Sample records for climate models show

  1. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.

    PubMed

    Braconnot, Pascale; Kageyama, Masa

    2015-11-13

    Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).

  2. Multi-objective optimization for evaluation of simulation fidelity for precipitation, cloudiness and insolation in regional climate models

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2016-12-01

    Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.

  3. Probabilistic Climate Scenario Information for Risk Assessment

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  4. Assessing NARCCAP climate model effects using spatial confidence regions.

    PubMed

    French, Joshua P; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  5. Improving Climate Projections Using "Intelligent" Ensembles

    NASA Technical Reports Server (NTRS)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and that these metrics can be used to evaluate model quality in both current and future climate states. This information will be used to produce new consensus projections and provide communities with improved climate projections for urgent decision-making.

  6. Pollen-proxies say cooler, climate models say warmer: resolving conflicting views of the Holocene climate of the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Russo, E.; Mauri, A.; Davis, B. A. S.; Cubasch, U.

    2017-12-01

    The evolution of the Mediterranean region's climate during the Holocene has been the subject of long-standing debate within the paleoclimate community. Conflicting hypotheses have emerged from the analysis of different climate reconstructions based on proxy records and climate models outputs.In particular, pollen-based reconstructions of cooler summer temperatures during the Holocene have been criticized based on a hypothesis that the Mediterranean vegetation is mainly limited by effective precipitation and not summer temperature. This criticism is important because climate models show warmer summer temperatures during the Holocene over the Mediterranean region, in direct contradiction of the pollen-based evidence. Here we investigate this problem using a high resolution model simulation of the climate of the Mediterranean region during the mid-to-late Holocene, which we compare against pollen-based reconstructions using two different approaches.In the first, we compare the simulated climate from the model directly with the climate derived from the pollen data. In the second, we compare the simulated vegetation from the model directly with the vegetation from the pollen data.Results show that the climate model is unable to simulate neither the climate nor the vegetation shown by the pollen-data. The pollen data indicates an expansion in cool temperate vegetation in the mid-Holocene while the model suggests an expansion in warm arid vegetation. This suggests that the data-model discrepancy is more likely the result of bias in climate models, and not bias in the pollen-climate calibration transfer-function.

  7. Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Kim, Gayoung; Im, Jungho

    2017-04-01

    Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.

  8. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  9. Intercomparison of four regional climate models for the German State of Saxonia

    NASA Astrophysics Data System (ADS)

    Kreienkamp, F.; Spekat, A.; Enke, W.

    2009-09-01

    Results from four regional climate models which focus on Central Europe are presented: CCLM, the climate version of the German Weather Service's Local Model - REMO, the regional dynamic model from the Max Planck Institute for Meteorology in Hamburg - STAR, the statistical model developed at the PIK Potsdam Institute and WETTREG, the statistic-dynamic model developed by the company CEC Potsdam. For the area of the German State of Saxonia a host of properties and indicators were analyzed aiming to show the models' abilities to reconstruct the current climate and compare climate model scenarios. These include a group of thermal indicators, such as the number of ice, frost, summer and hot days, the number of tropical nights; then there are hydrometeorological indicators such as the exceedance of low and high precipitation thresholds; humidity, cloudiness and wind indicators complement the array. A selection of them showing similarities and differences of the models investigated will be presented.

  10. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0)

    NASA Astrophysics Data System (ADS)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2013-12-01

    This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen climate parameters provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century changes in global mean surface air temperature from previous work with the IGSM. Because the IGSM-CAM framework only considers one particular climate model, it cannot be used to assess the structural modeling uncertainty arising from differences in the parameterization suites of climate models. However, comparison of the IGSM-CAM projections with simulations of 31 CMIP5 models under the RCP4.5 and RCP8.5 scenarios show that the range of warming at the continental scale shows very good agreement between the two ensemble simulations, except over Antarctica, where the IGSM-CAM overestimates the warming. This demonstrates that by sampling the climate system response, the IGSM-CAM, even though it relies on one single climate model, can essentially reproduce the range of future continental warming simulated by more than 30 different models. Precipitation changes projected in the IGSM-CAM simulations and the CMIP5 multi-model ensemble both display a large uncertainty at the continental scale. The two ensemble simulations show good agreement over Asia and Europe. However, the ranges of precipitation changes do not overlap - but display similar size - over Africa and South America, two continents where models generally show little agreement in the sign of precipitation changes and where CCSM3 tends to be an outlier. Overall, the IGSM-CAM provides an efficient and consistent framework to explore the large uncertainty in future projections of global and regional climate change associated with uncertainty in the climate response and projected emissions.

  11. Assessing NARCCAP climate model effects using spatial confidence regions

    PubMed Central

    French, Joshua P.; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference. PMID:28936474

  12. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  13. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  14. Southern Ocean warming due to human influence

    NASA Astrophysics Data System (ADS)

    Fyfe, John C.

    2006-10-01

    I show that the latest series of climate models reproduce the observed mid-depth Southern Ocean warming since the 1950s if they include time-varying changes in anthropogenic greenhouse gases, sulphate aerosols and volcanic aerosols in the Earth's atmosphere. The remarkable agreement between observations and state-of-the art climate models suggests significant human influence on Southern Ocean temperatures. I also show that climate models that do not include volcanic aerosols produce mid-depth Southern Ocean warming that is nearly double that produced by climate models that do include volcanic aerosols. This implies that the full effect of human-induced warming of the Southern Ocean may yet to be realized.

  15. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Uma S.; Wackerbauer, Renate; Polyakov, Igor V.

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were appliedmore » to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.« less

  16. Hydrologic resilience and Amazon productivity.

    PubMed

    Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B

    2017-08-30

    The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

  17. The Importance of Considering the Temporal Distribution of Climate Variables for Ecological-Economic Modeling to Calculate the Consequences of Climate Change for Agriculture

    NASA Astrophysics Data System (ADS)

    Plegnière, Sabrina; Casper, Markus; Hecker, Benjamin; Müller-Fürstenberger, Georg

    2014-05-01

    The basis of many models to calculate and assess climate change and its consequences are annual means of temperature and precipitation. This method leads to many uncertainties especially at the regional or local level: the results are not realistic or too coarse. Particularly in agriculture, single events and the distribution of precipitation and temperature during the growing season have enormous influences on plant growth. Therefore, the temporal distribution of climate variables should not be ignored. To reach this goal, a high-resolution ecological-economic model was developed which combines a complex plant growth model (STICS) and an economic model. In this context, input data of the plant growth model are daily climate values for a specific climate station calculated by the statistical climate model (WETTREG). The economic model is deduced from the results of the plant growth model STICS. The chosen plant is corn because corn is often cultivated and used in many different ways. First of all, a sensitivity analysis showed that the plant growth model STICS is suitable to calculate the influences of different cultivation methods and climate on plant growth or yield as well as on soil fertility, e.g. by nitrate leaching, in a realistic way. Additional simulations helped to assess a production function that is the key element of the economic model. Thereby the problems when using mean values of temperature and precipitation in order to compute a production function by linear regression are pointed out. Several examples show why a linear regression to assess a production function based on mean climate values or smoothed natural distribution leads to imperfect results and why it is not possible to deduce a unique climate factor in the production function. One solution for this problem is the additional consideration of stress indices that show the impairment of plants by water or nitrate shortage. Thus, the resulting model takes into account not only the ecological factors (e.g. the plant growth) or the economical factors as a simple monetary calculation, but also their mutual influences. Finally, the ecological-economic model enables us to make a risk assessment or evaluate adaptation strategies.

  18. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.

  19. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  20. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  1. Impacts of weighting climate models for hydro-meteorological climate change studies

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  2. On The Impact of Climate Change to Agricultural Productivity in East Java

    NASA Astrophysics Data System (ADS)

    Kuswanto, Heri; Salamah, Mutiah; Mumpuni Retnaningsih, Sri; Dwi Prastyo, Dedy

    2018-03-01

    Many researches showed that climate change has significant impact on agricultural sector, which threats the food security especially in developing countries. It has been observed also that the climate change increases the intensity of extreme events. This research investigated the impact climate to the agricultural productivity in East Java, as one of the main rice producers in Indonesia. Standard regression as well as panel regression models have been performed in order to find the best model which is able to describe the climate change impact. The analysis found that the fixed effect model of panel regression outperforms the others showing that climate change had negatively impacted the rice productivity in East Java. The effect in Malang and Pasuruan were almost the same, while the impact in Sumenep was the least one compared to other districts.

  3. An Investigation of Secondary Students' Mental Models of Climate Change and the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Varela, Begoña; Sesto, Vanessa; García-Rodeja, Isabel

    2018-03-01

    There are several studies dealing with students' conceptions on climate change, but most of them refer to understanding before instruction. In contrast, this study investigates students' conceptions and describes the levels of sophistication of their mental models on climate change and the greenhouse effect. The participants were 40 secondary students (grade 7) in Spain. As a method of data collection, a questionnaire was designed with open-ended questions focusing on the mechanism, causes, and actions that could be useful in reducing climate change. Students completed the same questionnaire before and after instruction. The students' conceptions and mental models were identified by an inductive and iterative analysis of the participants' explanations. With regard to the students' conceptions, the results show that they usually link climate change to an increase in temperature, and they tend to mention, even after instruction, generic actions to mitigate climate change, such as not polluting. With regard to the students' mental models, the results show an evolution of models with little consistency and coherence, such as the models on level 1, towards higher levels of sophistication. The paper concludes with educational implications proposed for solving learning difficulties regarding the greenhouse effect and climate change.

  4. Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Kar, S. C.; Dalal, Mamta; Pattnayak, R. K.

    2017-05-01

    Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project (CMIP5) models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region.

  5. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  6. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

    NASA Astrophysics Data System (ADS)

    Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.

    2018-01-01

    The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and, consequently, in the prediction of future discharge and maximum probable flood.

  7. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  8. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Van Lanen, H. A. J.

    2015-03-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow and to design pro-active measures.

  9. On the role of ozone feedback in the ENSO amplitude response under global warming.

    PubMed

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  10. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  11. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  12. Climate model diversity in the Northern Hemisphere Polar vortex response to climate change.

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Seager, R.; Hitchcock, P.; Cohen, N.

    2017-12-01

    Global climate models vary widely in their predictions of the future of the Northern Hemisphere stratospheric polar vortex, with some showing a significant strengthening of the vortex, some showing a significant weakening and others displaying a response that is not outside of the range expected from internal variability alone. This inter-model spread in stratospheric predictions may account for some inter-model spread in tropospheric predictions with important implications for the storm tracks and regional climate change, particularly for the North Atlantic sector. Here, our current state of understanding of this model spread and its tropospheric impacts will be reviewed. Previous studies have proposed relationships between a models polar vortex response to climate change and its present day vortex climatology while others have demonstrated links between a models polar vortex response and changing wave activity coming up from the troposphere below under a warming climate. The extent to which these mechanisms can account for the spread in polar vortex changes exhibited by the Coupled Model Intercomparison Project, phase 5 models will be assessed. In addition, preliminary results from a series of idealized experiments with the Community Atmosphere Model will be presented. In these experiments, nudging of the stratospheric zonal mean state has been imposed to mimic the inter-model spread in the polar vortex response to climate change so that the downward influence of the spread in zonal mean stratospheric responses on the tropospheric circulation can be assessed within one model.

  13. How shorter black carbon lifetime alters its climate effect.

    PubMed

    Hodnebrog, Øivind; Myhre, Gunnar; Samset, Bjørn H

    2014-09-25

    Black carbon (BC), unlike most aerosol types, absorbs solar radiation. However, the quantification of its climate impact is uncertain and presently under debate. Recently, attention has been drawn both to a likely underestimation of global BC emissions in climate models, and an overestimation of BC at high altitudes. Here we show that doubling present day BC emissions in a model simulation, while reducing BC lifetime based on observational evidence, leaves the direct aerosol effect of BC virtually unchanged. Increased emissions, together with increased wet removal that reduces the lifetime, yields modelled BC vertical profiles that are in strongly improved agreement with recent aircraft observations. Furthermore, we explore the consequences of an altered BC profile in a global circulation model, and show that both the vertical profile of BC and rapid climate adjustments need to be taken into account in order to assess the total climate impact of BC.

  14. The Effects of Climate Model Similarity on Local, Risk-Based Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Brown, C. M.

    2014-12-01

    The climate science community has recently proposed techniques to develop probabilistic projections of climate change from ensemble climate model output. These methods provide a means to incorporate the formal concept of risk, i.e., the product of impact and probability, into long-term planning assessments for local systems under climate change. However, approaches for pdf development often assume that different climate models provide independent information for the estimation of probabilities, despite model similarities that stem from a common genealogy. Here we utilize an ensemble of projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to develop probabilistic climate information, with and without an accounting of inter-model correlations, and use it to estimate climate-related risks to a local water utility in Colorado, U.S. We show that the tail risk of extreme climate changes in both mean precipitation and temperature is underestimated if model correlations are ignored. When coupled with impact models of the hydrology and infrastructure of the water utility, the underestimation of extreme climate changes substantially alters the quantification of risk for water supply shortages by mid-century. We argue that progress in climate change adaptation for local systems requires the recognition that there is less information in multi-model climate ensembles than previously thought. Importantly, adaptation decisions cannot be limited to the spread in one generation of climate models.

  15. Past and ongoing shifts in Joshua tree distribution support future modeled range contraction

    Treesearch

    Kenneth L. Cole; Kirsten Ironside; Jon Eischeid; Gregg Garfin; Phillip B. Duffy; Chris Toney

    2011-01-01

    The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ~11 700 years ago, the range of Joshua tree contracted, leaving only the...

  16. Evaluating historical climate and hydrologic trends in the Central Appalachian region of the United States

    NASA Astrophysics Data System (ADS)

    Gaertner, B. A.; Zegre, N.

    2015-12-01

    Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.

  17. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    PubMed Central

    Van der Fels-Klerx, H. J.; van Asselt, Esther D.; Madsen, Marianne S.; Olesen, Jørgen E.

