed as being too coarse. Additionally, regional or local-scale biases in a GCM's simulation of the contemporary climate that may not be problematic from a global climate modeling perspective may be unacceptably large for a climate impacts application. Statistical downscaling (SD) of climate projections - a type of post-processing that uses observations to inform the refinement of GCM projections - is often used in an attempt to account for GCM biases and to provide additional spatial detail. "What downscaled climate projection is the best one to use" is a frequently asked question, but one that is not always easy to answer, as it can be dependent on stakeholder needs and expectations. Here we present results from a perfect model experimental design illustrating how SD method performance can vary not only by SD method, but how performance can also vary by location, season, climate variable of interest, amount of projected climate change, SD configuration choices, and whether one is interested in central tendencies or the tails of the distribution. Awareness of these factors can be helpful when seeking to determine the suitability of downscaled climate projections for specific climate impacts applications. It also points to the potential value of considering more than one SD data product in a study, so as to acknowledge uncertainties associated with the strengths and weaknesses of different downscaling methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27663230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27663230"><span>Patterns of crop cover under future climates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong</p> <p>2017-04-01</p> <p>We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9176H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9176H"><span>Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela</p> <p>2014-05-01</p> <p>Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51E0117X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51E0117X"><span>Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.</p> <p>2016-12-01</p> <p>In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2778S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2778S"><span>Enabling the use of climate model data in the Dutch climate effect community</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Som de Cerff, Wim; Plieger, Maarten</p> <p>2010-05-01</p> <p>Within the climate effect community the usage of climate model data is emerging. Where mostly climate time series and weather generators were used, there is a shift to incorporate climate model data into climate effect models. The use of climate model data within the climate effect models is difficult, due to missing metadata, resolution and projection issues, data formats and availability of the parameters of interest. Often the climate effect modelers are not aware of available climate model data or are not aware of how they can use it. Together with seven other partners (CERFACS, CNR-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 IS ENES (http://www.enes.org) project work package 10/JRA5 ‘Bridging Climate Research Data and the Needs of the Impact Community. The aims of this work package are to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. Phase one is to define use cases together with the Dutch climate effect community, which describe the intended use of climate model data in climate effect models. We defined four use cases: 1) FEWS hydrological Framework (Deltares) 2) METAPHOR, a plants and species dispersion model (Wageningen University) 3) Natuurplanner, an Ecological model suite (Wageningen University) 4) Land use models (Free University/JRC). Also the other partners in JRA5 have defined use cases, which are representative for the climate effect and impact communities in their country. Goal is to find commonalities between all defined use cases. The common functionality will be implemented as e-tools and incorporated in the IS-ENES data portal. Common issues relate to e.g., need for high resolution: downscaling from GCM to local scale (also involves interpolation); parameter selection; finding extremes; averaging methods. At the conference we will describe the FEWS case in more detail: Delft FEWS is an open shell system (in development since 1995) for performing hydrological predictions and the handling of time series data. The most important capabilities of FEWS are importing of meteorological and hydrological data and organizing the workflows of the different models which can be used within FEWS, like the Netherlands Hydrological Instrumentarium (NHI). Besides predictions, the system is currently being used for hydrological climate effects studies. Currently regionally downscaled data are used, but using model data will be the next step. This coupling of climate model data to FEWS will open a wider rage of climate impact and effect research, but it is a difficult task to accomplish. Issues to be dealt with are: regridding, downscaling, format conversion, extraction of required data and addition of descriptive metadata, including quality and uncertainty parameters. Finding an appropriate solution involves several iterations: first, the use case was defined, then we just provided a single data file containing some data of interest provided via FTP, next this data was offered through OGC services. Currently we are working on providing larger datasets and improving on the parameters and metadata. We will present the results (e-tools/data) and experiences gained on implementing the described use cases. Note that we are currently using experimental data, as the official climate model runs are not available yet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1295958-review-regional-convection-permitting-climate-modeling-demonstrations-prospects-challenges','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1295958-review-regional-convection-permitting-climate-modeling-demonstrations-prospects-challenges"><span>A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; ...</p> <p>2015-05-27</p> <p>Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014321"><span>Modeling the Environmental Impact of Air Traffic Operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Neil</p> <p>2011-01-01</p> <p>There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatEn...217109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatEn...217109L"><span>Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Lu; Hejazi, Mohamad; Li, Hongyi; Forman, Barton; Zhang, Xiao</p> <p>2017-08-01</p> <p>Previous modelling studies suggest that thermoelectric power generation is vulnerable to climate change, whereas studies based on historical data suggest the impact will be less severe. Here we explore the vulnerability of thermoelectric power generation in the United States to climate change by coupling an Earth system model with a thermoelectric power generation model, including state-level representation of environmental regulations on thermal effluents. We find that the impact of climate change is lower than in previous modelling estimates due to an inclusion of a spatially disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. More specifically, our results indicate that climate change alone may reduce average generating capacity by 2-3% by the 2060s, while reductions of up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. Our work highlights the significance of accounting for legal constructs and underscores the effects of provisional variances in addition to environmental requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000302','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000302"><span>Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.</p> <p>2008-01-01</p> <p>Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1321P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1321P"><span>The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietikäinen, Joni-Pekka; Markkanen, Tiina; Sieck, Kevin; Jacob, Daniela; Korhonen, Johanna; Räisänen, Petri; Gao, Yao; Ahola, Jaakko; Korhonen, Hannele; Laaksonen, Ari; Kaurola, Jussi</p> <p>2018-04-01</p> <p>The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied in a set of 35-year hindcast simulations. Additionally, sensitivity tests related to the parameterization of snow albedo were conducted. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation, but the downside is that an existing wintertime cold bias in the model is enhanced. The lake surface water temperature, ice depth and ice season length were analyzed in detail for 10 Finnish, 4 Swedish and 2 Russian lakes and 1 Estonian lake. The results show that the model can reproduce these characteristics with reasonably high accuracy. The cold bias during winter causes overestimation of ice layer thickness, for example, at several of the studied lakes, but overall the values from the model are realistic and represent the lake physics well in a long-term simulation. We also analyzed the snow depth on ice from 10 Finnish lakes and vertical temperature profiles from 5 Finnish lakes and the model results are realistic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJBm...52..179Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJBm...52..179Z"><span>Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ying; Bi, Peng; Hiller, Janet</p> <p>2008-01-01</p> <p>This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43H3372H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43H3372H"><span>Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.</p> <p>2014-12-01</p> <p>China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170000986&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DChange%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170000986&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DChange%2Bclimate"><span>Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170000986'); toggleEditAbsImage('author_20170000986_show'); toggleEditAbsImage('author_20170000986_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170000986_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170000986_hide"></p> <p>2017-01-01</p> <p>Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/1007519','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/1007519"><span>Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</p> <p>2018-06-07</p> <p>Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Intergovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916050A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916050A"><span>Changing precipitation in western Europe, climate change or natural variability?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart</p> <p>2017-04-01</p> <p>Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4445374','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4445374"><span>Estimating daily climatologies for climate indices derived from climate model data and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof</p> <p>2015-01-01</p> <p>Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910527A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910527A"><span>Extreme waves from tropical cyclones and climate change in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José</p> <p>2017-04-01</p> <p>Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/824980','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/824980"><span>EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Joseph H. Hartman</p> <p>1999-09-01</p> <p>This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join thesemore » various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMGC51A0430Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMGC51A0430Z"><span>Agent-based Model for the Coupled Human-Climate System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zvoleff, A.; Werner, B.</p> <p>2006-12-01</p> <p>Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160011155&hterms=Influence+clouds+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DInfluence%2Bclouds%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160011155&hterms=Influence+clouds+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DInfluence%2Bclouds%2Bclimate"><span>Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas</p> <p>2016-01-01</p> <p>We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.126..575K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.126..575K"><span>Local air temperature tolerance: a sensible basis for estimating climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kärner, Olavi; Post, Piia</p> <p>2016-11-01</p> <p>The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080015381','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080015381"><span>CEOS SEO and GISS Meeting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Killough, Brian; Stover, Shelley</p> <p>2008-01-01</p> <p>The Committee on Earth Observation Satellites (CEOS) provides a brief to the Goddard Institute for Space Studies (GISS) regarding the CEOS Systems Engineering Office (SEO) and current work on climate requirements and analysis. A "system framework" is provided for the Global Earth Observation System of Systems (GEOSS). SEO climate-related tasks are outlined including the assessment of essential climate variable (ECV) parameters, use of the "systems framework" to determine relevant informational products and science models and the performance of assessments and gap analyses of measurements and missions for each ECV. Climate requirements, including instruments and missions, measurements, knowledge and models, and decision makers, are also outlined. These requirements would establish traceability from instruments to products and services allowing for benefit evaluation of instruments and measurements. Additionally, traceable climate requirements would provide a better understanding of global climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Ma&pg=3&id=EJ1059775','ERIC'); return false;" href="https://eric.ed.gov/?q=Ma&pg=3&id=EJ1059775"><span>Comparison of the Motivational Climates Created during Multi-Activity Instruction and Sport Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Parker, Mitchum B.; Curtner-Smith, Matthew D.</p> <p>2014-01-01</p> <p>Previous research has suggested that sport education (SE) may be a superior curriculum model to multi-activity (MA) teaching because its pedagogies and structures create a task-involving motivational climate. The purpose of this study was to describe and compare the objective motivational climates teachers create within the MA and SE models.