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards. PMID:24066059

  18. Decadal climate predictions improved by ocean ensemble dispersion filtering

    NASA Astrophysics Data System (ADS)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-06-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.Plain Language SummaryDecadal predictions aim to predict the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. The ocean memory due to its heat capacity holds big potential skill. In recent years, more precise initialization techniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions. Ensembles are another important aspect. Applying slightly perturbed predictions to trigger the famous butterfly effect results in an ensemble. Instead of evaluating one prediction, but the whole ensemble with its ensemble average, improves a prediction system. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Our study shows that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure applying the average during the model run, called ensemble dispersion filter, results in more accurate results than the standard prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28426754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28426754"><span>Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oke, Tobi A; Hager, Heather A</p> <p>2017-01-01</p> <p>The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5398565','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5398565"><span>Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Oke, Tobi A.; Hager, Heather A.</p> <p>2017-01-01</p> <p>The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity. PMID:28426754</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21514627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21514627"><span>Climatology of salt transitions and implications for stone weathering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M</p> <p>2011-06-01</p> <p>This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23D2398D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23D2398D"><span>Assessment of hi-resolution multi-ensemble statistical downscaling regional climate scenarios over Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dairaku, K.</p> <p>2017-12-01</p> <p>The Asia-Pacific regions are increasingly threatened by large scale natural disasters. Growing concerns that loss and damages of natural disasters are projected to further exacerbate by climate change and socio-economic change. Climate information and services for risk assessments are of great concern. Fundamental regional climate information is indispensable for understanding changing climate and making decisions on when and how to act. To meet with the needs of stakeholders such as National/local governments, spatio-temporal comprehensive and consistent information is necessary and useful for decision making. Multi-model ensemble regional climate scenarios with 1km horizontal grid-spacing over Japan are developed by using CMIP5 37 GCMs (RCP8.5) and a statistical downscaling (Bias Corrected Spatial Disaggregation (BCSD)) to investigate uncertainty of projected change associated with structural differences of the GCMs for the periods of historical climate (1950-2005) and near future climate (2026-2050). Statistical downscaling regional climate scenarios show good performance for annual and seasonal averages for precipitation and temperature. The regional climate scenarios show systematic underestimate of extreme events such as hot days of over 35 Celsius and annual maximum daily precipitation because of the interpolation processes in the BCSD method. Each model projected different responses in near future climate because of structural differences. The most of CMIP5 37 models show qualitatively consistent increase of average and extreme temperature and precipitation. The added values of statistical/dynamical downscaling methods are also investigated for locally forced nonlinear phenomena, extreme events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27789838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27789838"><span>Using climate models to estimate the quality of global observational data sets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Massonnet, François; Bellprat, Omar; Guemas, Virginie; Doblas-Reyes, Francisco J</p> <p>2016-10-28</p> <p>Observational estimates of the climate system are essential to monitoring and understanding ongoing climate change and to assessing the quality of climate models used to produce near- and long-term climate information. This study poses the dual and unconventional question: Can climate models be used to assess the quality of observational references? We show that this question not only rests on solid theoretical grounds but also offers insightful applications in practice. By comparing four observational products of sea surface temperature with a large multimodel climate forecast ensemble, we find compelling evidence that models systematically score better against the most recent, advanced, but also most independent product. These results call for generalized procedures of model-observation comparison and provide guidance for a more objective observational data set selection. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28905557','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28905557"><span>[Research on quality regionalization of cultivated Pseudostellaria heterophylla based on climate factors].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kang, Chuan-Zhi; Zhou, Tao; Jiang, Wei-Ke; Guo, Lan-Ping; Zhang, Xiao-Bo; Xiao, Cheng-Hong; Zhao, Dan</p> <p>2016-07-01</p> <p>Maxent model was applied in the study to filtering the climate factors layer by layer. Polysaccharides and pseudostellarin B the two internal quality evaluation index were combined to analyse the interlinkages between climate factors and chemical constituents in order to search for the critical climate factors of Pseudostellaria heterophylla. Then based on the key climate factors to explicit the quality spatial distribution of P. heterophylla. The results showed that polysaccharides and climatic factors had no significant correlation, suggesting that the indicator was not climate-driven metabolites. Pseudostellarin B could construct regression model with the precipitation. And quality regionalization results showed that pseudostellarin B content presented firstly increased and then decreased trend from southeast to northwest, which was the consistent change with precipitation. It clearly proposed that precipitation was the key climate factor, which affected the accumulation of cyclopeptide compound for Pseudostellariae Radix. Copyright© by the Chinese Pharmaceutical Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3792985','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3792985"><span>Future Bloom and Blossom Frost Risk for Malus domestica Considering Climate Model and Impact Model Uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoffmann, Holger; Rath, Thomas</p> <p>2013-01-01</p> <p>The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021–2050 compared to 1971–2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078–2087. The projected phenophases advanced by 5.5 d K−1, showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day. PMID:24116022</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24116022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24116022"><span>Future bloom and blossom frost risk for Malus domestica considering climate model and impact model uncertainties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffmann, Holger; Rath, Thomas</p> <p>2013-01-01</p> <p>The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021-2050 compared to 1971-2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078-2087. The projected phenophases advanced by 5.5 d K(-1), showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8753D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8753D"><span>Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim</p> <p>2016-04-01</p> <p>The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.3295S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.3295S"><span>On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.</p> <p>2018-06-01</p> <p>Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent the temperature dynamics. We further show that our proposed initialization procedure is effective and robust to uncertainty in paleo-climate reconstructions and that more than 300 years of reconstructed climate time series are needed for proper model initialization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25930066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25930066"><span>Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina</p> <p>2015-09-01</p> <p>Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdWR...85...14G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdWR...85...14G"><span>A transient stochastic weather generator incorporating climate model uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.</p> <p>2015-11-01</p> <p>Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.1459R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.1459R"><span>A new framework for climate sensitivity and prediction: a modelling perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank</p> <p>2016-03-01</p> <p>The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080999"><span>Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)</p> <p>2002-01-01</p> <p>The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrES...10..253W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrES...10..253W"><span>Modeling and assessing international climate financing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng</p> <p>2016-06-01</p> <p>Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912431Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912431Y"><span>Potential Effects of Drought on Tree Dieback in Great Britain and Implications for Forest Management in Adaptation to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Jianjun; Berry, Pam</p> <p>2017-04-01</p> <p>The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20956364','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20956364"><span>How uncertain are climate model projections of water availability indicators across the Middle East?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil</p> <p>2010-11-28</p> <p>The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29398736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29398736"><span>Inflated Uncertainty in Multimodel-Based Regional Climate Projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Madsen, Marianne Sloth; Langen, Peter L; Boberg, Fredrik; Christensen, Jens Hesselbjerg</p> <p>2017-11-28</p> <p>Multimodel ensembles are widely analyzed to estimate the range of future regional climate change projections. For an ensemble of climate models, the result is often portrayed by showing maps of the geographical distribution of the multimodel mean results and associated uncertainties represented by model spread at the grid point scale. Here we use a set of CMIP5 models to show that presenting statistics this way results in an overestimation of the projected range leading to physically implausible patterns of change on global but also on regional scales. We point out that similar inconsistencies occur in impact analyses relying on multimodel information extracted using statistics at the regional scale, for example, when a subset of CMIP models is selected to represent regional model spread. Consequently, the risk of unwanted impacts may be overestimated at larger scales as climate change impacts will never be realized as the worst (or best) case everywhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812633P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812633P"><span>Climate Change in Nicaragua: a dynamical downscaling of precipitation and temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porras, Ignasi; Domingo-Dalmau, Anna; Sole, Josep Maria; Arasa, Raul; Picanyol, Miquel; Ángeles Gonzalez-Serrano, M.°; Masdeu, Marta</p> <p>2016-04-01</p> <p>Climate Change affects weather patterns and modifies meteorological extreme events like tropical cyclones, heavy rainfalls, dry events, extreme temperatures, etc. The aim of this study is to show the Climate Change projections over Nicaragua for the period 2010-2040 focused on precipitation and temperature. In order to obtain the climate change signal, the results obtained by modelling a past period (1980-2009) were compared with the ones obtained by modelling a future period (2010-2040). The modelling method was based on a dynamical downscaling, coupling global and regional models. The MPI-ESM-MR global climate model was selected due to the better performance over Nicaragua. Moreover, a detailed sensitivity analysis for different parameterizations and schemes of the Weather Research and Forecast (WRF-ARW) model was made to minimize the model uncertainty. To evaluate and validate the methodology, a comparison between model outputs and satellite measurements data was realized. The results show an expected increment of the temperature and an increment of the number of days per year with temperatures higher than 35°C. Monthly precipitation patterns will change although annual total precipitation will be similar. In addition, number of dry days are expected to increase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5863722','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5863722"><span>A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shafapour Tehrany, Mahyat; Solhjouy-fard, Samaneh; Kumar, Lalit</p> <p>2018-01-01</p> <p>Aedes albopictus, the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion. PMID:29576954</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29576954','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29576954"><span>A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shabani, Farzin; Shafapour Tehrany, Mahyat; Solhjouy-Fard, Samaneh; Kumar, Lalit</p> <p>2018-01-01</p> <p>Aedes albopictus , the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus ? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according to the prediction for 2055, for Ae. albopictus expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237543-changes-concurrent-precipitation-temperature-extremes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237543-changes-concurrent-precipitation-temperature-extremes"><span>Changes in Concurrent Precipitation and Temperature Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.</p> <p>2013-08-01</p> <p>While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4981458','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4981458"><span>Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Olson, Deanna H.; Blaustein, Andrew R.</p> <p>2016-01-01</p> <p>Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160001313&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160001313&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange"><span>Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew</p> <p>2013-01-01</p> <p>Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44..657L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44..657L"><span>New Martian climate constraints from radar reflectivity within the north polar layered deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lalich, D. E.; Holt, J. W.</p> <p>2017-01-01</p> <p>The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750014903','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750014903"><span>Steady-state solutions of a diffusive energy-balance climate model and their stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghil, M.</p> <p>1975-01-01</p> <p>A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23019820','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23019820"><span>Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany</p> <p>2012-09-01</p> <p>The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of climate change on ozone. The findings of this work suggest that in some geographic regions, climate change has the potential to negate decreases in surface ozone concentrations that would otherwise be achieved through ozone mitigation strategies. In regions of high biogenic VOC emissions relative to anthropogenic NO(x) emissions, the impact of climate change is somewhat reduced, while the opposite is true in regions of high anthropogenic NO(x) emissions relative to biogenic VOC emissions. Further, different future climate realizations are shown to impact ozone in different ways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020054204&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020054204&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming"><span>Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p>A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GPC...148...96R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GPC...148...96R"><span>Ensemble climate projections of mean and extreme rainfall over Vietnam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raghavan, S. V.; Vu, M. T.; Liong, S. Y.</p> <p>2017-01-01</p> <p>A systematic ensemble high resolution climate modelling study over Vietnam has been performed using the PRECIS model developed by the Hadley Center in UK. A 5 member subset of the 17-member Perturbed Physics Ensembles (PPE) of the Quantifying Uncertainty in Model Predictions (QUMP) project were simulated and analyzed. The PRECIS model simulations were conducted at a horizontal resolution of 25 km for the baseline period 1961-1990 and a future climate period 2061-2090 under scenario A1B. The results of model simulations show that the model was able to reproduce the mean state of climate over Vietnam when compared to observations. The annual cycles and seasonal averages of precipitation over different sub-regions of Vietnam show the ability of the model in also reproducing the observed peak and magnitude of monthly rainfall. The climate extremes of precipitation were also fairly well captured. Projections of future climate show both increases and decreases in the mean climate over different regions of Vietnam. The analyses of future extreme rainfall using the STARDEX precipitation indices show an increase in 90th percentile precipitation (P90p) over the northern provinces (15-25%) and central highland (5-10%) and over southern Vietnam (up to 5%). The total number of wet days (Prcp) indicates a decrease of about 5-10% all over Vietnam. Consequently, an increase in the wet day rainfall intensity (SDII), is likely inferring that the projected rainfall would be much more severe and intense which have the potential to cause flooding in some regions. Risks due to extreme drought also exist in other regions where the number of wet days decreases. In addition, the maximum 5 day consecutive rainfall (R5d) increases by 20-25% over northern Vietnam but decreases in a similar range over the central and southern Vietnam. These results have strong implications for the management water resources, agriculture, bio diversity and economy and serve as some useful findings to be considered by the policy makers within a wider range of climate uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://journals.ametsoc.org/doi/abs/10.1175/2010EI379.1','USGSPUBS'); return false;" href="http://journals.ametsoc.org/doi/abs/10.1175/2010EI379.1"><span>Characterizing climate-change impacts on the 1.5-yr flood flow in selected basins across the United States: a probabilistic approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walker, John F.; Hay, Lauren E.; Markstrom, Steven L.; Dettinger, Michael D.</p> <p>2011-01-01</p> <p>The U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models. Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates from current to various future decades in the ensemble of climate projections. Empirical orthogonal functions (EOFs) were fitted to the PRMS model output driven by the ensemble of climate projections and provided a basis for randomly (but representatively) generating realizations of hydrologic response to future climates. For each realization, the 1.5-yr flood was calculated to represent a flow important for sediment transport and channel geomorphology. The empirical probability density function (pdf) of the 1.5-yr flood was estimated using the results across the realizations for each basin. Of the 14 basins studied, 9 showed clear temporal shifts in the pdfs of the 1.5-yr flood projected into the twenty-first century. In the western United States, where the annual peak discharges are heavily influenced by snowmelt, three basins show at least a 10% increase in the 1.5-yr flood in the twenty-first century; the remaining two basins demonstrate increases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Four basins in the eastern Rockies/central United States show at least a 10% decrease in the 1.5-yr flood; the remaining two basins demonstrate decreases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Two basins in the eastern United States show at least a 10% decrease in the 1.5-yr flood; the remaining basin shows little or no change in the 1.5-yr flood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A12A..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A12A..05B"><span>The cloud-phase feedback in the Super-parameterized Community Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burt, M. A.; Randall, D. A.</p> <p>2016-12-01</p> <p>Recent comparisons of observations and climate model simulations by I. Tan and colleagues have suggested that the Wegener-Bergeron-Findeisen (WBF) process tends to be too active in climate models, making too much cloud ice, and resulting in an exaggerated negative cloud-phase feedback on climate change. We explore the WBF process and its effect on shortwave cloud forcing in present-day and future climate simulations with the Community Earth System Model, and its super-parameterized counterpart. Results show that SP-CESM has much less cloud ice and a weaker cloud-phase feedback than CESM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED33A0765B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED33A0765B"><span>Weather Forecaster Understanding of Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bol, A.; Kiehl, J. T.; Abshire, W. E.</p> <p>2013-12-01</p> <p>Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29569799','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29569799"><span>How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J</p> <p>2018-03-23</p> <p>Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242662','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242662"><span>Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Porfirio, Luciana L.; Harris, Rebecca M. B.; Lefroy, Edward C.; Hugh, Sonia; Gould, Susan F.; Lee, Greg; Bindoff, Nathaniel L.; Mackey, Brendan</p> <p>2014-01-01</p> <p>Choice of variables, climate models and emissions scenarios all influence the results of species distribution models under future climatic conditions. However, an overview of applied studies suggests that the uncertainty associated with these factors is not always appropriately incorporated or even considered. We examine the effects of choice of variables, climate models and emissions scenarios can have on future species distribution models using two endangered species: one a short-lived invertebrate species (Ptunarra Brown Butterfly), and the other a long-lived paleo-endemic tree species (King Billy Pine). We show the range in projected distributions that result from different variable selection, climate models and emissions scenarios. The extent to which results are affected by these choices depends on the characteristics of the species modelled, but they all have the potential to substantially alter conclusions about the impacts of climate change. We discuss implications for conservation planning and management, and provide recommendations to conservation practitioners on variable selection and accommodating uncertainty when using future climate projections in species distribution models. PMID:25420020</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.7231P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.7231P"><span>Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina</p> <p>2016-07-01</p> <p>State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4063477','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4063477"><span>Predicting future coexistence in a North American ant community</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bewick, Sharon; Stuble, Katharine L; Lessard, Jean-Phillipe; Dunn, Robert R; Adler, Frederick R; Sanders, Nathan J</p> <p>2014-01-01</p> <p>Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well-studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate-related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat-sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade-offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change. PMID:24963378</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11O..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11O..01P"><span>Changing Characteristics of convective storms: Results from a continental-scale convection-permitting climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.</p> <p>2016-12-01</p> <p>Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...161...10T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...161...10T"><span>Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.</p> <p>2018-02-01</p> <p>The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during winter and spring, more discharge shall occur in future (RCP8.5) in Satluj River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1887S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1887S"><span>The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strassmann, Kuno M.; Joos, Fortunat</p> <p>2018-05-01</p> <p>The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27185925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27185925"><span>Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Medeiros, Brian; Nuijens, Louise</p> <p>2016-05-31</p> <p>Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4896687','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4896687"><span>Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nuijens, Louise</p> <p>2016-01-01</p> <p>Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1321P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1321P"><span>The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietikäinen, Joni-Pekka; Markkanen, Tiina; Sieck, Kevin; Jacob, Daniela; Korhonen, Johanna; Räisänen, Petri; Gao, Yao; Ahola, Jaakko; Korhonen, Hannele; Laaksonen, Ari; Kaurola, Jussi</p> <p>2018-04-01</p> <p>The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied in a set of 35-year hindcast simulations. Additionally, sensitivity tests related to the parameterization of snow albedo were conducted. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation, but the downside is that an existing wintertime cold bias in the model is enhanced. The lake surface water temperature, ice depth and ice season length were analyzed in detail for 10 Finnish, 4 Swedish and 2 Russian lakes and 1 Estonian lake. The results show that the model can reproduce these characteristics with reasonably high accuracy. The cold bias during winter causes overestimation of ice layer thickness, for example, at several of the studied lakes, but overall the values from the model are realistic and represent the lake physics well in a long-term simulation. We also analyzed the snow depth on ice from 10 Finnish lakes and vertical temperature profiles from 5 Finnish lakes and the model results are realistic.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PCE....36..727G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PCE....36..727G"><span>Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei</p> <p></p> <p>This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817363S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817363S"><span>Evaluation of the new EMAC-SWIFT chemistry climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus</p> <p>2016-04-01</p> <p>It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A32G..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A32G..05M"><span>The Challenge of Simulating the Regional Climate over Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Misra, V.; Mishra, A. K.</p> <p>2015-12-01</p> <p>In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150023383&hterms=water+africa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwater%2Bafrica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150023383&hterms=water+africa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwater%2Bafrica"><span>Modelling Bambara Groundnut Yield in Southern Africa: Towards a Climate-Resilient Future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karunaratne, A. S.; Walker, S.; Ruane, A. C.</p> <p>2015-01-01</p> <p>Current agriculture depends on a few major species grown as monocultures that are supported by global research underpinning current productivity. However, many hundreds of alternative crops have the potential to meet real world challenges by sustaining humanity, diversifying agricultural systems for food and nutritional security, and especially responding to climate change through their resilience to certain climate conditions. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilised African legume, is an exemplar crop for climate resilience. Predicted yield performances of Bambara groundnut by AquaCrop (a crop-water productivity model) were evaluated for baseline (1980-2009) and mid-century climates (2040-2069) under 20 downscaled Global Climate Models (CMIP5-RCP8.5), as well as for climate sensitivities (AgMIPC3MP) across 3 locations in Southern Africa (Botswana, South Africa, Namibia). Different land - races of Bambara groundnut originating from various semi-arid African locations showed diverse yield performances with diverse sensitivities to climate. S19 originating from hot-dry conditions in Namibia has greater future yield potential compared to the Swaziland landrace Uniswa Red-UN across study sites. South Africa has the lowest yield under the current climate, indicating positive future yield trends. Namibia reported the highest baseline yield at optimum current temperatures, indicating less yield potential in future climates. Bambara groundnut shows positive yield potential at temperatures of up to 31degC, with further warming pushing yields down. Thus, many regions in Southern Africa can utilize Bambara groundnut successfully in the coming decades. This modelling exercise supports decisions on genotypic suitability for present and future climates at specific locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...8.1541L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...8.1541L"><span>Spatial and temporal connections in groundwater contribution to evaporation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lam, A.; Karssenberg, D.; van den Hurk, B. J. J. M.; Bierkens, M. F. P.</p> <p>2011-02-01</p> <p>In climate models, lateral terrestrial water fluxes are usually neglected. We estimated the contribution of vertical and lateral groundwater fluxes to the land surface water budget at a subcontinental scale, by modelling convergence of groundwater and surfacewater fluxes. We present a hydrological model of the entire Danube Basin at 5 km resolution, and use it to show the importance of groundwater for the surface climate. The contribution of groundwater to evaporation is significant, and can be upwards of 30% in summer. We show that this contribution is local by presenting the groundwater travel times and the magnitude of groundwater convergence. Throughout the Danube Basin the lateral fluxes of groundwater are negligible when modelling at this scale and resolution. Also, it is shown that the contribution of groundwater to evaporation has important temporal characteristics. An experiment with the same model shows that a wet episode influences groundwaters contribution to summer evaporation for several years afterwards. This indicates that modelling groundwater flow has the potential to augment the multi-year memory of climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SHPMP..46..228K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SHPMP..46..228K"><span>The epistemology of climate models and some of its implications for climate science and the philosophy of science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katzav, Joel</p> <p>2014-05-01</p> <p>I bring out the limitations of four important views of what the target of useful climate model assessment is. Three of these views are drawn from philosophy. They include the views of Elisabeth Lloyd and Wendy Parker, and an application of Bayesian confirmation theory. The fourth view I criticise is based on the actual practice of climate model assessment. In bringing out the limitations of these four views, I argue that an approach to climate model assessment that neither demands too much of such assessment nor threatens to be unreliable will, in typical cases, have to aim at something other than the confirmation of claims about how the climate system actually is. This means, I suggest, that the Intergovernmental Panel on Climate Change's (IPCC's) focus on establishing confidence in climate model explanations and predictions is misguided. So too, it means that standard epistemologies of science with pretensions to generality, e.g., Bayesian epistemologies, fail to illuminate the assessment of climate models. I go on to outline a view that neither demands too much nor threatens to be unreliable, a view according to which useful climate model assessment typically aims to show that certain climatic scenarios are real possibilities and, when the scenarios are determined to be real possibilities, partially to determine how remote they are.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1229971-solar-geoengineering-climate-uncertainty','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1229971-solar-geoengineering-climate-uncertainty"><span>On solar geoengineering and climate uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>MacMartin, Douglas; Kravitz, Benjamin S.; Rasch, Philip J.</p> <p>2015-09-03</p> <p>Uncertainty in the climate system response has been raised as a concern regarding solar geoengineering. Here we show that model projections of regional climate change outcomes may have greater agreement under solar geoengineering than with CO2 alone. We explore the effects of geoengineering on one source of climate system uncertainty by evaluating the inter-model spread across 12 climate models participating in the Geoengineering Model Intercomparison project (GeoMIP). The model spread in regional temperature and precipitation changes is reduced with CO2 and a solar reduction, in comparison to the case with increased CO2 alone. That is, the intermodel spread in predictionsmore » of climate change and the model spread in the response to solar geoengineering are not additive but rather partially cancel. Furthermore, differences in efficacy explain most of the differences between models in their temperature response to an increase in CO2 that is offset by a solar reduction. These conclusions are important for clarifying geoengineering risks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29852443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29852443"><span>Climate shapes the protein abundance of dominant soil bacteria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bastida, Felipe; Crowther, Tom W; Prieto, Iván; Routh, Devin; García, Carlos; Jehmlich, Nico</p> <p>2018-05-28</p> <p>Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of Actinobacteria, Planctomycetes and Proteobacteria, supporting the hypothesis that metabolic activity of some dominant phyla may be closely linked to climate. These results may improve our capacity to construct microbial models that better predict the impact of climate change in ecosystem processes. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26750759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26750759"><span>Future Warming Patterns Linked to Today's Climate Variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dai, Aiguo</p> <p>2016-01-11</p> <p>The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16061800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16061800"><span>Evolution of carbon sinks in a changing climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fung, Inez Y; Doney, Scott C; Lindsay, Keith; John, Jasmin</p> <p>2005-08-09</p> <p>Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1182133','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1182133"><span>Evolution of carbon sinks in a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fung, Inez Y.; Doney, Scott C.; Lindsay, Keith; John, Jasmin</p> <p>2005-01-01</p> <p>Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain. PMID:16061800</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34992','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34992"><span>Understanding the science of climate change: Talking points - Impacts to Prairie Potholes and Grasslands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Rachel Loehman</p> <p>2009-01-01</p> <p>Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612989B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612989B"><span>Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil</p> <p>2014-05-01</p> <p>Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916879M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916879M"><span>Expansion of the Lyme Disease Vector Ixodes scapularis in Canada inferred from CMIP5 Climate Projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McPherson, Michelle Yvonne; García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Hansen-Ketchum, Patti; MacDougall, Donna; Hume Ogden, Nicholas</p> <p>2017-04-01</p> <p>A number of studies have assessed possible climate change impacts on the Lyme disease vector, Ixodes scapularis. However, most have used surface air temperature from only one climate model simulation and/or one emission scenario, representing only one possible climate future. We quantified effects of different Representative Concentration Pathway (RCP) and climate model outputs on the projected future changes in the basic reproduction number (R0) of I. scapularis to explore uncertainties in future R0 estimates. We used surface air temperature generated by a complete set of General Circulation Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to hindcast historical and forecast future effects of climate change on the R0 of I. scapularis. As in previous studies, R0 of I. scapularis increased with a warming climate under future projected climate. Increases in the multi-model mean R0 values showed significant changes over time under all RCP scenarios, however; only the estimated R0 mean values between RCP6.0 and RCP8.5 showed statistically significant differences. Our results highlight the potential for climate change to have an effect on future Lyme disease risk in Canada even if the Paris Agreement's goal to keep global warming below 2°C is achieved, although mitigation reducing emissions from RCP8.5 levels to those of RCP6.0 or less would be expected to slow tick invasion after the 2030s. On-going planning is needed to inform and guide adaptation in light of the projected range of possible futures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED44A..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED44A..04R"><span>Can role-play with interactive simulations enhance climate change knowledge, affect and intent to act?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rooney-varga, J. N.; Sterman, J.; Fracassi, E. P.; Franck, T.; Kapmeier, F.; Kurker, V.; Jones, A.; Rath, K.</p> <p>2017-12-01</p> <p>The strong scientific consensus about the reality and risks of anthropogenic climate change stands in stark contrast to widespread confusion and complacency among the public. Many efforts to close that gap, grounded in the information deficit model of risk communication, provide scientific information on climate change through reports and presentations. However, research shows that showing people research does not work: the gap between scientific and public understanding of climate change remains wide. Tools that are rigorously grounded in the science and motivate action on climate change are urgently needed. Here we assess the impact of one such tool, an interactive, role-play simulation, World Climate. Participants take the roles of delegates to the UN climate negotiations and are challenged to create an agreement limiting warming to no more than 2°C. The C-ROADS climate simulation model then provides participants with immediate feedback about the expected impacts of their decisions. Participants use C-ROADS to explore the climate system and use the results to refine their negotiating positions, learning about climate change while experiencing the social dynamics of negotiations and decision-making. Pre- and post-survey results from 21 sessions in eight nations showed significant gains in participants' climate change knowledge, affective engagement, intent to take action, and desire to learn. Contrary to the deficit model, gains in participants' desire to learn more and intention to act were associated with gains in affective engagement, particularly feelings of urgency and hope, but not climate knowledge. Gains were just as strong among participants who oppose government regulation, suggesting the simulation's potential to reach across political divides. Results indicate that simulations like World Climate offer a climate change communication tool that enables people to learn and feel for themselves, which together have the potential to motivate action informed by science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5608457','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5608457"><span>International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nawrotzki, Raphael J.; Bakhtsiyarava, Maryia</p> <p>2016-01-01</p> <p>Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season. PMID:28943813</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28943813','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28943813"><span>International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nawrotzki, Raphael J; Bakhtsiyarava, Maryia</p> <p>2017-05-01</p> <p>Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51I0187N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51I0187N"><span>Multi-model projections of Indian summer monsoon climate changes under A1B scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, X.; Wang, S.; Tang, J.</p> <p>2016-12-01</p> <p>As part of the Regional Climate Model Intercomparison Project for Asia, the projections of Indian summer monsoon climate changes are constructed using three global climate models (GCMs) and seven regional climate models (RCMs) during 2041-2060 based on the Intergovernmental Panel on Climate Change A1B emission scenario. For the control climate of 1981-2000, most nested RCMs show advantage over the driving GCM of European Centre/Hamburg Fifth Generation (ECHAM5) in the temporal-spatial distributions of temperature and precipitation over Indian Peninsula. Following the driving GCM of ECHAM5, most nested RCMs produce advanced monsoon onset in the control climate. For future climate widespread summer warming is projected over Indian Peninsula by all climate models, with the Multi-RCMs ensemble mean (MME) temperature increasing of 1°C to 2.5°C and the maximum warming center located in northern Indian Peninsula. While for the precipitation, a large inter-model spread is projected by RCMs, with wetter condition in MME projections and significant increase over southern India. Driven by the same GCM, most RCMs project advanced monsoon onset while delayed onset is found in two Regional Climate Model (RegCM3) projections, indicating uncertainty can be expected in the Indian Summer Monsoon onset. All climate models except Conformal-Cubic Atmospheric Model with equal resolution (referred as CCAMP) and two RegCM3 models project stronger summer monsoon during 2041-2060. The disagreement in precipitation projections by RCMs indicates that the surface climate change on regional scale is not only dominated by the large-scale forcing which is provided by driving GCM but also sensitive to RCM' internal physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005IJCli..25.1881C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005IJCli..25.1881C"><span>Weather and seasonal climate prediction for South America using a multi-model superensemble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaves, Rosane R.; Ross, Robert S.; Krishnamurti, T. N.</p> <p>2005-11-01</p> <p>This work examines the feasibility of weather and seasonal climate predictions for South America using the multi-model synthetic superensemble approach for climate, and the multi-model conventional superensemble approach for numerical weather prediction, both developed at Florida State University (FSU). The effect on seasonal climate forecasts of the number of models used in the synthetic superensemble is investigated. It is shown that the synthetic superensemble approach for climate and the conventional superensemble approach for numerical weather prediction can reduce the errors over South America in seasonal climate prediction and numerical weather prediction.For climate prediction, a suite of 13 models is used. The forecast lead-time is 1 month for the climate forecasts, which consist of precipitation and surface temperature forecasts. The multi-model ensemble is comprised of four versions of the FSU-Coupled Ocean-Atmosphere Model, seven models from the Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER), a version of the Community Climate Model (CCM3), and a version of the predictive Ocean Atmosphere Model for Australia (POAMA). The results show that conditions over South America are appropriately simulated by the Florida State University Synthetic Superensemble (FSUSSE) in comparison to observations and that the skill of this approach increases with the use of additional models in the ensemble. When compared to observations, the forecasts are generally better than those from both a single climate model and the multi-model ensemble mean, for the variables tested in this study.For numerical weather prediction, the conventional Florida State University Superensemble (FSUSE) is used to predict the mass and motion fields over South America. Predictions of mean sea level pressure, 500 hPa geopotential height, and 850 hPa wind are made with a multi-model superensemble comprised of six global models for the period January, February, and December of 2000. The six global models are from the following forecast centers: FSU, Bureau of Meteorology Research Center (BMRC), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP), Naval Research Laboratory (NRL), and Recherche en Prevision Numerique (RPN). Predictions of precipitation are made for the period January, February, and December of 2001 with a multi-analysis-multi-model superensemble where, in addition to the six forecast models just mentioned, five additional versions of the FSU model are used in the ensemble, each with a different initialization (analysis) based on different physical initialization procedures. On the basis of observations, the results show that the FSUSE provides the best forecasts of the mass and motion field variables to forecast day 5, when compared to both the models comprising the ensemble and the multi-model ensemble mean during the wet season of December-February over South America. Individual case studies show that the FSUSE provides excellent predictions of rainfall for particular synoptic events to forecast day 3. Copyright</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2067F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2067F"><span>Uncertainties in climate change projections for viticulture in Portugal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Pinto, Joaquim G.; Santos, João A.</p> <p>2013-04-01</p> <p>The assessment of climate change impacts on viticulture is often carried out using regional climate model (RCM) outputs. These studies rely on either multi-model ensembles or on single-model approaches. The RCM-ensembles account for uncertainties inherent to the different models. In this study, using a 16-RCM ensemble under the IPCC A1B scenario, the climate change signal (future minus recent-past, 2041-2070 - 1961-2000) of 4 bioclimatic indices (Huglin Index - HI, Dryness Index - DI, Hydrothermal Index - HyI and CompI - Composite Index) over mainland Portugal is analysed. A normalized interquartile range (NIQR) of the 16-member ensemble for each bioclimatic index is assessed in order to quantify the ensemble uncertainty. The results show significant increases in the HI index over most of Portugal, with higher values in Alentejo, Trás-os-Montes and Douro/Porto wine regions, also depicting very low uncertainty. Conversely, the decreases in the DI pattern throughout the country show large uncertainties, except in Minho (northwestern Portugal), where precipitation reaches the highest amounts in Portugal. The HyI shows significant decreases in northwestern Portugal, with relatively low uncertainty all across the country. The CompI depicts significant decreases over Alentejo and increases over Minho, though decreases over Alentejo reveal high uncertainty, while increases over Minho show low uncertainty. The assessment of the uncertainty in climate change projections is of great relevance for the wine industry. Quantifying this uncertainty is crucial, since different models may lead to quite different outcomes and may thereby be as crucial as climate change itself to the winemaking sector. This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24932467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24932467"><span>Competition-interaction landscapes for the joint response of forests to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clark, James S; Bell, David M; Kwit, Matthew C; Zhu, Kai</p> <p>2014-06-01</p> <p>The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012WRR....4812510S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012WRR....4812510S"><span>Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.</p> <p>2012-12-01</p> <p>General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150004431','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150004431"><span>Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina</p> <p>2014-01-01</p> <p>Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948295','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948295"><span>Climate change effects on agriculture: Economic responses to biophysical shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk</p> <p>2014-01-01</p> <p>Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24344285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24344285"><span>Climate change effects on agriculture: economic responses to biophysical shocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk</p> <p>2014-03-04</p> <p>Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH51A1861N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH51A1861N"><span>Understanding scale dependency of climatic processes with diarrheal disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.</p> <p>2015-12-01</p> <p>The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26232983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26232983"><span>The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lovejoy, S; de Lima, M I P</p> <p>2015-07-01</p> <p>Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29026073','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29026073"><span>Causes of model dry and warm bias over central U.S. and impact on climate projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Yanluan; Dong, Wenhao; Zhang, Minghua; Xie, Yuanyu; Xue, Wei; Huang, Jianbin; Luo, Yong</p> <p>2017-10-12</p> <p>Climate models show a conspicuous summer warm and dry bias over the central United States. Using results from 19 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the precipitation deficit leading the warm bias over this region. The precipitation deficit is associated with the widespread failure of models in capturing strong rainfall events in summer over the central U.S. A robust linear relationship between the projected warming and the present-day warm bias enables us to empirically correct future temperature projections. By the end of the 21st century under the RCP8.5 scenario, the corrections substantially narrow the intermodel spread of the projections and reduce the projected temperature by 2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after this correction the projected precipitation is nearly neutral for all scenarios.Climate models repeatedly show a warm and dry bias over the central United States, but the origin of this bias remains unclear. Here the authors associate this bias to precipitation deficits in models and after applying a correction, projected precipitation in this region shows no significant changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B23K0141T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B23K0141T"><span>Assessing Forest Carbon Response to Climate Change and Disturbances Using Long-term Hydro-climatic Observations and Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trettin, C.; Dai, Z.; Amatya, D. M.</p> <p>2014-12-01</p> <p>Long-term climatic and hydrologic observations on the Santee Experimental Forest in the lower coastal plain of South Carolina were used to estimate long-term changes in hydrology and forest carbon dynamics for a pair of first-order watersheds. Over 70 years of climate data indicated that warming in this forest area in the last decades was faster than the global mean; 35+ years of hydrologic records showed that forest ecosystem succession three years following Hurricane Hugo caused a substantial change in the ratio of runoff to precipitation. The change in this relationship between the paired watersheds was attributed to altered evapotranspiration processes caused by greater abundance of pine in the treatment watershed and regeneration of the mixed hardwood-pine forest on the reference watershed. The long-term records and anomalous observations are highly valuable for reliable calibration and validation of hydrological and biogeochemical models capturing the effects of climate variability. We applied the hydrological model MIKESHE that showed that runoff and water table level are sensitive to global warming, and that the sustained warming trends can be expected to decrease stream discharge and lower the mean water table depth. The spatially-explicit biogeochemical model Forest-DNDC, validated using biomass measurements from the watersheds, was used to assess carbon dynamics in response to high resolution hydrologic observation data and simulation results. The simulations showed that the long-term spatiotemporal carbon dynamics, including biomass and fluxes of soil carbon dioxide and methane were highly regulated by disturbance regimes, climatic conditions and water table depth. The utility of linked-modeling framework demonstrated here to assess biogeochemical responses at the watershed scale suggests applications for assessing the consequences of climate change within an urbanizing forested landscape. The approach may also be applicable for validating large-scale models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A33C2366Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A33C2366Y"><span>Radiative Effects of the Diurnal Cycle of Clouds and their Response to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, J.; Porporato, A. M.</p> <p>2017-12-01</p> <p>Clouds effectively control the Earth's energy budget by reflecting solar radiation and restricting the terrestrial one. While these dynamics have been regarded as one of vexing problem in understanding the climate system and have thus attracted much attention in the literature, less research has been devoted to the diurnal cycle of clouds (DCC). Here we first quantify the mean, amplitude, and phase of the cloud cycles in current climate models and compare them with satellite observations and reanalysis data. We show that the mean values appear to be reliable but the amplitude and phase of the DCC are less consistent. These inconsistencies are interpreted using a minimalist radiative balance model to demonstrate their impacts on surface temperature. The DCC radiative impacts are then analyzed in terms of phase shift and amplitude modulation of DCC and their so-called cloud radiative effects are estimated directly from climate model outputs. This allows us to show that DCC variations may account for up to 10-20% of the total cloud radiative impacts, calling for increased attention to the temporal evolution of the DCC in climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23800620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23800620"><span>Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mishra, Ashok; Singh, R; Raghuwanshi, N S; Chatterjee, C; Froebrich, Jochen</p> <p>2013-12-01</p> <p>Indian Ganga Basin (IGB), one of the most densely populated areas in the world, is facing a significant threat to food grain production, besides increased yield gap between actual and potential production, due to climate change. We have analyzed the spatial variability of climate change impacts on rice and wheat yields at three different locations representing the upper, middle and lower IGB. The DSSAT model is used to simulate the effects of climate variability and climate change on rice and wheat yields by analyzing: (i) spatial crop yield response to current climate, and (ii) impact of a changing climate as projected by two regional climate models, REMO and HadRM3, based on SRES A1B emission scenarios for the period 2011-2040. Results for current climate demonstrate a significant gap between actual and potential yield for upper, middle and lower IGB stations. The analysis based on RCM projections shows that during 2011-2040, the largest reduction in rice and wheat yields will occur in the upper IGB (reduction of potential rice and wheat yield respectively by 43.2% and 20.9% by REMO, and 24.8% and 17.2% by HadRM3). In the lower IGB, however, contrasting results are obtained, with HadRM3 based projections showing an increase in the potential rice and wheat yields, whereas, REMO based projections show decreased potential yields. We discuss the influence of agro-climatic factors; variation in temperature, length of maturity period and leaf area index which are responsible for modeled spatial variability in crop yield response within the IGB. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC21C1117T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC21C1117T"><span>Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.</p> <p>2015-12-01</p> <p>An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4824533','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4824533"><span>Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank</p> <p>2016-01-01</p> <p>We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27055028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27055028"><span>Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank</p> <p>2016-01-01</p> <p>We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2601X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2601X"><span>Upgrades to the REA method for producing probabilistic climate change projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Ying; Gao, Xuejie; Giorgi, Filippo</p> <p>2010-05-01</p> <p>We present an augmented version of the Reliability Ensemble Averaging (REA) method designed to generate probabilistic climate change information from ensembles of climate model simulations. Compared to the original version, the augmented one includes consideration of multiple variables and statistics in the calculation of the performance-based weights. In addition, the model convergence criterion previously employed is removed. The method is applied to the calculation of changes in mean and variability for temperature and precipitation over different sub-regions of East Asia based on the recently completed CMIP3 multi-model ensemble. Comparison of the new and old REA methods, along with the simple averaging procedure, and the use of different combinations of performance metrics shows that at fine sub-regional scales the choice of weighting is relevant. This is mostly because the models show a substantial spread in performance for the simulation of precipitation statistics, a result that supports the use of model weighting as a useful option to account for wide ranges of quality of models. The REA method, and in particular the upgraded one, provides a simple and flexible framework for assessing the uncertainty related to the aggregation of results from ensembles of models in order to produce climate change information at the regional scale. KEY WORDS: REA method, Climate change, CMIP3</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159196','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159196"><span>Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima</p> <p>2017-01-01</p> <p>We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27457660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27457660"><span>Projections of increased and decreased dengue incidence under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, C R; Mincham, G; Faddy, H; Viennet, E; Ritchie, S A; Harley, D</p> <p>2016-10-01</p> <p>Dengue is the world's most prevalent mosquito-borne disease, with more than 200 million people each year becoming infected. We used a mechanistic virus transmission model to determine whether climate warming would change dengue transmission in Australia. Using two climate models each with two carbon emission scenarios, we calculated future dengue epidemic potential for the period 2046-2064. Using the ECHAM5 model, decreased dengue transmission was predicted under the A2 carbon emission scenario, whereas some increases are likely under the B1 scenario. Dengue epidemic potential may decrease under climate warming due to mosquito breeding sites becoming drier and mosquito survivorship declining. These results contradict most previous studies that use correlative models to show increased dengue transmission under climate warming. Dengue epidemiology is determined by a complex interplay between climatic, human host, and pathogen factors. It is therefore naive to assume a simple relationship between climate and incidence, and incorrect to state that climate warming will uniformly increase dengue transmission, although in general the health impacts of climate change will be negative.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatCC...3..899F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatCC...3..899F"><span>Adapted conservation measures are required to save the Iberian lynx in a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fordham, D. A.; Akçakaya, H. R.; Brook, B. W.; Rodríguez, A.; Alves, P. C.; Civantos, E.; Triviño, M.; Watts, M. J.; Araújo, M. B.</p> <p>2013-10-01</p> <p>The Iberian lynx (Lynx pardinus) has suffered severe population declines in the twentieth century and is now on the brink of extinction. Climate change could further threaten the survival of the species, but its forecast effects are being neglected in recovery plans. Quantitative estimates of extinction risk under climate change have so far mostly relied on inferences from correlative projections of species' habitat shifts. Here we use ecological niche models coupled to metapopulation simulations with source-sink dynamics to directly investigate the combined effects of climate change, prey availability and management intervention on the persistence of the Iberian lynx. Our approach is unique in that it explicitly models dynamic bi-trophic species interactions in a climate change setting. We show that anticipated climate change will rapidly and severely decrease lynx abundance and probably lead to its extinction in the wild within 50 years, even with strong global efforts to mitigate greenhouse gas emissions. In stark contrast, we also show that a carefully planned reintroduction programme, accounting for the effects of climate change, prey abundance and habitat connectivity, could avert extinction of the lynx this century. Our results demonstrate, for the first time, why considering prey availability, climate change and their interaction in models is important when designing policies to prevent future biodiversity loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51G3118I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51G3118I"><span>Regional climate projection of the Maritime Continent using the MIT Regional Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>IM, E. S.; Eltahir, E. A. B.</p> <p>2014-12-01</p> <p>Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25449318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25449318"><span>Visualizing the uncertainty in the relationship between seasonal average climate and malaria risk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacLeod, D A; Morse, A P</p> <p>2014-12-02</p> <p>Around $1.6 billion per year is spent financing anti-malaria initiatives, and though malaria morbidity is falling, the impact of annual epidemics remains significant. Whilst malaria risk may increase with climate change, projections are highly uncertain and to sidestep this intractable uncertainty, adaptation efforts should improve societal ability to anticipate and mitigate individual events. Anticipation of climate-related events is made possible by seasonal climate forecasting, from which warnings of anomalous seasonal average temperature and rainfall, months in advance are possible. Seasonal climate hindcasts have been used to drive climate-based models for malaria, showing significant skill for observed malaria incidence. However, the relationship between seasonal average climate and malaria risk remains unquantified. Here we explore this relationship, using a dynamic weather-driven malaria model. We also quantify key uncertainty in the malaria model, by introducing variability in one of the first order uncertainties in model formulation. Results are visualized as location-specific impact surfaces: easily integrated with ensemble seasonal climate forecasts, and intuitively communicating quantified uncertainty. Methods are demonstrated for two epidemic regions, and are not limited to malaria modeling; the visualization method could be applied to any climate impact.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatSR...4E7264M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatSR...4E7264M"><span>Visualizing the uncertainty in the relationship between seasonal average climate and malaria risk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacLeod, D. A.; Morse, A. P.</p> <p>2014-12-01</p> <p>Around $1.6 billion per year is spent financing anti-malaria initiatives, and though malaria morbidity is falling, the impact of annual epidemics remains significant. Whilst malaria risk may increase with climate change, projections are highly uncertain and to sidestep this intractable uncertainty, adaptation efforts should improve societal ability to anticipate and mitigate individual events. Anticipation of climate-related events is made possible by seasonal climate forecasting, from which warnings of anomalous seasonal average temperature and rainfall, months in advance are possible. Seasonal climate hindcasts have been used to drive climate-based models for malaria, showing significant skill for observed malaria incidence. However, the relationship between seasonal average climate and malaria risk remains unquantified. Here we explore this relationship, using a dynamic weather-driven malaria model. We also quantify key uncertainty in the malaria model, by introducing variability in one of the first order uncertainties in model formulation. Results are visualized as location-specific impact surfaces: easily integrated with ensemble seasonal climate forecasts, and intuitively communicating quantified uncertainty. Methods are demonstrated for two epidemic regions, and are not limited to malaria modeling; the visualization method could be applied to any climate impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9269C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9269C"><span>Modelling the mid-Pliocene Warm Period with the IPSLGCM: contribution to PlioMIP and feedback mechanisms from the presence of mega-lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Contoux, C.; Jost, A.; Sepulchre, P.; Ramstein, G.</p> <p>2012-04-01</p> <p>The mid-Pliocene Warm Period (mPWP, ca. 3.3 -3 Ma) is the last geological period showing a warmer climate than the preindustrial during a sustained period of time, much longer than interglacial periods of the last million years. Moreover, mPWP position of the continents and atmospheric pCO2 are very close to present-day, both conditions making the mPWP a relevant analogue for future global warming. For these reasons, the mPWP has been the focus of Pliocene Modelling Intercomparison Project (PlioMIP), which associates data analysis and modelling. We use the IPSLCM5 Earth System model and its atmospheric component alone (LMDZ), to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs), topography, ice sheet extent and vegetation are the ones used within the PlioMIP framework. On a global scale we show the impact of different boundary conditions with LMDZ, and of a global coupling on the simulated climate. Results from the Earth System model are also compared to SST reconstructions, particularly in the North Atlantic Ocean, where an important warming occurs, generally poorly reproduced by models. These results will then be part of the multi-model analysis for the Pliocene. The PlioMIP exercise is also about better understanding model/data mismatches. In the present-day desertic regions of Lake Chad (Africa) and Lake Eyre (Australia), vegetation data show the presence of tropical savanna at the expense of deserts during the mPWP. Vegetation models forced by mPWP climatic simulations fail to reproduce more humid vegetation in these locations. There might be a reason for this model/data discrepancy: geological data stand for the presence of mega-lakes in these two regions during the mPWP that are not accounted for in previous simulations. Such extended waterbodies could have important feedbacks on the hydrological cycle and regional climate. We use the LMDZ4 atmospheric model imbedding explicitly resolved lake surfaces to simulate the climate under mega-lake conditions, using a zoom on the regions of interest. This allows us to determine the viability of such waterbodies under mid-Pliocene climatic conditions as well as their feedbacks on the climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGC43A0946K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGC43A0946K"><span>Assessing Climate Change Risks Using a Multi-Model Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knorr, W.; Scholze, M.; Prentice, C.</p> <p>2007-12-01</p> <p>We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from the IPCC AR4 data archive using 16 climate models and mapping the proportions of model runs showing exceedance of natural variability in wildfire frequency and freshwater supply or shifts in vegetation cover. Our analysis does not assign probabilities to scenarios. Instead, we consider the distribution of outcomes within three sets of model runs grouped according to the amount of global warming they simulate: < 2 degree C (including committed climate change simulations), 2-3 degree C, and >3 degree C. Here, we are contrasting two different methods for calculating the risks: first we use an equal weighting approach giving every model within one of the three sets the same weight, and second, we weight the models according to their ability to model ENSO. The differences are underpinning the need for the development of more robust performance metrics for global climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1130216-agriculture-climate-change-global-scenarios-why-don-models-agree','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1130216-agriculture-climate-change-global-scenarios-why-don-models-agree"><span>Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal</p> <p></p> <p>Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. Bymore » providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMGC51A0665A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMGC51A0665A"><span>An Investigation of Bomb Cyclogenesis in NCEP's CFS Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarez, F. M.; Eichler, T.; Gottschalck, J.</p> <p>2008-12-01</p> <p>With the concerns, impacts and consequences of climate change increasing, the need for climate models to simulate daily weather is very important. Given the improvements in resolution and physical parameterizations, climate models are becoming capable of resolving extreme weather events. A particular type of extreme event which has large impacts on transportation, industry and the general public is a rapidly intensifying cyclone referred to as a "bomb." In this study, bombs are investigated using the National Center for Environmental Prediction's (NCEP) Climate Forecast System (CFS) model. We generate storm tracks based on 6-hourly sea-level pressure (SLP) from long-term climate runs of the CFS model. Investigation of this dataset has revealed that the CFS model is capable of producing bombs. We show a case study of a bomb in the CFS model and demonstrate that it has characteristics similar to the observed. Since the CFS model is capable of producing bombs, future work will focus on trends in their frequency and intensity so that an assessment of the potential role of the bomb in climate change can be assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1254388-non-stationary-return-levels-cmip5-multi-model-temperature-extremes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1254388-non-stationary-return-levels-cmip5-multi-model-temperature-extremes"><span>Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cheng, L.; Phillips, T. J.; AghaKouchak, A.</p> <p>2015-05-01</p> <p>The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5749K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5749K"><span>Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kravtsov, Sergey</p> <p>2017-06-01</p> <p>Identification and dynamical attribution of multidecadal climate undulations to either variations in external forcings or to internal sources is one of the most important topics of modern climate science, especially in conjunction with the issue of human-induced global warming. Here we utilize ensembles of twentieth century climate simulations to isolate the forced signal and residual internal variability in a network of observed and modeled climate indices. The observed internal variability so estimated exhibits a pronounced multidecadal mode with a distinctive spatiotemporal signature, which is altogether absent in model simulations. This single mode explains a major fraction of model-data differences over the entire climate index network considered; it may reflect either biases in the models' forced response or models' lack of requisite internal dynamics, or a combination of both.<abstract type="synopsis"><title type="main">Plain Language SummaryGlobal and regional warming trends over the course of the twentieth century have been nonuniform, with decadal and longer periods of faster or slower warming, or even cooling. Here we show that state-of-the-art global models used to predict climate fail to adequately reproduce such multidecadal climate variations. In particular, the models underestimate the magnitude of the observed variability and misrepresent its spatial pattern. Therefore, our ability to interpret the observed climate change using these models is limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20603496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20603496"><span>Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Arain, M Altaf; Baldocchi, Dennis; Bonan, Gordon B; Bondeau, Alberte; Cescatti, Alessandro; Lasslop, Gitta; Lindroth, Anders; Lomas, Mark; Luyssaert, Sebastiaan; Margolis, Hank; Oleson, Keith W; Roupsard, Olivier; Veenendaal, Elmar; Viovy, Nicolas; Williams, Christopher; Woodward, F Ian; Papale, Dario</p> <p>2010-08-13</p> <p>Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5047147','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5047147"><span>Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie</p> <p>2016-01-01</p> <p>Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27621443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27621443"><span>Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie</p> <p>2016-09-27</p> <p>Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC11E..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC11E..07S"><span>Multi-model assessment of water scarcity under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N. W.; Clark, D. B.; Dankers, R.; Eisner, S.; Fekete, B. M.; Colon-Gonzalez, F. J.; Gosling, S. N.; KIM, H.; Liu, X.; Masaki, Y.; Portmann, F. T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.; Wisser, D.; albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.</p> <p>2013-12-01</p> <p>Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we use a large ensemble of global hydrological models (GHMs) forced by five global climate models (GCMs) and the latest greenhouse--gas concentration scenarios (RCPs) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that up to a global warming of 2°C above present (approx. 2.7°C above pre--industrial), each additional degree of warming will confront an additional approx. 7% of the global population with a severe decrease in water resources; and that climate change will increase the number of people living under absolute water scarcity (<500m3/capita/year) by another 40% (according to some models, more than 100%) compared to the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between present--day and 2°C, while indicators of very severe impacts increase unabated beyond 2°C. At the same time, the study highlights large uncertainties associated with these estimates, with both GCMs and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development. Relative change in annual discharge at 2°C compared to present-day, under RCP8.5, from an ensemble of 11 global hydrological models (GHMs) driven by five global climate models (GCMs). Color hues show the multi-model mean change, and saturation shows the agreement on the sign of change across all GHM-GCM combinations (percentage of model runs agreeing on the sign).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016546','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016546"><span>Projected Climate Impacts to South African Maize and Wheat Production in 2055: A Comparison of Empirical and Mechanistic Modeling Approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Estes, Lyndon D.; Beukes, Hein; Bradley, Bethany A.; Debats, Stephanie R.; Oppenheimer, Michael; Ruane, Alex C.; Schulze, Roland; Tadross, Mark</p> <p>2013-01-01</p> <p>Crop model-specific biases are a key uncertainty affecting our understanding of climate change impacts to agriculture. There is increasing research focus on intermodel variation, but comparisons between mechanistic (MMs) and empirical models (EMs) are rare despite both being used widely in this field. We combined MMs and EMs to project future (2055) changes in the potential distribution (suitability) and productivity of maize and spring wheat in South Africa under 18 downscaled climate scenarios (9 models run under 2 emissions scenarios). EMs projected larger yield losses or smaller gains than MMs. The EMs' median-projected maize and wheat yield changes were 3.6% and 6.2%, respectively, compared to 6.5% and 15.2% for the MM. The EM projected a 10% reduction in the potential maize growing area, where the MM projected a 9% gain. Both models showed increases in the potential spring wheat production region (EM = 48%, MM = 20%), but these results were more equivocal because both models (particularly the EM) substantially overestimated the extent of current suitability. The substantial water-use efficiency gains simulated by the MMs under elevated CO2 accounted for much of the EMMM difference, but EMs may have more accurately represented crop temperature sensitivities. Our results align with earlier studies showing that EMs may show larger climate change losses than MMs. Crop forecasting efforts should expand to include EMMM comparisons to provide a fuller picture of crop-climate response uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048367','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048367"><span>Climate downscaling effects on predictive ecological models: a case study for threatened and endangered vertebrates in the southeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.</p> <p>2013-01-01</p> <p>High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51H3126N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51H3126N"><span>Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicholls, S.; Mohr, K. I.</p> <p>2014-12-01</p> <p>The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4447M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4447M"><span>Performance evaluation of a non-hydrostatic regional climate model over the Mediterranean/Black Sea area and climate projections for the XXI century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercogliano, Paola; Bucchignani, Edoardo; Montesarchio, Myriam; Zollo, Alessandra Lucia</p> <p>2013-04-01</p> <p>In the framework of the Work Package 4 (Developing integrated tools for environmental assessment) of PERSEUS Project, high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes the Mediterranean and Black Seas, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate trend but also extremes of the present and future climate, in terms of temperature, precipitation and wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A41H0076M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A41H0076M"><span>Assessment of temperature and precipitation over Mediterranean Area and Black Sea with non hydrostatic high resolution regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercogliano, P.; Montesarchio, M.; Zollo, A.; Bucchignani, E.</p> <p>2012-12-01</p> <p>In the framework of the Italian GEMINA Project (program of expansion and development of the Euro-Mediterranean Center for Climate Change (CMCC), high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes all the Mediterranean Sea, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate patterns but also extremes of the present and future climate, in terms of temperature, precipitation and wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25874407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25874407"><span>Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W Ian; Reid, Neil</p> <p>2015-01-01</p> <p>Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcGeo.tmp...37G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcGeo.tmp...37G"><span>Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garijo, Carlos; Mediero, Luis</p> <p>2018-04-01</p> <p>Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3695984','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3695984"><span>Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo</p> <p>2013-01-01</p> <p>To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only. PMID:23840330</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23840330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23840330"><span>Updating known distribution models for forecasting climate change impact on endangered species.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo</p> <p>2013-01-01</p> <p>To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26442433','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26442433"><span>Does climate directly influence NPP globally?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren</p> <p>2016-01-01</p> <p>The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H21D1399S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H21D1399S"><span>Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.</p> <p>2015-12-01</p> <p>Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2805J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2805J"><span>Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min</p> <p>2018-03-01</p> <p>Climate models using different dynamical cores can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE core) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method core. Compared to the finite volume method core, SE core simulated additional adiabatic warming in the Arctic lower atmosphere, and this was consistent with the eddy-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface warming with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE core showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical core of climate models in the simulation of the Arctic climate and associated teleconnection patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1027816-complex-networks-unified-framework-descriptive-analysis-predictive-modeling-climate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1027816-complex-networks-unified-framework-descriptive-analysis-predictive-modeling-climate"><span>Complex networks as a unified framework for descriptive analysis and predictive modeling in climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R</p> <p></p> <p>The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25321875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25321875"><span>Future climate data from RCP 4.5 and occurrence of malaria in Korea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo</p> <p>2014-10-15</p> <p>Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001-2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4210996','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4210996"><span>Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P.; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo</p> <p>2014-01-01</p> <p>Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future. PMID:25321875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24501054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24501054"><span>Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal</p> <p>2012-09-01</p> <p>Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1238786-future-warming-patterns-linked-todays-climate-variability','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1238786-future-warming-patterns-linked-todays-climate-variability"><span>Future warming patterns linked to today’s climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dai, Aiguo</p> <p>2016-01-11</p> <p>The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1238786','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1238786"><span>Future warming patterns linked to today’s climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dai, Aiguo</p> <p></p> <p>The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH31A1898A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH31A1898A"><span>Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.</p> <p>2016-12-01</p> <p>To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JESS..125..677U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JESS..125..677U"><span>Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara</p> <p>2016-06-01</p> <p>The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.130.1065Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.130.1065Z"><span>Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining</p> <p>2017-11-01</p> <p>Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1325305-climate-change-impacts-net-primary-production-npp-export-production-ep-regulated-increasing-stratification-phytoplankton-community-structure-cmip5-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1325305-climate-change-impacts-net-primary-production-npp-export-production-ep-regulated-increasing-stratification-phytoplankton-community-structure-cmip5-models"><span>Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fu, Weiwei; Randerson, James T.; Moore, J. Keith</p> <p></p> <p>We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1325305-climate-change-impacts-net-primary-production-npp-export-production-ep-regulated-increasing-stratification-phytoplankton-community-structure-cmip5-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1325305-climate-change-impacts-net-primary-production-npp-export-production-ep-regulated-increasing-stratification-phytoplankton-community-structure-cmip5-models"><span>Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fu, Weiwei; Randerson, James T.; Moore, J. Keith</p> <p>2016-09-16</p> <p>We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950032597&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950032597&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming"><span>Possible implications of global climate change on global lightning distributions and frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Price, Colin; Rind, David</p> <p>1994-01-01</p> <p>The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150019930&hterms=biome&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbiome','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150019930&hterms=biome&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbiome"><span>Challenges in Quantifying Pliocene Terrestrial Warming Revealed by Data-Model Discord</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salzmann, Ulrich; Dolan, Aisling M.; Haywood, Alan M.; Chan, Wing-Le; Voss, Jochen; Hill, Daniel J.; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Bragg, Frances J.; Chandler, Mark A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150019930'); toggleEditAbsImage('author_20150019930_show'); toggleEditAbsImage('author_20150019930_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150019930_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150019930_hide"></p> <p>2013-01-01</p> <p>Comparing simulations of key warm periods in Earth history with contemporaneous geological proxy data is a useful approach for evaluating the ability of climate models to simulate warm, high-CO2 climates that are unprecedented in the more recent past. Here we use a global data set of confidence-assessed, proxy-based temperature estimates and biome reconstructions to assess the ability of eight models to simulate warm terrestrial climates of the Pliocene epoch. The Late Pliocene, 3.6-2.6 million years ago, is an accessible geological interval to understand climate processes of a warmer world4. We show that model-predicted surface air temperatures reveal a substantial cold bias in the Northern Hemisphere. Particularly strong data-model mismatches in mean annual temperatures (up to 18 C) exist in northern Russia. Our model sensitivity tests identify insufficient temporal constraints hampering the accurate configuration of model boundary conditions as an important factor impacting on data- model discrepancies. We conclude that to allow a more robust evaluation of the ability of present climate models to predict warm climates, future Pliocene data-model comparison studies should focus on orbitally defined time slices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11F0078A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11F0078A"><span>A new paradigm for predicting zonal-mean climate and climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.</p> <p>2016-12-01</p> <p>How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.206...87O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.206...87O"><span>Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent</p> <p>2018-07-01</p> <p>In this study, we investigate changes in seasonal temperature and precipitation climatology of CORDEX Middle East and North Africa (MENA) region for three periods of 2010-2040, 2040-2070 and 2070-2100 with respect to the control period of 1970-2000 by using regional climate model simulations. Projections of future climate conditions are modeled by forcing Regional Climate Model, RegCM4.4 of the International Centre for Theoretical Physics (ICTP) with two different CMIP5 global climate models. HadGEM2-ES global climate model of the Met Office Hadley Centre and MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were used to generate 50 km resolution data for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 13. We test the seasonal time-scale performance of RegCM4.4 in simulating the observed climatology over domain of the MENA by using the output of two different global climate models. The projection results show relatively high increase of average temperatures from 3 °C up to 9 °C over the domain for far future (2070-2100). A strong decrease in precipitation is projected in almost all parts of the domain according to the output of the regional model forced by scenario outputs of two global models. Therefore, warmer and drier than present climate conditions are projected to occur more intensely over the CORDEX-MENA domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335413&keyword=climate%20change&subject=climate%20change%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=04/05/2012&dateendpublishedpresented=04/05/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335413&keyword=climate%20change&subject=climate%20change%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=04/05/2012&dateendpublishedpresented=04/05/2017&sortby=pubdateyear"><span>A changing climate: impacts on human exposures to O3 using ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482309-joint-space-time-statistics-macroweather-precipitation-space-time-statistical-factorization-macroweather-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482309-joint-space-time-statistics-macroweather-precipitation-space-time-statistical-factorization-macroweather-models"><span>The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra</p> <p>2015-07-15</p> <p>Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSMGC23A..19S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSMGC23A..19S"><span>Climate, Water and Renewable Energy in the Nordic Countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snorrason, A.; Jonsdottir, J. F.</p> <p>2004-05-01</p> <p>Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35838','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35838"><span>Modeling aspen responses to climatic warming and insect defoliation in western Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E. H. Ted Hogg</p> <p>2001-01-01</p> <p>Effects of climate change at three aspen sites in Saskatchewan were explored using a climate-driven model that includes insect defoliation. A simulated warming of 4-5 °C caused complete mortality due to drought at all three sites. A simulated warming of 2-2.5 °C caused complete mortality of aspen at the parkland site, while aspen growth at two boreal sites showed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1274/pdf/ofr2012-1274.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1274/pdf/ofr2012-1274.pdf"><span>Potential climate-induced runoff changes and associated uncertainty in four Pacific Northwest estuaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steele, Madeline O.; Chang, Heejun; Reusser, Deborah A.; Brown, Cheryl A.; Jung, Il-Won</p> <p>2012-01-01</p> <p>As part of a larger investigation into potential effects of climate change on estuarine habitats in the Pacific Northwest, we estimated changes in freshwater inputs into four estuaries: Coquille River estuary, South Slough of Coos Bay, and Yaquina Bay in Oregon, and Willapa Bay in Washington. We used the U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) to model watershed hydrological processes under current and future climatic conditions. This model allowed us to explore possible shifts in coastal hydrologic regimes at a range of spatial scales. All modeled watersheds are located in rainfall-dominated coastal areas with relatively insignificant base flow inputs, and their areas vary from 74.3 to 2,747.6 square kilometers. The watersheds also vary in mean elevation, ranging from 147 meters in the Willapa to 1,179 meters in the Coquille. The latitudes of watershed centroids range from 43.037 degrees north latitude in the Coquille River estuary to 46.629 degrees north latitude in Willapa Bay. We calibrated model parameters using historical climate grid data downscaled to one-sixteenth of a degree by the Climate Impacts Group, and historical runoff from sub-watersheds or neighboring watersheds. Nash Sutcliffe efficiency values for daily flows in calibration sub-watersheds ranged from 0.71 to 0.89. After calibration, we forced the PRMS models with four North American Regional Climate Change Assessment Program climate models: Canadian Regional Climate Model-(National Center for Atmospheric Research) Community Climate System Model version 3, Canadian Regional Climate Model-Canadian Global Climate Model version 3, Hadley Regional Model version 3-Hadley Centre Climate Model version 3, and Regional Climate Model-Canadian Global Climate Model version 3. These are global climate models (GCMs) downscaled with regional climate models that are embedded within the GCMs, and all use the A2 carbon emission scenario developed by the Intergovernmental Panel on Climate Change. With these climate-forcing outputs, we derived the mean change in flow from the period encompassing the 1980s (1971-1995) to the period encompassing the 2050s (2041-2065). Specifically, we calculated percent change in mean monthly flow rate, coefficient of variation, top 5 percent of flow, and 7-day low flow. The trends with the most agreement among climate models and among watersheds were increases in autumn mean monthly flows, especially in October and November, decreases in summer monthly mean flow, and increases in the top 5 percent of flow. We also estimated variance in PRMS outputs owing to parameter uncertainty and the selection of climate model using Latin hypercube sampling. This analysis showed that PRMS low-flow simulations are more uncertain than medium or high flow simulations, and that variation among climate models was a larger source of uncertainty than the hydrological model parameters. These results improve our understanding of how climate change may affect the saltwater-freshwater balance in Pacific Northwest estuaries, with implications for their sensitive ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..664M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..664M"><span>Towards process-informed bias correction of climate change simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.</p> <p>2017-11-01</p> <p>Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2029B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2029B"><span>Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik</p> <p>2018-05-01</p> <p>Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13C1092M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13C1092M"><span>A fresh look at the Last Glacial Maximum using Paleoclimate Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malevich, S. B.; Tierney, J. E.; Hakim, G. J.; Tardif, R.</p> <p>2017-12-01</p> <p>Quantifying climate conditions during the Last Glacial Maximum ( 21ka) can help us to understand climate responses to forcing and climate states that are poorly represented in the instrumental record. Paleoclimate proxies may be used to estimate these climate conditions, but proxies are sparsely distributed and possess uncertainties from environmental and biogeochemical processes. Alternatively, climate model simulations provide a full-field view, but may predict unrealistic climate states or states not faithful to proxy records. Here, we use data assimilation - combining climate proxy records with a theoretical understanding from climate models - to produce field reconstructions of the LGM that leverage the information from both data and models. To date, data assimilation has mainly been used to produce reconstructions of climate fields through the last millennium. We expand this approach in order to produce a climate fields for the Last Glacial Maximum using an ensemble Kalman filter assimilation. Ensemble samples were formed from output from multiple models including CCSM3, CESM2.1, and HadCM3. These model simulations are combined with marine sediment proxies for upper ocean temperature (TEX86, UK'37, Mg/Ca and δ18O of foraminifera), utilizing forward models based on a newly developed suite of Bayesian proxy system models. We also incorporate age model and radiocarbon reservoir uncertainty into our reconstructions using Bayesian age modeling software. The resulting fields show familiar patterns based on comparison with previous proxy-based reconstructions, but additionally reveal novel patterns of large-scale shifts in ocean-atmosphere dynamics, as the surface temperature data inform upon atmospheric circulation and precipitation patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915011T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915011T"><span>Climate change impacts on crop yield in the Euro-Mediterranean region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toreti, Andrea; Ceglar, Andrej; Dentener, Frank; Niemeyer, Stefan; Dosio, Alessandro; Fumagalli, Davide</p> <p>2017-04-01</p> <p>Agriculture is strongly influenced by climate variability, climate extremes and climate changes. Recent studies on past decades have identified and analysed the effects of climate variability and extremes on crop yields in the Euro-Mediterranean region. As these effects could be amplified in a changing climate context, it is essential to analyse available climate projections and investigate the possible impacts on European agriculture in terms of crop yield. In this study, five model runs from the Euro-CORDEX initiative under two scenarios (RCP4.5 and RCP8.5) have been used. Climate model data have been bias corrected and then used to feed a mechanistic crop growth model. The crop model has been run under different settings to better sample the intrinsic uncertainties. Among the main results, it is worth to report a weak but significant and spatially homogeneous increase in potential wheat yield at mid-century (under a CO2 fertilisation effect scenario). While more complex changes seem to characterise potential maize yield, with large areas in the region showing a weak-to-moderate decrease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=NASA&pg=4&id=EJ1171949','ERIC'); return false;" href="https://eric.ed.gov/?q=NASA&pg=4&id=EJ1171949"><span>Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark</p> <p>2018-01-01</p> <p>This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27903054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27903054"><span>Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khormi, Hassan M; Kumar, Lalit</p> <p>2016-11-21</p> <p>We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70147071','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70147071"><span>Targeting climate diversity in conservation planning to build resilience to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth</p> <p>2015-01-01</p> <p>Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A21F0217S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A21F0217S"><span>Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.</p> <p>2015-12-01</p> <p>Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4192637','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4192637"><span>Extracting climate memory using Fractional Integrated Statistical Model: A new perspective on climate prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yuan, Naiming; Fu, Zuntao; Liu, Shida</p> <p>2014-01-01</p> <p>Long term memory (LTM) in climate variability is studied by means of fractional integral techniques. By using a recently developed model, Fractional Integral Statistical Model (FISM), we in this report proposed a new method, with which one can estimate the long-lasting influences of historical climate states on the present time quantitatively, and further extract the influence as climate memory signals. To show the usability of this method, two examples, the Northern Hemisphere monthly Temperature Anomalies (NHTA) and the Pacific Decadal Oscillation index (PDO), are analyzed in this study. We find the climate memory signals indeed can be extracted and the whole variations can be further decomposed into two parts: the cumulative climate memory (CCM) and the weather-scale excitation (WSE). The stronger LTM is, the larger proportion the climate memory signals will account for in the whole variations. With the climate memory signals extracted, one can at least determine on what basis the considered time series will continue to change. Therefore, this report provides a new perspective on climate prediction. PMID:25300777</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714161P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714161P"><span>Resilience landscapes for Congo basin rainforests vs. climate and management impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietsch, Stephan Alexander; Gautam, Sishir; Elias Bednar, Johannes; Stanzl, Patrick; Mosnier, Aline; Obersteiner, Michael</p> <p>2015-04-01</p> <p>Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, and construct resilience landscapes for current day conditions vs. climate and management impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=395922','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=395922"><span>The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.