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=336404','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=336404"><span>Assessing long-term hydrologic impact of climate change using ensemble approach and comparison with Global Gridded Model-A case study on Goodwater Creek Experimental Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Potential impacts of climate change on hydrologic components of Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25825025','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25825025"><span>Bullying among nurses and its relationship with burnout and organizational climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giorgi, Gabriele; Mancuso, Serena; Fiz Perez, Francisco; Castiello D'Antonio, Andrea; Mucci, Nicola; Cupelli, Vincenzo; Arcangeli, Giulio</p> <p>2016-04-01</p> <p>Workplace bullying is one of the most common work-related psychological problems. Bullying costs seem higher for organizations composed of health-care workers who perform direct-contact patients-complex tasks. Only a few studies have been carried out among nurses in Italy and integrated models of bullying antecedents and consequences are particularly missing. The aim of this study was to develop a bullying model focused on the interaction between bullying and burnout in the setting of a climate-health relationship. Research involved 658 nurses who completed a survey on health, burnout, bullying and organizational climate. Structural equation modeling was used to test the hypothesis. Results suggest that workplace bullying partially mediates the relationship between organizational climate and burnout and that bullying does not affect health directly, but only indirectly, via the mediation of burnout. Our study demonstrates the key-role of workplace bullying and burnout in the climate-health relationship in order to understand and to improve nurses' health. © 2015 John Wiley & Sons Australia, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23504792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23504792"><span>Impacts of climate change on paddy rice yield in a temperate climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John</p> <p>2013-02-01</p> <p>The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1083576','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1083576"><span>Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saravanan, Ramalingam</p> <p>2011-10-30</p> <p>During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2335P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2335P"><span>An effective drift correction for dynamical downscaling of decadal global climate predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen</p> <p>2018-04-01</p> <p>Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP33C1933H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP33C1933H"><span>The tropical climate and vegetation response to Heinrich Event 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Handiani, D. N.; Paul, A.; Prange, M.; Merkel, U.; Dupont, L. M.; Zhang, X.</p> <p>2013-12-01</p> <p>Past abrupt climate change associated with Heinrich Event 1 (HE1, ca. 17.5 ka BP) is thought to be connected to a slowdown of the Atlantic Meridional Overturning Circulation (AMOC). The accompanying abrupt climate changes affect not only the ocean, but also the continents. Furthermore, a strong impact on vegetation patterns during this event is registered both at high latitudes of the Northern Hemisphere and in the tropics. Pollen data from the tropical regions around the Atlantic Ocean (in our study from Angola and Brazil) suggest an effect on tropical vegetation through a southward shift of the rainbelt. However, the response appears to be very different in eastern South America and western Africa. To understand the different climate and vegetation pattern responses in the terrestrial tropics and to gain deeper insight into high-low-latitude climate interactions, we studied the climate and vegetation changes during the HE1 by using two different global climate models: the University of Victoria Earth System-Climate Model (UVic ESCM) and the Community Climate System Model version 3 (CCSM3). In both models, we simulated a similar HE1-like climate state. To facilitate the comparison between the model results and the available pollen records, we generated a distribution of biomes from the simulated plant functional type (PFT) coverage and climate parameters in the models. The UVic ESCM and the CCSM3 showed a slowdown of the AMOC accompanied by a seesaw temperature pattern between the Northern and Southern Hemispheres, as well as a southward shift of the tropical rainbelt. The response of the tropical vegetation pattern around the Atlantic Ocean was more pronounced in the CCSM3 than in the UVic ESCM simulation. In tropical South America, opposite changes in tree and grass cover were found only in CCSM3. In tropical Africa, the tree cover decreased and grass cover increased around 15°N in the UVic ESCM and around 10°N in CCSM3. Changes in tree and grass cover in tropical Southeast Asia were found only in the CCSM3 model, suggesting that the abrupt climate change during the HE1 also influenced remote tropical regions. Moreover, the biome distributions derived from both models corroborate findings from pollen records in southwestern and equatorial western Africa as well as northeastern Brazil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29696859','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29696859"><span>[Potential distribution of Panax ginseng and its predicted responses to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Ze Fang; Wei, Hai Yan; Guo, Yan Long; Gu, Wei</p> <p>2016-11-18</p> <p>This study utilized Panax ginseng as the research object. Based on BioMod2 platform, with species presence data and 22 climatic variables, the potential geographic distribution of P. ginseng under the current conditions in northeast China was simulated with ten species distribution model. And then with the receiver-operating characteristic curve (ROC) as weights, we build an ensemble model, which integrated the results of 10 models, using the ensemble model, the future distributions of P. ginseng were also projected for the periods 2050s and 2070s under the climate change scenarios of RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 emission scenarios described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that for the entire region of study area, under the present climatic conditions, 10.4% of the areas were identified as suitable habitats, which were mainly located in northeast Changbai Mountains area and the southeastern region of the Xiaoxing'an Mountains. The model simulations indicated that the suitable habitats would have a relatively significant change under the different climate change scenarios, and generally the range of suitable habitats would be a certain degree of decrease. Meanwhile, the goodness-of-fit, predicted ranges, and weights of explanatory variables was various for each model. And according to the goodness-of-fit, Maxent had the highest model performance, and GAM, RF and ANN were followed, while SRE had the lowest prediction accuracy. In this study we established an ensemble model, which could improve the accuracy of the existing species distribution models, and optimization of species distribution prediction results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..337D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..337D"><span>Climate model uncertainty in impact assessments for agriculture: A multi-ensemble case study on maize in sub-Saharan Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dale, Amy; Fant, Charles; Strzepek, Kenneth; Lickley, Megan; Solomon, Susan</p> <p>2017-03-01</p> <p>We present maize production in sub-Saharan Africa as a case study in the exploration of how uncertainties in global climate change, as reflected in projections from a range of climate model ensembles, influence climate impact assessments for agriculture. The crop model AquaCrop-OS (Food and Agriculture Organization of the United Nations) was modified to run on a 2° × 2° grid and coupled to 122 climate model projections from multi-model ensembles for three emission scenarios (Coupled Model Intercomparison Project Phase 3 [CMIP3] SRES A1B and CMIP5 Representative Concentration Pathway [RCP] scenarios 4.5 and 8.5) as well as two "within-model" ensembles (NCAR CCSM3 and ECHAM5/MPI-OM) designed to capture internal variability (i.e., uncertainty due to chaos in the climate system). In spite of high uncertainty, most notably in the high-producing semi-arid zones, we observed robust regional and sub-regional trends across all ensembles. In agreement with previous work, we project widespread yield losses in the Sahel region and Southern Africa, resilience in Central Africa, and sub-regional increases in East Africa and at the southern tip of the continent. Spatial patterns of yield losses corresponded with spatial patterns of aridity increases, which were explicitly evaluated. Internal variability was a major source of uncertainty in both within-model and between-model ensembles and explained the majority of the spatial distribution of uncertainty in yield projections. Projected climate change impacts on maize production in different regions and nations ranged from near-zero or positive (upper quartile estimates) to substantially negative (lower quartile estimates), highlighting a need for risk management strategies that are adaptive and robust to uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H51A0874B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H51A0874B"><span>Optimal selection of MULTI-model downscaled ensembles for interannual and seasonal climate prediction in the eastern seaboard of Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bejranonda, W.; Koch, M.</p> <p>2010-12-01</p> <p>Because of the imminent threat of the water resources of the eastern seaboard of Thailand, a climate impact study has been carried out there. To that avail, a hydrological watershed model is being used to simulate the future water availability in the wake of possible climate change in the region. The hydrological model is forced by predictions from global climate models (GCMs) that are to be downscaled in an appropriate manner. The challenge at that stage of the climate impact analysis lies then the in the choice of the best GCM and the (statistical) downscaling method. In this study the selection of coarse grid resolution output of the GCMs, transferring information to the fine grid of local climate-hydrology is achieved by cross-correlation and multiple linear regression using meteorological data in the eastern seaboard of Thailand observed between 1970-1999. The grids of 20 atmosphere/ocean global climate models (AOGCM), covering latitude 12.5-15.0 N and longitude 100.0-102.5 E were examined using the Climate-Change Scenario Generator (SCENGEN). With that tool the model efficiency of the prediction of daily precipitation and mean temperature was calculated by comparing the 1980-1999 ECMWF reanalysis predictions with the observed data during that time period. The root means square errors of the predictions were considered and ranked to select the top 5 models, namely, BCCR-BCM2.0, GISS-ER, ECHO-G, ECHAM5/MPI-OM and PCM. The daily time-series of 338 predictors in 9 runs of the 5 selected models were gathered from the CMIP3 multi-model database. Monthly time-serial cross-correlations between the climate predictors and the meteorological measurements from 25 rainfall, 4 minimum and maximum temperature, 4 humidity and 2 solar radiation stations in the study area were then computed and ranked. Using the ranked predictors, a multiple-linear regression model (downscaling transfer model) to forecast the local climate was set up. To improve the prediction power of this GCM downscaling approach, the regression equations were considered as a dynamic regression model that can alter the predictor by seasonal variation. The possible seasonal effect was examined for the 1974-1999 period which was equally divided into a calibration and verification sub-period. The calibrated model using the whole observed time-series was compared with the models separated into 2 seasons; dry and wet, 3 seasons; winter, summer and rainy, and 4 seasons; dry, pre-monsoon, first monsoon and second monsoon. The verification power of the various model variants was measured considering Akaike's information criterion (AIC) and the Nash-Sutcliffe coefficient of the corresponding model fit. The results show that the 4-seasons-variation prediction works best. The highest efficiency for the prediction of rainfall is achieved for the dry season, Oct-Mar, whereas the smallest efficiency is obtained in the monsoon seasons. The overall number of predictor giving top efficiency lies between 3 and 20 in the regression models. In the next, still ongoing stage of the climate impact study the predictions from this new, seasonally optimized downscaling transfer model are being used in the simulations of the future hydrological water budget in that region of Thailand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC13D1180B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC13D1180B"><span>Applicability of AgMERRA Forcing Dataset to Fill Gaps in Historical in-situ Meteorological Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bannayan, M.; Lashkari, A.; Zare, H.; Asadi, S.; Salehnia, N.</p> <p>2015-12-01</p> <p>Integrated assessment studies of food production systems use crop models to simulate the effects of climate and socio-economic changes on food security. Climate forcing data is one of those key inputs of crop models. This study evaluated the performance of AgMERRA climate forcing dataset to fill gaps in historical in-situ meteorological data for different climatic regions of Iran. AgMERRA dataset intercompared with in- situ observational dataset for daily maximum and minimum temperature and precipitation during 1980-2010 periods via Root Mean Square error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) for 17 stations in four climatic regions included humid and moderate, cold, dry and arid, hot and humid. Moreover, probability distribution function and cumulative distribution function compared between model and observed data. The results of measures of agreement between AgMERRA data and observed data demonstrated that there are small errors in model data for all stations. Except for stations which are located in cold regions, model data in the other stations illustrated under-prediction for daily maximum temperature and precipitation. However, it was not significant. In addition, probability distribution function and cumulative distribution function showed the same trend for all stations between model and observed data. Therefore, the reliability of AgMERRA dataset is high to fill gaps in historical observations in different climatic regions of Iran as well as it could be applied as a basis for future climate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31C..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31C..08L"><span>Projected changes over western Canada using convection-permitting regional climate model and the pseudo-global warming method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Y.; Kurkute, S.; Chen, L.</p> <p>2017-12-01</p> <p>Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034957','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034957"><span>Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.</p> <p>2011-01-01</p> <p>Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..623K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..623K"><span>Estimation of ozone dry deposition over Europe for the period 2071-2100</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Komjáthy, Eszter; Gelybó, Györgyi; László Lagzi, István.; Mészáros, Róbert</p> <p>2010-05-01</p> <p>Ozone in the lower troposphere is a phytotoxic air pollutant which can cause injury to plant tissues, causing reduction in plant growth and productivity. In the last decades, several investigations have been carried out for the purpose to estimate ozone load over different surface types. At the same time, the changes of atmospheric variables as well as surface/vegetation parameters due to the global climate change could also strongly modify both temporal and spatial variations of ozone load over Europe. In this study, the possible effects of climate change on ozone deposition are analyzed. Using a sophisticated deposition model, ozone deposition was estimated on a regular grid over Europe for the period 2071-2100. Our aim is to determine the uncertainties and the possible degree of change in ozone deposition velocity as an important predictor of total ozone load using climate data from multiple climate models and runs. For these model calculations, results of the PRUDENCE (Predicting of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects) climate prediction project were used. As a first step, seasonal variations of ozone deposition over different vegetation types in case of different climate scenarios are presented in this study. Besides model calculations, in the frame of a sensitivity analyses, the effects of surface/vegetation parameters (e.g. leaf area index or stomatal resistance) on ozone deposition under a modified climate regime have also been analyzed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A11D0111H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A11D0111H"><span>Changes of Mediterranean cyclones in the future climate employing high resolution climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatzaki, M.; Flocas, H. A.; Kouroutzoglou, J.; Keay, K.; Simmonds, I.; Giannakopoulos, C. A.; Brikolas, V.