</p> <p>2004-01-01</p> <p>The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC14A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC14A..01S"><span>Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samaras, C.; Cook, L.</p> <p>2015-12-01</p> <p>Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=312990&Lab=NRMRL&keyword=investment+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=312990&Lab=NRMRL&keyword=investment+AND+management&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Addressing the limits to adaptation across four damage--response systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Our ability to adapt to climate change is not boundless, and previous modeling shows that capacity limited adaptation will play a policy-significant role in future decisions about climate change. These limits are delineated by capacity thresholds, after which climate damages beg...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24A..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24A..02T"><span>Assessing the impact of model and climate uncertainty in malaria simulations for the Kenyan Highlands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tompkins, A. M.; Thomson, M. C.</p> <p>2017-12-01</p> <p>Simulations of the impact of climate variations on a vector-bornedisease such as malaria are subject to a number of sources ofuncertainty. These include the model structure and parameter settingsin addition to errors in the climate data and the neglect of theirspatial heterogeneity, especially over complex terrain. We use aconstrained genetic algorithm to confront these two sources ofuncertainty for malaria transmission in the highlands of Kenya. Thetechnique calibrates the parameter settings of a process-based,mathematical model of malaria transmission to vary within theirassessed level of uncertainty and also allows the calibration of thedriving climate data. The simulations show that in highland settingsclose to the threshold for sustained transmission, the uncertainty inclimate is more important to address than the malaria modeluncertainty. Applications of the coupled climate-malaria modelling system are briefly presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29765048','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29765048"><span>Sensible heat has significantly affected the global hydrological cycle over the historical period.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Myhre, G; Samset, B H; Hodnebrog, Ø; Andrews, T; Boucher, O; Faluvegi, G; Fläschner, D; Forster, P M; Kasoar, M; Kharin, V; Kirkevåg, A; Lamarque, J-F; Olivié, D; Richardson, T B; Shawki, D; Shindell, D; Shine, K P; Stjern, C W; Takemura, T; Voulgarakis, A</p> <p>2018-05-15</p> <p>Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS11A1780B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS11A1780B"><span>Implementation Targets for the Paris Climate Agreement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, B.; Hope, A. P.; Tribett, W. R.; Salawitch, R. J.; Canty, T. P.</p> <p>2016-12-01</p> <p>We provide an overview of reductions in the emission of greenhouse gases (GHGs) needed to achieve either the target (1.5 °C warming) or upper limit (2.0 °C warming) of the Paris Climate Agreement. We will show how much energy must be produced, either by renewables that do not emit significant levels of atmospheric GHGs or via carbon capture and sequestration (CCS) coupled to fossil fuel power plants, to meet forecast global energy demand out to 2060. These projections will be based on two modeling frameworks: our empirical model of global climate (EM-GC) and the CMIP 5 GCMs used throughout IPCC (2013). For each framework, we will show estimates of transient climate response to cumulative emission of carbon to place limits on future emission of CO2 via the combustion of fossil fuel. We will also quantify the impact of future atmospheric CH4 on achieving the goals of the Paris Climate Agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1187919-response-fabric-variations-simple-shear-migration-recrystallization','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1187919-response-fabric-variations-simple-shear-migration-recrystallization"><span>The response of fabric variations to simple shear and migration recrystallization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kennedy, Joseph H.; Pettit, Erin C.</p> <p>2015-06-01</p> <p>The observable microstructures in ice are the result of many dynamic and competing processes. These processes are influenced by climate variables in the firn. Layers deposited in different climate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may 'remember' these past climate regimes. In this paper, we model the evolution of fabric variations below the firn–ice transition and show that the addition of shear to compressive-stress regimes preserves the modeled fabric variations longer than compression-only regimes, because shear drives a positive feedback between crystal rotation and deformation. Even without shear, the modeled icemore » retains memory of the fabric variation for ~200 ka in typical polar ice-sheet conditions. Our model shows that temperature affects how long the fabric variation is preserved, but only affects the strain-integrated fabric evolution profile when comparing results straddling the thermal-activation-energy threshold (~–10°C). Even at high temperatures, migration recrystallization does not eliminate the modeled fabric's memory under most conditions. High levels of nearest-neighbor interactions will, however, eliminate the modeled fabric's memory more quickly than low levels of nearest-neighbor interactions. Finally, our model predicts that fabrics will retain memory of past climatic variations when subject to a wide variety of conditions found in polar ice sheets.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2285K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2285K"><span>Climate Change and its Impacts on Water Resources and Management of Tarbela Reservoir under IPCC Climate Change Scenarios in Upper Indus Basin, Pakistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Firdos; Pilz, Jürgen</p> <p>2014-05-01</p> <p>Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some months over different years. There are no chances of overtopping of the dam during the 2020s and the 2050s under A2 and B2 scenarios. _______________________________________________________________________________KEY WORDS: Climate Model, Climate Change, Hydrological Model, Climate Change Scenarios, Tarbela Reservoir, Inflow, Outflow, Evaporation, Indus River, Calibration, Bias Correction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100032912','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100032912"><span>New Gravity Wave Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2010-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/132693','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/132693"><span>Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Randall, D.A.; Jensen, T.G.</p> <p>1995-10-01</p> <p>Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JOUC...15..751M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JOUC...15..751M"><span>Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Men, Guang; Wan, Xiuquan; Liu, Zedong</p> <p>2016-10-01</p> <p>Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33G0249H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33G0249H"><span>Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.</p> <p>2015-12-01</p> <p>Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..528..503V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..528..503V"><span>European scale climate information services for water use sectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Vliet, Michelle T. H.; Donnelly, Chantal; Strömbäck, Lena; Capell, René; Ludwig, Fulco</p> <p>2015-09-01</p> <p>This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and environment (water quality). To study the climate change impacts we used two different hydrological models forced with an ensemble of bias-corrected general circulation model (GCM) output for both the lowest (2.6) and highest (8.5) representative concentration pathways (RCP). Selected indicators of water related vulnerability for each sector were then calculated from the hydrological model results. Our results show a distinct north-south divide in terms of climate change impacts; in the south the water availability will reduce while in the north water availability will increase. Across different climate models precipitation and streamflow increase in northern Europe and decrease in southern Europe, but the latitude at which this change occurs varies depending on the GCM. Hydrological extremes are increasing over large parts of Europe. The agricultural sector will be affected by reduced water availability (in the south) and increased drought. Both streamflow and soil moistures droughts are projected to increase in most parts of Europe except in northern Scandinavia and the Alps. The energy sector will be affected by lower hydropower potential in most European countries and reduced cooling water availability due to higher water temperatures and reduced summer river flows. Our results show that in particular in the Mediterranean the pressures are high because of increasing drought which will have large impacts on both the agriculture and energy sectors. In France and Italy this is combined with increased flood hazards. Our results show important impacts of climate change on European water use sectors indicating a clear need for adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4445374','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4445374"><span>Estimating daily climatologies for climate indices derived from climate model data and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof</p> <p>2015-01-01</p> <p>Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910527A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910527A"><span>Extreme waves from tropical cyclones and climate change in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José</p> <p>2017-04-01</p> <p>Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21145634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21145634"><span>A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul</p> <p>2011-03-01</p> <p>A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GPC....57..319K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GPC....57..319K"><span>The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kabubo-Mariara, Jane; Karanja, Fredrick K.</p> <p>2007-06-01</p> <p>This paper measures the economic impact of climate on crops in Kenya. We use cross-sectional data on climate, hydrological, soil and household level data for a sample of 816 households. We estimate a seasonal Ricardian model to assess the impact of climate on net crop revenue per acre. The results show that climate affects crop productivity. There is a non-linear relationship between temperature and revenue on one hand and between precipitation and revenue on the other. Estimated marginal impacts suggest that global warming is harmful for crop productivity. Predictions from global circulation models confirm that global warming will have a substantial impact on net crop revenue in Kenya. The results also show that the temperature component of global warming is much more important than precipitation. Findings call for monitoring of climate change and dissemination of information to farmers to encourage adaptations to climate change. Improved management and conservation of available water resources, water harvesting and recycling of wastewater could generate water for irrigation purposes especially in the arid and semi-arid areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131..121A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131..121A"><span>Regional climate assessment of precipitation and temperature in Southern Punjab (Pakistan) using SimCLIM climate model for different temporal scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amin, Asad; Nasim, Wajid; Mubeen, Muhammad; Sarwar, Saleem; Urich, Peter; Ahmad, Ashfaq; Wajid, Aftab; Khaliq, Tasneem; Rasul, Fahd; Hammad, Hafiz Mohkum; Rehmani, Muhammad Ishaq Asif; Mubarak, Hussani; Mirza, Nosheen; Wahid, Abdul; Ahamd, Shakeel; Fahad, Shah; Ullah, Abid; Khan, Mohammad Nauman; Ameen, Asif; Amanullah; Shahzad, Babar; Saud, Shah; Alharby, Hesham; Ata-Ul-Karim, Syed Tahir; Adnan, Muhammad; Islam, Faisal; Ali, Qazi Shoaib</p> <p>2018-01-01</p> <p>Unbalanced climate during the last decades has created spatially alarming and destructive situations in the world. Anomalies in temperature and precipitation enhance the risks for crop production in large agricultural region (especially the Southern Punjab) of Pakistan. Detailed analysis of historic weather data (1980-2011) record helped in creating baseline data to compare with model projection (SimCLIM) for regional level. Ensemble of 40 GCMs used for climatic projections with greenhouse gas (GHG) representative concentration pathways (RCP-4.5, 6.0, 8.5) was selected on the baseline comparison and used for 2025 and 2050 climate projection. Precipitation projected by ensemble and regional weather observatory at baseline showed highly unpredictable nature while both temperature extremes showed 95 % confidence level on a monthly projection. Percentage change in precipitation projected by model with RCP-4.5, RCP-6.0, and RCP-8.5 showed uncertainty 3.3 to 5.6 %, 2.9 to 5.2 %, and 3.6 to 7.9 % for 2025 and 2050, respectively. Percentage change of minimum temperature from base temperature showed that 5.1, 4.7, and 5.8 % for 2025 and 9.0, 8.1, and 12.0 % increase for projection year 2050 with RCP-4.5, 6.0, and 8.5 and maximum temperature 2.7, 2.5, and 3.0 % for 2025 and 4.7, 4.4, and 6.4 % for 2050 will be increased with RCP-4.5, 6.0, and 8.5, respectively. Uneven increase in precipitation and asymmetric increase in temperature extremes in future would also increase the risk associated with management of climatic uncertainties. Future climate projection will enable us for better risk management decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1132713-climate-change-effects-agriculture-economic-responses-biophysical-shocks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1132713-climate-change-effects-agriculture-economic-responses-biophysical-shocks"><span>Climate change effects on agriculture: Economic responses to biophysical shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nelson, Gerald; Valin, Hugo; Sands, Ronald</p> <p></p> <p>Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments inmore » yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090042725&hterms=physical+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dphysical%2Bchemistry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090042725&hterms=physical+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dphysical%2Bchemistry"><span>Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.</p> <p>2009-01-01</p> <p>This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011689"><span>Global Atmospheric Aerosol Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hendricks, Johannes; Aquila, Valentina; Righi, Mattia</p> <p>2012-01-01</p> <p>Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=statistics+AND+populations+AND+poverty&pg=4&id=EJ841326','ERIC'); return false;" href="https://eric.ed.gov/?q=statistics+AND+populations+AND+poverty&pg=4&id=EJ841326"><span>Student Background, School Climate, School Disorder, and Student Achievement: An Empirical Study of New York City's Middle Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chen, Greg; Weikart, Lynne A.</p> <p>2008-01-01</p> <p>This study develops and tests a school disorder and student achievement model based upon the school climate framework. The model was fitted to 212 New York City middle schools using the Structural Equations Modeling Analysis method. The analysis shows that the model fits the data well based upon test statistics and goodness of fit indices. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESD.....5..355L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESD.....5..355L"><span>Climate impacts on human livelihoods: where uncertainty matters in projections of water availability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.</p> <p>2014-10-01</p> <p>Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20580400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20580400"><span>Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonte, Matthijs; Zwolsman, John J G</p> <p>2010-08-01</p> <p>In this paper we present a modelling study to investigate the impacts of climate change on the chloride concentration and salinisation processes in two man-made freshwater lakes in the Netherlands, Lake IJsselmeer and Lake Markermeer. We used a transient compartmental chloride and water balance model to elucidate the salinisation processes occurring under present conditions and assess future salinisation under two climate forcing scenarios. The model results showed that the Rhine River is the dominant determinant for the chloride concentration in both lakes, followed by drainage of brackish groundwater from the surrounding polders. The results further show that especially during dry years, seawater intrusion through the tidal closure dam is an important source of chloride to Lake IJsselmeer. The results from the climatic forcing scenarios show that Lake IJsselmeer is especially vulnerable to climate-induced salinisation whereas effects on Lake Markermeer are relatively small. Peak chloride concentrations at the raw water intake of the Andijk drinking water facility on Lake IJsselmeer are projected to increase to values above 250 mg/l in the most far-reaching climate change scenario W+ in 2050 for dry years. This is well above the maximum allowable concentration of 150 mg/l for chloride in drinking water. Modelling showed that climate change impacts the chloride concentrations in a variety of ways: 1) an increasing occurrence of low river flows from summer to autumn reduces the dilution of the chloride that is emitted to the Rhine with a constant load thereby increasing its concentration; 2) increased open water evaporation and reduced rainfall during summer periods and droughts increases the chloride concentration in the water; and 3) rises in sea level increase seawater intrusion through the tidal closure dam of Lake IJsselmeer. The processes described here are likely to affect many other tidal rivers or lakes and should be considered when planning future raw water intake stations for drinking water production or agricultural water supply. (c) 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4398435','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4398435"><span>Expertly Validated Models and Phylogenetically-Controlled Analysis Suggests Responses to Climate Change Are Related to Species Traits in the Order Lagomorpha</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W. Ian; Reid, Neil</p> <p>2015-01-01</p> <p>Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions. PMID:25874407</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27594725','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27594725"><span>Climate Shocks and Migration: An Agent-Based Modeling Approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree</p> <p>2016-09-01</p> <p>This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5004973','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5004973"><span>Climate Shocks and Migration: An Agent-Based Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree</p> <p>2016-01-01</p> <p>This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC13A1049D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC13A1049D"><span>Contradictory cooling in a warmer world? the climate of the Mediterranean region during the ';Holocene Thermal Maximum'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, B.</p> <p>2013-12-01</p> <p>Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23504792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23504792"><span>Impacts of climate change on paddy rice yield in a temperate climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John</p> <p>2013-02-01</p> <p>The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39613','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39613"><span>Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver</p> <p>2009-01-01</p> <p>We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712737V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712737V"><span>Clouds enhance Greenland ice sheet mass loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.</p> <p>2015-04-01</p> <p>Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000302','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000302"><span>Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.</p> <p>2008-01-01</p> <p>Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046336','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046336"><span>Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.</p> <p>2013-01-01</p> <p>Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC22F..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC22F..06K"><span>The Effects of Anthropogenic Land Cover Change on Global and Regional Climate in the Preindustrial Holocene: A Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaplan, J. O.</p> <p>2014-12-01</p> <p>The recent development of anthropogenic land cover change (ALCC) scenarios that cover all or part of the preindustrial Holocene (11,700 BP to ~AD 1850) has led to a number of modelling studies on the impacts of land cover change on climate, using both GCMs and regional climate models. Because most ALCC scenarios arrive at similar estimates of anthropogenic deforestation by the late preindustrial, most models agree that the net biogeophysical effect of ALCC by AD 1850 is regional cooling at mid- to high-latitudes and warming and drying over the tropics and subtropics. In particular, tropical deforestation appears to lead to local amplification of externally forced drought cycles, e.g., from ENSO. The spatial extent of these climate changes varies between models because the choice of ALCC scenario leads to large differences in the initial forcing. Those model studies that considered biogeochemical feedbacks show that the importance of preindustrial CO2 emissions ranges from being insignificant to larger than the global biogeophysical feedback, depending on assumptions made about potential natural atmospheric CO2 at the beginning of the Industrial Revolution. While the net magnitude of deforestation is similar among ALCC scenarios at AD 1850, the timing of deforestation varies widely, which, in addition to affecting the inferred importance of biogeochemical feedbacks, leads to large differences in the estimated importance of ALCC on climate earlier in the Holocene. For example, modelling experiments performed on Europe and the Mediterranean representing conditions at the peak of the Roman Empire or in Mesoamerica for the Classic Maya period show large differences in the estimated importance of the biogeophysical feedback to regional climate depending on the ALCC scenario used. The wide variety of results gained so far from ALCC and climate modelling experiments shows that the question of "how much did humans influence the state of the Earth System before the Industrial Revolution?" is far from being resolved. Future improvements to ALCC scenarios that improve thematic resolution to go beyond simple deforestation are essential, for example to include locally important types of historical land use such as irrigation and forest pasture, and Earth System models should move towards coupling between ALCC and climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp.1328P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp.1328P"><span>Getting It Right Matters: Climate Spectra and Their Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Privalsky, Victor; Yushkov, Vladislav</p> <p>2018-06-01</p> <p>In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..873H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..873H"><span>Climate projections and extremes in dynamically downscaled CMIP5 model outputs over the Bengal delta: a quartile based bias-correction approach with new gridded data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasan, M. Alfi; Islam, A. K. M. Saiful; Akanda, Ali Shafqat</p> <p>2017-11-01</p> <p>In the era of global warning, the insight of future climate and their changing extremes is critical for climate-vulnerable regions of the world. In this study, we have conducted a robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the latest Representative Concentration Pathways (RCP) scenarios. We have applied an advanced bias correction approach to five RCM simulations in order to project future climate and associated extremes over Bangladesh, a critically climate-vulnerable country with a complex monsoon system. We have also generated a new gridded product that performed better in capturing observed climatic extremes than existing products. The bias-correction approach provided a notable improvement in capturing the precipitation extremes as well as mean climate. The majority of projected multi-model RCMs indicate an increase of rainfall, where one model shows contrary results during the 2080s (2071-2100) era. The multi-model mean shows that nighttime temperatures will increase much faster than daytime temperatures and the average annual temperatures are projected to be as hot as present-day summer temperatures. The expected increase of precipitation and temperature over the hilly areas are higher compared to other parts of the country. Overall, the projected extremities of future rainfall are more variable than temperature. According to the majority of the models, the number of the heavy rainy days will increase in future years. The severity of summer-day temperatures will be alarming, especially over hilly regions, where winters are relatively warm. The projected rise of both precipitation and temperature extremes over the intense rainfall-prone northeastern region of the country creates a possibility of devastating flash floods with harmful impacts on agriculture. Moreover, the effect of bias-correction, as presented in probable changes of both bias-corrected and uncorrected extremes, can be considered in future policy making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2689003','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2689003"><span>Selecting global climate models for regional climate change studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.</p> <p>2009-01-01</p> <p>Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESS...15.2621L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESS...15.2621L"><span>Spatial and temporal connections in groundwater contribution to evaporation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lam, A.; Karssenberg, D.; van den Hurk, B. J. J. M.; Bierkens, M. F. P.</p> <p>2011-08-01</p> <p>In climate models, lateral terrestrial water fluxes are usually neglected. We estimated the contribution of vertical and lateral groundwater fluxes to the land surface water budget at a subcontinental scale, by modeling convergence of groundwater and surfacewater fluxes. We present a hydrological model of the entire Danube Basin at 5 km resolution, and use it to show the importance of groundwater for the surface climate. Results show that the contribution of groundwater to evaporation is significant, and can locally be higher than 30 % in summer. We demonstrate through the same model that this contribution also has important temporal characteristics. A wet episode can influence groundwater contribution to summer evaporation for several years afterwards. This indicates that modeling groundwater flow has the potential to augment the multi-year memory of climate models. We also show that the groundwater contribution to evaporation is local by presenting the groundwater travel times and the magnitude of groundwater convergence. Throughout the Danube Basin the lateral fluxes of groundwater are negligible when modeling at this scale and resolution. This suggests that groundwater can be adequately added in land surface models by including a lower closed groundwater reservoir of sufficient size with two-way interaction with surface water and the overlying soil layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613013P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613013P"><span>Hysteresis in the Central African Rainforest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietsch, Stephan Alexander; Elias Bednar, Johannes; Gautam, Sishir; Petritsch, Richard; Schier, Franziska; Stanzl, Patrick</p> <p>2014-05-01</p> <p>Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, analyse the relationship between resilience, standing C-stocks and change in climate and finally provide evidence of hysteresis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23708470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23708470"><span>Cross-validation of an employee safety climate model in Malaysia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bahari, Siti Fatimah; Clarke, Sharon</p> <p>2013-06-01</p> <p>Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24244765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24244765"><span>The effects of weather and climate change on dengue.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Colón-González, Felipe J; Fezzi, Carlo; Lake, Iain R; Hunter, Paul R</p> <p>2013-11-01</p> <p>There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors. Using a Generalized Additive Model, we estimated statistically significant effects of weather and access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost no effect on dengue incidence below 5 °C, but Tmin values above 18 °C showed a rapidly increasing effect. Maximum temperature above 20 °C also showed an increasing effect on dengue incidence with a peak around 32 °C, after which the effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and 2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other driving factors constant. Our results indicate that weather significantly influences dengue incidence in Mexico and that such relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when analysing weather-health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore influence the success or failure of future efforts against dengue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948251','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948251"><span>Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.</p> <p>2014-01-01</p> <p>Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150004143','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150004143"><span>Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay</p> <p>2014-01-01</p> <p>Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041624','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041624"><span>Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.</p> <p>2013-01-01</p> <p>We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect interannual changes in total recharge. These results provide insights into the possible impacts of climate change to other regional aquifer systems, and the streams they support, where discharge points represent a range of flow system scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26761791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26761791"><span>Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tellería, José L; Fernández-López, Javier; Fandos, Guillermo</p> <p>2016-01-01</p> <p>We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050-2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1424834-sensitivity-regulated-flow-regimes-climate-change-western-united-states','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1424834-sensitivity-regulated-flow-regimes-climate-change-western-united-states"><span>Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Tian; Voisin, Nathalie; Leng, Guoyong</p> <p></p> <p>Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG33A0195L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG33A0195L"><span>Multi-objective optimization for generating a weighted multi-model ensemble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H.</p> <p>2017-12-01</p> <p>Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27343434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27343434"><span>Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette</p> <p>2016-10-01</p> <p>We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900043766&hterms=climate+change+deserts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Bdeserts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900043766&hterms=climate+change+deserts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Bdeserts"><span>Investigation of biogeophysical feedback on the African climate using a two-dimensional model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xue, Yongkang; Liou, Kuo-Nan; Kasahara, Akira</p> <p>1990-01-01</p> <p>A numerical scheme is specifically designed to develop a time-dependent climate model to ensure the conservation of mass, momentum, energy, and water vapor, in order to study the biogeophysical feedback for the climate of Africa. A vegetation layer is incorporated in the present two-dimensional climate model. Using the coupled climate-vegetation model, two tests were performed involving the removal and expansion of the Sahara Desert. Results show that variations in the surface conditions produce a significant feedback to the climate system. It is noted that the simulation responses to the temperature and zonal wind in the case of an expanded desert agree with the climatological data for African dry years. Perturbed simulations have also been performed by changing the albedo only, without allowing the variation in the vegetation layer. It is shown that the variation in latent heat release is significant and is related to changes in the vegetation cover. As a result, precipitation and cloud cover are reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..123C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..123C"><span>Projected increase in El Niño-driven tropical cyclone frequency in the Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chand, Savin S.; Tory, Kevin J.; Ye, Hua; Walsh, Kevin J. E.</p> <p>2017-02-01</p> <p>The El Niño/Southern Oscillation (ENSO) drives substantial variability in tropical cyclone (TC) activity around the world. However, it remains uncertain how the projected future changes in ENSO under greenhouse warming will affect TC activity, apart from an expectation that the overall frequency of TCs is likely to decrease for most ocean basins. Here we show robust changes in ENSO-driven variability in TC occurrence by the late twenty-first century. In particular, we show that TCs become more frequent (~20-40%) during future-climate El Niño events compared with present-climate El Niño events--and less frequent during future-climate La Niña events--around a group of small island nations (for example, Fiji, Vanuatu, Marshall Islands and Hawaii) in the Pacific. We examine TCs across 20 models from the Coupled Model Intercomparison Project phase 5 database, forced under historical and greenhouse warming conditions. The 12 most realistic models identified show a strong consensus on El Niño-driven changes in future-climate large-scale environmental conditions that modulate development of TCs over the off-equatorial western Pacific and the central North Pacific regions. These results have important implications for climate change and adaptation pathways for the vulnerable Pacific island nations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29551841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29551841"><span>Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dessler, A E; Ye, H; Wang, T; Schoeberl, M R; Oman, L D; Douglass, A R; Butler, A H; Rosenlof, K H; Davis, S M; Portmann, R W</p> <p>2016-03-16</p> <p>Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by ~1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5854491','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5854491"><span>Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dessler, A.E.; Ye, H.; Wang, T.; Schoeberl, M.R.; Oman, L.D.; Douglass, A.R.; Butler, A.H.; Rosenlof, K.H.; Davis, S.M.; Portmann, R.W.</p> <p>2018-01-01</p> <p>Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by ~1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50–80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales — on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community. PMID:29551841</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002553','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002553"><span>Transport of Ice into the Stratosphere and the Humidification of the Stratosphere over the 21st Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dessler, A. E.; Ye, H.; Wang, T.; Schoeberl, M. R.; Oman, L. D.; Douglass, A. R.; Butler, A. H.; Rosenlof, K. H.; Davis, S. M.; Portmann, R. W.</p> <p>2016-01-01</p> <p>Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by approx. 1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27139426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27139426"><span>Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio</p> <p>2016-08-01</p> <p>Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B52C..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B52C..07L"><span>Vegetation Fires in the Coupled Human-Earth System Under Future Environmental and Policy Perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>le page, Y.; Morton, D. C.; Hurtt, G. C.</p> <p>2013-12-01</p> <p>Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACPD...11..387R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACPD...11..387R"><span>Organic condensation - a vital link connecting aerosol formation to climate forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.</p> <p>2011-01-01</p> <p>Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413531W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413531W"><span>Modelling climate impact on floods under future emission scenarios using an ensemble of climate model projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.</p> <p>2012-04-01</p> <p>Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH51B1867Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH51B1867Z"><span>Influence of Climate Change on Flood Hazard using Climate Informed Bayesian Hierarchical Model in Johnson Creek River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zarekarizi, M.; Moradkhani, H.</p> <p>2015-12-01</p> <p>Extreme events are proven to be affected by climate change, influencing hydrologic simulations for which stationarity is usually a main assumption. Studies have discussed that this assumption would lead to large bias in model estimations and higher flood hazard consequently. Getting inspired by the importance of non-stationarity, we determined how the exceedance probabilities have changed over time in Johnson Creek River, Oregon. This could help estimate the probability of failure of a structure that was primarily designed to resist less likely floods according to common practice. Therefore, we built a climate informed Bayesian hierarchical model and non-stationarity was considered in modeling framework. Principle component analysis shows that North Atlantic Oscillation (NAO), Western Pacific Index (WPI) and Eastern Asia (EA) are mostly affecting stream flow in this river. We modeled flood extremes using peaks over threshold (POT) method rather than conventional annual maximum flood (AMF) mainly because it is possible to base the model on more information. We used available threshold selection methods to select a suitable threshold for the study area. Accounting for non-stationarity, model parameters vary through time with climate indices. We developed a couple of model scenarios and chose one which could best explain the variation in data based on performance measures. We also estimated return periods under non-stationarity condition. Results show that ignoring stationarity could increase the flood hazard up to four times which could increase the probability of an in-stream structure being overtopped.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..529.1601D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..529.1601D"><span>Multi-model approach to assess the impact of climate change on runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.</p> <p>2015-10-01</p> <p>The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28266093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28266093"><span>Effect of historical land-use and climate change on tree-climate relationships in the upper Midwestern United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goring, Simon J; Williams, John W</p> <p>2017-04-01</p> <p>Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree-climate relationships are poorly understood. We show that tree-climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land-use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land-use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land-use interactions are compounding, in which historical land-use reinforces shifts in species-climate relationships toward wetter distributions, or confounding, in which land-use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary-based models of species distributions may underestimate species resilience to climate change. © 2017 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ClDy...38.1229D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ClDy...38.1229D"><span>Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>di Luca, Alejandro; de Elía, Ramón; Laprise, René</p> <p>2012-03-01</p> <p>Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41C1240R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41C1240R"><span>Devon Ice cap's future: results from climate and ice dynamics modelling via surface mass balance modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodehacke, C. B.; Mottram, R.; Boberg, F.</p> <p>2017-12-01</p> <p>The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we various boundary conditions, ranging from ERA-Interim reanalysis data via global climate model high resolution (5km) output from the regional climate model HIRHAM5, to determine the surface mass balance of the Devon ice cap. These SMB estimates are used to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160006535','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160006535"><span>An Assessment of Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100 Using NASA's MERRA and CMIP5 Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping</p> <p>2015-01-01</p> <p>Background: In the US, residential and commercial building infrastructure combined consumes about 40% of total energy usage and emits about 39% of total CO2 emission (DOE/EIA "Annual Energy Outlook 2013"). Building codes, as used by local and state enforcement entities are typically tied to the dominant climate within an enforcement jurisdiction classified according to various climate zones. These climate zones are based upon a 30-year average of local surface observations and are developed by DOE and ASHRAE. Establishing the current variability and potential changes to future building climate zones is very important for increasing the energy efficiency of buildings and reducing energy costs and emissions in the future. Objectives: This paper demonstrates the usefulness of using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) atmospheric data assimilation to derive the DOE/ASHRAE building climate zone maps and then using MERRA to define the last 30 years of variability in climate zones for the Continental US. An atmospheric assimilation is a global atmospheric model optimized to satellite, atmospheric and surface in situ measurements. Using MERRA as a baseline, we then evaluate the latest Climate Model Inter-comparison Project (CMIP) climate model Version 5 runs to assess potential variability in future climate zones under various assumptions. Methods: We derive DOE/ASHRAE building climate zones using surface and temperature data products from MERRA. We assess these zones using the uncertainties derived by comparison to surface measurements. Using statistical tests, we evaluate variability of the climate zones in time and assess areas in the continental US for statistically significant trends by region. CMIP 5 produced a data base of over two dozen detailed climate model runs under various greenhouse gas forcing assumptions. We evaluate the variation in building climate zones for 3 different decades using an ensemble and quartile statistics to provide an assessment of potential building climate zone changes relative to the uncertainties demonstrated using MERRA. Findings and Conclusions: These results show that there is a statistically significant increase in the area covered by warmer climate zones and a tendency for a reduction of area in colder climate zones in some limited regions. The CMIP analysis shows that models vary from relatively little building climate zone change for the least sensitive and conservation assumptions to a warming of at most 3 zones for certain areas, particularly the north central US by the end of the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5707999','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5707999"><span>Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Botai, Joel O.; Rautenbach, Hannes; Ncongwane, Katlego P.; Botai, Christina M.</p> <p>2017-01-01</p> <p>The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease’s transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998–2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables’ and malaria cases’ time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature (R2 = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in malaria cases. The model gives a close comparison between the predicted and observed number of malaria cases, hence indicating that the model provides an acceptable fit to predict the number of malaria cases in the municipality. To sum up, the association between the climatic variables and malaria cases provides clues to better understand the dynamics of malaria transmission. The lagged effect detected in this study can help in adequate planning for malaria intervention. PMID:29117114</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29117114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29117114"><span>Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adeola, Abiodun M; Botai, Joel O; Rautenbach, Hannes; Adisa, Omolola M; Ncongwane, Katlego P; Botai, Christina M; Adebayo-Ojo, Temitope C</p> <p>2017-11-08</p> <p>The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature ( R ² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in malaria cases. The model gives a close comparison between the predicted and observed number of malaria cases, hence indicating that the model provides an acceptable fit to predict the number of malaria cases in the municipality. To sum up, the association between the climatic variables and malaria cases provides clues to better understand the dynamics of malaria transmission. The lagged effect detected in this study can help in adequate planning for malaria intervention.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.U34B..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.U34B..03P"><span>Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.</p> <p>2007-05-01</p> <p>Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently marginal areas if precipitations decrease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.micropress.org/micropen2/articles/1/6/16999_articles_article_file_1696.pdf','USGSPUBS'); return false;" href="http://www.micropress.org/micropen2/articles/1/6/16999_articles_article_file_1696.pdf"><span>Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.</p> <p>2010-01-01</p> <p>Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4186761','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4186761"><span>Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco</p> <p>2014-01-01</p> <p>Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25285917','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25285917"><span>Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco</p> <p>2014-01-01</p> <p>Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021055"><span>Interactions of Mean Climate Change and Climate Variability on Food Security Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.</p> <p>2015-01-01</p> <p>Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17412920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17412920"><span>Model projections of an imminent transition to a more arid climate in southwestern North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seager, Richard; Ting, Mingfang; Held, Isaac; Kushnir, Yochanan; Lu, Jian; Vecchi, Gabriel; Huang, Huei-Ping; Harnik, Nili; Leetmaa, Ants; Lau, Ngar-Cheung; Li, Cuihua; Velez, Jennifer; Naik, Naomi</p> <p>2007-05-25</p> <p>How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way. If these models are correct, the levels of aridity of the recent multiyear drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN31B0078K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN31B0078K"><span>Framework for Detection and Localization of Extreme Climate Event with Pixel Recursive Super Resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.</p> <p>2017-12-01</p> <p>Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC41B1080S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC41B1080S"><span>What is the role of historical anthropogenically-induced land-cover change on the surface climate of West Africa? Results from the LUCID intercomparison project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Souleymane, S.</p> <p>2015-12-01</p> <p>West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an increase in QA), which is induced by the regional significance effect of CO2SST due to a small LULCC imposed. In contrast, the decrease of surface water balance resulting from LULCC effect is a similar sign to those resulting from CO2SST but the signal resulting of the biophysical effects of LULCC is stronger than the regional CO2SST impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018568','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018568"><span>Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: A case study at 6000 years B.P.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.</p> <p>1996-01-01</p> <p>Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7130A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7130A"><span>A common fallacy in climate model evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Annan, J. D.; Hargreaves, J. C.; Tachiiri, K.</p> <p>2012-04-01</p> <p>We discuss the assessment of model ensembles such as that arising from the CMIP3 coordinated multi-model experiments. An important aspect of this is not merely the closeness of the models to observations in absolute terms but also the reliability of the ensemble spread as an indication of uncertainty. In this context, it has been widely argued that the multi-model ensemble of opportunity is insufficiently broad to adequately represent uncertainties regarding future climate change. For example, the IPCC AR4 summarises the consensus with the sentence: "Those studies also suggest that the current AOGCMs may not cover the full range of uncertainty for climate sensitivity." Similar claims have been made in the literature for other properties of the climate system, including the transient climate response and efficiency of ocean heat uptake. Comparison of model outputs with observations of the climate system forms an essential component of model assessment and is crucial for building our confidence in model predictions. However, methods for undertaking this comparison are not always clearly justified and understood. Here we show that the popular approach which forms the basis for the above claims, of comparing the ensemble spread to a so-called "observationally-constrained pdf", can be highly misleading. Such a comparison will almost certainly result in disagreement, but in reality tells us little about the performance of the ensemble. We present an alternative approach based on an assessment of the predictive performance of the ensemble, and show how it may lead to very different, and rather more encouraging, conclusions. We additionally outline some necessary conditions for an ensemble (or more generally, a probabilistic prediction) to be challenged by an observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.2296P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.2296P"><span>Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.; Dettinger, Michael D.; Pierce, David W.</p> <p>2013-05-01</p> <p>climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections to North America compared to earlier CMIP3 simulations. The performance of 14 models with simulations in both the CMIP3 and CMIP5 archives are assessed using singular value decomposition analysis of simulated and observed winter Pacific sea surface temperatures (SSTs) and concurrent precipitation over the contiguous United States and northwestern Mexico. Most of the models reproduce basic features of the key natural mode and their teleconnections, albeit with notable regional deviations from observations in both SST and precipitation. Increasing horizontal resolution in the CMIP5 simulations is an important, but not a necessary, factor in the improvement from CMIP3 to CMIP5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045529','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045529"><span>Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.; Dettinger, Michael D.; Pierce, David W.</p> <p>2013-01-01</p> <p>Natural climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections to North America compared to earlier CMIP3 simulations. The performance of 14 models with simulations in both the CMIP3 and CMIP5 archives are assessed using singular value decomposition analysis of simulated and observed winter Pacific sea surface temperatures (SSTs) and concurrent precipitation over the contiguous United States and northwestern Mexico. Most of the models reproduce basic features of the key natural mode and their teleconnections, albeit with notable regional deviations from observations in both SST and precipitation. Increasing horizontal resolution in the CMIP5 simulations is an important, but not a necessary, factor in the improvement from CMIP3 to CMIP5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACP....15.8201B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACP....15.8201B"><span>Climate responses to anthropogenic emissions of short-lived climate pollutants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.</p> <p>2015-07-01</p> <p>Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC34A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC34A..03M"><span>A Community Perspective on the Effects of Climate Change on Species Distributions in the Boreal Forest of the Northeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morelli, T. L.; DeLuca, W. V.; Duclos, T. R.; Foster, J. R.; Siren, A. P.</p> <p>2016-12-01</p> <p>The way that climate change will impact species ranges through habitat change and modify species interactions is not well enough understood. We took a community view of the climate-vulnerable, biologically-important spruce-fir forest ecosystem of the northeastern U.S., examining if and how species are responding to warming and changing precipitation patterns. We examined how fluctuations in temperature and snowpack influence distributional shifts along elevational and latitudinal gradients; for example, milder winter conditions may allow generalist carnivores such as bobcats to access boreal forest habitat, increasing direct and indirect competition with Canada lynx and American marten for prey. In another example of climate-driven predation shifts, upslope shifts of American red squirrels may increase predation rates on vulnerable montane songbirds. We combined data from weather stations with model-based high resolution data to obtain information on historical and present climate variables. We forecasted spruce-fir forest extent using landscape and ecosystem models under a combination of global circulation model projections and representative concentration pathways for the northern Appalachians. Presence and abundance data from animal surveys were used to build occupancy models to assess the habitat, climate, and species relationships. Species responded individually with geographic variation in response within and across species. Some species closely tracked climate changes, whereas others showed no response, or even responses such as shifts southward that were counter to what would be expected. For example, although low elevation boreal bird species showed evidence of expanding upslope, most high elevation species expanded downslope. This work highlights the need to take a mechanistic perspective of species responses to climate change and avoid generalizations of simple shifts northward and upward. Understanding how climate change affects community dynamics will improve predictions of how individual species will respond to climate change. These predictions then provide information about how distributional shifts will occur in a biologically critical ecosystem and if there will be climate change refugia they can target for management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43B2445P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43B2445P"><span>Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.</p> <p>2017-12-01</p> <p>Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26809502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26809502"><span>Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne</p> <p>2016-06-01</p> <p>A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003259','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003259"><span>Modeling Climate Change in the Absence of Climate Change Data. Editorial Comment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Skiles, J. W.</p> <p>1995-01-01</p> <p>Practitioners of climate change prediction base many of their future climate scenarios on General Circulation Models (GCM's), each model with differing assumptions and parameter requirements. For representing the atmosphere, GCM's typically contain equations for calculating motion of particles, thermodynamics and radiation, and continuity of water vapor. Hydrology and heat balance are usually included for continents, and sea ice and heat balance are included for oceans. The current issue of this journal contains a paper by Van Blarcum et al. (1995) that predicts runoff from nine high-latitude rivers under a doubled CO2 atmosphere. The paper is important since river flow is an indicator variable for climate change. The authors show that precipitation will increase under the imposed perturbations and that owing to higher temperatures earlier in the year that cause the snow pack to melt sooner, runoff will also increase. They base their simulations on output from a GCM coupled with an interesting water routing scheme they have devised. Climate change models have been linked to other models to predict deforestation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....5651K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....5651K"><span>Climate Change and Runoff Statistics: a Process Study for the Rhine Basin using a coupled Climate-Runoff Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kleinn, J.; Frei, C.; Gurtz, J.; Vidale, P. L.; Schär, C.</p> <p>2003-04-01</p> <p>The consequences of extreme runoff and extreme water levels are within the most important weather induced natural hazards. The question about the impact of a global climate change on the runoff regime, especially on the frequency of floods, is of utmost importance. In winter-time, two possible climate effects could influence the runoff statistis of large Central European rivers: the shift from snowfall to rain as a consequence of higher temperatures and the increase of heavy precipitation events due to an intensification of the hydrological cycle. The combined effect on the runoff statistics is examined in this study for the river Rhine. To this end, sensitivity experiments with a model chain including a regional climate model and a distributed runoff model are presented. The experiments are based on an idealized surrogate climate change scenario which stipulates a uniform increase in temperature by 2 Kelvin and an increase in atmospheric specific humidity by 15% (resulting from unchanged relative humidity) in the forcing fields for the regional climate model. The regional climate model CHRM is based on the mesoscale weather prediction model HRM of the German Weather Service (DWD) and has been adapted for climate simulations. The model is being used in a nested mode with horizontal resolutions of 56 km and 14 km. The boundary conditions are taken from the original ECMWF reanalysis and from a modified version representing the surrogate scenario. The distributed runoff model (WaSiM) is used at a horizontal resolution of 1 km for the whole Rhine basin down to Cologne. The coupling of the models is provided by a downscaling of the climate model fields (precipitaion, temperature, radiation, humidity, and wind) to the resolution of the distributed runoff model. The simulations cover the period of September 1987 to January 1994 with a special emphasis on the five winter seasons 1989/90 until 1993/94, each from November until January. A detailed validation of the control simulation shows a good correspondence of the precipitation fields from the regional climate model with measured fields regarding the distribution of precipitation at the scale of the Rhine basin. Systematic errors are visible at the scale of single subcatchements, in the altitudinal distribution and in the frequency distribution of precipitation. These errors only marginally affect the runoff simulations, which show good correspondence with runoff observations. The presentation includes results from the scenario simulations for the whole basin as well as for Alpine and lowland subcatchements. The change in the runoff statistics is being analyzed with respect to the changes in snowfall and to the fequency distribution of precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C31E..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C31E..04R"><span>Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.</p> <p>2014-12-01</p> <p>Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29023503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29023503"><span>Model uncertainties do not affect observed patterns of species richness in the Amazon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael</p> <p>2017-01-01</p> <p>Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5638225','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5638225"><span>Model uncertainties do not affect observed patterns of species richness in the Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo</p> <p>2017-01-01</p> <p>Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813442D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813442D"><span>Impacts of climate change and internal climate variability on french rivers streamflows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dayon, Gildas; Boé, Julien; Martin, Eric</p> <p>2016-04-01</p> <p>The assessment of the impacts of climate change often requires to set up long chains of modeling, from the model to estimate the future concentration of greenhouse gases to the impact model. Throughout the modeling chain, sources of uncertainty accumulate making the exploitation of results for the development of adaptation strategies difficult. It is proposed here to assess the impacts of climate change on the hydrological cycle over France and the associated uncertainties. The contribution of the uncertainties from greenhouse gases emission scenario, climate models and internal variability are addressed in this work. To have a large ensemble of climate simulations, the study is based on Global Climate Models (GCM) simulations from the Coupled Model Intercomparison Phase 5 (CMIP5), including several simulations from the same GCM to properly assess uncertainties from internal climate variability. Simulations from the four Radiative Concentration Pathway (RCP) are downscaled with a statistical method developed in a previous study (Dayon et al. 2015). The hydrological system Isba-Modcou is then driven by the downscaling results on a 8 km grid over France. Isba is a land surface model that calculates the energy and water balance and Modcou a hydrogeological model that routes the surface runoff given by Isba. Based on that framework, uncertainties uncertainties from greenhouse gases emission scenario, climate models and climate internal variability are evaluated. Their relative importance is described for the next decades and the end of this century. In a last part, uncertainties due to internal climate variability on streamflows simulated with downscaled GCM and Isba-Modcou are evaluated against observations and hydrological reconstructions on the whole 20th century. Hydrological reconstructions are based on the downscaling of recent atmospheric reanalyses of the 20th century and observations of temperature and precipitation. We show that the multi-decadal variability of streamflows observed in the 20th century is generally weaker in the hydrological simulations done with the historical simulations from climate models. References: Dayon et al. (2015), Transferability in the future climate of a statistical downscaling mehtod for precipitation in France, J. Geophys. Res. Atmos., 120, 1023-1043, doi:10.1002/2014JD022236</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..817K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..817K"><span>Higher climatological temperature sensitivity of soil carbon in cold than warm climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.</p> <p>2017-11-01</p> <p>The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26998312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26998312"><span>Big data integration shows Australian bush-fire frequency is increasing significantly.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath</p> <p>2016-02-01</p> <p>Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4785963','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4785963"><span>Big data integration shows Australian bush-fire frequency is increasing significantly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath</p> <p>2016-01-01</p> <p>Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift. PMID:26998312</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B54C..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B54C..01K"><span>Climatological temperature senstivity of soil carbon turnover: Observations, simple scaling models, and ESMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.</p> <p>2016-12-01</p> <p>The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036163','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036163"><span>Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.</p> <p>2011-01-01</p> <p>The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032474','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032474"><span>Forecasting carbon budget under climate change and CO 2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.</p> <p>2011-01-01</p> <p>The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO 2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO 2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km 2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr -1 during the last half of the 21 st century. An NPP increase of about 24 Mt C by the end of the 21 st century was estimated with the combined effects of increasing CO 2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr -1. NEP will increase to about 5 Mt C yr -1 by the end of the 21 st century with the increasing atmospheric CO 2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO 2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC44A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC44A..06S"><span>A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.</p> <p>2014-12-01</p> <p>The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160003527&hterms=food+choice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfood%2Bchoice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160003527&hterms=food+choice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfood%2Bchoice"><span>Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.</p> <p>2015-01-01</p> <p>Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5662947','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5662947"><span>Evaluating the sensitivity of agricultural model performance to different climate inputs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Glotter, Michael J.; Moyer, Elisabeth J.; Ruane, Alex C.; Elliott, Joshua W.</p> <p>2017-01-01</p> <p>Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled to observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections, but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely-used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources – reanalysis, reanalysis bias-corrected with observed climate, and a control dataset – and compared to observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by un-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. However, some issues persist for all choices of climate inputs: crop yields appear oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves. PMID:29097985</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511368L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511368L"><span>Landscape-scale modelling of soil carbon dynamics under land use and climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lacoste, Marine; Viaud, Valérie; Michot, Didier; Christian, Walter</p> <p>2013-04-01</p> <p>Soil organic carbon (SOC) sequestration is highly linked to soil use and farming practices, but also to soil redistributions, soil properties, and climate. In a global change context, landscape, farming practice and climate changes are expected; and they will most probably impact SOC dynamics. To assess their respective impacts, we modelled the SOC contents and stocks evolution at the scale of an agricultural landscape, by taking into account the soil redistribution by tillage and water processes. The simulations were conducted from 2010 to 2100 under different scenarios of landscape and climate. These scenarios combined different land uses associated to specific farming practices (mixed dairy with rotations of crops and grasslands, intensive cropping with only crops rotations or permanent grasslands), landscape managements (hedges planting or removal), and climates (business-as-usual climate and climate change, with temperature and precipitations increase). We used a spatially SOC dynamic model (adapted from RothC), coupled to a soil redistribution model (LandSoil). SOC dynamics were spatially modelled with a lateral resolution of 2-m and for soil organic layers up to 105 cm. Initial SOC stocks were described with a 2-m resolution map based on field data and produced with digital soil mapping methods. The major factor of change in SOC stocks was land use change, the second factor of importance was climate change, and finally landscape management: for the total SOC stocks (0-to-105 cm soil layer) the change of land use, climate and landscape management induced a respective mean absolute variation of 10 to 20 tC ha-1, 9 tC ha-1 and 0.4 tC ha-1. When considering the 0-to-105 cm soil layer, the different modelled landscapes showed the same sensitivity to climate change, with induced a mean decrease of 10 tC ha-1. However, the impact of climate change was found different according to the different modelled landscape when considering the 0-to-7.5 and 0-to-30 cm soil layers: the more sensitive landscapes were those of intensive cropping. This shows the importance of considering not only the plough layer, but also the vertical distribution of SOC stocks to assess the variation in SOC dynamics under land use, landscape management or climate change. Finally, rural hedgerow landscapes were proved to be quite well adapted for soil protection in a context of climate change, focusing on both carbon storage and soil erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27108121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27108121"><span>Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yihdego, Yohannes; Webb, John</p> <p>2016-05-01</p> <p>Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3744Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3744Q"><span>Can climate variability information constrain a hydrological model for an ungauged Costa Rican catchment?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven</p> <p>2017-04-01</p> <p>Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24652258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24652258"><span>[Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita</p> <p>2013-09-01</p> <p>Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24596427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24596427"><span>Impact of climate change on global malaria distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J</p> <p>2014-03-04</p> <p>Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948226','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948226"><span>Impact of climate change on global malaria distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.</p> <p>2014-01-01</p> <p>Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC22D..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC22D..02W"><span>Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.</p> <p>2014-12-01</p> <p>Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Sci...360..474P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Sci...360..474P"><span>DOE unveils climate model in advance of global test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popkin, Gabriel</p> <p>2018-05-01</p> <p>The world's growing collection of climate models has a high-profile new entry. Last week, after nearly 4 years of work, the U.S. Department of Energy (DOE) released computer code and initial results from an ambitious effort to simulate the Earth system. The new model is tailored to run on future supercomputers and designed to forecast not just how climate will change, but also how those changes might stress energy infrastructure. Results from an upcoming comparison of global models may show how well the new entrant works. But so far it is getting a mixed reception, with some questioning the need for another model and others saying the $80 million effort has yet to improve predictions of the future climate. Even the project's chief scientist, Ruby Leung of the Pacific Northwest National Laboratory in Richland, Washington, acknowledges that the model is not yet a leader.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930046865&hterms=ren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dren','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930046865&hterms=ren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dren"><span>Present-day Antarctic climatology of the NCAR Community Climate Model Version 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tzeng, Ren-Yow; Bromwich, David H.; Parish, Thomas R.</p> <p>1993-01-01</p> <p>The ability of the NCAR Community Climate Model Version 1 (CCM1) with R 15 resolution to simulate the present-day climate of Antarctica was evaluated using the five-year seasonal cycle output produced by the CCM1 and comparing the model results with observed horizontal syntheses and point data. The results showed that the CCM1 with R 15 resolution can simulate to some extent the dynamics of Antarctic climate on the synoptic scale as well as some mesoscale features. The model can also simulate the phase and the amplitude of the annual and semiannual variation of the temperature, sea level pressure, and zonally averaged zonal (E-W) wind. The main shortcomings of the CCM1 model are associated with the model's anomalously large precipitation amounts at high latitudes, due to the tendency of the scheme to suppress negative moisture values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMD.....8.1221A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMD.....8.1221A"><span>The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexander, K.; Easterbrook, S. M.</p> <p>2015-04-01</p> <p>We analyze the source code of eight coupled climate models, selected from those that participated in the CMIP5 (Taylor et al., 2012) or EMICAR5 (Eby et al., 2013; Zickfeld et al., 2013) intercomparison projects. For each model, we sort the preprocessed code into components and subcomponents based on dependency structure. We then create software architecture diagrams that show the relative sizes of these components/subcomponents and the flow of data between them. The diagrams also illustrate several major classes of climate model design; the distribution of complexity between components, which depends on historical development paths as well as the conscious goals of each institution; and the sharing of components between different modeling groups. These diagrams offer insights into the similarities and differences in structure between climate models, and have the potential to be useful tools for communication between scientists, scientific institutions, and the public.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5196430','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5196430"><span>Ecological networks are more sensitive to plant than to animal extinction under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D. Matthias; Dormann, Carsten F.; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N.; Wiemers, Martin; Hof, Christian</p> <p>2016-01-01</p> <p>Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks. PMID:28008919</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28008919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28008919"><span>Ecological networks are more sensitive to plant than to animal extinction under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schleuning, Matthias; Fründ, Jochen; Schweiger, Oliver; Welk, Erik; Albrecht, Jörg; Albrecht, Matthias; Beil, Marion; Benadi, Gita; Blüthgen, Nico; Bruelheide, Helge; Böhning-Gaese, Katrin; Dehling, D Matthias; Dormann, Carsten F; Exeler, Nina; Farwig, Nina; Harpke, Alexander; Hickler, Thomas; Kratochwil, Anselm; Kuhlmann, Michael; Kühn, Ingolf; Michez, Denis; Mudri-Stojnić, Sonja; Plein, Michaela; Rasmont, Pierre; Schwabe, Angelika; Settele, Josef; Vujić, Ante; Weiner, Christiane N; Wiemers, Martin; Hof, Christian</p> <p>2016-12-23</p> <p>Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18642981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18642981"><span>Transformational leadership and group interaction as climate antecedents: a social network analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zohar, Dov; Tenne-Gazit, Orly</p> <p>2008-07-01</p> <p>In order to test the social mechanisms through which organizational climate emerges, this article introduces a model that combines transformational leadership and social interaction as antecedents of climate strength (i.e., the degree of within-unit agreement about climate perceptions). Despite their longstanding status as primary variables, both antecedents have received limited empirical research. The sample consisted of 45 platoons of infantry soldiers from 5 different brigades, using safety climate as the exemplar. Results indicate a partially mediated model between transformational leadership and climate strength, with density of group communication network as the mediating variable. In addition, the results showed independent effects for group centralization of the communication and friendship networks, which exerted incremental effects on climate strength over transformational leadership. Whereas centralization of the communication network was found to be negatively related to climate strength, centralization of the friendship network was positively related to it. Theoretical and practical implications are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.1789W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.1789W"><span>Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu</p> <p>2017-04-01</p> <p>In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function, principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through three waves of iterative refocussing of the NEMO (Nucleus for European Modelling of the Ocean) ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low-resolution ensembles to tune NEMO ORCA configurations at higher resolutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20632538','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20632538"><span>Modelling climate change and malaria transmission.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parham, Paul E; Michael, Edwin</p> <p>2010-01-01</p> <p>The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here offers a theoretical framework upon which this future research may be developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3737903','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3737903"><span>The Relationship between Goal Orientations, Motivational Climate and Selfreported Discipline in Physical Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moreno-Murcia, Juan A.; Sicilia, Alvaro; Cervelló, Eduardo; Huéscar, Elisa; Dumitru, Delia C.</p> <p>2011-01-01</p> <p>The purpose of this study was to test a motivational model on the links between situational and dispositional motivation and self-reported indiscipline/discipline based on the achievement goals theory. The model postulates that a task-involving motivational climate facilitates self-reported discipline, either directly or mediated by task orientation. In contrast, an ego-involving motivational climate favors self-reported indiscipline, either directly or by means of ego orientation. An additional purpose was to examine gender differences according to the motivational model proposed. Children (n = 565) from a large Spanish metropolitan school district were participants in this study and completed questionnaires assessing goal orientations, motivational climates and self-reported discipline. The results from the analysis of structural equation model showed the direct effect of motivational climates on self-reported discipline and provided support to the model. Furthermore, the gender differences found in self-reported discipline were associated with the differences found in the students’ dispositional and situational motivation pursuant to the model tested. The implications of these results with regard to teaching instructional actions in physical education classes are discussed. Key points A task-involving motivational climate predicts self-reported discipline behaviors, either directly or mediated by task orientation. An ego-involving motivational climate favors self-reported undisciplined, either directly or mediated by ego orientation. A significant gender difference was found in the motivational disposition perceived climate and self-reported discipline. PMID:24149304</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1198147-climate-simulations-projections-super-parameterized-climate-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1198147-climate-simulations-projections-super-parameterized-climate-model"><span>Climate simulations and projections with a super-parameterized climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stan, Cristiana; Xu, Li</p> <p>2014-07-01</p> <p>The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1239215-forcing-feedbacks-climate-sensitivity-cmip5-coupled-atmosphere-ocean-climate-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1239215-forcing-feedbacks-climate-sensitivity-cmip5-coupled-atmosphere-ocean-climate-models"><span>Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...</p> <p>2012-05-15</p> <p>We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...18a2106H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...18a2106H"><span>Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Kuo-Ching; Huang, Thomas C. C.</p> <p>2014-02-01</p> <p>Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.6671P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.6671P"><span>The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.</p> <p>2013-10-01</p> <p>Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B23L..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B23L..01S"><span>Challenges in global modeling of wetland extent and wetland methane dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spahni, R.; Melton, J. R.; Wania, R.; Stocker, B. D.; Zürcher, S.; Joos, F.</p> <p>2012-12-01</p> <p>Global wetlands are known to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. Modelling of global wetland extent and wetland CH4 dynamics remains a challenge. Here we present results from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) that investigated our present ability to simulate large scale wetland characteristics (e.g. wetland type, water table, carbon cycling, gas transport, etc.) and corresponding CH4 emissions. Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The WETCHIMP experiments showed that while models disagree in spatial and temporal patterns of simulated CH4 emissions and wetland areal extent, they all do agree on a strong positive response to increased carbon dioxide concentrations. WETCHIMP made clear that we currently lack observation data sets that are adequate to evaluate model CH4 soil-atmosphere fluxes at a spatial scale comparable to model grid cells. Thus there are substantial parameter and structural uncertainties in large-scale CH4 emission models. As an illustration of the implications of CH4 emissions on climate we show results of the LPX-Bern model, as one of the models participating in WETCHIMP. LPX-Bern is forced with observed 20th century climate and climate output from an ensemble of five comprehensive climate models for a low and a high emission scenario till 2100 AD. In the high emission scenario increased substrate availability for methanogenesis due to a strong stimulation of net primary productivity, and faster soil turnover leads to an amplification of CH4 emissions with the sharpest increase in peatlands (+180% compared to present). Combined with prescribed anthropogenic CH4 emissions, simulated atmospheric CH4 concentration reaches ~4500 ppbv by 2100 AD, about 800 ppbv more than in standard IPCC scenarios. This represents a significant contribution to radiative forcing of global climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESDD....5..403L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESDD....5..403L"><span>Climate impacts on human livelihoods: where uncertainty matters in projections of water availability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.</p> <p>2014-03-01</p> <p>Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target-measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models as well as greenhouse gas scenarios are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure Adequate Human livelihood conditions for wEll-being And Development (AHEAD). Based on a transdisciplinary sample of influential concepts addressing human well-being, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows identifying and differentiating uncertainty of climate and impact model projections. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that in many countries today, livelihood conditions are compromised by water scarcity. However, more often, AHEAD fulfilment is limited through other elements. Moreover, the analysis shows that for 44 out of 111 countries, the water-specific uncertainty ranges are outside relevant thresholds for AHEAD, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy-decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51G3123P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51G3123P"><span>Projections of Rainfall and Temperature from CMIP5 Models over BIMSTEC Countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattnayak, K. C.; Kar, S. C.; Ragi, A. R.</p> <p>2014-12-01</p> <p>Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand reveals that the magnitudes are more in 2070 to 2100 of RCP8.5. Inter-model comparison show that there are large more uncertainties within the CMIP5 model projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..556C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..556C"><span>Projections of Rainfall and Surface Temperature from CMIP5 Models under RCP4.5 and 8.5 over BIMSTEC Countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charan Pattnayak, Kanhu; Kar, Sarat Chandra; Kumari Pattnayak, Rashmita</p> <p>2015-04-01</p> <p>Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand reveals that the magnitudes are more in 2070 to 2100 of RCP8.5. Inter-model comparison show that there are large more uncertainties within the CMIP5 model projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H31H1327R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H31H1327R"><span>Evaluating water quality ecosystem services of wetlands under historic and future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Records, R.; Arabi, M.; Fassnacht, S. R.; Duffy, W.; Ahmadi, M.; Hegewisch, K.</p> <p>2013-12-01</p> <p>Potential hydrologic effects of climate change have been assessed extensively; however, possible impacts of changing climate on in-stream water quality at the watershed scale have received little study. We assessed potential impacts of climate change on water quantity and quality in the mountainous Sprague River watershed, Oregon, USA, where high total phosphorus (TP) and sediment loads are associated with lake eutrophication and mortality of endangered fish species. Additionally, we analyzed water quality impacts of wetland and riparian zone loss and gain under present-day climate and future climate scenarios. We utilized the hydrologic model Soil and Water Assessment Tool (SWAT) forced with six distinct climate scenarios derived from Coupled Model Intercomparison Project 5 (CMIP5) General Circulation Models to assess magnitude and direction of trends in streamflow, sediment and TP fluxes in the mid-21st century (2030-2059). Model results showed little significant trend in average annual streamflow under most climate scenarios, but trends in annual and monthly streamflow, sediment, and TP fluxes were more pronounced and were generally increasing. Results also suggest that future loss of present-day wetlands and riparian zones under land use or climatic change could result in substantial increases in sediment and TP loads at the Sprague River outlet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19234117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19234117"><span>The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kearney, Michael; Shine, Richard; Porter, Warren P</p> <p>2009-03-10</p> <p>Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "cold-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2656166','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2656166"><span>The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kearney, Michael; Shine, Richard; Porter, Warren P.</p> <p>2009-01-01</p> <p>Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most “cold-blooded” terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts. PMID:19234117</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148053','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148053"><span>Evapotranspiration trends over the eastern United States during the 20th century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kramer, Ryan J.; Bounoua, Lahouari; Zhang, Ping; Wolfe, Robert E.; Huntington, Thomas G.; Imhoff, Marc L.; Thome, Kurtis; Noyce, Genevieve L.</p> <p>2015-01-01</p> <p>Most models evaluated by the Intergovernmental Panel for Climate change estimate projected increases in temperature and precipitation with rising atmospheric CO2 levels. Researchers have suggested that increases in CO2 and associated increases in temperature and precipitation may stimulate vegetation growth and increase evapotranspiration (ET), which acts as a cooling mechanism, and on a global scale, may slow the climate-warming trend. This hypothesis has been modeled under increased CO2 conditions with models of different vegetation-climate dynamics. The significance of this vegetation negative feedback, however, has varied between models. Here we conduct a century-scale observational analysis of the Eastern US water balance to determine historical evapotranspiration trends and whether vegetation greening has affected these trends. We show that precipitation has increased significantly over the twentieth century while runoff has not. We also show that ET has increased and vegetation growth is partially responsible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..560..364A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..560..364A"><span>Variance analysis of forecasted streamflow maxima in a wet temperate climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.</p> <p>2018-05-01</p> <p>Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26057724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26057724"><span>Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da</p> <p>2015-11-01</p> <p>Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080030211&hterms=general+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeneral%2Bchemistry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080030211&hterms=general+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeneral%2Bchemistry"><span>The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn</p> <p>2008-01-01</p> <p>The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25165769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25165769"><span>From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R</p> <p>2014-10-22</p> <p>Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4173678','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4173678"><span>From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.</p> <p>2014-01-01</p> <p>Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1335328','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1335328"><span>Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.</p> <p>2015-06-25</p> <p>Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO 2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate-carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate-carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling effortsmore » and provide suggestions for how to move forward.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1739b0077L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1739b0077L"><span>Effect of climate variables on cocoa black pod incidence in Sabah using ARIMAX model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ling Sheng Chang, Albert; Ramba, Haya; Mohd. Jaaffar, Ahmad Kamil; Kim Phin, Chong; Chong Mun, Ho</p> <p>2016-06-01</p> <p>Cocoa black pod disease is one of the major diseases affecting the cocoa production in Malaysia and also around the world. Studies have shown that the climate variables have influenced the cocoa black pod disease incidence and it is important to quantify the black pod disease variation due to the effect of climate variables. Application of time series analysis especially auto-regressive moving average (ARIMA) model has been widely used in economics study and can be used to quantify the effect of climate variables on black pod incidence to forecast the right time to control the incidence. However, ARIMA model does not capture some turning points in cocoa black pod incidence. In order to improve forecasting performance, other explanatory variables such as climate variables should be included into ARIMA model as ARIMAX model. Therefore, this paper is to study the effect of climate variables on the cocoa black pod disease incidence using ARIMAX model. The findings of the study showed ARIMAX model using MA(1) and relative humidity at lag 7 days, RHt - 7 gave better R square value compared to ARIMA model using MA(1) which could be used to forecast the black pod incidence to assist the farmers determine timely application of fungicide spraying and culture practices to control the black pod incidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008BGD.....5..573G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008BGD.....5..573G"><span>Evolution of the potential distribution area of french mediterranean forests under global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaucherel, C.; Guiot, J.; Misson, L.</p> <p>2008-02-01</p> <p>This work aims at understanding future spatial and temporal distributions of tree species in the Mediterranean region of France under various climates. We focused on two different species (Pinus Halepensis and Quercus Ilex) and compared their growth under the IPCC-B2 climate scenario in order to quantify significant changes between present and future. The influence of environmental factors such as atmospheric CO2 increase and topography on the tree growth has also been quantified. We modeled species growths with the help of a process-based model (MAIDEN), previously calibrated over measured ecophysiological and dendrochronological series with a Bayesian scheme. The model was fed with the ARPEGE - MeteoFrance climate model, combined with an explicit increase in CO2 atmospheric concentration. The main output of the model gives the carbon allocation in boles and thus tree production. Our results show that the MAIDEN model is correctly able to simulate pine and oak production in space and time, after detailed calibration and validation stages. Yet, these simulations, mainly based on climate, are indicative and not predictive. The comparison of simulated growth at end of 20 and 21 centuries, show a shift of the pine production optimum from about 650 to 950 m due to 2.5°K temperature increase, while no optimum has been found for oak. With the direct effect of CO2 increase taken into account, both species show a significant increase in productivity (+26 and +43% for pine and oak, respectively) at the end of the 21 century. While both species have complementary growth mechanisms, they have a good chance to extend their spatial distribution and their elevation in the Alps during the 21 century under the IPCC-B2 climate scenario. This extension is mainly due to the CO2 fertilization effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43K1632I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43K1632I"><span>Hydrological Dynamics of Central America: Time-of-Emergence of the Global Warming Signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imbach, P. A.; Georgiou, S.; Calderer, L.; Coto, A.; Nakaegawa, T.; Chou, S. C.; Lyra, A. A.; Hidalgo, H. G.; Ciais, P.</p> <p>2016-12-01</p> <p>Central America is among the world's most vulnerable regions to climate variability and change. Country economies are highly dependent on the agricultural sector and over 40 million people's rural livelihoods directly depend on the use of natural resources. Future climate scenarios show a drier outlook (higher temperatures and lower precipitation) over a region where rural livelihoods are already compromised by water availability and climate variability. Previous efforts to validate modelling of the regional hydrology have been based on high resolution (1 km2) equilibrium models (Imbach et al., 2010) or using dynamic models (Variable Infiltration Capacity) with coarse climate forcing (0.5°) (Hidalgo et al., 2013; Maurer et al., 2009). We present here: (i) validation of the hydrological outputs from high-resolution simulations (10 km2) of a dynamic vegetation model (Orchidee), using 7 different sets of model input forcing data, with monthly runoff observations from 182 catchments across Central America; (ii) the first assessments of the region's hydrological variability using the historical simulations (iii) an estimation of the time of emergence of the climate change signal (under the SRES emission scenarios) on the water balance. We found model performance to be comparable with that from studies in other world regions (Yang et al. 2016) when forced with high resolution precipitation data (monthly values at 5 km2, Funk et al. (2015)) and the Climate Research Unit (CRU 3.2, Harris et al. (2014)) dataset of meteorological parameters. Validation results showed a Pearson correlation coefficient ≈ 0.6, general underestimation of runoff of ≈ 60% and variability close to observed values (ratio of standard deviations of ≈ 0.7). Maps of historical runoff are presented to show areas where high runoff variability follows high mean annual runoff, with opposite trends over the Caribbean. Future scenarios show large areas where future maximum water availability will always fall below minus-one standard deviation of the historical values by mid-century. Additionally, our results highlight the time horizon left to develop adaptation strategies to cope with future reductions in water availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24862723','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24862723"><span>Loss of frugivore seed dispersal services under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mokany, Karel; Prasad, Soumya; Westcott, David A</p> <p>2014-05-27</p> <p>The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....4712516G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....4712516G"><span>Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain</p> <p>2011-12-01</p> <p>Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51J0198H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51J0198H"><span>High-resolution regional climate model evaluation using variable-resolution CESM over California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.</p> <p>2015-12-01</p> <p>Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27743309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27743309"><span>Expansion Under Climate Change: The Genetic Consequences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garnier, Jimmy; Lewis, Mark A</p> <p>2016-11-01</p> <p>Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2087R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2087R"><span>A comparison of metrics for assessing state-of-the-art climate models and implications for probabilistic projections of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko</p> <p>2018-03-01</p> <p>A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC11B1044S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC11B1044S"><span>Calculating net primary productivity of forest ecosystem with G4M model: case study on South Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sung, S.; Forsell, N.; Kindermann, G.; Lee, D. K.</p> <p>2015-12-01</p> <p>Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of forest is highlighted as a stepping stone for mitigating climate change. Especially rapidly urbanizing countries which have high carbon dioxide emission have large interest in calculating forest NPP under climate change. Also maximizing carbon sequestration in forest sector has became a global goal to minimize the impacts of climate change. Therefore, the objective of this research is estimating carbon stock change under the different climate change scenarios by using G4M (Global Forestry Model) model in South Korea. We analyzed four climate change scenarios in different Representative Concentration Pathway (RCP). In this study we used higher resolution data (1kmx1km) to produce precise estimation on NPP from regionalized four climate change scenarios in G4M model. Finally, we set up other environmental variables for G4M such as water holding capacity, soil type and elevation. As a result of this study, temperature showed significant trend during 2011 to 2100. Average annual temperature increased more than 5℃ in RCP 8.5 scenario while 1℃ increased in RCP 2.6 scenario. Each standard deviation of the annual average temperature showed similar trend. Average annual precipitation showed similarity within four scenarios. However the standard deviation of average annual precipitation is higher in RCP8.5 scenario which indicates the ranges of precipitation is wider in RCP8.5 scenario. These results present that climate indicators such as temperature and precipitation have uncertainties in climate change scenarios. NPP has changed from 5-13tC/ha/year in RCP2.6 scenario to 9-21 tC/ha/year in RCP8.5 scenario in 2100. In addition the spatial distribution of NPP presented different trend among the scenarios. In conclusion we calculated differences in temperature and precipitation and NPP change in different climate change scenarios. This study can be applied for maximizing carbon seqestration of vegetation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413551K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413551K"><span>Assessment of production risks for winter wheat in different German regions under climate change conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kersebaum, K. C.; Gandorfer, M.; Wegehenkel, M.