</p> <p>2011-12-01</p> <p>A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of Mediterranean cyclones, including temporal and spatial variations of frequency of cyclonic tracks, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the MPI-HH regional coupled climate model of the Max Planck Institute for Meteorology is employed consisting of the REgional atmosphere MOdel (REMO), the Max-Planck-Institute for Meteorology ocean model (MPI-OM) and the Hydrological Discharge Model (HD Model). A 25 km resolution domain is established on a rotated latitude-longitude coordinate system, while the physical parameterizations are taken from the global climate model ECHAM-4. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. The model results for the present climate are evaluated against ERA-40 Reanalysis (available through ECMWF), for the period 1962-2001. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with the results of previous studies. However, new findings reveal with respect to the dynamic/kinematic characteristics of the cyclonic tracks. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region. The study of the kinematic and dynamic parameters of the cyclonic tracks according to their origin domain show that the vast majority originate within the examined area itself. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28319296','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28319296"><span>Joint effects of climate variability and socioecological factors on dengue transmission: epidemiological evidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akter, Rokeya; Hu, Wenbiao; Naish, Suchithra; Banu, Shahera; Tong, Shilu</p> <p>2017-06-01</p> <p>To assess the epidemiological evidence on the joint effects of climate variability and socioecological factors on dengue transmission. Following PRISMA guidelines, a detailed literature search was conducted in PubMed, Web of Science and Scopus. Peer-reviewed, freely available and full-text articles, considering both climate and socioecological factors in relation to dengue, published in English from January 1993 to October 2015 were included in this review. Twenty studies have met the inclusion criteria and assessed the impact of both climatic and socioecological factors on dengue dynamics. Among those, four studies have further investigated the relative importance of climate variability and socioecological factors on dengue transmission. A few studies also developed predictive models including both climatic and socioecological factors. Due to insufficient data, methodological issues and contextual variability of the studies, it is hard to draw conclusion on the joint effects of climate variability and socioecological factors on dengue transmission. Future research should take into account socioecological factors in combination with climate variables for a better understanding of the complex nature of dengue transmission as well as for improving the predictive capability of dengue forecasting models, to develop effective and reliable early warning systems. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPA24A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPA24A..05M"><span>A Systems Approach to Climate, Water and Diarrhea in Hubli-Dharward, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mellor, J. E.; Zimmerman, J.</p> <p>2014-12-01</p> <p>Although evidence suggests that climate change will negatively impact water resources and hence diarrheal disease rates in the developing world, there is uncertainty surrounding prior studies. This is due to the complexity of the pathways by which climate impacts diarrhea rates making it difficult to develop interventions. Therefore, our goal was to develop a mechanistic systems approach that incorporates the complex climate, human, engineered and water systems to relate climate change to diarrhea rates under future climate scenarios.To do this, we developed an agent-based model (ABM). Our agents are households and children living in Hubli-Dharward, India. The model was informed with 15 months of weather, water quality, ethnographic and diarrhea incidence data. The model's front end is a stochastic weather simulator incorporating 15 global climate models to simulate rainfall and temperature. The water quality available to agents (residents) on a model "day" is a function of the simulated day's weather and is fully validated with field data. As with the field data, as the ambient temperature increases or it rains, the quality of water available to residents in the model deteriorates. The propensity for an resident to get diarrhea is calculated with an integrated Quantitative Microbial Risk Assessment model with uncertainty simulated with a bootstrap method. Other factors include hand-washing, improved water sources, household water treatment and improved sanitation.The benefits of our approach are as follows: Our mechanistic method allows us to develop scientifically derived adaptation strategies. We can quantitatively link climate scenarios with diarrhea incidence over long time periods. We can explore the complex climate and water system dynamics, rank risk factor importance, examine a broad range of scenarios and identify tipping points. Our approach is modular and expandable such that new datasets can be integrated to study climate impacts on a larger scale. Our results indicate that climate change will have a serious effect on diarrhea incidence in the region. However, adaptation strategies including more reliable water supplies and household water treatment can mitigate these impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29660713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29660713"><span>Assessment of climate change impact on yield of major crops in the Banas River Basin, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dubey, Swatantra Kumar; Sharma, Devesh</p> <p>2018-09-01</p> <p>Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70138920','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70138920"><span>Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Niraula, Rewati; Meixner, Thomas; Norman, Laura M.</p> <p>2015-01-01</p> <p>Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This study also indicated that model calibration in not necessary to determine the direction of change in streamflow due to LULC and climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA43B0324J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA43B0324J"><span>Decision-relevant evaluation of climate models: A case study of chill hours in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jagannathan, K. A.; Jones, A. D.; Kerr, A. C.</p> <p>2017-12-01</p> <p>The past decade has seen a proliferation of different climate datasets with over 60 climate models currently in use. Comparative evaluation and validation of models can assist practitioners chose the most appropriate models for adaptation planning. However, such assessments are usually conducted for `climate metrics' such as seasonal temperature, while sectoral decisions are often based on `decision-relevant outcome metrics' such as growing degree days or chill hours. Since climate models predict different metrics with varying skill, the goal of this research is to conduct a bottom-up evaluation of model skill for `outcome-based' metrics. Using chill hours (number of hours in winter months where temperature is lesser than 45 deg F) in Fresno, CA as a case, we assess how well different GCMs predict the historical mean and slope of chill hours, and whether and to what extent projections differ based on model selection. We then compare our results with other climate-based evaluations of the region, to identify similarities and differences. For the model skill evaluation, historically observed chill hours were compared with simulations from 27 GCMs (and multiple ensembles). Model skill scores were generated based on a statistical hypothesis test of the comparative assessment. Future projections from RCP 8.5 runs were evaluated, and a simple bias correction was also conducted. Our analysis indicates that model skill in predicting chill hour slope is dependent on its skill in predicting mean chill hours, which results from the non-linear nature of the chill metric. However, there was no clear relationship between the models that performed well for the chill hour metric and those that performed well in other temperature-based evaluations (such winter minimum temperature or diurnal temperature range). Further, contrary to conclusions from other studies, we also found that the multi-model mean or large ensemble mean results may not always be most appropriate for this outcome metric. Our assessment sheds light on key differences between global versus local skill, and broad versus specific skill of climate models, highlighting that decision-relevant model evaluation may be crucial for providing practitioners with the best available climate information for their specific needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41210','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41210"><span>Case studies of seasonal rainfall forecasts for Hong Kong and its vicinity using a regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David Hui; Karen Shum; Ji Chen; Shyh-Chin Chen; Jack Ritchie; John Roads</p> <p>2007-01-01</p> <p>Seasonal climate forecasts are one of the most promising tools for providing early warnings for natural hazards such as floods and droughts. Using two case studies, this paper documents the skill of a regional climate model in the seasonal forecasting of below normal rainfall in southern China during the rainy seasons of July–August–September 2003 and April–...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28292670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28292670"><span>Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L</p> <p>2017-08-15</p> <p>The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GMS...186..273M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GMS...186..273M"><span>Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis</p> <p></p> <p>This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22754455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22754455"><span>The health effects of climate change: a survey of recent quantitative research.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grasso, Margherita; Manera, Matteo; Chiabai, Aline; Markandya, Anil</p> <p>2012-05-01</p> <p>In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3386570','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3386570"><span>The Health Effects of Climate Change: A Survey of Recent Quantitative Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grasso, Margherita; Manera, Matteo; Chiabai, Aline; Markandya, Anil</p> <p>2012-01-01</p> <p>In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases. PMID:22754455</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356931-probabilistic-modeling-indoor-climates-residential-buildings-using-energyplus','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356931-probabilistic-modeling-indoor-climates-residential-buildings-using-energyplus"><span>Probabilistic modeling of the indoor climates of residential buildings using EnergyPlus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.; ...</p> <p>2017-04-25</p> <p>The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..541..703D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..541..703D"><span>Modeling the influence of climate change on watershed systems: Adaptation through targeted practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dudula, John; Randhir, Timothy O.</p> <p>2016-10-01</p> <p>Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28426754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28426754"><span>Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oke, Tobi A; Hager, Heather A</p> <p>2017-01-01</p> <p>The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5398565','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5398565"><span>Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Oke, Tobi A.; Hager, Heather A.</p> <p>2017-01-01</p> <p>The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity. PMID:28426754</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812146K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812146K"><span>Modelling of labour productivity loss due to climate change: HEAT-SHIELD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kjellstrom, Tord; Daanen, Hein</p> <p>2016-04-01</p> <p>Climate change will bring higher heat levels (temperature and humidity combined) to large parts of the world. When these levels reach above thresholds well defined by human physiology, the ability to maintain physical activity levels decrease and labour productivity is reduced. This impact is of particular importance in work situations in areas with long high intensity hot seasons, but also affects cooler areas during heat waves. Our modelling of labour productivity loss includes climate model data of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP), calculations of heat stress indexes during different months, estimations of work capacity loss and its annual impacts in different parts of the world. Different climate models will be compared for the Representative Concentration Pathways (RCPs) and the outcomes of the 2015 Paris Climate Conference (COP21) agreements. The validation includes comparisons of modelling outputs with actual field studies using historical heat data. These modelling approaches are a first stage contribution to the European Commission funded HEAT-SHIELD project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50...51R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50...51R"><span>Automated parameter tuning applied to sea ice in a global climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roach, Lettie A.; Tett, Simon F. B.; Mineter, Michael J.; Yamazaki, Kuniko; Rae, Cameron D.