</p> <p>2012-04-01</p> <p>The study shows climate change impacts on wheat production in selected regions across Germany. To estimate yield and economic effects the agro-ecosystem model HERMES was used. The model performed runs using 2 different releases of the model WETTREG providing statistically downscaled climate change scenarios for the weather station network of the German Weather Service. Simulations were done using intersected GIS information on soil types and land use identifying the most relevant sites for wheat production. The production risks for wheat yields at the middle of this century were compared to a reference of the present climate. The irrigation demand was determined by the model using an automatic irrigation mode. Production risks with and without irrigation were assessed and the economic feasibility to reduce production risks by irrigation was evaluated. Costs and benefits were compared. Additionally, environmental effects, e.g. groundwater recharge and nitrogen emissions were assessed for irrigated and rain fed systems. Results show that positive and negative effects of climate change occur within most regions depending on the site conditions. Water holding capacity and groundwater distance were the most important factors which determined the vulnerability of sites. Under climate change condition in the middle of the next century we can expect especially at sites with low water holding capacity decreasing average gross margins, higher production risks and a reduced nitrogen use efficiency under rainfed conditions. Irrigation seems to be profitable and risk reducing at those sites, provided that water for irrigation is available. Additionally, the use of irrigation can also increase nitrogen use efficiency which reduced emissions by leaching. Despite the site conditions results depend strongly on the used regional climate scenario and the model approach to consider the effect of elevated CO2 in the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC31D..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC31D..05M"><span>Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.</p> <p>2013-12-01</p> <p>Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A44E..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A44E..03R"><span>Contributions of Uncertainty in Droplet Nucleation to the Indirect Effect in Global Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rothenberg, D. A.; Wang, C.; Avramov, A.</p> <p>2016-12-01</p> <p>Anthropogenic aerosol perturbations to clouds and climate (the indirect effect, or AIE) contribute significant uncertainty towards understanding contemporary climate change. Despite refinements over the past two decades, modern global aerosol-climate models widely disagree on the magnitude of AIE, and wholly disagree with satellite estimates. Part of the spread in estimates of AIE arises from a lack of constraints on what exactly comprised the pre-industrial atmospheric aerosol burden, but another component is attributable to inter-model differences in simulating the chain of aerosol-cloud-precipitation processes which ultimately produce the indirect effect. Thus, one way to help constrain AIE is to thoroughly investigate the differences in aerosol-cloud processes and interactions occurring in these models. We have configured one model, the CESM/MARC, with a suite of parameterizations affecting droplet activation. Each configuration produces similar climatologies with respect to precipitation and cloud macrophysics, but shows different sensitivies to aerosol perturbation - up to 1 W/m^2 differences in AIE. Regional differences in simulated aerosol-cloud interactions, especially in marine regions with little anthropogenic pollution, contribute to the spread in these AIE estimates. The baseline pre-industrial droplet number concentration in marine regions dominated by natural aerosol strongly predicts the magnitude of each model's AIE, suggesting that targeted observations of cloud microphysical properties across different cloud regimes and their sensitivity to aerosol influences could help provide firm constraints and targets for models. Additionally, we have performed supplemental fully-coupled (atmosphere/ocean) simulations with each model configuration, allowing the model to relax to equilibrium following a change in aerosol emissions. These simulations allow us to assess the slower-timescale responses to aerosol perturbations. The spread in fast model responses (which produce the noted changes in indirect effect or forcing) gives rise to large differences in the equilibrium climate state of each configuration. We show that these changes in equilibrium climate state have implications for AIE estimates from model configurations tuned to the present-day climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916050A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916050A"><span>Changing precipitation in western Europe, climate change or natural variability?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart</p> <p>2017-04-01</p> <p>Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016543','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016543"><span>A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140016543'); toggleEditAbsImage('author_20140016543_show'); toggleEditAbsImage('author_20140016543_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140016543_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140016543_hide"></p> <p>2013-01-01</p> <p>For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.138..533W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.138..533W"><span>Two takes on the ecosystem impacts of climate change and fishing: Comparing a size-based and a species-based ecosystem model in the central North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodworth-Jefcoats, Phoebe A.; Polovina, Jeffrey J.; Howell, Evan A.; Blanchard, Julia L.</p> <p>2015-11-01</p> <p>We compare two ecosystem model projections of 21st century climate change and fishing impacts in the central North Pacific. Both a species-based and a size-based ecosystem modeling approach are examined. While both models project a decline in biomass across all sizes in response to climate change and a decline in large fish biomass in response to increased fishing mortality, the models vary significantly in their handling of climate and fishing scenarios. For example, based on the same climate forcing the species-based model projects a 15% decline in catch by the end of the century while the size-based model projects a 30% decline. Disparities in the models' output highlight the limitations of each approach by showing the influence model structure can have on model output. The aspects of bottom-up change to which each model is most sensitive appear linked to model structure, as does the propagation of interannual variability through the food web and the relative impact of combined top-down and bottom-up change. Incorporating integrated size- and species-based ecosystem modeling approaches into future ensemble studies may help separate the influence of model structure from robust projections of ecosystem change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28654663','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28654663"><span>Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lopes, Taise M; Bailly, Dayani; Almeida, Bia A; Santos, Natália C L; Gimenez, Barbara C G; Landgraf, Guilherme O; Sales, Paulo C L; Lima-Ribeiro, Matheus S; Cassemiro, Fernanda A S; Rangel, Thiago F; Diniz-Filho, José A F; Agostinho, Angelo A; Gomes, Luiz C</p> <p>2017-01-01</p> <p>Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5487012','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5487012"><span>Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lopes, Taise M.; Bailly, Dayani; Almeida, Bia A.; Santos, Natália C. L.; Gimenez, Barbara C. G.; Landgraf, Guilherme O.; Sales, Paulo C. L.; Lima-Ribeiro, Matheus S.; Cassemiro, Fernanda A. S.; Rangel, Thiago F.; Diniz-Filho, José A. F.; Agostinho, Angelo A.; Gomes, Luiz C.</p> <p>2017-01-01</p> <p>Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions. PMID:28654663</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26288363','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26288363"><span>Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio</p> <p>2015-01-01</p> <p>Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711986','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711986"><span>Effect of Climate Change on Mediterranean Winter Ranges of Two Migratory Passerines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tellería, José L.; Fernández-López, Javier; Fandos, Guillermo</p> <p>2016-01-01</p> <p>We studied the effect of climate change on the distribution of two insectivorous passerines (the meadow pipit Anthus pratensis and the chiffchaff Phylloscopus collybita) in wintering grounds of the Western Mediterranean basin. In this region, precipitation and temperature can affect the distribution of these birds through direct (thermoregulation costs) or indirect effects (primary productivity). Thus, it can be postulated that projected climate changes in the region will affect the extent and suitability of their wintering grounds. We studied pipit and chiffchaff abundance in several hundred localities along a belt crossing Spain and Morocco and assessed the effects of climate and other geographical and habitat predictors on bird distribution. Multivariate analyses reported a positive effect of temperature on the present distribution of the two species, with an additional effect of precipitation on the meadow pipit. These climate variables were used with Maxent to model the occurrence probabilities of species using ring recoveries as presence data. Abundance and occupancy of the two species in the study localities adjusted to the distribution models, with more birds in sectors of high climate suitability. After validation, these models were used to forecast the distribution of climate suitability according to climate projections for 2050–2070 (temperature increase and precipitation reduction). Results show an expansion of climatically suitable sectors into the highlands by the effect of warming on the two species, and a retreat of the meadow pipit from southern sectors related to rain reduction. The predicted patterns show a mean increase in climate suitability for the two species due to the warming of the large highland expanses typical of the western Mediterranean. PMID:26761791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31F1175D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31F1175D"><span>Can climate models be tuned to simulate the global mean absolute temperature correctly?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duan, Q.; Shi, Y.; Gong, W.</p> <p>2016-12-01</p> <p>The Inter-government Panel on Climate Change (IPCC) has already issued five assessment reports (ARs), which include the simulation of the past climate and the projection of the future climate under various scenarios. The participating models can simulate reasonably well the trend in global mean temperature change, especially of the last 150 years. However, there is a large, constant discrepancy in terms of global mean absolute temperature simulations over this period. This discrepancy remained in the same range between IPCC-AR4 and IPCC-AR5, which amounts to about 3oC between the coldest model and the warmest model. This discrepancy has great implications to the land processes, particularly the processes related to the cryosphere, and casts doubts over if land-atmosphere-ocean interactions are correctly considered in those models. This presentation aims to explore if this discrepancy can be reduced through model tuning. We present an automatic model calibration strategy to tune the parameters of a climate model so the simulated global mean absolute temperature would match the observed data over the last 150 years. An intermediate complexity model known as LOVECLIM is used in the study. This presentation will show the preliminary results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29736330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29736330"><span>Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J</p> <p>2018-01-01</p> <p>Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED13B3454R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED13B3454R"><span>Exploring Climate Science with WV Educators: A Regional Model for Teacher Professional Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruberg, L. F.; Calinger, M.</p> <p>2014-12-01</p> <p>The National Research Council Framework for K-12 Science Literacy reports that children reared in rural agricultural communities, who experience regular interactions with plants and animals, develop more sophisticated understanding of ecology and biological systems than do urban and suburban children of the same age. West Virginia (WV) is a rural state. The majority of its residents live in communities of fewer than 2,500 people. Based on the features of the population being served and their unique strengths, this presentation focuses on a regional model for teacher professional development that addresses agricultural and energy vulnerabilities and adaptations to climate change in WV. The professional development model outlined shows how to guide teachers to use a problem-based learning approach to introduce climate data and analysis techniques within a scenario context that is locally meaningful. This strategy engages student interest by focusing on regional and community concerns. Climate science standards are emphasized in the Next Generation Science Standards, but WV has not provided its teachers with appropriate instructional resources to meet those standards. The authors addressed this need by offering a series of climate science education workshops followed by online webinars offered to WV science educators free of charge with funding by the West Virginia Space Grant Consortium. The authors report on findings from this series of professional development workshops conducted in partnership with the West Virginia Science Teachers Association. The goal was to enhance grades 5-12 teaching and learning about climate change through problem-based learning. Prior to offering the climate workshops, all WV science educators were asked to complete a short questionnaire. As Figure 1 shows, over 40% of the teacher respondents reported being confident in teaching climate science content. For comparison post workshops surveys measure teacher confidence in climate science instruction after the professional development sessions. In summary, this report describes how this professional approach can serve as a regional model to address the need for climate science literacy throughout Appalachia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26027583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26027583"><span>Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R</p> <p>2015-04-01</p> <p>Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27100019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27100019"><span>Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa</p> <p>2016-08-15</p> <p>Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27116455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27116455"><span>Is There Any Evidence for Rapid, Genetically-Based, Climatic Niche Expansion in the Invasive Common Ragweed?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gallien, Laure; Thuiller, Wilfried; Fort, Noémie; Boleda, Marti; Alberto, Florian J; Rioux, Delphine; Lainé, Juliette; Lavergne, Sébastien</p> <p>2016-01-01</p> <p>Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L.), a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence). Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006647','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006647"><span>Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140006647'); toggleEditAbsImage('author_20140006647_show'); toggleEditAbsImage('author_20140006647_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140006647_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140006647_hide"></p> <p>2013-01-01</p> <p>The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13c4003Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13c4003Z"><span>Interactions between urban heat islands and heat waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu</p> <p>2018-03-01</p> <p>Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored and anthropogenic heat during HWs are the primary contributors to the synergistic effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150017746','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150017746"><span>Impact of Improvements in Volcanic Implementation on Atmospheric Chemistry and Climate in the GISS-E2 Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsigaridis, Kostas; LeGrande, Allegra; Bauer, Susanne</p> <p>2015-01-01</p> <p>The representation of volcanic eruptions in climate models introduces some of the largest errors when evaluating historical simulations, partly due to the crude model parameterizations. We will show preliminary results from the Goddard Institute for Space Studies (GISS)-E2 model comparing traditional highly parameterized volcanic implementation (specified Aerosol Optical Depth, Effective Radius) to deploying the full aerosol microphysics module MATRIX and directly emitting SO2 allowing us the prognosically determine the chemistry and climate impact. We show a reasonable match in aerosol optical depth, effective radius, and forcing between the full aerosol implementation and reconstructions/observations of the Mt. Pinatubo 1991 eruption, with a few areas as targets for future improvement. This allows us to investigate not only the climate impact of the injection of volcanic aerosols, but also influences on regional water vapor, O3, and OH distributions. With the skill of the MATRIX volcano implementation established, we explore (1) how the height of the injection column of SO2 influence atmospheric chemistry and climate response, (2) how the initial condition of the atmosphere influences the climate and chemistry impact of the eruption with a particular focus on how ENSO and QBO and (3) how the coupled chemistry could mitigate the climate signal for much larger eruptions (i.e. the 1258 eruption, reconstructed to be approximately 10x Pinatubo). During each sensitivity experiment we assess the impact on profiles of water vapor, O3, and OH, and assess how the eruption impacts the budget of each.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESSD...9.7441V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESSD...9.7441V"><span>An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.</p> <p>2012-06-01</p> <p>Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180002900&hterms=ECS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DECS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180002900&hterms=ECS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DECS"><span>Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.</p> <p>2018-01-01</p> <p>An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1595M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1595M"><span>Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.</p> <p>2018-02-01</p> <p>An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2951M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2951M"><span>Tropical rainforest response to marine sky brightening climate engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill</p> <p>2015-04-01</p> <p>Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NHESS..13.1135M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NHESS..13.1135M"><span>High resolution climate projection of storm surge at the Venetian coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mel, R.; Sterl, A.; Lionello, P.</p> <p>2013-04-01</p> <p>Climate change impact on storm surge regime is of great importance for the safety and maintenance of Venice. In this study a future storm surge scenario is evaluated using new high resolution sea level pressure and wind data recently produced by EC-Earth, an Earth System Model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). The study considers an ensemble of six 5 yr long simulations of the rcp45 scenario at 0.25° resolution and compares the 2094-2098 to the 2004-2008 period. EC-Earth sea level pressure and surface wind fields are used as input for a shallow water hydrodynamic model (HYPSE) which computes sea level and barotropic currents in the Adriatic Sea. Results show that a high resolution climate model is needed for producing realistic values of storm surge statistics and confirm previous studies in that they show little sensitivity of storm surge levels to climate change. However, some climate change signals are detected, such as increased persistence of high pressure conditions, an increased frequency of windless hour, and a decreased number of moderate windstorms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26068930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26068930"><span>A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Varela, Sara; Lima-Ribeiro, Matheus S; Terribile, Levi Carina</p> <p>2015-01-01</p> <p>Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12-BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466021','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466021"><span>A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Varela, Sara; Lima-Ribeiro, Matheus S.; Terribile, Levi Carina</p> <p>2015-01-01</p> <p>Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12- BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/. PMID:26068930</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13412','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13412"><span>Estimating potential habitat for 134 eastern US tree species under six climate scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew Peters</p> <p>2008-01-01</p> <p>We modeled and mapped, using the predictive data mining tool Random Forests, 134 tree species from the eastern United States for potential response to several scenarios of climate change. Each species was modeled individually to show current and potential future habitats according to two emission scenarios (high emissions on current trajectory and reasonable...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3597255','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3597255"><span>Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B</p> <p>2012-01-01</p> <p>Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we provide a framework to address methodological uncertainties and contextualize results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21809779','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21809779"><span>Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bring, Arvid; Destouni, Georgia</p> <p>2011-06-01</p> <p>Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25862992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25862992"><span>Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan</p> <p>2015-08-01</p> <p>We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRD..118.8320K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRD..118.8320K"><span>Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kravitz, Ben; Caldeira, Ken; Boucher, Olivier; Robock, Alan; Rasch, Philip J.; Alterskjær, Kari; Karam, Diana Bou; Cole, Jason N. S.; Curry, Charles L.; Haywood, James M.; Irvine, Peter J.; Ji, Duoying; Jones, Andy; Kristjánsson, Jón Egill; Lunt, Daniel J.; Moore, John C.; Niemeier, Ulrike; Schmidt, Hauke; Schulz, Michael; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yang, Shuting; Yoon, Jin-Ho</p> <p>2013-08-01</p> <p>geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2 mm day-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1092643-climate-model-response-from-geoengineering-model-intercomparison-project-geomip','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1092643-climate-model-response-from-geoengineering-model-intercomparison-project-geomip"><span>Climate Model Response from the Geoengineering Model Intercomparison Project (GeoMIP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kravitz, Benjamin S.; Caldeira, Ken; Boucher, Olivier</p> <p>2013-08-09</p> <p>Solar geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwisemore » occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2mmday-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840014027&hterms=state+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstate%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840014027&hterms=state+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstate%2Bclimate"><span>Diagnosis of the GLAS climate model's stationary planetary waves using a linearized steady state model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Youngblut, C.</p> <p>1984-01-01</p> <p>Orography and geographically fixed heat sources which force a zonally asymmetric motion field are examined. An extensive space-time spectral analysis of the GLAS climate model (D130) response and observations are compared. An updated version of the model (D150) showed a remarkable improvement in the simulation of the standing waves. The main differences in the model code are an improved boundary layer flux computation and a more realistic specification of the global boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27516864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27516864"><span>Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aryal, Achyut; Shrestha, Uttam Babu; Ji, Weihong; Ale, Som B; Shrestha, Sujata; Ingty, Tenzing; Maraseni, Tek; Cockfield, Geoff; Raubenheimer, David</p> <p>2016-06-01</p> <p>Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator-prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy-deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate-only model shows that only 11.64% (17,190 km(2)) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km(2) (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate-only model. It is predicted that future climate may alter the predator-prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards - a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..552W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..552W"><span>Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei</p> <p>2017-09-01</p> <p>Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..811N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..811N"><span>Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 1: Greenland (1958-2016)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noël, Brice; van de Berg, Willem Jan; Melchior van Wessem, J.; van Meijgaard, Erik; van As, Dirk; Lenaerts, Jan T. M.; Lhermitte, Stef; Kuipers Munneke, Peter; Smeets, C. J. P. Paul; van Ulft, Lambertus H.; van de Wal, Roderik S. W.; van den Broeke, Michiel R.</p> <p>2018-03-01</p> <p>We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation: snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves the spatial patterns and temporal variability of SMB compared with the previous model version, notably in the north-east, south-east and along the K-transect in south-western Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for projections of the GrIS climate and SMB in response to a future climate scenario in a forthcoming study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESSD...9.2831M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESSD...9.2831M"><span>An eco-hydrologic model of malaria outbreaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.</p> <p>2012-03-01</p> <p>Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission and their consideration alongside climatic datasets. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear eco-hydrologic model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESS...16.2759M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESS...16.2759M"><span>An ecohydrological model of malaria outbreaks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.</p> <p>2012-08-01</p> <p>Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..920L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..920L"><span>Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong</p> <p>2017-12-01</p> <p>Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC24A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC24A..07H"><span>Understanding hydro-climatic drivers of infectious diarrheal diseases in South Asia and their projected risks from regional climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasan, M. A.; Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.</p> <p>2017-12-01</p> <p>Diarrheal diseases remain a major threat to global public health and are the second largest cause of death for children under the age of five. Cholera and Rotavirus diarrhea together comprise more than two-thirds of the diarrheal morbidity in South Asia. Recent studies have shown strong influences of hydrologic processes and climatic variabilities on the onset, intensity, and seasonality of the outbreaks of these diseases. However, our understanding of the propagation and manifestation of these diseases in a changing climate in vulnerable regions of the world are still limited. In this study, we build on our understanding of the role of the hydro-climatic drivers of diarrheal diseases in South Asia in recent decades to project the probable risks of the diseases in this century using the climate projection scenarios from dynamically downscaled climate models. To build the current model, we conducted a multivariate logistic regression assessment using 34 climate indices to examine the role of temperature and rainfall extremes over the seasonality of rotavirus and cholera over a South Asian country, Bangladesh. We utilize the availability of long and reliable time-series of cholera and rotavirus from Bangladesh and conducted a temporal and spatial analysis derived from both ground and satellite observations. For projecting the future risks of the diseases, we used five bias-corrected Regional Climate Model (RCM) results of the CMIP5 series under the RCP 4.5 scenario. Cholera risk shows a significantly higher rate of increase compared to Rotavirus in Bangladesh in the 21st century. As the disease is significantly influenced by extreme rainfall, majority projections showed a significant increase in flood-driven cholera risk. Most RCMs suggest a warmer winter in future years, suggesting reduced risk for Rotavirus. However, as the dryness of the climate is also highly correlated with rotavirus epidemics, the incremental risk of the disease due to drier winters would likely undermine the reduced risk due to temperature increase. Probabilistic risk assessments of these diarrheal diseases with respect to hydro-climatic variability will, not only improve the local policymaking processes, but also allow us to pinpoint the climate-health hotspots around the globe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813711G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813711G"><span>Climate impacts on agricultural biomass production in the CORDEX.be project context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gobin, Anne; Van Schaeybroeck, Bert; Termonia, Piet; Willems, Patrick; Van Lipzig, Nicole; Marbaix, Philippe; van Ypersele, Jean-Pascal; Fettweis, Xavier; De Ridder, Koen; Stavrakou, Trissevgeni; Luyten, Patrick; Pottiaux, Eric</p> <p>2016-04-01</p> <p>The most important coordinated international effort to translate the IPCC-AR5 outcomes to regional climate modelling is the so-called "COordinated Regional climate Downscaling EXperiment" (CORDEX, http://wcrp-cordex.ipsl.jussieu.fr/). CORDEX.be is a national initiative that aims at combining the Belgian climate and impact modelling research into a single network. The climate network structure is naturally imposed by the top-down data flow, from the four participating upper-air Regional Climate Modelling groups towards seven Local Impact Models (LIMs). In addition to the production of regional climate projections following the CORDEX guidelines, very high-resolution results are provided at convection-permitting resolutions of about 4 km across Belgium. These results are coupled to seven local-impact models with severity indices as output. A multi-model approach is taken that allows uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. The down-scaled scenarios at 4 km resolution allow for impact assessment in different Belgian agro-ecological zones. Climate impacts on arable agriculture are quantified using REGCROP which is a regional dynamic agri-meteorological model geared towards modelling climate impact on biomass production of arable crops (Gobin, 2010, 2012). Results from previous work show that heat stress and water shortages lead to reduced crop growth, whereas increased CO2-concentrations and a prolonged growing season have a positive effect on crop yields. The interaction between these effects depend on the crop type and the field conditions. Root crops such as potato will experience increased drought stress particularly when the probability rises that sensitive crop stages coincide with dry spells. This may be aggravated when wet springs cause water logging in the field and delay planting dates. Despite lower summer precipitation projections for future climate in Belgium, winter cereal yield reductions due to drought stress will be smaller due to earlier maturity. Preliminary results will be presented using the new scenario runs for Belgium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513593W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513593W"><span>Decision- rather than scenario-centred downscaling: Towards smarter use of climate model outputs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilby, Robert L.</p> <p>2013-04-01</p> <p>Climate model output has been used for hydrological impact assessments for at least 25 years. Scenario-led methods raise awareness about risks posed by climate variability and change to the security of supplies, performance of water infrastructure, and health of freshwater ecosystems. However, it is less clear how these analyses translate into actionable information for adaptation. One reason is that scenario-led methods typically yield very large uncertainty bounds in projected impacts at regional and river catchment scales. Consequently, there is growing interest in vulnerability-based frameworks and strategies for employing climate model output in decision-making contexts. This talk begins by summarising contrasting perspectives on climate models and principles for testing their utility for water sector applications. Using selected examples it is then shown how water resource systems may be adapted with varying levels of reliance on climate model information. These approaches include the conventional scenario-led risk assessment, scenario-neutral strategies, safety margins and sensitivity testing, and adaptive management of water systems. The strengths and weaknesses of each approach are outlined and linked to selected water management activities. These cases show that much progress can be made in managing water systems without dependence on climate models. Low-regret measures such as improved forecasting, better inter-agency co-operation, and contingency planning, yield benefits regardless of the climate outlook. Nonetheless, climate model scenarios are useful for evaluating adaptation portfolios, identifying system thresholds and fixing weak links, exploring the timing of investments, improving operating rules, or developing smarter licensing regimes. The most problematic application remains the climate change safety margin because of the very low confidence in extreme precipitation and river flows generated by climate models. In such cases, it is necessary to understand the trade-offs that exist between the additional costs of a scheme and the level of risk that is accommodated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1376542-stochastic-parameterization-toward-new-view-weather-climate-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1376542-stochastic-parameterization-toward-new-view-weather-climate-models"><span>Stochastic Parameterization: Toward a New View of Weather and Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...</p> <p>2017-03-31</p> <p>The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376542','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376542"><span>Stochastic Parameterization: Toward a New View of Weather and Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berner, Judith; Achatz, Ulrich; Batté, Lauriane</p> <p></p> <p>The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/43556','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/43556"><span>Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Zhaohua Dai; Carl C. Trettin; Changsheng Li; Ge Sun; Devendra M. Amatya; Harbin Li</p> <p>2013-01-01</p> <p>The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest-DNDC...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC32B..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC32B..01P"><span>Inability of CMIP5 Climate Models to Simulate Recent Multi-decadal Climate Change in the Tropical Pacific.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Power, S.; Delage, F.; Kociuba, G.; Wang, G.; Smith, I.</p> <p>2017-12-01</p> <p>Observed 15-year surface temperature trends beginning 1998 or later have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short trends, whether they indicate a possible bias in models and the implications for global warming generally. Here we analyse historical and projected changes in 38 CMIP5 climate models. All of the models simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This stark difference cannot be fully explained by observed, internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. We also show that CMIP5 models are not able to simulate the magnitude of the strengthening of the Walker Circulation over the past thirty years. Some of the reasons for these major shortcomings in the ability of models to simulate multi-decadal variability in the Pacific, and the impact these findings have on our confidence in global 21st century projections, will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A54D..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A54D..04P"><span>Tradeoffs in Acceleration and Initialization of Superparameterized Global Atmospheric Models for MJO and Climate Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pritchard, M. S.; Bretherton, C. S.; DeMott, C. A.</p> <p>2014-12-01</p> <p>New trade-offs are discussed in the cloud superparameterization approach to explicitly representing deep convection in global climate models. Intrinsic predictability tests show that the memory of cloud-resolving-scale organization is not critical for producing desired modes of organized convection such as the Madden-Julian Oscillation (MJO). This has implications for the feasibility of data assimilation and real-world initialization for superparameterized weather forecasting. Climate simulation sensitivity tests demonstrate that 400% acceleration of cloud superparameterization is possible by restricting the 32-128 km scale regime without deteriorating the realism of the simulated MJO but the number of cloud resolving model grid columns is discovered to constrain the efficiency of vertical mixing, with consequences for the simulated liquid cloud climatology. Tuning opportunities for next generation accelerated superparameterized climate models are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011937','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011937"><span>Abrupt climate change and extinction events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crowley, Thomas J.</p> <p>1988-01-01</p> <p>There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.8196H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.8196H"><span>Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of late-stage lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horvath, David G.; Andrews-Hanna, Jeffrey C.</p> <p>2017-08-01</p> <p>The sedimentary deposits in Gale crater may preserve one of the best records of the early Martian climate during the Late Noachian and Early Hesperian. Surface and orbital observations support the presence of two periods of lake stability in Gale crater—prior to the formation of the sedimentary mound during the Late Noachian and after the formation and erosion of the mound to its present state in the Early Hesperian. Here we use hydrological models and late-stage lake levels at Gale, to reconstruct the climate of Mars after mound formation and erosion to its present state. Using Earth analog climates, we show that the late-stage lakes require wetter interludes characterized by semiarid climates after the transition to arid conditions in the Hesperian. These climates are much wetter than is thought to characterize much of the Hesperian and are more similar to estimates of the Late Noachian climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034093','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034093"><span>Past and ongoing shifts in Joshua tree distribution support future modeled range contraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris</p> <p>2011-01-01</p> <p>The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27199092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27199092"><span>Temperature variability is a key component in accurately forecasting the effects of climate change on pest phenology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Merrill, Scott C; Peairs, Frank B</p> <p>2017-02-01</p> <p>Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048233','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048233"><span>Probabilistic accounting of uncertainty in forecasts of species distributions under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wenger, Seth J.; Som, Nicholas A.; Dauwalter, Daniel C.; Isaak, Daniel J.; Neville, Helen M.; Luce, Charles H.; Dunham, Jason B.; Young, Michael K.; Fausch, Kurt D.; Rieman, Bruce E.</p> <p>2013-01-01</p> <p>Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site-specific frequency distributions of occurrence probabilities across a species’ range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1–42.5 thousand km; this was predicted to decline to 0.5–7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..155S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..155S"><span>Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao</p> <p>2018-03-01</p> <p>The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6945P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6945P"><span>An integrated modelling methodology to study the impacts of nutrients on coastal aquatic ecosystems in the context of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pesce, Marco; Critto, Andrea; Torresan, Silvia; Santini, Monia; Giubilato, Elisa; Pizzol, Lisa; Mercogliano, Paola; Zirino, Alberto; Wei, Ouyang; Marcomini, Antonio</p> <p>2017-04-01</p> <p>It has been recognized that the increase of atmospheric greenhouse gases (GHG) due to anthropogenic activities is causing changes in Earth's climate. Global mean temperatures are expected to rise by 0.3 to 4.8 °C by the end of the 21st century, and the water cycle to alter because of changes in global atmospheric moisture. Coastal waterbodies such as estuaries, bays and lagoons together with the ecological and socio-economic services they provide, could be among those most affected by the ongoing changes on climate. Because of their position at the land-sea interface, they are subjected to the combined changes in the physico-chemical processes of atmosphere, upstream land and coastal waters. Particularly, climate change is expected to alter phytoplankton communities by changing their climate and environmental drivers, such as temperature, precipitation, wind, solar radiation and nutrient loadings, and to exacerbate the symptoms of eutrophication events, such as hypoxia, harmful algal blooms (HAB) and loss of habitat. A better understanding of the links between climate-related drivers and phytoplankton is therefore necessary for predicting climate change impacts on aquatic ecosystems. In this context, the integration of climate scenarios and environmental models can become a valuable tool for the investigation and prediction of phytoplankton ecosystem dynamics under climate change conditions. In the last decade, the effects of climate change on the environmental distribution of nutrients and the resulting effects on aquatic ecosystems encouraged the conduction of modeling studies at a catchment scale, even though mainly are related to lake ecosystem. The further development of integrated modeling approaches and their application to other types of waterbodies such as coastal waters can be a useful contribution to increase the availability of management tools for ecological conservation and adaptation policies. Here we present the case study of the Zero river basin in Italy, one of the main contributors of freshwater and nutrients loadings to the salt-marsh Palude di Cona, a waterbody belonging to the lagoon of Venice. To predict the effects of climate change on nutrient loadings and their effects on the phytoplankton community of the receiving waterbody, we applied a methodology integrating an ensemble of GCM-RCM climate projections, the hydrological model SWAT and the ecological model AQUATOX. Climate scenarios for the study area revealed an increase of precipitations in the winter period and a decrease in the summer months, while temperature shows a significant increase over the whole year. The hydrological model SWAT predicted changes the Zero river's waterflow and nutrients' loadings. Both parameters show a tendency to increase in the winter period, and a reduction during the summer months. Simulations with AQUATOX predicted changes in the concentration of nutrients in the salt-marsh Palude di Cona, and variations in the biomass and species of the phytoplankton community. The simulation shows changes are highly species-dependent. Major changes are observed in the spring-summer period, where the abundance of warm-adapted species increase noticeably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28458719','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28458719"><span>Montane ecosystem productivity responds more to global circulation patterns than climatic trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P</p> <p>2016-02-01</p> <p>Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11b4013D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11b4013D"><span>Montane ecosystem productivity responds more to global circulation patterns than climatic trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.</p> <p>2016-02-01</p> <p>Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25824529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25824529"><span>Local cooling and warming effects of forests based on satellite observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng</p> <p>2015-03-31</p> <p>The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4389237','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4389237"><span>Local cooling and warming effects of forests based on satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng</p> <p>2015-01-01</p> <p>The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3131318','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3131318"><span>Uncertainties in climate assessment for the case of aviation NO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Holmes, Christopher D.; Tang, Qi; Prather, Michael J.</p> <p>2011-01-01</p> <p>Nitrogen oxides emitted from aircraft engines alter the chemistry of the atmosphere, perturbing the greenhouse gases methane (CH4) and ozone (O3). We quantify uncertainties in radiative forcing (RF) due to short-lived increases in O3, long-lived decreases in CH4 and O3, and their net effect, using the ensemble of published models and a factor decomposition of each forcing. The decomposition captures major features of the ensemble, and also shows which processes drive the total uncertainty in several climate metrics. Aviation-specific factors drive most of the uncertainty for the short-lived O3 and long-lived CH4 RFs, but a nonaviation factor dominates for long-lived O3. The model ensemble shows strong anticorrelation between the short-lived and long-lived RF perturbations (R2 = 0.87). Uncertainty in the net RF is highly sensitive to this correlation. We reproduce the correlation and ensemble spread in one model, showing that processes controlling the background tropospheric abundance of nitrogen oxides are likely responsible for the modeling uncertainty in climate impacts from aviation. PMID:21690364</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54971','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54971"><span>Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joel B. Sankey; Jason Kreitler; Todd J. Hawbaker; Jason L. McVay; Mary Ellen Miller; Erich R. Mueller; Nicole M. Vaillant; Scott E. Lowe; Temuulen T. Sankey</p> <p>2017-01-01</p> <p>The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CliPa..12.2195G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CliPa..12.2195G"><span>Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry</p> <p>2016-12-01</p> <p>As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511832M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511832M"><span>Enhanced future variability during India's rainy season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menon, Arathy; Levermann, Anders; Schewe, Jacob</p> <p>2013-04-01</p> <p>The Indian summer monsoon shapes the livelihood of a large share of the world's population. About 80% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall the day-to-day variability is crucial for the risk of flooding, national water supply and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the IPCC's AR-5, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. While all models show an increase in day-to-day variability, some models are more realistic in capturing the observed seasonal mean rainfall over India than others. While no model's monsoon rainfall exceeds the observed value by more than two standard deviations, half of the models simulate a significantly weaker monsoon than observed. The relative increase in day-to-day variability by the year 2100 ranges from 15% to 48% under the strongest scenario (RCP-8.5), in the ten models which capture seasonal mean rainfall closest to observations. The variability increase per degree of global warming is independent of the scenario in most models, and is 8% +/- 4% per K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..528..108G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..528..108G"><span>Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain</p> <p>2015-09-01</p> <p>Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B42A..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B42A..03W"><span>Climatic and biotic drivers of tropical evergreen forest photosynthesis: integrating field, eddy flux, remote sensing and modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, J.; Serbin, S.; Xu, X.; Guan, K.; Albert, L.; Hayek, M.; Restrepo-Coupe, N.; Lopes, A. P.; Wiedemann, K. T.; Christoffersen, B. O.; Meng, R.; De Araujo, A. C.; Oliveira Junior, R. C.; Camargo, P. B. D.; Silva, R. D.; Nelson, B. W.; Huete, A. R.; Rogers, A.; Saleska, S. R.</p> <p>2016-12-01</p> <p>Tropical evergreen forest photosynthetic metabolism is an important driver of large-scale carbon, water, and energy cycles, generating various climate feedbacks. However, considerable uncertainties remain regarding how best to represent evergreen forest photosynthesis in current terrestrial biosphere models (TBMs), especially its sensitivity to climatic vs. biotic variation. Here, we develop a new approach to partition climatic and biotic controls on tropical forest photosynthesis from hourly to inter-annual timescales. Our results show that climatic factors dominate photosynthesis dynamics at shorter-time scale (i.e. hourly), while biotic factors dominate longer-timescale (i.e. monthly and longer) photosynthetic dynamics. Focusing on seasonal timescales, we combine camera and ecosystem carbon flux observations of forests across a rainfall gradient in Amazonia to show that high dry season leaf turnover shifts canopy composition towards younger more efficient leaves. This seasonal variation in leaf quality (per-area leaf photosynthetic capacity) thus can explain the high photosynthetic seasonality observed in the tropics. Finally, we evaluated the performance of models with different phenological schemes (i.e. leaf quantity versus leaf quality; with and without leaf phenological variation alone the vertical canopy profile). We found that models which represented the phenology of leaf quality and its within-canopy variation performed best in simulating photosynthetic seasonality in tropical evergreen forests. This work highlights the importance of incorporating improved understanding of climatic and biotic controls in next generation TBMs to project future carbon and water cycles in the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H41B1291D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H41B1291D"><span>An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doroszkiewicz, J. M.; Romanowicz, R. J.</p> <p>2016-12-01</p> <p>The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27663230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27663230"><span>Patterns of crop cover under future climates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong</p> <p>2017-04-01</p> <p>We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9420V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9420V"><span>Assessment of bias correction under transient climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Schaeybroeck, Bert; Vannitsem, Stéphane</p> <p>2015-04-01</p> <p>Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5095186','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5095186"><span>Extinction debt from climate change for frogs in the wet tropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brook, Barry W.; Hoskin, Conrad J.; Pressey, Robert L.; VanDerWal, Jeremy; Williams, Stephen E.</p> <p>2016-01-01</p> <p>The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species–area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays—an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur. PMID:27729484</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change"><span>Future global mortality from changes in air pollution attributable to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; ...</p> <p>2017-07-31</p> <p>Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007838&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DChange%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007838&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DChange%2Bclimate"><span>Future Global Mortality from Changes in Air Pollution Attributable to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007838'); toggleEditAbsImage('author_20170007838_show'); toggleEditAbsImage('author_20170007838_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007838_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007838_hide"></p> <p>2017-01-01</p> <p>Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1395528-future-global-mortality-from-changes-air-pollution-attributable-climate-change"><span>Future global mortality from changes in air pollution attributable to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François</p> <p></p> <p>Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900041193&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3Dclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900041193&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3Dclimate%2Bchange"><span>Climate change and the middle atmosphere. I - The doubled CO2 climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.</p> <p>1990-01-01</p> <p>The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016547','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016547"><span>Large-Scale Features of Pliocene Climate: Results from the Pliocene Model Intercomparison Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haywood, A. M.; Hill, D.J.; Dolan, A. M.; Otto-Bliesner, B. L.; Bragg, F.; Chan, W.-L.; Chandler, M. A.; Contoux, C.; Dowsett, H. J.; Jost, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140016547'); toggleEditAbsImage('author_20140016547_show'); toggleEditAbsImage('author_20140016547_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140016547_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140016547_hide"></p> <p>2013-01-01</p> <p>Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..885H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..885H"><span>Climate change impact modelling needs to include cross-sectoral interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.</p> <p>2016-09-01</p> <p>Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28474676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28474676"><span>A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric</p> <p>2017-05-05</p> <p>Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26267446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26267446"><span>Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seely, Brad; Welham, Clive; Scoullar, Kim</p> <p>2015-01-01</p> <p>Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC33A1057T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC33A1057T"><span>Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, T. M.; Selin, N. E.</p> <p>2011-12-01</p> <p>Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4534035','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4534035"><span>Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Seely, Brad; Welham, Clive; Scoullar, Kim</p> <p>2015-01-01</p> <p>Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53A0522F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53A0522F"><span>Model-based evidence for persistent species zonation shifts in the southern Rocky Mountains under a warming climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Dwire, K. A.; Fornwalt, P.; Sibold, J.; Negrón, J. F.</p> <p>2016-12-01</p> <p>Forests in the Rocky Mountains are a crucial part of the North American carbon budget, but increases in disturbances such as insect outbreaks and fire, in conjunction with climate change, threaten their vitality. Mean annual temperatures in the western United States have increased by 2°C since 1950 and the higher elevations are warming faster than the rest of the landscape. It is predicted that this warming trend will continue, and that by the end of this century, nearly 50% of the western US landscape will have climate profiles with no current analog within that region. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at a subalpine site in the southern Rocky Mountains. UVAFME has been quantitatively and qualitatively validated in the southern Rocky Mountains, and results show that UVAFME-output on size structure, biomass, and species composition compares reasonably to inventory data and descriptions of vegetation zonation and successional dynamics for the region. We perform a climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. This test is conducted to determine what effect elevated temperatures may have on vegetation zonation, and how persistent the changes may be if the climate is brought back to its current state. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and changes in species composition as species migrate upslope. These changes are also likely to be fairly persistent for at least one- to two-hundred years. The results from this study suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation strategies for this vitally important region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23215975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23215975"><span>The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Güizado-Rodríguez, Martha Anahí; Ballesteros-Barrera, Claudia; Casas-Andreu, Gustavo; Barradas-Miranda, Victor Luis; Téllez-Valdés, Oswaldo; Salgado-Ugarte, Isaías Hazarmabeth</p> <p>2012-12-01</p> <p>The ectothermic nature of reptiles makes them especially sensitive to global warming. Although climate change and its implications are a frequent topic of detailed studies, most of these studies are carried out without making a distinction between populations. Here we present the first study of an Aspidoscelis species that evaluates the effects of global warming on its distribution using ecological niche modeling. The aims of our study were (1) to understand whether predicted warmer climatic conditions affect the geographic potential distribution of different climatic groups of Aspidoscelis costata costata and (2) to identify potential altitudinal changes of these groups under global warming. We used the maximum entropy species distribution model (MaxEnt) to project the potential distributions expected for the years 2020, 2050, and 2080 under a single simulated climatic scenario. Our analysis suggests that some climatic groups of Aspidoscelis costata costata will exhibit reductions and in others expansions in their distribution, with potential upward shifts toward higher elevation in response to climate warming. Different climatic groups were revealed in our analysis that subsequently showed heterogeneous responses to climatic change illustrating the complex nature of species geographic responses to environmental change and the importance of modeling climatic or geographic groups and/or populations instead of the entire species' range treated as a homogeneous entity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174012','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174012"><span>Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.</p> <p>2016-01-01</p> <p>Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29238528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29238528"><span>Trends and uncertainties in budburst projections of Norway spruce in Northern Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olsson, Cecilia; Olin, Stefan; Lindström, Johan; Jönsson, Anna Maria</p> <p>2017-12-01</p> <p>Budburst is regulated by temperature conditions, and a warming climate is associated with earlier budburst. A range of phenology models has been developed to assess climate change effects, and they tend to produce different results. This is mainly caused by different model representations of tree physiology processes, selection of observational data for model parameterization, and selection of climate model data to generate future projections. In this study, we applied (i) Bayesian inference to estimate model parameter values to address uncertainties associated with selection of observational data, (ii) selection of climate model data representative of a larger dataset, and (iii) ensembles modeling over multiple initial conditions, model classes, model parameterizations, and boundary conditions to generate future projections and uncertainty estimates. The ensemble projection indicated that the budburst of Norway spruce in northern Europe will on average take place 10.2 ± 3.7 days earlier in 2051-2080 than in 1971-2000, given climate conditions corresponding to RCP 8.5. Three provenances were assessed separately (one early and two late), and the projections indicated that the relationship among provenance will remain also in a warmer climate. Structurally complex models were more likely to fail predicting budburst for some combinations of site and year than simple models. However, they contributed to the overall picture of current understanding of climate impacts on tree phenology by capturing additional aspects of temperature response, for example, chilling. Model parameterizations based on single sites were more likely to result in model failure than parameterizations based on multiple sites, highlighting that the model parameterization is sensitive to initial conditions and may not perform well under other climate conditions, whether the change is due to a shift in space or over time. By addressing a range of uncertainties, this study showed that ensemble modeling provides a more robust impact assessment than would a single phenology model run.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HydJ...25.1733L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HydJ...25.1733L"><span>Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng</p> <p>2017-09-01</p> <p>A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMED14B..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMED14B..03C"><span>EdGCM: Research Tools for Training the Climate Change Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.</p> <p>2011-12-01</p> <p>Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To further increase the educational potential of climate models, the EdGCM project has also created "EZgcm". Through a joint venture of NASA, Columbia University and McGill University EZgcm moves the focus toward a greater use of Web 1.0 and Web 2.0-based technologies. It shifts the educational objectives towards a greater emphasis on teaching students how science is conducted and what role science plays in assessing climate change. That is, students learn about the steps of the scientific process as conveyed by climate modeling research: constructing a hypothesis, designing an experiment, running a computer model, using scientific visualization to support analysis, communicating the results of that analysis, and role playing the scientific peer review process. This is in stark contrast to what they learn from the political debate over climate change, which they often confuse with a scientific debate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H22B..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H22B..08C"><span>Using Four Downscaling Techniques to Characterize Uncertainty in Updating Intensity-Duration-Frequency Curves Under Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, L. M.; Samaras, C.; McGinnis, S. A.</p> <p>2017-12-01</p> <p>Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25680630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25680630"><span>Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Junk, J; Ulber, B; Vidal, S; Eickermann, M</p> <p>2015-11-01</p> <p>Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJBm...59.1597J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJBm...59.1597J"><span>Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.</p> <p>2015-11-01</p> <p>Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9831S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9831S"><span>Weak hydrological sensitivity to temperature change over land, independent of climate forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samset, Bjorn H.</p> <p>2017-04-01</p> <p>As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC22A..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC22A..02M"><span>A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McFarland, J.; Sarofim, M. C.; Martinich, J.</p> <p>2017-12-01</p> <p>Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3272B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3272B"><span>Hydrological changes in the tropics: an Holocene perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braconnot, Pascale</p> <p>2015-04-01</p> <p>Past climates offer a large set of natural experiences that can be used to better understand the relative role of different climate feedbacks arising from changes in the Earth's global energetics, Earth's hydrological cycle or from the coupling between climate and biogeochemical cycles. In addition, the numerous climate reconstructions from different and independent ice, marine and terrestrial climate archives allow to test how climate models reproduce past changes and to assess their credibility when used for future climate projections. The presentation will review some of the mechanisms affecting the long term trend in the location of the intertropical convergence zone and the Afro-Asian monsoon. Using simulations of the PMIP project, as well as sensitivity experiments with the IPSL model, I'll discuss the role of monsoon changes in the global Earth's energetics and the different feedbacks from ocean and land-surface. The presentation will contrast the conditions in the Early, the mid and late Holocene and show how robust features of monsoon changes can be used to better assess future changes in regions where model results are uncertain, such as West Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14654317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14654317"><span>Potential effect of climate change on malaria transmission in Africa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tanser, Frank C; Sharp, Brian; le Sueur, David</p> <p>2003-11-29</p> <p>Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21E0971S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21E0971S"><span>Probabilistic Estimates of Climate Impacts of the Paris Agreement and Contributions from Different Countries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sokolov, A. P.; Paltsev, S.; Chen, Y. H. H.; Monier, E.; Libardoni, A. G.; Forest, C. E.</p> <p>2017-12-01</p> <p>In December of 2015 during COP21 meeting in Paris almost 200 countries signed an agreement pledging to reduce their anthropogenic greenhouse gas (GHG) emissions. Recently USA announced plans to withdraw from the agreement. In this study, we estimate an impact of this decision on future climate using the MIT Integrated Global System Model, which consists of the human activity model, Economic Projection and Policy Analysis (EPPA) model, and a climate model of intermediate complexity, the MIT Earth System Model (MESM). For comparison, we also estimated impacts of possible withdrawals of China, Europe or India. In addition to the "no climate policy" scenario, we consider five emissions scenarios: Paris, Paris_no_USA, Paris_no_EUR and so on. Climate simulations were carried out from 1861 to 2005 driven by prescribed changes in GHGs and natural forcings and them continued to 2100 driven by GHG emissions produced by EPPA model. Because Paris agreement only cover the period up to 2030, last five scenarios were created assuming that emissions or carbon intensity will continue to decrease after 2030 at the same rate as in the 2020-2030 period. To account for uncertainty in climate system response to external forcing, we carry out 400 member ensembles on climate simulations for each scenario. Probability distributions for climate parameters are obtained by comparing simulated climate for 1861 to 2010 with observations. Our analysis shows that, full implementation of Paris agreement (under above-descried assumptions) will increase probability of surface air temperature in the last decade of this century increasing by less than 3oC relative to pre-industrial form about 20% for "no climate policy" to about 86%. Withdrawal of USA, China, Europe or India will decrease this probability to about 63, 67, 75 and 82%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410138T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410138T"><span>DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.</p> <p>2012-04-01</p> <p>At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate models and projections, impact and risk parameters and to know what are stakeholder needs related to climate change in a climate service perspective. The preliminary results gained from the workshop showed that DESYCO is an helpful tool for the impact and risk assessment related to climate change that could be improved in order to fulfill stakeholder needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSEdT..24..287V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSEdT..24..287V"><span>Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Visintainer, Tammie; Linn, Marcia</p> <p>2015-04-01</p> <p>Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A54A..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A54A..06N"><span>Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.</p> <p>2012-12-01</p> <p>Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014FrES....8..457L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014FrES....8..457L"><span>Regional climate model downscaling may improve the prediction of alien plant species distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.</p> <p>2014-12-01</p> <p>Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..201L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..201L"><span>Climate change projections for Greek viticulture as simulated by a regional climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos</p> <p>2017-07-01</p> <p>Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3646809','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3646809"><span>Diverging Responses of Tropical Andean Biomes under Future Climate Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter</p> <p>2013-01-01</p> <p>Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%–17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other tropical mountains. PMID:23667651</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1455H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1455H"><span>Hydrological modeling as an evaluation tool of EURO-CORDEX climate projections and bias correction methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hakala, Kirsti; Addor, Nans; Seibert, Jan</p> <p>2017-04-01</p> <p>Streamflow stemming from Switzerland's mountainous landscape will be influenced by climate change, which will pose significant challenges to the water management and policy sector. In climate change impact research, the determination of future streamflow is impeded by different sources of uncertainty, which propagate through the model chain. In this research, we explicitly considered the following sources of uncertainty: (1) climate models, (2) downscaling of the climate projections to the catchment scale, (3) bias correction method and (4) parameterization of the hydrological model. We utilize climate projections at the 0.11 degree 12.5 km resolution from the EURO-CORDEX project, which are the most recent climate projections for the European domain. EURO-CORDEX is comprised of regional climate model (RCM) simulations, which have been downscaled from global climate models (GCMs) from the CMIP5 archive, using both dynamical and statistical techniques. Uncertainties are explored by applying a modeling chain involving 14 GCM-RCMs to ten Swiss catchments. We utilize the rainfall-runoff model HBV Light, which has been widely used in operational hydrological forecasting. The Lindström measure, a combination of model efficiency and volume error, was used as an objective function to calibrate HBV Light. Ten best sets of parameters are then achieved by calibrating using the genetic algorithm and Powell optimization (GAP) method. The GAP optimization method is based on the evolution of parameter sets, which works by selecting and recombining high performing parameter sets with each other. Once HBV is calibrated, we then perform a quantitative comparison of the influence of biases inherited from climate model simulations to the biases stemming from the hydrological model. The evaluation is conducted over two time periods: i) 1980-2009 to characterize the simulation realism under the current climate and ii) 2070-2099 to identify the magnitude of the projected change of streamflow under the climate scenarios RCP4.5 and RCP8.5. We utilize two techniques for correcting biases in the climate model output: quantile mapping and a new method, frequency bias correction. The FBC method matches the frequencies between observed and GCM-RCM data. In this way, it can be used to correct for all time scales, which is a known limitation of quantile mapping. A novel approach for the evaluation of the climate simulations and bias correction methods was then applied. Streamflow can be thought of as the "great integrator" of uncertainties. The ability, or the lack thereof, to correctly simulate streamflow is a way to assess the realism of the bias-corrected climate simulations. Long-term monthly mean as well as high and low flow metrics are used to evaluate the realism of the simulations under current climate and to gauge the impacts of climate change on streamflow. Preliminary results show that under present climate, calibration of the hydrological model comprises of a much smaller band of uncertainty in the modeling chain as compared to the bias correction of the GCM-RCMs. Therefore, for future time periods, we expect the bias correction of climate model data to have a greater influence on projected changes in streamflow than the calibration of the hydrological model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25473469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25473469"><span>Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pinkernell, Stefan; Beszteri, Bánk</p> <p>2014-08-01</p> <p>Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2437D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2437D"><span>Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daniel, M.; Lemonsu, Aude; Déqué, M.; Somot, S.; Alias, A.; Masson, V.</p> <p>2018-06-01</p> <p>Most climate models do not explicitly model urban areas and at best describe them as rock covers. Nonetheless, the very high resolutions reached now by the regional climate models may justify and require a more realistic parameterization of surface exchanges between urban canopy and atmosphere. To quantify the potential impact of urbanization on the regional climate, and evaluate the benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity study was carried out over France at a 12-km horizontal resolution with the ALADIN-Climate regional model for 1980-2009 time period. Different descriptions of land use and urban modeling were compared, corresponding to an explicit modeling of cities with the urban canopy model TEB, a conventional and simpler approach representing urban areas as rocks, and a vegetated experiment for which cities are replaced by natural covers. A general evaluation of ALADIN-Climate was first done, that showed an overestimation of the incoming solar radiation but satisfying results in terms of precipitation and near-surface temperatures. The sensitivity analysis then highlighted that urban areas had a significant impact on modeled near-surface temperature. A further analysis on a few large French cities indicated that over the 30 years of simulation they all induced a warming effect both at daytime and nighttime with values up to + 1.5 °C for the city of Paris. The urban model also led to a regional warming extending beyond the urban areas boundaries. Finally, the comparison to temperature observations available for Paris area highlighted that the detailed urban canopy model improved the modeling of the urban heat island compared with a simpler approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME11A..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME11A..05L"><span>Integrating Climate Science, Marine Ecology, and Fisheries Economics to Predict the Effects of Climate Change on New England lobster Fisheries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Bris, A.; Pershing, A. J.; Holland, D. S.; Mills, K.; Sun, C. H. J.</p> <p>2016-02-01</p> <p>The Gulf of Maine and the northwest Atlantic shelf have experienced one of the fastest warming rates of the global ocean over the past decade, and concerns are growing about the long-term sustainability of the fishing industries in the region. The lucrative American lobster fishery occurs over a steep temperature gradient, providing a unique opportunity to evaluate the consequences of climate change and variability on marine socio-ecological systems. This study aims at developing an integrated climate, population dynamics, and fishery economics model to predict consequences of climate change on the American lobster fishery. In this talk, we first describe a mechanistic model that combines life-history theory and a size-spectrum approach to simulate the dynamics of the population. Results show that as temperature increases, early growth rate and predation on small individuals increases, while size-at-maturity, maximum length and predation on large individuals decreases, resulting in a lower recruitment in the southern New-England and higher recruitment in the northern Gulf of Maine. Second, we present an integrated fishery and economic module that links temperature to landings and price through its influence on catchability and abundance. Preliminary results show that temperature is positively correlated with landings and negatively correlated with price in the Gulf of Maine. Finally, we discuss how model simulations under various fishing effort, market and climate scenarios can be used to identify adaptation opportunities to improve the resilience of the fishery to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29777998','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29777998"><span>An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use midwestern watershed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sunde, Michael G; He, Hong S; Hubbart, Jason A; Urban, Michael A</p> <p>2018-08-15</p> <p>Future urban development and climatic changes are likely to affect hydrologic regimes in many watersheds. Quantifying potential water regime changes caused by these stressors is therefore crucial for enabling decision makers to develop viable environmental management strategies. This study presents an approach that integrates mid-21st century impervious surface growth estimates derived from the Imperviousness Change Analysis Tool with downscaled climate model projections and a hydrologic model Soil and Water Assessment Tool to characterize potential water regime changes in a mixed-use watershed in central Missouri, USA. Results for the climate change only scenario showed annual streamflow and runoff decreases (-10.7% and -9.2%) and evapotranspiration increases (+6.8%), while results from the urbanization only scenario showed streamflow and runoff increases (+3.8% and +9.3%) and evapotranspiration decreases (-2.4%). Results for the combined impacts scenario suggested that climatic changes could have a larger impact than urbanization on annual streamflow, (overall decrease of -6.1%), and could largely negate surface runoff increases caused by urbanization. For the same scenario, climatic changes exerted a stronger influence on annual evapotranspiration than urbanization (+3.9%). Seasonal results indicated that the relative influences of urbanization and climatic changes vary seasonally. Climatic changes most greatly influenced streamflow and runoff during winter and summer, and evapotranspiration during summer. During some seasons the directional change for hydrologic processes matched for both stressors. This work presented a practicable approach for investigating the relative influences of mid-21st century urbanization and climatic changes on the hydrology of a representative mixed-use watershed, adding to a limited body of research on this topic. This was done using a transferrable approach that can be adapted for watersheds in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169076','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169076"><span>The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi</p> <p>2015-01-01</p> <p>In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1255382-attributing-runoff-changes-climate-variability-human-activities-uncertainty-analysis-using-four-monthly-water-balance-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1255382-attributing-runoff-changes-climate-variability-human-activities-uncertainty-analysis-using-four-monthly-water-balance-models"><span>Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Shuai; Xiong, Lihua; Li, Hong-Yi</p> <p>2015-05-26</p> <p>Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176264','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176264"><span>Detecting failure of climate predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve</p> <p>2016-01-01</p> <p>The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty1, 2. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies3. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412032G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412032G"><span>Climate variability in China during the last millennium based on reconstructions and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García-Bustamante, E.; Luterbacher, J.; Xoplaki, E.; Werner, J. P.; Jungclaus, J.; Zorita, E.; González-Rouco, J. F.; Fernández-Donado, L.; Hegerl, G.; Ge, Q.; Hao, Z.; Wagner, S.</p> <p>2012-04-01</p> <p>Multi-decadal to centennial climate variability in China during the last millennium is analysed. We compare the low frequency temperature and precipitation variations from proxy-based reconstructions and palaeo-simulations from climate models. Focusing on the regional responses to the global climate evolution is of high relevance due to the complexity of the interactions between physical mechanisms at different spatio-temporal scales and the potential severity of the derived multiple socio-economic impacts. China stands out as a particularly interesting region, not only due to its complex climatic features, ranging from the semiarid northwestern Tibetan Plateau to the tropical monsoon southeastern climates, but also because of its wealth of proxy data. However, comprehensive assessments of proxy- and model-based information about palaeo-climatic variations in China are, to our knowledge, still lacking. In addition, existing studies depict a general lack of agreement between reconstructions and model simulations with respect to the amplitude and/or occurrence of warmer/colder and wetter/drier periods during the last millennium and the magnitude of the 20th century warming trend. Furthermore, these works are mainly focused on eastern China regions that show a denser proxy data coverage. We investigate how last millennium palaeo-runs compare to independent evidences from an unusual large number of proxy reconstructions over the study area by employing state-of-the-art palaeo-simulations with multi-member ensembles from the CMIP5/PMIP3 project. This shapes an ideal frame for the evaluation of the uncertainties associated to internal and intermodel model variability. Preliminary results indicate that despite the strong regional and seasonal dependencies, temperature reconstructions in China evidence coherent variations among all regions at centennial scale, especially during the last 500 years. The spatial consistency of low frequency temperature changes is an interesting aspect and of relevance for the assessment of forced climatic responses in China. The comparison between reconstructions and simulations from climate models show that, apart from the 20th century warming trend, the variance of the reconstructed mean China temperature lies in the envelope (uncertainty range) spanned by the temperature simulations. The uncertainty arises from the internal (multi-member ensembles) and the inter-model variability. Centennial variations tend to be broadly synchronous in the reconstructions and the simulations. However, the simulations show a delay of the warm period 1000-1300 AD. This warm medieval period both in the simulations and the reconstructions is followed by cooling till 1800 AD. Based on the simulations, the recent warming is not unprecedented and is comparable to the medieval warming. Further steps of this study will address the individual contribution of anthropogenic and natural forcings on climate variability and change during the last millennium in China. We will make use of of models that provide runs including single forcings (fingerprints) for the attribution of climate variations from decadal to multi-centennial time scales. With this aim, we will implement statistical techniques for the detection of optimal signal-to-noise-ratio between external forcings and internal variability of reconstructed temperatures and precipitation. To apply these approaches the uncertainties associated with both reconstructions and simulations will be estimated. The latter will shed some light into the mechanisms behind current climate evolution and will help to constrain uncertainties in the sensitivity of model simulations to increasing CO2 scenarios of future climate change. This work will also contribute to the overall aims of the PAGES 2k initiative in Asia (http://www.pages.unibe.ch/workinggroups/2k-network)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.2041H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.2041H"><span>Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish</p> <p>2018-03-01</p> <p>The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional storage facilities are sensitive to rainfall patterns that are loaded in the latter part of the storm duration, while extremely intense short-duration storms will cause flooding at all locations. This study shows that changes in temporal patterns will have a significant impact on urban/suburban flooding and need to be carefully considered and adjusted to account for climate change when used for the design and planning of future storm water systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24945154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24945154"><span>Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A</p> <p>2014-01-01</p> <p>In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.123..523B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.123..523B"><span>Climate change projections for Tamil Nadu, India: deriving high-resolution climate data by a downscaling approach using PRECIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bal, Prasanta Kumar; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J.; Jayanthi, N.</p> <p>2016-02-01</p> <p>In this paper, we present regional climate change projections for the Tamil Nadu state of India, simulated by the Met Office Hadley Centre regional climate model. The model is run at 25 km horizontal resolution driven by lateral boundary conditions generated by a perturbed physical ensemble of 17 simulations produced by a version of Hadley Centre coupled climate model, known as HadCM3Q under A1B scenario. The large scale features of these 17 simulations were evaluated for the target region to choose lateral boundary conditions from six members that represent a range of climate variations over the study region. The regional climate, known as PRECIS, was then run 130 years from 1970. The analyses primarily focus on maximum and minimum temperatures and rainfall over the region. For the Tamil Nadu as a whole, the projections of maximum temperature show an increase of 1.0, 2.2 and 3.1 °C for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095), respectively, with respect to baseline period (1970-2000). Similarly, the projections of minimum temperature show an increase of 1.1, 2.4 and 3.5 °C, respectively. This increasing trend is statistically significant (Mann-Kendall trend test). The annual rainfall projections for the same periods indicate a general decrease in rainfall of about 2-7, 1-4 and 4-9 %, respectively. However, significant exceptions are noticed over some pockets of western hilly areas and high rainfall areas where increases in rainfall are seen. There are also indications of increasing heavy rainfall events during the northeast monsoon season and a slight decrease during the southwest monsoon season. Such an approach of using climate models may maximize the utility of high-resolution climate change information for impact-adaptation-vulnerability assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3828158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3828158"><span>The Effects of Weather and Climate Change on Dengue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Colón-González, Felipe J.; Fezzi, Carlo; Lake, Iain R.; Hunter, Paul R.</p> <p>2013-01-01</p> <p>Background There is much uncertainty about the future impact of climate change on vector-borne diseases. Such uncertainty reflects the difficulties in modelling the complex interactions between disease, climatic and socioeconomic determinants. We used a comprehensive panel dataset from Mexico covering 23 years of province-specific dengue reports across nine climatic regions to estimate the impact of weather on dengue, accounting for the effects of non-climatic factors. Methods and Findings Using a Generalized Additive Model, we estimated statistically significant effects of weather and access to piped water on dengue. The effects of weather were highly nonlinear. Minimum temperature (Tmin) had almost no effect on dengue incidence below 5°C, but Tmin values above 18°C showed a rapidly increasing effect. Maximum temperature above 20°C also showed an increasing effect on dengue incidence with a peak around 32°C, after which the effect declined. There is also an increasing effect of precipitation as it rose to about 550 mm, beyond which such effect declines. Rising access to piped water was related to increasing dengue incidence. We used our model estimations to project the potential impact of climate change on dengue incidence under three emission scenarios by 2030, 2050, and 2080. An increase of up to 40% in dengue incidence by 2080 was estimated under climate change while holding the other driving factors constant. Conclusions Our results indicate that weather significantly influences dengue incidence in Mexico and that such relationships are highly nonlinear. These findings highlight the importance of using flexible model specifications when analysing weather–health interactions. Climate change may contribute to an increase in dengue incidence. Rising access to piped water may aggravate dengue incidence if it leads to increased domestic water storage. Climate change may therefore influence the success or failure of future efforts against dengue. PMID:24244765</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28084043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28084043"><span>Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C</p> <p>2017-07-01</p> <p>Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO 2 in individual models. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20375046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20375046"><span>Non-climatic thermal adaptation: implications for species' responses to climate warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marshall, David J; McQuaid, Christopher D; Williams, Gray A</p> <p>2010-10-23</p> <p>There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009WRR....45.8419L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009WRR....45.8419L"><span>From climate model ensembles to climate change impacts and adaptation: A case study of water resource management in the southwest of England</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez, Ana; Fung, Fai; New, Mark; Watts, Glenn; Weston, Alan; Wilby, Robert L.</p> <p>2009-08-01</p> <p>The majority of climate change impacts and adaptation studies so far have been based on at most a few deterministic realizations of future climate, usually representing different emissions scenarios. Large ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. Because of the novelty of this ensemble information, there is little previous experience of practical applications or of the added value of this information for impacts and adaptation decision making. This paper evaluates the value of perturbed physics ensembles of climate models for understanding and planning public water supply under climate change. We deliberately select water resource models that are already used by water supply companies and regulators on the assumption that uptake of information from large ensembles of climate models will be more likely if it does not involve significant investment in new modeling tools and methods. We illustrate the methods with a case study on the Wimbleball water resource zone in the southwest of England. This zone is sufficiently simple to demonstrate the utility of the approach but with enough complexity to allow a variety of different decisions to be made. Our research shows that the additional information contained in the climate model ensemble provides a better understanding of the possible ranges of future conditions, compared to the use of single-model scenarios. Furthermore, with careful presentation, decision makers will find the results from large ensembles of models more accessible and be able to more easily compare the merits of different management options and the timing of different adaptation. The overhead in additional time and expertise for carrying out the impacts analysis will be justified by the increased quality of the decision-making process. We remark that even though we have focused our study on a water resource system in the United Kingdom, our conclusions about the added value of climate model ensembles in guiding adaptation decisions can be generalized to other sectors and geographical regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GPC....78...54F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GPC....78...54F"><span>Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, Dominik; Thomas, Stephanie Margarete; Niemitz, Franziska; Reineking, Björn; Beierkuhnlein, Carl</p> <p>2011-07-01</p> <p>During the last decades the disease vector Aedes albopictus ( Ae. albopictus) has rapidly spread around the globe. The spread of this species raises serious public health concerns. Here, we model the present distribution and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the most realistic current prediction and future projection, we compare the performance of four different modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs. statistical criteria) and by the geographical range of presence records (native range vs. global range). First, models of the native and global range were built with MaxEnt and were either based on (1) statistically selected climatic input variables or (2) input variables selected with expert knowledge from the literature. Native models show high model performance (AUC: 0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-0.72). Models based on the global distribution of the species, however, were able to identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). In a second step, the modelled bioclimatic envelope of the global range was projected to future climatic conditions in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 2071-2100. For both global-driven models, the results indicate that climatically suitable areas for the establishment of Ae. albopictus will increase in western and central Europe already in 2011-2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable areas in southern Europe is pronounced in the Expert knowledge based model. Our projections appear unaffected by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis. The generated risk maps can aid in identifying suitable habitats for Ae. albopictus and hence support monitoring and control activities to avoid disease vector establishment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8198M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8198M"><span>Change of ocean circulation in the East Asian Marginal Seas under different climate conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Min, Hong Sik; Kim, Cheol-Ho; Kim, Young Ho</p> <p>2010-05-01</p> <p>Global climate models do not properly resolve an ocean environment in the East Asian Marginal Seas (EAMS), which is mainly due to a poor representation of the topography in continental shelf region and a coarse spatial resolution. To examine a possible change of ocean environment under global warming in the EAMS, therefore we used North Pacific Regional Ocean Model. The regional model was forced by atmospheric conditions extracted from the simulation results of the global climate models for the 21st century projected by the IPCC SRES A1B scenario as well as the 20th century. The North Pacific Regional Ocean model simulated a detailed pattern of temperature change in the EAMS showing locally different rising or falling trend under the future climate condition, while the global climate models simulated a simple pattern like an overall increase. Changes of circulation pattern in the EAMS such as an intrusion of warm water into the Yellow Sea as well as the Kuroshio were also well resolved. Annual variations in volume transports through the Taiwan Strait and the Korea Strait under the future condition were simulated to be different from those under present condition. Relative ratio of volume transport through the Soya Strait to the Tsugaru Strait also responded to the climate condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5.1034H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5.1034H"><span>Methods and Model Dependency of Extreme Event Attribution: The 2015 European Drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Vautard, Robert; van Oldenborgh, Geert J.; Wilcox, Laura; Seneviratne, Sonia I.</p> <p>2017-10-01</p> <p>Science on the role of anthropogenic influence on extreme weather events, such as heatwaves or droughts, has evolved rapidly in the past years. The approach of "event attribution" compares the occurrence-probability of an event in the present, factual climate with its probability in a hypothetical, counterfactual climate without human-induced climate change. Several methods can be used for event attribution, based on climate model simulations and observations, and usually researchers only assess a subset of methods and data sources. Here, we explore the role of methodological choices for the attribution of the 2015 meteorological summer drought in Europe. We present contradicting conclusions on the relevance of human influence as a function of the chosen data source and event attribution methodology. Assessments using the maximum number of models and counterfactual climates with pre-industrial greenhouse gas concentrations point to an enhanced drought risk in Europe. However, other evaluations show contradictory evidence. These results highlight the need for a multi-model and multi-method framework in event attribution research, especially for events with a low signal-to-noise ratio and high model dependency such as regional droughts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4476196','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4476196"><span>Development and Validation of a Safety Climate Scale for Manufacturing Industry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ghahramani, Abolfazl; Khalkhali, Hamid R.</p> <p>2015-01-01</p> <p>Background This paper describes the development of a scale for measuring safety climate. Methods This study was conducted in six manufacturing companies in Iran. The scale developed through conducting a literature review about the safety climate and constructing a question pool. The number of items was reduced to 71 after performing a screening process. Results The result of content validity analysis showed that 59 items had excellent item content validity index (≥ 0.78) and content validity ratio (> 0.38). The exploratory factor analysis resulted in eight safety climate dimensions. The reliability value for the final 45-item scale was 0.96. The result of confirmatory factor analysis showed that the safety climate model is satisfactory. Conclusion This study produced a valid and reliable scale for measuring safety climate in manufacturing companies. PMID:26106508</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33C0229P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33C0229P"><span>Impacts of fine particulate matter on premature mortality under future climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, S.; Allen, R.; Lim, C. H.</p> <p>2016-12-01</p> <p>Climate change modulates concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation and the hydrological cycle. Furthermore, surface PM2.5 is significantly associated with respiratory diseases and premature mortality. In this study, we assess the response of PM2.5 concentration to climate change in the future (end of 21st century) and its effects on year of life lost (YLL) and premature mortality. We use outputs from five models participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) to evaluate climate change effects on PM2.5: for present climate with current aerosol emissions and greenhouse gas concentrations, and for future climate, also with present-day aerosol emissions, but with end-of-the century greenhouse gas concentrations, sea surface temperatures and sea-ice. The results show that climate change is associated with an increase in PM2.5 concentration. Combined with global future population data from the United Nation (UN), we also find an increase in premature mortality and YLL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15295','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15295"><span>Modeling potential climate change impacts on the trees of the northeastern United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Louis Iverson; Anantha Prasad; Stephen Matthews</p> <p>2008-01-01</p> <p>We evaluated 134 tree species from the eastern United States for potential response to several scenarios of climate change, and summarized those responses for nine northeastern United States. We modeled and mapped each species individually and show current and potential future distributions for two emission scenarios (A1fi [higher emission] and B1 [lower emission]) and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.5533H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.5533H"><span>How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopcroft, Peter O.; Valdes, Paul J.