</p> <p>2018-01-01</p> <p>This study investigates the hypothesis that a significant portion of spread in climate model projections of sea ice is due to poorly-constrained model parameters. New automated methods for optimization are applied to historical sea ice in a global coupled climate model (HadCM3) in order to calculate the combination of parameters required to reduce the difference between simulation and observations to within the range of model noise. The optimized parameters result in a simulated sea-ice time series which is more consistent with Arctic observations throughout the satellite record (1980-present), particularly in the September minimum, than the standard configuration of HadCM3. Divergence from observed Antarctic trends and mean regional sea ice distribution reflects broader structural uncertainty in the climate model. We also find that the optimized parameters do not cause adverse effects on the model climatology. This simple approach provides evidence for the contribution of parameter uncertainty to spread in sea ice extent trends and could be customized to investigate uncertainties in other climate variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25946209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25946209"><span>High mean water vapour pressure promotes the transmission of bacillary dysentery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Guo-Zheng; Shao, Feng-Feng; Zhang, Hao; Zou, Chun-Pu; Li, Hui-Hui; Jin, Jue</p> <p>2015-01-01</p> <p>Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA) model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ERL.....5c4009B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ERL.....5c4009B"><span>Geoengineering as an optimization problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ban-Weiss, George A.; Caldeira, Ken</p> <p>2010-07-01</p> <p>There is increasing evidence that Earth's climate is currently warming, primarily due to emissions of greenhouse gases from human activities, and Earth has been projected to continue warming throughout this century. Scientists have begun to investigate the potential for geoengineering options for reducing surface temperatures and whether such options could possibly contribute to environmental risk reduction. One proposed method involves deliberately increasing aerosol loading in the stratosphere to scatter additional sunlight to space. Previous modeling studies have attempted to predict the climate consequences of hypothetical aerosol additions to the stratosphere. These studies have shown that this method could potentially reduce surface temperatures, but could not recreate a low-CO2 climate in a high-CO2 world. In this study, we attempt to determine the latitudinal distribution of stratospheric aerosols that would most closely achieve a low-CO2 climate despite high CO2 levels. Using the NCAR CAM3.1 general circulation model, we find that having a stratospheric aerosol loading in polar regions higher than that in tropical regions leads to a temperature distribution that is more similar to the low-CO2 climate than that yielded by a globally uniform loading. However, such polar weighting of stratospheric sulfate tends to degrade the degree to which the hydrological cycle is restored, and thus does not markedly contribute to improved recovery of a low-CO2 climate. In the model, the optimal latitudinally varying aerosol distributions diminished the rms zonal mean land temperature change from a doubling of CO2 by 94% and the rms zonal mean land precipitation minus evaporation change by 74%. It is important to note that this idealized study represents a first attempt at optimizing the engineering of climate using a general circulation model; uncertainties are high and not all processes that are important in reality are modeled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..904R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..904R"><span>Improving models to assess impacts of climate change on Mediterranean water resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rocha, João; Carvalho Santos, Cláudia; Keizer, Jan Jacob; Alexandre Diogo, Paulo; Nunes, João Pedro</p> <p>2016-04-01</p> <p>In recent decades, water availability for human consumption has faced major constraints due to increasing pollution and reduced water availability. Water resources availability can gain additional stresses and pressures in the context of potential climate change scenarios. For the last decades, the climate change paradigm has been the scope of many researchers and the focus of decision makers, policies and environmental/climate legislation. Decision-makers face a wide range of constrains, as they are forced to define new strategies that merge planning, management and climate change adaptations. In turn, decision-makers must create integrated strategies aiming at the sustainable use of resources. There are multiple uncertainties associated with climate change impact assessment and water resources. Typically, most studies have dealt with uncertainties in emission scenarios and resulting socio-economic conditions, including land-use and water use. Less frequently, studies have address the disparities between the future climates generated by climate models for the same greenhouse gas concentrations; and the uncertainties related with the limited knowledge of how watersheds work, which also limits the capacity to simulate them with models. Therefore, the objective of this study is to apply the SWAT (Soil and Water Assessment Tool) hydrological model to a catchment in Alentejo, southern Portugal; and to evaluate the uncertainty associated both to the calibration of hydrological models and the use of different climate change scenarios and models (a combination of 4 GCM (General Circulation Models) and 1 RCM (Regional Circulation Models) for the scenarios RCP 4.5 and 8.5. The Alentejo region is highly vulnerable to the effects of potential climate changes with particular focus on water resources availability, despite several reservoirs used for freshwater supply and agriculture irrigation (e.g. the Alqueva reservoir - the largest artificial lake of the Iberian Peninsula). Here the SWAT2012 model was applied to the catchment of Monte Novo and Vigia. The Monte Novo and Vigia reservoirs were selected due to their importance for the district of Évora, respectively for urban water supply and irrigation. The catchment is a multipurpose reservoir system that covers an area of about 81473 ha and drains into the Alqueva reservoir (25.000 ha). The SWAT2012 model was run for 1973-2012. The calibration routines were conducted on a monthly basis using the SWATCUP. The calibration performance rating is expressed by: NSE 0.89, bR² 0.89, Pbias 7.29 (Vigia) and NSE 0.84, bR² 0.83, Pbias 6.29 (Monte Novo). Expected results are a generalized decrease of water availability in the basin, more intense under the scenario RCP 8.5. However the uncertainty related to the use of different climate change models show different outcomes, which may be considered for the strategies to be adopted. We will take advantage of SWAT's automatic calibration capacities to explore how multiple interpretations of present-day hydrological processes could lead to different outputs in future climate scenarios, and compare this uncertainty with other sources of uncertainty related with future scenarios or different outputs from climate models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33C1088H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33C1088H"><span>Assessment of Climate Suitability of Maize in South Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hyun, S.; Choi, D.; Seo, B.</p> <p>2017-12-01</p> <p>Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52F..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52F..02S"><span>Climate model diversity in the Northern Hemisphere Polar vortex response to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simpson, I.; Seager, R.; Hitchcock, P.; Cohen, N.</p> <p>2017-12-01</p> <p>Global climate models vary widely in their predictions of the future of the Northern Hemisphere stratospheric polar vortex, with some showing a significant strengthening of the vortex, some showing a significant weakening and others displaying a response that is not outside of the range expected from internal variability alone. This inter-model spread in stratospheric predictions may account for some inter-model spread in tropospheric predictions with important implications for the storm tracks and regional climate change, particularly for the North Atlantic sector. Here, our current state of understanding of this model spread and its tropospheric impacts will be reviewed. Previous studies have proposed relationships between a models polar vortex response to climate change and its present day vortex climatology while others have demonstrated links between a models polar vortex response and changing wave activity coming up from the troposphere below under a warming climate. The extent to which these mechanisms can account for the spread in polar vortex changes exhibited by the Coupled Model Intercomparison Project, phase 5 models will be assessed. In addition, preliminary results from a series of idealized experiments with the Community Atmosphere Model will be presented. In these experiments, nudging of the stratospheric zonal mean state has been imposed to mimic the inter-model spread in the polar vortex response to climate change so that the downward influence of the spread in zonal mean stratospheric responses on the tropospheric circulation can be assessed within one model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.U14A..01O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.U14A..01O"><span>Climate Change: Modeling the Human Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oppenheimer, M.; Hsiang, S. M.; Kopp, R. E.</p> <p>2012-12-01</p> <p>Integrated assessment models have historically relied on forward modeling including, where possible, process-based representations to project climate change impacts. Some recent impact studies incorporate the effects of human responses to initial physical impacts, such as adaptation in agricultural systems, migration in response to drought, and climate-related changes in worker productivity. Sometimes the human response ameliorates the initial physical impacts, sometimes it aggravates it, and sometimes it displaces it onto others. In these arenas, understanding of underlying socioeconomic mechanisms is extremely limited. Consequently, for some sectors where sufficient data has accumulated, empirically based statistical models of human responses to past climate variability and change have been used to infer response sensitivities which may apply under certain conditions to future impacts, allowing a broad extension of integrated assessment into the realm of human adaptation. We discuss the insights gained from and limitations of such modeling for benefit-cost analysis of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...166...19I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...166...19I"><span>Background sampling and transferability of species distribution model ensembles under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iturbide, Maialen; Bedia, Joaquín; Gutiérrez, José Manuel</p> <p>2018-07-01</p> <p>Species Distribution Models (SDMs) constitute an important tool to assist decision-making in environmental conservation and planning. A popular application of these models is the projection of species distributions under climate change conditions. Yet there are still a range of methodological SDM factors which limit the transferability of these models, contributing significantly to the overall uncertainty of the resulting projections. An important source of uncertainty often neglected in climate change studies comes from the use of background data (a.k.a. pseudo-absences) for model calibration. Here, we study the sensitivity to pseudo-absence sampling as a determinant factor for SDM stability and transferability under climate change conditions, focusing on European wide projections of Quercus robur as an illustrative case study. We explore the uncertainty in future projections derived from ten pseudo-absence realizations and three popular SDMs (GLM, Random Forest and MARS). The contribution of the pseudo-absence realization to the uncertainty was higher in peripheral regions and clearly differed among the tested SDMs in the whole study domain, being MARS the most sensitive - with projections differing up to a 40% for different realizations - and GLM the most stable. As a result we conclude that parsimonious SDMs are preferable in this context, avoiding complex methods (such as MARS) which may exhibit poor model transferability. Accounting for this new source of SDM-dependent uncertainty is crucial when forming multi-model ensembles to undertake climate change projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.3295S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.3295S"><span>On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.</p> <p>2018-06-01</p> <p>Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent the temperature dynamics. We further show that our proposed initialization procedure is effective and robust to uncertainty in paleo-climate reconstructions and that more than 300 years of reconstructed climate time series are needed for proper model initialization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5214405','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5214405"><span>Impacts of uncertainties in European gridded precipitation observations on regional climate analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gobiet, Andreas</p> <p>2016-01-01</p> <p>ABSTRACT Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio‐temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan‐European data sets and a set that combines eight very high‐resolution station‐based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post‐processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small‐scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate‐mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments. PMID:28111497</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689447','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4689447"><span>Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Friggens, Megan M.; Finch, Deborah M.</p> <p>2015-01-01</p> <p>Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales. PMID:26700871</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26700871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26700871"><span>Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Friggens, Megan M; Finch, Deborah M</p> <p>2015-01-01</p> <p>Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy's warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPA24A..04O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPA24A..04O"><span>Human Responses to Climate Variability: The Case of South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.</p> <p>2014-12-01</p> <p>Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC52D..08I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC52D..08I"><span>Assessing the Dynamic Effects of Climate on Individual Tree Growth Across Time and Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Itter, M.; Finley, A. O.; D'Amato, A. W.; Foster, J. R.; Bradford, J. B.</p> <p>2015-12-01</p> <p>The relationship between climate variability and an ecosystem process, such as forest growth, is frequently not fixed over time, but changes due to complex interactions between unobserved ecological factors and the process of interest. Climate data and forecasts are frequently spatially and temporally misaligned with ecological observations making inference regarding the effects of climate on ecosystem processes particularly challenging. Here we develop a Bayesian dynamic hierarchical model for annual tree growth increment that allows the effects of climate to evolve over time, applies climate data at a spatial-temporal scale consistent with observations, and controls for individual-level variability commonly encountered in ecological datasets. The model is applied to individual tree data from northern Minnesota using a modified Thornthwaite-type water balance model to transform PRISM temperature and precipitation estimates to physiologically relevant values of actual and potential evapotranspiration (AET, PET), and climatic water deficit. Model results indicate that mean tree growth is most sensitive to AET during the growing season and PET and minimum temperature in the spring prior to growth. The effects of these variables on tree growth, however, are not stationary with significant effects observed in only a subset of years during the 111-year study period. Importantly, significant effects of climate do not result from anomalous climate observations, but follow from large growth deviations unexplained by tree age and size, and time since forest disturbance. Results differ markedly from alternative models that assume the effects of climate are stationary over time or apply climate estimates at the individual scale. Forecasts of future tree growth as a function of climate follow directly from the dynamic hierarchical model allowing for assessment of forest change. Current work is focused on extending the model framework to include regional climate and ecosystem effects for application to a larger tree growth dataset spanning a latitudinal gradient within the US from Maine to Florida.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43B1629Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43B1629Z"><span>Evaluation of a new satellite-based precipitation dataset for climate studies in the Xiang River basin, Southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Q.; Xu, Y. P.; Hsu, K. L.</p> <p>2017-12-01</p> <p>A new satellite-based precipitation dataset, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with long-term time series dating back to 1983 can be one valuable dataset for climate studies. This study investigates the feasibility of using PERSIANN-CDR as a reference dataset for climate studies. Sixteen CMIP5 models are evaluated over the Xiang River basin, southern China, by comparing their performance on precipitation projection and streamflow simulation, particularly on extreme precipitation and streamflow events. The results show PERSIANN-CDR is a valuable dataset for climate studies, even on extreme precipitation events. The precipitation estimates and their extreme events from CMIP5 models are improved significantly compared with rain gauge observations after bias-correction by the PERSIANN-CDR precipitation estimates. Given streamflows simulated with raw and bias-corrected precipitation estimates from 16 CMIP5 models, 10 out of 16 are improved after bias-correction. The impact of bias-correction on extreme events for streamflow simulations are unstable, with eight out of 16 models can be clearly claimed they are improved after the bias-correction. Concerning the performance of raw CMIP5 models on precipitation, IPSL-CM5A-MR excels the other CMIP5 models, while MRI-CGCM3 outperforms on extreme events with its better performance on six extreme precipitation metrics. Case studies also show that raw CCSM4, CESM1-CAM5, and MRI-CGCM3 outperform other models on streamflow simulation, while MIROC5-ESM-CHEM, MIROC5-ESM and IPSL-CM5A-MR behaves better than the other models after bias-correction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53G..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53G..02S"><span>Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.</p> <p>2017-12-01</p> <p>Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2716330','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2716330"><span>Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Holt, Ashley C; Salkeld, Daniel J; Fritz, Curtis L; Tucker, James R; Gong, Peng</p> <p>2009-01-01</p> <p>Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions. PMID:19558717</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG34A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG34A..08H"><span>Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.</p> <p>2017-12-01</p> <p>Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812690B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812690B"><span>Simulating the Risk of Liver Fluke Infection using a Mechanistic Hydro-epidemiological Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beltrame, Ludovica; Dunne, Toby; Rose, Hannah; Walker, Josephine; Morgan, Eric; Vickerman, Peter; Wagener, Thorsten</p> <p>2016-04-01</p> <p>Liver Fluke (Fasciola hepatica) is a common parasite found in livestock and responsible for considerable economic losses throughout the world. Risk of infection is strongly influenced by climatic and hydrological conditions, which characterise the host environment for parasite development and transmission. Despite on-going control efforts, increases in fluke outbreaks have been reported in recent years in the UK, and have been often attributed to climate change. Currently used fluke risk models are based on empirical relationships derived between historical climate and incidence data. However, hydro-climate conditions are becoming increasingly non-stationary due to climate change and direct anthropogenic impacts such as land use change, making empirical models unsuitable for simulating future risk. In this study we introduce a mechanistic hydro-epidemiological model for Liver Fluke, which explicitly simulates habitat suitability for disease development in space and time, representing the parasite life cycle in connection with key environmental conditions. The model is used to assess patterns of Liver Fluke risk for two catchments in the UK under current and potential future climate conditions. Comparisons are made with a widely used empirical model employing different datasets, including data from regional veterinary laboratories. Results suggest that mechanistic models can achieve adequate predictive ability and support adaptive fluke control strategies under climate change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20947136','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20947136"><span>Modeling the impact of climate variability on diarrhea-associated diseases in Taiwan (1996-2007).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chou, Wei-Chun; Wu, Jiunn-Lin; Wang, Yu-Chun; Huang, Hsin; Sung, Fung-Chang; Chuang, Chun-Yu</p> <p>2010-12-01</p> <p>Diarrhea is an important public health problem in Taiwan. Climatic changes and an increase in extreme weather events (extreme heat, drought or rainfalls) have been strongly linked to the incidence of diarrhea-associated disease. This study investigated and quantified the relationship between climate variations and diarrhea-associated morbidity in subtropical Taiwan. Specifically, this study analyzed the local climatic variables and the number of diarrhea-associated infection cases from 1996 to 2007. This study applied a climate variation-guided Poisson regression model to predict the dynamics of diarrhea-associated morbidity. The proposed model allows for climate factors (relative humidity, maximum temperature and the numbers of extreme rainfall), autoregression, long-term trends and seasonality, and a lag-time effect. Results indicated that the maximum temperature and extreme rainfall days were strongly related to diarrhea-associated morbidity. The impact of maximum temperature on diarrhea-associated morbidity appeared primarily among children (0-14years) and older adults (40-64years), and had less of an effect on adults (15-39years). Otherwise, relative humidity and extreme rainfall days significantly contributed to the diarrhea-associated morbidity in adult. This suggested that children and older adults were the most susceptible to diarrhea-associated morbidity caused by climatic variation. Because climatic variation contributed to diarrhea morbidity in Taiwan, it is necessary to develop an early warning system based on the climatic variation information for disease control management. Copyright © 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22891967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22891967"><span>Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van der Fels-Klerx, H J; Olesen, J E; Naustvoll, L-J; Friocourt, Y; Mengelers, M J B; Christensen, J H</p> <p>2012-01-01</p> <p>Climate change is expected to affect food and feed safety, including the occurrence of natural toxins in primary crop and seafood production; however, to date, quantitative estimates are scarce. This study aimed to estimate the impact of climate change effects on mycotoxin contamination of cereal grains cultivated in the terrestrial area of north west Europe, and on the frequency of harmful algal blooms and contamination of shellfish with marine biotoxins in the North Sea coastal zone. The study focused on contamination of wheat with deoxynivalenol, and on abundance of Dinophysis spp. and the possible relationship with diarrhetic shellfish toxins. The study used currently available data and models. Global and regional climate models were combined with models of crop phenology, mycotoxin prediction models, hydrodynamic models and ecological models, with the output of one model being used as input for the other. In addition, statistical data analyses using existing national datasets from the study area were performed to obtain information on the relationships between Dinophysis spp. cell counts and contamination of shellfish with diarrhetic shellfish toxins as well as on frequency of cereal cropping. In this paper, a summary of the study is presented, and overall conclusions and recommendations are given. Climate change projections for the years 2031-2050 were used as the starting point of the analyses relative to a preceding 20-year baseline period from which the climate change signal was calculated. Results showed that, in general, climate change effects lead to advanced flowering and harvest of wheat, and increased risk of contamination of wheat with deoxynivalenol. Blooms of dinoflagellates were estimated to occur more often. If the group of Dinophysis spp. behaves similarly to other flagellates in the future then frequency of harmful algal blooms of Dinophysis spp. may also increase, but consequences for contamination of shellfish with diarrhetic shellfish toxins are uncertain. Climate change will also have indirect effects on toxin contamination, which may be equally important. For example, the frequency of cropping of wheat and maize in north Europe was projected to increase under climate change, which will also increase the risk of contamination of the grains with deoxynivalenol. Risk managers are encouraged to consider the entire range of the predictions of climate change effects on food safety hazards, rather than median or average values only. Furthermore, it is recommended to closely monitor levels of mycotoxins and marine biotoxins in the future, in particular related to risky situations associated with favourable climatic conditions for toxin producing organisms. In particular, it is important to pay attention to the continuity of collecting the right data, and the availability and accessibility of databases. On a European level, it is important to stress the need for harmonisation of terminology and data collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED13B0942H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED13B0942H"><span>Assessing and Upgrading Ocean Mixing for the Study of Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.</p> <p>2016-12-01</p> <p>Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate science by improving our mixing schemes. We are incorporating climate research into our college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B52C..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B52C..05D"><span>Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drewniak, B.</p> <p>2017-12-01</p> <p>Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A12D..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A12D..01K"><span>High Resolution Modeling of Hurricanes in a Climate Context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knutson, T. R.</p> <p>2007-12-01</p> <p>Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our model reproduces the observed increase in Atlantic hurricane activity (numbers, Accumulated Cyclone Energy (ACE), Power Dissipation Index (PDI), etc.) over the period 1980-2006 fairly realistically, and also simulates ENSO-related interannual variations in hurricane counts. Annual simulated hurricane counts from a two-member ensemble correlate with observed counts at r=0.86. However, the model does not simulate hurricanes as intense as those observed, with minimum central pressures of 937 hPa (category 4) and maximum surface winds of 47 m/s (category 2) being the most intense simulated so far in these experiments. To explore possible impacts of future climate warming on Atlantic hurricane activity, we are re-running the 1980- 2006 seasons, keeping the interannual to multidecadal variations unchanged, but altering the August-October mean climate according to changes simulated by an 18-member ensemble of AR4 climate models (years 2080- 2099, A1B emission scenario). The warmer climate state features higher Atlantic SSTs, and also increased vertical wind shear across the Caribbean (Vecchi and Soden, GRL 2007). A key assumption of this approach is that the 18-model ensemble-mean climate change is the best available projection of future climate change in the Atlantic. Some of the 18 global models show little increase in wind shear, or even a decrease, and thus there will be considerable uncertainty associated with the hurricane frequency results, which will require further exploration. Results from our simulations will be presented at the meeting.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC22C..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC22C..08M"><span>The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.</p> <p>2011-12-01</p> <p>The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..544..407W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..544..407W"><span>Pan evaporation modeling using six different heuristic computing methods in different climates of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui</p> <p>2017-01-01</p> <p>Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1373Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1373Z"><span>On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.</p> <p>2018-02-01</p> <p>Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A41H0179S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A41H0179S"><span>The effect of future outdoor air pollution on human health and the contribution of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.</p> <p>2013-12-01</p> <p>At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=277062','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=277062"><span>Climate change and biofuel wheat: A case study of Southern Saskatchewan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This study assessed potential impacts of climate change on wheat production as a biofuel crop in southern Saskatchewan, Canada. The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) was used to simulate biomass and grain yield under three climate change scenarios ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC41H..06O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC41H..06O"><span>Accounting for multiple sources of uncertainty in impact assessments: The example of the BRACE study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, B. C.</p> <p>2015-12-01</p> <p>Assessing climate change impacts often requires the use of multiple scenarios, types of models, and data sources, leading to a large number of potential sources of uncertainty. For example, a single study might require a choice of a forcing scenario, climate model, bias correction and/or downscaling method, societal development scenario, model (typically several) for quantifying elements of societal development such as economic and population growth, biophysical model (such as for crop yields or hydrology), and societal impact model (e.g. economic or health model). Some sources of uncertainty are reduced or eliminated by the framing of the question. For example, it may be useful to ask what an impact outcome would be conditional on a given societal development pathway, forcing scenario, or policy. However many sources of uncertainty remain, and it is rare for all or even most of these sources to be accounted for. I use the example of a recent integrated project on the Benefits of Reduced Anthropogenic Climate changE (BRACE) to explore useful approaches to uncertainty across multiple components of an impact assessment. BRACE comprises 23 papers that assess the differences in impacts between two alternative climate futures: those associated with Representative Concentration Pathways (RCPs) 4.5 and 8.5. It quantifies difference in impacts in terms of extreme events, health, agriculture, tropical cyclones, and sea level rise. Methodologically, it includes climate modeling, statistical analysis, integrated assessment modeling, and sector-specific impact modeling. It employs alternative scenarios of both radiative forcing and societal development, but generally uses a single climate model (CESM), partially accounting for climate uncertainty by drawing heavily on large initial condition ensembles. Strengths and weaknesses of the approach to uncertainty in BRACE are assessed. Options under consideration for improving the approach include the use of perturbed physics ensembles of CESM, employing results from multiple climate models, and combining the results from single impact models with statistical representations of uncertainty across multiple models. A key consideration is the relationship between the question being addressed and the uncertainty approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMED14B..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMED14B..03C"><span>EdGCM: Research Tools for Training the Climate Change Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.</p> <p>2011-12-01</p> <p>Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To further increase the educational potential of climate models, the EdGCM project has also created "EZgcm". Through a joint venture of NASA, Columbia University and McGill University EZgcm moves the focus toward a greater use of Web 1.0 and Web 2.0-based technologies. It shifts the educational objectives towards a greater emphasis on teaching students how science is conducted and what role science plays in assessing climate change. That is, students learn about the steps of the scientific process as conveyed by climate modeling research: constructing a hypothesis, designing an experiment, running a computer model, using scientific visualization to support analysis, communicating the results of that analysis, and role playing the scientific peer review process. This is in stark contrast to what they learn from the political debate over climate change, which they often confuse with a scientific debate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49628','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49628"><span>Selecting climate change scenarios using impact-relevant sensitivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Julie A. Vano; John B. Kim; David E. Rupp; Philip W. Mote</p> <p>2015-01-01</p> <p>Climate impact studies often require the selection of a small number of climate scenarios. Ideally, a subset would have simulations that both (1) appropriately represent the range of possible futures for the variable/s most important to the impact under investigation and (2) come from global climate models (GCMs) that provide plausible results for future climate in the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26761791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26761791"><span>Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tellería, José L; Fernández-López, Javier; Fandos, Guillermo</p> <p>2016-01-01</p> <p>We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1249119-simulating-aerosol-indirect-effects-improved-aerosol-cloud-precipitation-representations-coupled-regional-climate-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1249119-simulating-aerosol-indirect-effects-improved-aerosol-cloud-precipitation-representations-coupled-regional-climate-model"><span>Simulating Aerosol Indirect Effects with Improved Aerosol-Cloud- Precipitation Representations in a Coupled Regional Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yang; Leung, L. Ruby; Fan, Jiwen</p> <p></p> <p>This is a collaborative project among North Carolina State University, Pacific Northwest National Laboratory, and Scripps Institution of Oceanography, University of California at San Diego to address the critical need for an accurate representation of aerosol indirect effect in climate and Earth system models. In this project, we propose to develop and improve parameterizations of aerosol-cloud-precipitation feedbacks in climate models and apply them to study the effect of aerosols and clouds on radiation and hydrologic cycle. Our overall objective is to develop, improve, and evaluate parameterizations to enable more accurate simulations of these feedbacks in high resolution regional and globalmore » climate models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1479M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1479M"><span>Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.</p> <p>2018-04-01</p> <p>We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=school+AND+violence&id=EJ1098083','ERIC'); return false;" href="https://eric.ed.gov/?q=school+AND+violence&id=EJ1098083"><span>Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.</p> <p>2016-01-01</p> <p>The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.2235G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.2235G"><span>Evaluating synoptic systems in the CMIP5 climate models over the Australian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.</p> <p>2016-10-01</p> <p>Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6984108-carbon-dioxide-climate-second-assessment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6984108-carbon-dioxide-climate-second-assessment"><span>Carbon dioxide and climate: a second assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p></p> <p>For over a century, concern has been expressed that increases in atmospheric carbon dioxide (CO/sub 2/) concentration could affect global climate by changing the heat balance of the atmosphere and Earth. Observations reveal steadily increasing concentrations of CO/sub 2/, and experiments with numerical climate models indicate that continued increase would eventually produce significant climatic change. Comprehensive assessment of the issue will require projection of future CO/sub 2/ emissions and study of the disposition of this excess carbon in the atmosphere, ocean, and biota; the effect on climate; and the implications for human welfare. This study focuses on one aspect, estimationmore » of the effect on climate of assumed future increases in atmospheric CO/sub 2/. Conclusions are drawn principally from present-day numerical models of the climate system. To address the significant role of the oceans, the study also makes use of observations of the distributions of anthropogenic tracers other than CO/sub 2/. The rapid scientific developments in these areas suggest that periodic reassessments will be warranted. The starting point for the study was a similar 1979 review by a Climate Research Board panel chaired by the late Jule G. Charney. The present study has not found any new results that necessitate substantial revision of the conclusions of the Charney report.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992PhDT.......345S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992PhDT.......345S"><span>The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stooksbury, David Emory</p> <p></p> <p>Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC41B1088G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC41B1088G"><span>Comparative Assessment of a New Hydrological Modelling Approach for Prediction of Runoff in Gauged and Ungauged Basins, and Climate Change Impacts Assessment: A Case Study from Benin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>GABA, C. O. U.; Alamou, E.; Afouda, A.; Diekkrüger, B.</p> <p>2016-12-01</p> <p>Assessing water resources is still an important challenge especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we investigate a new modelling approach based on the Physics Principle of Least Action which was first applied to the Bétérou catchment in Benin and gave very good results. The study presents new hypotheses to go further in the model development with a view of widening its application. The improved version of the model MODHYPMA was applied to sixteen (16) subcatchments in Bénin, West Africa. Its performance was compared to two well-known lumped conceptual models, the GR4J and HBV models. The model was successfully calibrated and validated and showed a good performance in most catchments. The analysis revealed that the three models have similar performance and timing errors. But in contrary to other models, MODHYMA is subject to a less loss of performance from calibration to validation. In order to evaluate the usefulness of our model for the prediction of runoff in ungauged basins, model parameters were estimated from the physical catchments characteristics. We relied on statistical methods applied on calibrated model parameters to deduce relationships between parameters and physical catchments characteristics. These relationships were further tested and validated on gauged basins that were considered ungauged. This regionalization was also performed for GR4J model.We obtained NSE values greater than 0.7 for MODHYPMA while the NSE values for GR4J were inferior to 0.5. In the presented study, the effects of climate change on water resources in the Ouémé catchment at the outlet of Savè (about 23 500 km2) are quantified. The output of a regional climate model was used as input to the hydrological models.Computed within the GLOWA-IMPETUS project, the future climate projections (describing a rainfall reduction of up to 15%) are derived from the regional climate model REMO driven by the global ECHAM model.The results reveal a significant decrease in future water resources (of -66% to -53% for MODHYPMA and of -59% to -46% for GR4J) for the IPCC climate scenarios A1B and B1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131..471P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131..471P"><span>Statistical bias correction method applied on CMIP5 datasets over the Indian region during the summer monsoon season for climate change applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasanna, V.</p> <p>2018-01-01</p> <p>This study makes use of temperature and precipitation from CMIP5 climate model output for climate change application studies over the Indian region during the summer monsoon season (JJAS). Bias correction of temperature and precipitation from CMIP5 GCM simulation results with respect to observation is discussed in detail. The non-linear statistical bias correction is a suitable bias correction method for climate change data because it is simple and does not add up artificial uncertainties to the impact assessment of climate change scenarios for climate change application studies (agricultural production changes) in the future. The simple statistical bias correction uses observational constraints on the GCM baseline, and the projected results are scaled with respect to the changing magnitude in future scenarios, varying from one model to the other. Two types of bias correction techniques are shown here: (1) a simple bias correction using a percentile-based quantile-mapping algorithm and (2) a simple but improved bias correction method, a cumulative distribution function (CDF; Weibull distribution function)-based quantile-mapping algorithm. This study shows that the percentile-based quantile mapping method gives results similar to the CDF (Weibull)-based quantile mapping method, and both the methods are comparable. The bias correction is applied on temperature and precipitation variables for present climate and future projected data to make use of it in a simple statistical model to understand the future changes in crop production over the Indian region during the summer monsoon season. In total, 12 CMIP5 models are used for Historical (1901-2005), RCP4.5 (2005-2100), and RCP8.5 (2005-2100) scenarios. The climate index from each CMIP5 model and the observed agricultural yield index over the Indian region are used in a regression model to project the changes in the agricultural yield over India from RCP4.5 and RCP8.5 scenarios. The results revealed a better convergence of model projections in the bias corrected data compared to the uncorrected data. The study can be extended to localized regional domains aimed at understanding the changes in the agricultural productivity in the future with an agro-economy or a simple statistical model. The statistical model indicated that the total food grain yield is going to increase over the Indian region in the future, the increase in the total food grain yield is approximately 50 kg/ ha for the RCP4.5 scenario from 2001 until the end of 2100, and the increase in the total food grain yield is approximately 90 kg/ha for the RCP8.5 scenario from 2001 until the end of 2100. There are many studies using bias correction techniques, but this study applies the bias correction technique to future climate scenario data from CMIP5 models and applied it to crop statistics to find future crop yield changes over the Indian region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4342967','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4342967"><span>Climate change and Ixodes tick-borne diseases of humans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ostfeld, Richard S.; Brunner, Jesse L.</p> <p>2015-01-01</p> <p>The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease. PMID:25688022</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1281659-clouds-more-arm-climate-modeling-best-estimate-data-new-data-product-climate-studies','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1281659-clouds-more-arm-climate-modeling-best-estimate-data-new-data-product-climate-studies"><span>Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; ...</p> <p>2010-01-01</p> <p>The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.546H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.546H"><span>Assessing the capability of high resolution climatic model experiments to simulate Mediterranean cyclonic tracks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatzaki, M.; Flocas, H. A.; Giannakopoulos, C.; Kostopoulou, E.; Kouroutzoglou, I.; Keay, K.; Simmonds, I.</p> <p>2010-09-01</p> <p>In this study, a comparison of a reanalysis driven simulation to a GCM driven simulation of a regional climate model is performed in order to assess the model's ability to capture the climatic characteristics of cyclonic tracks in the Mediterranean in the present climate. The ultimate scope of the study will be to perform a future climate projection related to cyclonic tracks in order to better understand and assess climate change in the Mediterranean. The climatology of the cyclonic tracks includes inter-monthly variations, classification of tracks according to their origin domain, dynamic and kinematic characteristics, as well as trend analysis. For this purpose, the ENEA model is employed based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the ERA402 with lateral Boundary conditions from ERA40 for the 43-year period 1958-2000, and b) the EH5OM_20C3M where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region, consistent with previous studies. The classification of the tracks according to their origin domain show that the vast majority originate within the examined area itself. The study of the kinematic and dynamic parameters of tracks according to their origin demonstrate that deeper cyclones follow the SW track. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70147071','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70147071"><span>Targeting climate diversity in conservation planning to build resilience to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth</p> <p>2015-01-01</p> <p>Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413642H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413642H"><span>Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halenka, T.; Huszar, P.; Belda, M.</p> <p>2012-04-01</p> <p>Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31C1014Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31C1014Z"><span>Evaluation of Projected Agricultural Climate Risk over the Contiguous US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, X.; Troy, T. J.; Devineni, N.</p> <p>2017-12-01</p> <p>Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of our agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how does the widespread response of irrigated crops differ from rainfed and how can we best account for uncertainty in yield responses. We developed a stochastic approach to evaluate climate risk quantitatively to better understand the historical impacts of climate change and estimate the future impacts it may bring about to agricultural system. Our model consists of Bayesian regression, distribution fitting, and Monte Carlo simulation to simulate rainfed and irrigated crop yields at the US county level. The model was fit using historical data for 1970-2010 and was then applied over different climate regions in the contiguous US using the CMIP5 climate projections. The relative importance of many major growing season climate indices, such as consecutive dry days without rainfall or heavy precipitation, was evaluated to determine what climate indices play a role in affecting future crop yields. The statistical modeling framework also evaluated the impact of irrigation by using county-level irrigated and rainfed yields separately. Furthermore, the projected years with negative yield anomalies were specifically evaluated in terms of magnitude, trend and potential climate drivers. This framework provides estimates of the agricultural climate risk for the 21st century that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26442433','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26442433"><span>Does climate directly influence NPP globally?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren</p> <p>2016-01-01</p> <p>The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42B..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42B..05M"><span>Quantifying Tropical Glacier Mass Balance Sensitivity to Climate Change Through Regional-Scale Modeling and The Randolph Glacier Inventory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malone, A.</p> <p>2017-12-01</p> <p>Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..989L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..989L"><span>Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei</p> <p>2018-04-01</p> <p>Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7807B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7807B"><span>The evaluation of the climate change effects on maize and fennel cultivation by means of an hydrological physically based model: the case study of an irrigated district of southern Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonfante, A.; Alfieri, M. S.; Basile, A.; De Lorenzi, F.; Fiorentino, N.; Menenti, M.</p> <p>2012-04-01</p> <p>The effect of climate change on irrigated agricultural systems will be different from area to area depending on some factors as: (i) water availability, (ii) crop water demand (iii) soil hydrological behavior and (iv) irrigation management strategy. The adaptation of irrigated crop systems to future climate change can be supported by physically based model which simulate the water and heat fluxes in the soil-vegetation-atmosphere system. The aim of this work is to evaluate the effects of climate change on the heat and water balance of a maize-fennel rotation. This was applied to a on-demand irrigation district of Southern Italy ("Destra Sele", Campania Region, 22.645 ha). Two climate scenarios were considered, current climate (1961-1990) and future climate (2021-2050), the latter constructed by applying statistical downscaling to GCMs scenarios. For each climate scenario the soil moisture regime of the selected study area was calculated by means of a simulation model of the soil-water-atmosphere system (SWAP). Synthetic indicators of the soil water regimes (e.g., crop water stress index - CWSI, available water content) have been calculated and impacts evaluated taking into account the yield response functions to water availability of different cultivars. Different irrigation delivering strategies were also simulated. The hydrological model SWAP was applied to the representative soils of the whole area (20 soil units) for which the soil hydraulic properties were derived by means of pedo-transfer function (HYPRES) tested and validated on the typical soils in the study area. Upper boundary conditions were derived from two climate scenarios, i.e. current and future. Unit gradient in soil water potential was set as lower boundary condition. Crop-specific input data and model parameters were derived from field experiments, in the same area, where the SWAP model was calibrated and validated. The results obtained have shown a significant increase of CWSI in the future climate scenario, and some spatial patterns strongly influenced by the soils characteristics. Adaptability of different maize cultivars has been evaluated. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: Plant Adaptative capacity, SWAP, Climate changes, Maize, Fennel</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27139426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27139426"><span>Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio</p> <p>2016-08-01</p> <p>Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PIAHS.371..195L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PIAHS.371..195L"><span>Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leauthaud, C.; Demarty, J.; Cappelaere, B.; Grippa, M.; Kergoat, L.; Velluet, C.; Guichard, F.; Mougin, E.; Chelbi, S.; Sultan, B.</p> <p>2015-06-01</p> <p>Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040031738&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dclimate%2Bchange%2Banthropogenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040031738&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dclimate%2Bchange%2Banthropogenic"><span>Status of Middle Atmosphere-Climate Models: Results SPARC-GRIPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pawson, Steven; Kodera, Kunihiko</p> <p>2003-01-01</p> <p>The middle atmosphere is an important component of the climate system, primarily because of the radiative forcing of ozone. Middle atmospheric ozone can change, over long times, because of changes in the abundance of anthropogenic pollutants which catalytically destroy it, and because of the temperature sensitivity of kinetic reaction rates. There is thus a complex interaction between ozone, involving chemical and climatic mechanisms. One question of interest is how ozone will change over the next decades , as the "greenhouse-gas cooling" of the middle atmosphere increases but the concentrations of chlorine species decreases (because of policy changes). concerns the climate biases in current middle atmosphere-climate models, especially their ability to simulate the correct seasonal cycle at high latitudes, and the existence of temperature biases in the global mean. A major obstacle when addressing this question This paper will present a summary of recent results from the "GCM-Reality Intercomparison Project for SPARC" (GRIPS) initiative. A set of middle atmosphere-climate models has been compared, identifying common biases. Mechanisms for these biases are being studied in some detail, including off-line assessments of the radiation transfer codes and coordinated studies of the impacts of gravity wave drag due to sub-grid-scale processes. ensemble of models will be presented, along with numerical experiments undertaken with one or more models, designed to investigate the mechanisms at work in the atmosphere. The discussion will focus on dynamical and radiative mechanisms in the current climate, but implications for coupled ozone chemistry and the future climate will be assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5894N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5894N"><span>Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong</p> <p>2017-04-01</p> <p>The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812766K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812766K"><span>Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Firdos; Pilz, Jürgen</p> <p>2016-04-01</p> <p>South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological stations. The proposed model will be validated by using the (National Centers for Environmental Prediction / National Center for Atmospheric Research) NCEP/NCAR predictors for the period of 1960-1990 and validated for 1990-2000. To investigate the efficiency of the proposed model, it will be compared with the multivariate multiple regression model and with dynamical downscaling climate models by using different climate indices that describe the frequency, intensity and duration of the variables of interest. KEY WORDS: Climate change, Copula, Monsoon, Quantile regression, Spatio-temporal distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27465689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27465689"><span>High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng</p> <p>2016-07-28</p> <p>The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4639351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4639351"><span>THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan</p> <p>2015-01-01</p> <p>Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran’s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran’s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. Results: of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran’s libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Conclusions: Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries. PMID:26622203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26622203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26622203"><span>THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan</p> <p>2015-10-01</p> <p>The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194379','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194379"><span>Application of synthetic scenarios to address water resource concerns: A management-guided case study from the Upper Colorado River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McAfee, Stephanie A.; Pederson, Gregory T.; Woodhouse, Connie A.; McCabe, Gregory</p> <p>2017-01-01</p> <p>Water managers are increasingly interested in better understanding and planning for projected resource impacts from climate change. In this management-guided study, we use a very large suite of synthetic climate scenarios in a statistical modeling framework to simultaneously evaluate how (1) average temperature and precipitation changes, (2) initial basin conditions, and (3) temporal characteristics of the input climate data influence water-year flow in the Upper Colorado River. The results here suggest that existing studies may underestimate the degree of uncertainty in future streamflow, particularly under moderate temperature and precipitation changes. However, we also find that the relative severity of future flow projections within a given climate scenario can be estimated with simple metrics that characterize the input climate data and basin conditions. These results suggest that simple testing, like the analyses presented in this paper, may be helpful in understanding differences between existing studies or in identifying specific conditions for physically based mechanistic modeling. Both options could reduce overall cost and improve the efficiency of conducting climate change impacts studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B31C0428G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B31C0428G"><span>How will climate change affect watershed mercury export in a representative Coastal Plain watershed?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.</p> <p>2012-12-01</p> <p>Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed HgT dynamics and the representative mathematical structures underpinning existing watershed Hg models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC34B..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC34B..05K"><span>Changes in Black-legged Tick Population in New England with Future Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishnan, S.; Huber, M.</p> <p>2015-12-01</p> <p>Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.2029P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.2029P"><span>Climate change impact assessment on hydrology of a small watershed using semi-distributed model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak</p> <p>2017-07-01</p> <p>This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016543','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016543"><span>A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140016543'); toggleEditAbsImage('author_20140016543_show'); toggleEditAbsImage('author_20140016543_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140016543_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140016543_hide"></p> <p>2013-01-01</p> <p>For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1247621','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1247621"><span>Assessing Ozone-Related Health Impacts under a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Knowlton, Kim; Rosenthal, Joyce E.; Hogrefe, Christian; Lynn, Barry; Gaffin, Stuart; Goldberg, Richard; Rosenzweig, Cynthia; Civerolo, Kevin; Ku, Jia-Yeong; Kinney, Patrick L.</p> <p>2004-01-01</p> <p>Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O3 concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O3-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration–Goddard Institute for Space Studies global climate model at 4° × 5° resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O3 in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O3-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O3 precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O3-related acute mortality across the 31 counties. Incorporating O3 precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O3 mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change. PMID:15531442</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1436990','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1436990"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel</p> <p></p> <p>Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMOS24A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMOS24A..03P"><span>An overview of the South Atlantic Ocean climate variability and air-sea interaction processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pezzi, L. P.; Parise, C. K.; Souza, R.; Gherardi, D. F.; Camargo, R.; Soares, H. C.; Silveira, I.</p> <p>2013-05-01</p> <p>The Ocean Modeling Group at the National Institute of Space Research (INPE) in Brazil has been developing several studies to understand the role of the Atlantic ocean on the South America climate. Studies include simulating the dynamics of the Tropical South-Atlantic Ocean and Southern Ocean. This is part of an ongoing international cooperation, in which Brazil participates with in situ observations, numerical modeling and statistical analyses. We have focused on the understanding of the impacts of extreme weather events over the Tropical South Atlantic Ocean and their prediction on different time-scales. One such study is aimed at analyzing the climate signal generated by imposing an extreme condition on the Antarctic sea ice and considering different complexities of the sea ice model. The influence of the Brazil-Malvinas Confluence (BMC) region on the marine atmospheric boundary layer (MABL) is also investigated through in situ data analysis of different cruises and numerical experiments with a regional numerical model. There is also an ongoing investigation that revealed basin-scale interannual climate variation with impacts on the Brazilian Large Marine Ecosystems (LMEs), which are strongly correlated with climate indices such as ENSO, AAO and PDO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51I0198T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51I0198T"><span>Structural uncertainty of downscaled climate model output in a difficult-to-resolve environment: data sparseness and parameterization error contribution to statistical and dynamical downscaling output in the U.S. Caribbean region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.</p> <p>2016-12-01</p> <p>Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24880596','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24880596"><span>Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kong, Deguo; MacLeod, Matthew; Cousins, Ian T</p> <p>2014-09-01</p> <p>The effect of projected future changes in temperature, wind speed, precipitation and particulate organic carbon on concentrations of persistent organic chemicals in the Baltic Sea regional environment is evaluated using the POPCYCLING-Baltic multimedia chemical fate model. Steady-state concentrations of hypothetical perfectly persistent chemicals with property combinations that encompass the entire plausible range for non-ionizing organic substances are modelled under two alternative climate change scenarios (IPCC A2 and B2) and compared to a baseline climate scenario. The contributions of individual climate parameters are deduced in model experiments in which only one of the four parameters is changed from the baseline scenario. Of the four selected climate parameters, temperature is the most influential, and wind speed is least. Chemical concentrations in the Baltic region are projected to change by factors of up to 3.0 compared to the baseline climate scenario. For chemicals with property combinations similar to legacy persistent organic pollutants listed by the Stockholm Convention, modelled concentration ratios between two climate change scenarios and the baseline scenario range from factors of 0.5 to 2.0. This study is a first step toward quantitatively assessing climate change-induced changes in the environmental concentrations of persistent organic chemicals in the Baltic Sea region. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..552W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..552W"><span>Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei</p> <p>2017-09-01</p> <p>Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC41B0909L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC41B0909L"><span>A Regional Climate Model Evaluation System based on Satellite and other Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lean, P.; Kim, J.; Waliser, D. E.; Hall, A. D.; Mattmann, C. A.; Granger, S. L.; Case, K.; Goodale, C.; Hart, A.; Zimdars, P.; Guan, B.; Molotch, N. P.; Kaki, S.</p> <p>2010-12-01</p> <p>Regional climate models are a fundamental tool needed for downscaling global climate simulations and projections, such as those contributing to the Coupled Model Intercomparison Projects (CMIPs) that form the basis of the IPCC Assessment Reports. The regional modeling process provides the means to accommodate higher resolution and a greater complexity of Earth System processes. Evaluation of both the global and regional climate models against observations is essential to identify model weaknesses and to direct future model development efforts focused on reducing the uncertainty associated with climate projections. However, the lack of reliable observational data and the lack of formal tools are among the serious limitations to addressing these objectives. Recent satellite observations are particularly useful as they provide a wealth of information on many different aspects of the climate system, but due to their large volume and the difficulties associated with accessing and using the data, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL / UCLA is developing a model evaluation system to help make satellite observations, in conjunction with in-situ, assimilated, and reanalysis datasets, more readily accessible to the modeling community. The system includes a central database to store multiple datasets in a common format and codes for calculating predefined statistical metrics to assess model performance. This allows the time taken to compare model simulations with satellite observations to be reduced from weeks to days. Early results from the use this new model evaluation system for evaluating regional climate simulations over California/western US regions will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP52B..08D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP52B..08D"><span>Biodiversity of Terrestrial Vegetation during Past Warm Periods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.</p> <p>2016-12-01</p> <p>Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED33A0762D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED33A0762D"><span>Does what you know matter? Investigating the relationship between mental models of climate change and pro-environmental behaviors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, R.</p> <p>2013-12-01</p> <p>The purpose of this study is to test the conjecture that environmentally sustainable decisions and behaviors are related to individuals' conceptions of the natural world, in this case climate change; individuals' attitudes towards climate change; and the situations in which these decisions are made. The nature of mental models is an ongoing subject of disagreement. Some argue that mental models are coherent theories, much like scientific theories, that individuals employ systematically when reasoning about the world (Gopnik & Meltzoff, 1998). Others maintain that mental models are cobbled together from fragmented collections of ideas that are only loosely connected and context dependent (Disessa, 1988; Minstrell, 2000). It is likely that individuals sometimes reason about complex phenomena using systematic mental models and at other times reason using knowledge that is organized in fragmented pieces (Steedle & Shavelson, 2009). Thus, in measuring mental models of complex environmental systems, such as climate change, the assumption of systematicity may not be justified. Individuals may apply certain chains of reasoning in some contexts but not in others. The current study hypothesizes that an accurate mental model of climate change enables an individual to make effective evaluative judgments of environmental behavior options. The more an individual's mental model resembles that of an expert, the more consistent, accurate and automatic these judgments become. However, an accurate mental model is not sufficient to change environmental behavior. Real decisions and behaviors are products of a person-situation interaction: an interplay between psychosocial factors (such as knowledge and attitudes) and the situation in which the decision is made. This study investigates the relationship between both psychosocial and situational factors for climate change decisions. Data was collected from 436 adult participants through an online survey. The survey was comprised of demographic questions; three discreet instruments measuring (1) mental models of climate change, (2) attitudes and beliefs about climate change, and (3) self-reported behaviors; and an experimental intervention, followed by a behavioral intention question. Latent class analysis (LCA) and item-response theory (IRT) will be employed to analyze multiple-choice responses to the mental model survey to create groupings of individuals assumed to hold similar mental of climate change. A principal component analysis (PCA) using oblique rotation was employed to identify five scales (Chronbach's alpha > 0.80) within the attitude/belief instrument. Total and sub-scale scores were also calculated for self-reported behaviors. The relationships between mental models, attitudes and behaviors will be analyzed using multiple regression models. This work presents not only the development and validation of three novel instruments for accurately and efficiently measuring mental models, attitudes, and self-reported behaviors, but also provides insight into the types of mental models individuals hold. Understanding how climate change is conceptualized and how such knowledge influences attitudes and behaviors gives educators tools for guiding students towards more expert understandings while also enabling environmentalists to craft more effective messages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43B1619C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43B1619C"><span>Climate Change Impacts on Stream Temperature in Regulated River Systems: A Case Study in the Southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Y.; Niemeyer, R. J.; Zhang, X.; Yearsley, J. R.; Voisin, N.; Nijssen, B.</p> <p>2017-12-01</p> <p>Climate change and associated changes in air temperature and precipitation are projected to impact natural water resources quantity, quality and timing. In the past century, over 280 major dams were built in the Southeastern United States (SEUS) (GRanD database). Regulation of the river system greatly alters natural streamflow as well as stream temperature. Understanding the impacts of climate change on regulated systems, particularly within the context of the Clean Water Act, can inform stakeholders how to maintain and adapt water operations (e.g. regulation, withdrawals). In this study, we use a new modeling framework to study climate change impacts on stream temperatures of a regulated river system. We simulate runoff with the Variable Infiltration Capacity (VIC) macroscale hydrological model, regulated streamflow and reservoir operations with a large-scale river routing-reservoir model (MOSART-WM), and stream temperature using the River Basin Model (RBM). We enhanced RBM with a two-layer thermal stratification reservoir module. This modeling framework captures both the impact of reservoir regulation on streamflow and the reservoir stratification effects on downstream temperatures. We evaluate changes in flow and stream temperatures based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We simulate river temperature with meteorological forcings that have been downscaled with the Multivariate Constructed Analogs (MACA) method. We are specifically interested in analyzing extreme periods during which stream temperature exceeds water quality standards. In this study, we focus on identifying whether these extreme temperature periods coincide with low flows, and whether the frequency and duration of these operationally-relevant periods will increase under future climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1436990-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1436990-atmospheric-updrafts-key-unlocking-climate-forcing-sensitivity"><span>Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...</p> <p>2016-06-08</p> <p>Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3673D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3673D"><span>Growing Land-Sea Temperature Contrast and the Intensification of Arctic Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Day, Jonathan J.; Hodges, Kevin I.</p> <p>2018-04-01</p> <p>Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range of time scales. Modeling studies suggest that storminess will increase in Arctic summer due to enhanced land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ). However, the climate models used in these studies are poor at reproducing the present-day Arctic summer cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as an analog for climate change. High AFZ years are characterized both by increased cyclone frequency and dynamical intensity, compared to low years. Importantly, the size of the response in this analog suggests that General Circulation Models may underestimate the response of Arctic cyclones to climate change, given a similar change in baroclinicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31D1037M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31D1037M"><span>High-resolution integration of water, energy, and climate models to assess electricity grid vulnerabilities to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.</p> <p>2017-12-01</p> <p>The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3159S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3159S"><span>Development of ALARO-Climate regional climate model for a very high resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan</p> <p>2014-05-01</p> <p>ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22746367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22746367"><span>Job characteristics and safety climate: the role of effort-reward and demand-control-support models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phipps, Denham L; Malley, Christine; Ashcroft, Darren M</p> <p>2012-07-01</p> <p>While safety climate is widely recognized as a key influence on organizational safety, there remain questions about the nature of its antecedents. One potential influence on safety climate is job characteristics (that is, psychosocial features of the work environment). This study investigated the relationship between two job characteristics models--demand-control-support (Karasek & Theorell, 1990) and effort-reward imbalance (Siegrist, 1996)--and safety climate. A survey was conducted with a random sample of 860 British retail pharmacists, using the job contents questionnaire (JCQ), effort-reward imbalance indicator (ERI) and a measure of safety climate in pharmacies. Multivariate data analyses found that: (a) both models contributed to the prediction of safety climate ratings, with the demand-control-support model making the largest contribution; (b) there were some interactions between demand, control and support from the JCQ in the prediction of safety climate scores. The latter finding suggests the presence of "active learning" with respect to safety improvement in high demand, high control settings. The findings provide further insight into the ways in which job characteristics relate to safety, both individually and at an aggregated level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JHyd..264..230H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JHyd..264..230H"><span>Susceptibility of the Batoka Gorge hydroelectric scheme to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrison, Gareth P.; Whittington, H.(Bert) W.</p> <p>2002-07-01</p> <p>The continuing and increased use of renewable energy sources, including hydropower, is a key strategy to limit the extent of future climate change. Paradoxically, climate change itself may alter the availability of this natural resource, adversely affecting the financial viability of both existing and potential schemes. Here, a model is described that enables the assessment of the relationship between changes in climate and the viability, technical and financial, of hydro development. The planned Batoka Gorge scheme on the Zambezi River is used as a case study to validate the model and to predict the impact of climate change on river flows, electricity production and scheme financial performance. The model was found to perform well, given the inherent difficulties in the task, although there is concern regarding the ability of the hydrological model to reproduce the historic flow conditions of the upper Zambezi Basin. Simulations with climate change scenarios illustrate the sensitivity of the Batoka Gorge scheme to changes in climate. They suggest significant reductions in river flows, declining power production, reductions in electricity sales revenue and consequently an adverse impact on a range of investment measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSF31A0714P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSF31A0714P"><span>Flexible Environments for Grand-Challenge Simulation in Climate Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.</p> <p>2004-12-01</p> <p>Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility and adaptability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9260E..2RS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9260E..2RS"><span>Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, L. Qing; Feng, Feng X.</p> <p>2014-11-01</p> <p>In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNG31A1828C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNG31A1828C"><span>Evaluation of Stochastic Rainfall Models in Capturing Climate Variability for Future Drought and Flood Risk Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.</p> <p>2016-12-01</p> <p>One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/12220','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/12220"><span>Linking an ecosystem model and a landscape model to study forest species response to climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Hong S. He; David J. Mladenoff; Thomas R. Crow</p> <p>1999-01-01</p> <p>No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>