</p> <p>2015-07-01</p> <p>Previous work demonstrated a significant correlation between tropical surface air temperature and equilibrium climate sensitivity (ECS) in PMIP (Paleoclimate Modelling Intercomparison Project) phase 2 model simulations of the last glacial maximum (LGM). This implies that reconstructed LGM cooling in this region could provide information about the climate system ECS value. We analyze results from new simulations of the LGM performed as part of Coupled Model Intercomparison Project (CMIP5) and PMIP phase 3. These results show no consistent relationship between the LGM tropical cooling and ECS. A radiative forcing and feedback analysis shows that a number of factors are responsible for this decoupling, some of which are related to vegetation and aerosol feedbacks. While several of the processes identified are LGM specific and do not impact on elevated CO2 simulations, this analysis demonstrates one area where the newer CMIP5 models behave in a qualitatively different manner compared with the older ensemble. The results imply that so-called Earth System components such as vegetation and aerosols can have a significant impact on the climate response in LGM simulations, and this should be taken into account in future analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.B33D1054R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.B33D1054R"><span>Climate Change Impacts on Hydrology and Water Management of the San Juan Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rich, P. M.; Weintraub, L. H.; Chen, L.; Herr, J.</p> <p>2005-12-01</p> <p>Recent climatic events, including regional drought and increased storm severity, have accentuated concerns that climatic extremes may be increasing in frequency and intensity due to global climate change. As part of the ZeroNet Water-Energy Initiative, the San Juan Decision Support System includes a basin-scale modeling tool to evaluate effects of climate change on water budgets under different climate and management scenarios. The existing Watershed Analysis Risk Management Framework (WARMF) was enhanced with iterative modeling capabilities to enable construction of climate scenarios based on historical and projected data. We applied WARMF to 42,000 km2 (16,000 mi2) of the San Juan Basin (CO, NM) to assess impacts of extended drought and increased temperature on surface water balance. Simulations showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry), and lead to increased frequency of critical shortages. Implementation of potential management alternatives such as "shortage sharing" or degraded water usage during critical years helps improve available water supply. In the face of growing concern over climate change, limited water resources, and competing demands, integrative modeling tools can enable better understanding of complex interconnected systems, and enable better decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.1959F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.1959F"><span>Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, C. E.; Stone, P. H.; Sokolov, A. P.</p> <p></p> <p>To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.A51G..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.A51G..05F"><span>Testing for the linearity of responses to multiple anthropogenic climate forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, C. E.; Stone, P. H.; Sokolov, A. P.</p> <p>2001-12-01</p> <p>To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13I..05Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13I..05Q"><span>Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quetin, G. R.; Swann, A. L. S.</p> <p>2017-12-01</p> <p>Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29783837','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29783837"><span>Light Absorption Enhancement of Black Carbon Aerosol Constrained by Particle Morphology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Yu; Cheng, Tianhai; Liu, Dantong; Allan, James D; Zheng, Lijuan; Chen, Hao</p> <p>2018-06-19</p> <p>The radiative forcing of black carbon aerosol (BC) is one of the largest sources of uncertainty in climate change assessments. Contrasting results of BC absorption enhancement ( E abs ) after aging are estimated by field measurements and modeling studies, causing ambiguous parametrizations of BC solar absorption in climate models. Here we quantify E abs using a theoretical model parametrized by the complex particle morphology of BC in different aging scales. We show that E abs continuously increases with aging and stabilizes with a maximum of ∼3.5, suggesting that previous seemingly contrast results of E abs can be explicitly described by BC aging with corresponding particle morphology. We also report that current climate models using Mie Core-Shell model may overestimate E abs at a certain aging stage with a rapid rise of E abs , which is commonly observed in the ambient. A correction coefficient for this overestimation is suggested to improve model predictions of BC climate impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28070560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28070560"><span>Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Wei; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang</p> <p>2017-01-01</p> <p>Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable regime susceptible for large changes in response to perturbations. By correcting the model biases, we show that the AMOC collapses 300 years after the atmospheric CO 2 concentration is abruptly doubled from the 1990 level. Compared to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent cooling over the northern North Atlantic and neighboring areas, sea ice increases over the Greenland-Iceland-Norwegian seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in long-term climate projection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5217057','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5217057"><span>Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Wei; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang</p> <p>2017-01-01</p> <p>Changes in the Atlantic Meridional Overturning Circulation (AMOC) are moderate in most climate model projections under increasing greenhouse gas forcing. This intermodel consensus may be an artifact of common model biases that favor a stable AMOC. Observationally based freshwater budget analyses suggest that the AMOC is in an unstable regime susceptible for large changes in response to perturbations. By correcting the model biases, we show that the AMOC collapses 300 years after the atmospheric CO2 concentration is abruptly doubled from the 1990 level. Compared to an uncorrected model, the AMOC collapse brings about large, markedly different climate responses: a prominent cooling over the northern North Atlantic and neighboring areas, sea ice increases over the Greenland-Iceland-Norwegian seas and to the south of Greenland, and a significant southward rain-belt migration over the tropical Atlantic. Our results highlight the need to develop dynamical metrics to constrain models and the importance of reducing model biases in long-term climate projection. PMID:28070560</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA34A..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA34A..03N"><span>Hydrological Modeling in the Bull Run Watershed in Support of a Piloting Utility Modeling Applications (PUMA) Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nijssen, B.; Chiao, T. H.; Lettenmaier, D. P.; Vano, J. A.</p> <p>2016-12-01</p> <p>Hydrologic models with varying complexities and structures are commonly used to evaluate the impact of climate change on future hydrology. While the uncertainties in future climate projections are well documented, uncertainties in streamflow projections associated with hydrologic model structure and parameter estimation have received less attention. In this study, we implemented and calibrated three hydrologic models (the Distributed Hydrology Soil Vegetation Model (DHSVM), the Precipitation-Runoff Modeling System (PRMS), and the Variable Infiltration Capacity model (VIC)) for the Bull Run watershed in northern Oregon using consistent data sources and best practice calibration protocols. The project was part of a Piloting Utility Modeling Applications (PUMA) project with the Portland Water Bureau (PWB) under the umbrella of the Water Utility Climate Alliance (WUCA). Ultimately PWB would use the model evaluation to select a model to perform in-house climate change analysis for Bull Run Watershed. This presentation focuses on the experimental design of the comparison project, project findings and the collaboration between the team at the University of Washington and at PWB. After calibration, the three models showed similar capability to reproduce seasonal and inter-annual variations in streamflow, but differed in their ability to capture extreme events. Furthermore, the annual and seasonal hydrologic sensitivities to changes in climate forcings differed among models, potentially attributable to different model representations of snow and vegetation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B23J..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B23J..02T"><span>Implementation ambiguity: The fifth element long lost in uncertainty budgets for land biogeochemical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, J.; Riley, W. J.</p> <p>2015-12-01</p> <p>Previous studies have identified four major sources of predictive uncertainty in modeling land biogeochemical (BGC) processes: (1) imperfect initial conditions (e.g., assumption of preindustrial equilibrium); (2) imperfect boundary conditions (e.g., climate forcing data); (3) parameterization (type I equifinality); and (4) model structure (type II equifinality). As if that were not enough to cause substantial sleep loss in modelers, we propose here a fifth element of uncertainty that results from implementation ambiguity that occurs when the model's mathematical description is translated into computational code. We demonstrate the implementation ambiguity using the example of nitrogen down regulation, a necessary process in modeling carbon-climate feedbacks. We show that, depending on common land BGC model interpretations of the governing equations for mineral nitrogen, there are three different implementations of nitrogen down regulation. We coded these three implementations in the ACME land model (ALM), and explored how they lead to different preindustrial and contemporary land biogeochemical states and fluxes. We also show how this implementation ambiguity can lead to different carbon-climate feedback estimates across the RCP scenarios. We conclude by suggesting how to avoid such implementation ambiguity in ESM BGC models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23918397','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23918397"><span>State-dependent climate sensitivity in past warm climates and its implications for future climate projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caballero, Rodrigo; Huber, Matthew</p> <p>2013-08-27</p> <p>Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GPC...139...97S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GPC...139...97S"><span>Deforestation changes land-atmosphere interactions across South American biomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salazar, Alvaro; Katzfey, Jack; Thatcher, Marcus; Syktus, Jozef; Wong, Kenneth; McAlpine, Clive</p> <p>2016-04-01</p> <p>South American biomes are increasingly affected by land use/land cover change. However, the climatic impacts of this phenomenon are still not well understood. In this paper, we model vegetation-climate interactions with a focus on four main biomes distributed in four key regions: The Atlantic Forest, the Cerrado, the Dry Chaco, and the Chilean Matorral ecosystems. We applied a three member ensemble climate model simulation for the period 1981-2010 (30 years) at 25 km resolution over the focus regions to quantify the changes in the regional climate resulting from historical deforestation. The results of computed modelling experiments show significant changes in surface fluxes, temperature and moisture in all regions. For instance, simulated temperature changes were stronger in the Cerrado and the Chilean Matorral with an increase of between 0.7 and 1.4 °C. Changes in the hydrological cycle revealed high regional variability. The results showed consistent significant decreases in relative humidity and soil moisture, and increases in potential evapotranspiration across biomes, yet without conclusive changes in precipitation. These impacts were more significant during the dry season, which resulted to be drier and warmer after deforestation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26744482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26744482"><span>Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J</p> <p>2016-01-01</p> <p>The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3991569','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3991569"><span>Effect of Climate Change on Soil Temperature in Swedish Boreal Forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jungqvist, Gunnar; Oni, Stephen K.; Teutschbein, Claudia; Futter, Martyn N.</p> <p>2014-01-01</p> <p>Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions. PMID:24747938</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24747938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24747938"><span>Effect of climate change on soil temperature in Swedish boreal forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jungqvist, Gunnar; Oni, Stephen K; Teutschbein, Claudia; Futter, Martyn N</p> <p>2014-01-01</p> <p>Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28573477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28573477"><span>Vulnerability of Forests in India: A National Scale Assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H</p> <p>2017-09-01</p> <p>Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EnMan..60..544S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EnMan..60..544S"><span>Vulnerability of Forests in India: A National Scale Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N. H.</p> <p>2017-09-01</p> <p>Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010NatGe...3..688O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010NatGe...3..688O"><span>External forcing as a metronome for Atlantic multidecadal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otterå, Odd Helge; Bentsen, Mats; Drange, Helge; Suo, Lingling</p> <p>2010-10-01</p> <p>Instrumental records, proxy data and climate modelling show that multidecadal variability is a dominant feature of North Atlantic sea-surface temperature variations, with potential impacts on regional climate. To understand the observed variability and to gauge any potential for climate predictions it is essential to identify the physical mechanisms that lead to this variability, and to explore the spatial and temporal characteristics of multidecadal variability modes. Here we use a coupled ocean-atmosphere general circulation model to show that the phasing of the multidecadal fluctuations in the North Atlantic during the past 600 years is, to a large degree, governed by changes in the external solar and volcanic forcings. We find that volcanoes play a particularly important part in the phasing of the multidecadal variability through their direct influence on tropical sea-surface temperatures, on the leading mode of northern-hemisphere atmosphere circulation and on the Atlantic thermohaline circulation. We suggest that the implications of our findings for decadal climate prediction are twofold: because volcanic eruptions cannot be predicted a decade in advance, longer-term climate predictability may prove challenging, whereas the systematic post-eruption changes in ocean and atmosphere may hold promise for shorter-term climate prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192134','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192134"><span>Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mu, Jianhong E.; Sleeter, Benjamin M.; Abatzoglou, John T.; Antle, John M.</p> <p>2017-01-01</p> <p>We examine the impacts of climate on net returns from crop and livestock production and the resulting impact on land-use change across the contiguous USA. We first estimate an econometric model to project effects of weather fluctuations on crop and livestock net returns and then use a semi-reduced form land-use share model to study agricultural land-use changes under future climate and socio-economic scenarios. Estimation results show that crop net returns are more sensitive to thermal and less sensitive to moisture variability than livestock net returns; other agricultural land uses substitute cropland use when 30-year averaged degree-days or precipitation are not beneficial for crop production. Under future climate and socio-economic scenarios, we project that crop and livestock net returns are both increasing, but with crop net returns increasing at a higher rate; cropland increases with declines of marginal and pastureland by the end of the twenty-first century. Projections also show that impacts of future climate on agricultural land uses are substantially different and a larger variation of land-use change is evident when socio-economic scenarios are incorporated into the climate impact analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27109012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27109012"><span>A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien; Cryer, Nicolai; Faivre, Nicolas; Santoni, Sylvain; Severac, Dany; Mikkelsen, Teis N; Larsen, Klaus S; Beier, Claus; Sørensen, Jesper G; Holmstrup, Martin; Ehlers, Bodil K</p> <p>2016-07-01</p> <p>Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP21C1269A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP21C1269A"><span>Understanding the dust cycle at high latitudes: integrating models and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.; Winckler, G.; Potenza, M. A. C.; Baccolo, G.; Balkanski, Y.</p> <p>2017-12-01</p> <p>Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. Paleodust archives from land, ocean, and ice sheets preserve the history of dust deposition for a range of spatial scales from close to the major hemispheric sources to remote sinks such as the polar ice sheets. In each hemisphere common features on the glacial-interglacial time scale mark the baseline evolution of the dust cycle, and inspired the hypothesis that increased dust deposition to ocean stimulated the glacial biological pump contributing to the reduction of atmospheric carbon dioxide levels. On the other hand finer geographical and temporal scales features are superposed to these glacial-interglacial trends, providing the chance of a more sophisticated understanding of the dust cycle, for instance allowing distinctions in terms of source availability or transport patterns as recorded by different records. As such paleodust archives can prove invaluable sources of information, especially when characterized by a quantitative estimation of the mass accumulation rates, and interpreted in connection with climate models. We review our past work and present ongoing research showing how climate models can help in the interpretation of paleodust records, as well as the potential of the same observations for constraining the representation of the global dust cycle embedded in Earth System Models, both in terms of magnitude and physical parameters related to particle sizes and optical properties. Finally we show the impacts on climate, based on this kind of observationally constrained model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/sir2004-5078/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/sir2004-5078/"><span>A Comparison of Forest Survey Data with Forest Dynamics Simulators FORCLIM and ZELIG along Climatic Gradients in the Pacific Northwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Busing, Richard T.; Solomon, Allen M.</p> <p>2004-01-01</p> <p>Two forest dynamics simulators are compared along climatic gradients in the Pacific Northwest. The ZELIG and FORCLIM models are tested against forest survey data from western Oregon. Their ability to generate accurate patterns of forest basal area and species composition is evaluated for series of sites with contrasting climate. Projections from both models approximate the basal area and composition patterns for three sites along the elevation gradient at H.J. Andrews Experimental Forest in the western Cascade Range. The ZELIG model is somewhat more accurate than FORCLIM at the two low-elevation sites. Attempts to project forest composition along broader climatic gradients reveal limitations of ZELIG, however. For example, ZELIG is less accurate than FORCLIM at projecting the average composition of a west Cascades ecoregion selected for intensive analysis. Also, along a gradient consisting of several sites on an east to west transect at 44.1oN latitude, both the FORCLIM model and the actual data show strong changes in composition and total basal area, but the ZELIG model shows a limited response. ZELIG does not simulate the declines in forest basal area and the diminished dominance of mesic coniferous species east of the Cascade crest. We conclude that ZELIG is suitable for analyses of certain sites for which it has been calibrated. FORCLIM can be applied in analyses involving a range of climatic conditions without requiring calibration for specific sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAEO..57...86A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAEO..57...86A"><span>Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.</p> <p>2017-05-01</p> <p>In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMGC21A0712B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMGC21A0712B"><span>Evaluation of surface water budget and assessment the global water cycle for the IPCC AR4 A1B scenario simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baek, H.; Park, E.; Kwon, W.</p> <p>2009-12-01</p> <p>Water balance calculations are becoming increasingly important for earth-system studies, because humans require water for their survival. Especially, the relationship between climate change and freshwater resources is of primary concern to human society and also has implications for all living species. The goal of this study is to assess the closure and annual variations of the water cycles based on the multi-model ensemble approach. In this study, the projection results of the previous works focusing on global and six sub-regions are updated using sixteen atmosphere-ocean general circulation model (AOGCM) simulations based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Before projecting future climate, model performances are evaluated on the simulation of the present-day climate. From the result, we construct and use mainly multi-model ensembles (MMEs), which is referred to as MME9, defined from nine selected AOGCMs of higher performance. Analyzed variables include annual and seasonal precipitation, evaporation, and runoff. The overall projection results from MME9 show that most regions will experience warmer and wetter climate at the end of 21st century. The evaporation shows a very similar trend to precipitation, but not in the runoff projection. The internal and inter-model variabilities are larger in the runoff than both precipitation and evaporation. Moreover, the runoff is notably reduced in Europe at the end of 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911207W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911207W"><span>Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming</p> <p>2017-04-01</p> <p>In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A33H..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A33H..01M"><span>Impacts of past and future climate change on wind energy resources in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.</p> <p>2009-12-01</p> <p>The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ThApC.103..427E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ThApC.103..427E"><span>Analysis of high-resolution simulations for the Black Forest region from a point of view of tourism climatology - a comparison between two regional climate models (REMO and CLM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Endler, Christina; Matzarakis, Andreas</p> <p>2011-03-01</p> <p>An analysis of climate simulations from a point of view of tourism climatology based on two regional climate models, namely REMO and CLM, was performed for a regional domain in the southwest of Germany, the Black Forest region, for two time frames, 1971-2000 that represents the twentieth century climate and 2021-2050 that represents the future climate. In that context, the Intergovernmental Panel on Climate Change (IPCC) scenarios A1B and B1 are used. The analysis focuses on human-biometeorological and applied climatologic issues, especially for tourism purposes - that means parameters belonging to thermal (physiologically equivalent temperature, PET), physical (precipitation, snow, wind), and aesthetic (fog, cloud cover) facets of climate in tourism. In general, both models reveal similar trends, but differ in their extent. The trend of thermal comfort is contradicting: it tends to decrease in REMO, while it shows a slight increase in CLM. Moreover, REMO reveals a wider range of future climate trends than CLM, especially for sunshine, dry days, and heat stress. Both models are driven by the same global coupled atmosphere-ocean model ECHAM5/MPI-OM. Because both models are not able to resolve meso- and micro-scale processes such as cloud microphysics, differences between model results and discrepancies in the development of even those parameters (e.g., cloud formation and cover) are due to different model parameterization and formulation. Climatic changes expected by 2050 are small compared to 2100, but may have major impacts on tourism as for example, snow cover and its duration are highly vulnerable to a warmer climate directly affecting tourism in winter. Beyond indirect impacts are of high relevance as they influence tourism as well. Thus, changes in climate, natural environment, demography, tourists' demands, among other things affect economy in general. The analysis of the CLM results and its comparison with the REMO results complete the analysis performed within the project Climate Trends and Sustainable Development of Tourism in Coastal and Low Mountain Range Regions (CAST) funded by the German Federal Ministry of Education and Research (BMBF).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC13C1104P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC13C1104P"><span>Use of NARCCAP Model Projections to Develop a Future Typical Meteorological Year and Estimate the Impact of a Changing Climate on Building Energy Consumption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.</p> <p>2013-12-01</p> <p>Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of current building practices holding up under future climate change, we recommend using our methods and results to make modifications and adaptations to existing buildings and to aid in the design of future buildings.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatCo...5E5752B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatCo...5E5752B"><span>Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.</p> <p>2014-12-01</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4268699','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4268699"><span>Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.</p> <p>2014-01-01</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25482065','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25482065"><span>Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M</p> <p>2014-12-08</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27465689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27465689"><span>High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng</p> <p>2016-07-28</p> <p>The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10583952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10583952"><span>Global Warming and Northern Hemisphere Sea Ice Extent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov</p> <p>1999-12-03</p> <p>Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616866B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616866B"><span>Using AQUACROP to model the impacts of future climates on crop production and possible adaptation strategies in Sardinia and Tunisia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bird, Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; La Jeunesse, Isabelle; Meyer, Swen; Soddu, Antonino; Woess-Gallasch, Susanne</p> <p>2014-05-01</p> <p>A work package in the FP-7 funded CLIMB Project - Climate Induced Changes on the Hydrology of Mediterranean Basins Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modeling System had the goal of assessing socioeconomic vulnerability in two super-sites in future climates (2040-2070). The work package had deliverables to describe of agricultural adaptation measures appropriate to each site under future water availability scenarios and assess the risk of income losses due to water shortages in agriculture. The FAO model AQUACROP was used to estimate losses of agricultural productivity and indicate possible adaptation strategies. The presentation will focus on two interesting crops which show extreme vulnerability to expected changes in climate; irrigated lettuce in Sardinia and irrigated tomatoes in Tunisia. Modelling methodology, results and possible adaptation strategies will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394481-uncertainty-response-terrestrial-carbon-sink-environmental-drivers-undermines-carbon-climate-feedback-predictions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394481-uncertainty-response-terrestrial-carbon-sink-environmental-drivers-undermines-carbon-climate-feedback-predictions"><span>Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; ...</p> <p>2017-07-06</p> <p>Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1406701-uncertainty-response-terrestrial-carbon-sink-environmental-drivers-undermines-carbon-climate-feedback-predictions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1406701-uncertainty-response-terrestrial-carbon-sink-environmental-drivers-undermines-carbon-climate-feedback-predictions"><span>Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.</p> <p>2017-07-06</p> <p>Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake sincemore » 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394481','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394481"><span>Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.</p> <p></p> <p>Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28740241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28740241"><span>Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grieve, Brian D; Hare, Jon A; Saba, Vincent S</p> <p>2017-07-24</p> <p>Calanus finmarchicus is vital to pelagic ecosystems in the North Atlantic Ocean. Previous studies suggest the species is vulnerable to the effects of global warming, particularly on the Northeast U.S. Shelf, which is in the southern portion of its range. In this study, we evaluate an ensemble of six different downscaled climate models and a high-resolution global climate model, and create a generalized additive model (GAM) to examine how future changes in temperature and salinity could affect the distribution and density of C. finmarchicus. By 2081-2100, we project average C. finmarchicus density will decrease by as much as 50% under a high greenhouse gas emissions scenario. These decreases are particularly pronounced in the spring and summer in the Gulf of Maine and Georges Bank. When compared to a high-resolution global climate model, the ensemble showed a more uniform change throughout the Northeast U.S. Shelf, while the high-resolution model showed larger decreases in the Northeast Channel, Shelf Break, and Central Gulf of Maine. C. finmarchicus is an important link between primary production and higher trophic levels, and the decrease projected here could be detrimental to the North Atlantic Right Whale and a host of important fishery species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43B1629Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43B1629Z"><span>Evaluation of a new satellite-based precipitation dataset for climate studies in the Xiang River basin, Southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Q.; Xu, Y. P.; Hsu, K. L.</p> <p>2017-12-01</p> <p>A new satellite-based precipitation dataset, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with long-term time series dating back to 1983 can be one valuable dataset for climate studies. This study investigates the feasibility of using PERSIANN-CDR as a reference dataset for climate studies. Sixteen CMIP5 models are evaluated over the Xiang River basin, southern China, by comparing their performance on precipitation projection and streamflow simulation, particularly on extreme precipitation and streamflow events. The results show PERSIANN-CDR is a valuable dataset for climate studies, even on extreme precipitation events. The precipitation estimates and their extreme events from CMIP5 models are improved significantly compared with rain gauge observations after bias-correction by the PERSIANN-CDR precipitation estimates. Given streamflows simulated with raw and bias-corrected precipitation estimates from 16 CMIP5 models, 10 out of 16 are improved after bias-correction. The impact of bias-correction on extreme events for streamflow simulations are unstable, with eight out of 16 models can be clearly claimed they are improved after the bias-correction. Concerning the performance of raw CMIP5 models on precipitation, IPSL-CM5A-MR excels the other CMIP5 models, while MRI-CGCM3 outperforms on extreme events with its better performance on six extreme precipitation metrics. Case studies also show that raw CCSM4, CESM1-CAM5, and MRI-CGCM3 outperform other models on streamflow simulation, while MIROC5-ESM-CHEM, MIROC5-ESM and IPSL-CM5A-MR behaves better than the other models after bias-correction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG24A..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG24A..05V"><span>Handling Uncertainty in Palaeo-Climate Models and Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voss, J.; Haywood, A. M.; Dolan, A. M.; Domingo, D.</p> <p>2017-12-01</p> <p>The study of palaeoclimates can provide data on the behaviour of the Earth system with boundary conditions different from the ones we observe in the present. One of the main challenges in this approach is that data on past climates comes with large uncertainties, since quantities of interest cannot be observed directly, but must be derived from proxies instead. We consider proxy-derived data from the Pliocene (around 3 millions years ago; the last interval in Earth history when CO2 was at modern or near future levels) and contrast this data to the output of complex climate models. In order to perform a meaningful data-model comparison, uncertainties must be taken into account. In this context, we discuss two examples of complex data-model comparison problems. Both examples have in common that they involve fitting a statistical model to describe how the output of the climate simulations depends on various model parameters, including atmospheric CO2 concentration and orbital parameters (obliquity, excentricity, and precession). This introduces additional uncertainties, but allows to explore a much larger range of model parameters than would be feasible by only relying on simulation runs. The first example shows how Gaussian process emulators can be used to perform data-model comparison when simulation runs only differ in the choice of orbital parameters, but temperature data is given in the (somewhat inconvenient) form of "warm peak averages". The second example shows how a simpler approach, based on linear regression, can be used to analyse a more complex problem where we use a larger and more varied ensemble of climate simulations with the aim to estimate Earth System Sensitivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919551D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919551D"><span>Modelling extreme climatic events in Guadalquivir Estuary ( Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo</p> <p>2017-04-01</p> <p>Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9537M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9537M"><span>Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Swen; Ludwig, Ralf</p> <p>2013-04-01</p> <p>According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating 7 test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. The Rio Mannu Basin, located in Sardinia; Italy, is one test site of the CLIMB project. The catchment has a size of 472.5 km2, it ranges from 62 to 946 meters in elevation, at mean annual temperatures of 16°C and precipitation of about 700 mm, the annual runoff volume is about 200 mm. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) was setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. State of the art remote sensing techniques and field measuring techniques were applied to improve the quality of hydrological input parameters. In a field campaign about 250 soil samples were collected and lab-analyzed. Different geostatistical regionalization methods were tested to improve the model setup. The soil parameterization of the model was tested against publically available soil data. Results show a significant improvement of modeled soil moisture outputs. To validate WaSiMs evapotranspiration (ETact) outputs, Landsat TM images were used to calculate the actual monthly mean ETact rates using the triangle method (Jiang and Islam, 1999). Simulated spatial ETact patterns and those derived from remote sensing show a good fit especially for the growing season. WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. Output results were analyzed for climate induced changes on selected hydrological variables. While the climate projections reveal increased precipitation rates in the spring season, first simulation results show an earlier onset and an increased duration of the dry season, imposing an increased irrigation demand and higher vulnerability of agricultural productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51J1397G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51J1397G"><span>Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gampe, D.; Ludwig, R.</p> <p>2017-12-01</p> <p>Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and detect potential model biases with respect to each reference data set. The RCMs are then ranked based on various statistical measures for each indicator and a score matrix is derived to select a subset of RCMs. We show the impact and importance of the reference data set with respect to the resulting climate change signal on the catchment scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010080472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010080472"><span>Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randall, D. A.; Shao, Q.; Branson, M.</p> <p>1997-01-01</p> <p>The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8813S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8813S"><span>The influence of climate change on Tanzania's hydropower sustainability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard</p> <p>2015-04-01</p> <p>Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the average potential of future hydropower production; it will likely make hydropower more profitable. Yet, the uncertainty in climate change projections remains large and risks are significant, adaptation strategies should ideally consider a worst case scenario to ensure robust power generation. Overall a diversified power generation portfolio, anchored in hydropower and supported by other renewables and fossil fuel-based energy sources, is the best solution for Tanzania</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27976473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27976473"><span>Risky future for Mediterranean forests unless they undergo extreme carbon fertilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gea-Izquierdo, Guillermo; Nicault, Antoine; Battipaglia, Giovanna; Dorado-Liñán, Isabel; Gutiérrez, Emilia; Ribas, Montserrat; Guiot, Joel</p> <p>2017-07-01</p> <p>Forest performance is challenged by climate change but higher atmospheric [CO 2 ] (c a ) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process-based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010-2100 for the high-emission RCP8.5 and low-emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected c a ; (ii) constant c a  = 390 ppm, to test a purely climate-driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing c a , enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long-term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non-negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing c a and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss-performance at high c a above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO 2 ]. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24739191','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24739191"><span>Neutral biogeography and the evolution of climatic niches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boucher, Florian C; Thuiller, Wilfried; Davies, T Jonathan; Lavergne, Sébastien</p> <p>2014-05-01</p> <p>Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than from adaptive scenarios. We developed a model inspired by neutral biodiversity theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sampled the climatic niches of species according to their geographic position and showed that even when species evolve independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4001461','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4001461"><span>Neutral biogeography and the evolution of climatic niches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boucher, Florian C.; Thuiller, Wilfried; Davies, T. Jonathan; Lavergne, Sébastien</p> <p>2014-01-01</p> <p>Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than adaptive scenarios. We develop a model inspired by Neutral Biodiversity Theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sample the climatic niches of species according to their geographic position and show that even when species evolved independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism, but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time. PMID:24739191</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26259438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26259438"><span>[Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua</p> <p>2015-04-01</p> <p>SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41G1538B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41G1538B"><span>Parameterization of Nitrogen Limitation for a Dynamic Ecohydrological Model: a Case Study from the Luquillo Critical Zone Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bastola, S.; Bras, R. L.</p> <p>2017-12-01</p> <p>Feedbacks between vegetation and the soil nutrient cycle are important in ecosystems where nitrogen limits plant growth, and consequently influences the carbon balance in the plant-soil system. However, many biosphere models do not include such feedbacks, because interactions between carbon and the nitrogen cycle can be complex, and remain poorly understood. In this study we coupled a nitrogen cycle model with an eco-hydrological model by using the concept of carbon cost economics. This concept accounts for different "costs" to the plant of acquiring nitrogen via different pathways. This study builds on tRIBS-VEGGIE, a spatially explicit hydrological model coupled with a model of photosynthesis, stomatal resistance, and energy balance, by combining it with a model of nitrogen recycling. Driven by climate and spatially explicit data of soils, vegetation and topography, the model (referred to as tRIBS-VEGGIE-CN) simulates the dynamics of carbon and nitrogen in the soil-plant system; the dynamics of vegetation; and different components of the hydrological cycle. The tRIBS-VEGGIE-CN is applied in a humid tropical watershed at the Luquillo Critical Zone Observatory (LCZO). The region is characterized by high availability and cycling of nitrogen, high soil respiration rates, and large carbon stocks.We drive the model under contemporary CO2 and hydro-climatic forcing and compare results to a simulation under doubling CO2 and a range of future climate scenarios. The results with parameterization of nitrogen limitation based on carbon cost economics show that the carbon cost of the acquisition of nitrogen is 14% of the net primary productivity (NPP) and the N uptake cost for different pathways vary over a large range depending on leaf nitrogen content, turnover rates of carbon in soil and nitrogen cycling processes. Moreover, the N fertilization simulation experiment shows that the application of N fertilizer does not significantly change the simulated NPP. Furthermore, an experiment with doubling of the CO2 concentration level shows a significant increase of the NPP and turnover of plant tissues. The simulation with future climate scenarios shows consistent decrease in NPP but the uncertainties in projected NPP arising from selection of climate model and scenario is large.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25504863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25504863"><span>Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi</p> <p>2015-06-01</p> <p>Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CliPa...3..355B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CliPa...3..355B"><span>Historical droughts in Mediterranean regions during the last 500 years: a data/model approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brewer, S.; Alleaume, S.; Guiot, J.; Nicault, A.</p> <p>2007-06-01</p> <p>We present here a new method for comparing the output of General Circulation Models (GCMs) with proxy-based reconstructions, using time series of reconstructed and simulated climate parameters. The method uses k-means clustering to allow comparison between different periods that have similar spatial patterns, and a fuzzy logic-based distance measure in order to take reconstruction errors into account. The method has been used to test two coupled ocean-atmosphere GCMs over the Mediterranean region for the last 500 years, using an index of drought stress, the Palmer Drought Severity Index. The results showed that, whilst no model exactly simulated the reconstructed changes, all simulations were an improvement over using the mean climate, and a good match was found after 1650 with a model run that took into account changes in volcanic forcing, solar irradiance, and greenhouse gases. A more detailed investigation of the output of this model showed the existence of a set of atmospheric circulation patterns linked to the patterns of drought stress: 1) a blocking pattern over northern Europe linked to dry conditions in the south prior to the Little Ice Age (LIA) and during the 20th century; 2) a NAO-positive like pattern with increased westerlies during the LIA; 3) a NAO-negative like period shown in the model prior to the LIA, but that occurs most frequently in the data during the LIA. The results of the comparison show the improvement in simulated climate as various forcings are included and help to understand the atmospheric changes that are linked to the observed reconstructed climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25011287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25011287"><span>[Climate suitability for tea growing in Zhejiang Province].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Zhi-Feng; Ye, Jian-Gang; Yang, Zai-Qiang; Sun, Rui; Hu, Bo; Li, Ren-Zhong</p> <p>2014-04-01</p> <p>It is important to quantitatively assess the climate suitability of tea and its response to climate change. Based on meteorological indices of tea growth and daily meteorological data from 1971 to 2010 in Zhejiang Province, three climate suitability models for single climate factors, including temperature, precipitation and sunshine, were established at a 10-day scale by using the fuzzy mathematics method, and a comprehensive climate suitability model was established with the geometric average method. The results indicated that the climate suitability was high in the tea growth season in Zhejiang Province, and the three kinds of climate suitability were all higher than 0.6. As for the single factor climate suitability, temperature suitability was the highest and sunshine suitability was the lowest. There were obvious inter-annual variations of tea climate suitability, with a decline trend in the 1970s, less variation in the 1980s, and an obvious incline trend after the 1990s. The change tendency of climate suitability for spring tea was similar with that of annual climate suitability, lower in the 1980s, higher in the 1970s and after the 1990s. However, the variation amplitude of the climate suitability for spring tea was larger. The climate suitability for summer tea and autumn tea showed a decline trend from 1971 to 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022296','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022296"><span>Geophysical, archaeological and historical evidence support a solar-output model for climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Perry, C.A.; Hsu, K.J.</p> <p>2000-01-01</p> <p>Although the processes of climate change are not completely understood, an important causal candidate is variation in total solar output. Reported cycles in various climate-proxy data show a tendency to emulate a fundamental harmonic sequence of a basic solar-cycle length (11 years) multiplied by 2(N) (where N equals a positive or negative integer). A simple additive model for total solar-output variations was developed by superimposing a progression of fundamental harmonic cycles with slightly increasing amplitudes. The timeline of the model was calibrated to the Pleistocene/Holocene boundary at 9,000 years before present. The calibrated model was compared with geophysical, archaeological, and historical evidence of warm or cold climates during the Holocene. The evidence of periods of several centuries of cooler climates worldwide called 'little ice ages,' similar to the period anno Domini (A.D.) 1280-1860 and reoccurring approximately every 1,300 years, corresponds well with fluctuations in modeled solar output. A more detailed examination of the climate sensitive history of the last 1,000 years further supports the model. Extrapolation of the model into the future suggests a gradual cooling during the next few centuries with intermittent minor warmups and a return to near little-ice-age conditions within the next 500 years. This cool period then may be followed approximately 1,500 years from now by a return to altithermal conditions similar to the previous Holocene Maximum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4407M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4407M"><span>Regional scenarios of mean and extreme precipitation regimes in the Basque Country</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moncho, Roberto; Chust, Guillem; Caselles, Vicente</p> <p>2010-05-01</p> <p>According to different regional projections of climate change for the 21st century, changes in the mean and extreme precipitation regimes are expected in most of Europe (Christensen et al., 2007). Precipitation extreme events, in particular, can generate important natural hazards and associated social impacts. such as increasing the probability of flooding events. The objective of this paper is to calibrate the regional models for mean and extreme precipitation regimes through a reference time series (1961-2000) in the Basque Country. The reference time series have been obtained previously from a spatially reconstruction with a Digital Terrain Model and a multiple regression model. In this study, we have used four regional climate models of ENSEMBLE project: METNO-HIRHAM, UCLM-PROMES, KNMI-RAKMO2 and CNRM-RM4.5, under A1B scenario and the ERA40 climate reanalysis. The analysis of extreme precipitation has been based on a relationship between the intensity-duration-frequency (IDF) curves and the Main-Average-Intensity (MAI) curves (Moncho et al., 2009). The regional climate models showed no significant change in mean annual precipitation in the Basque Country for the period 1961-2000 (0 ± 3% decade-1). This result is consistent with the trend of the reference series, which was not significant (-1 ± 3% decade-1, p-value = 0.51). For the period of 2001 to 2050, the calibration of the model ensemble showed no significant change in trend (-1 ± 3% decade-1, p-value = 0.35). However, some models showed a significant change in mean precipitation from 1961-2000 to 2001-2050 (METNO-HIRHAM, -10 ± 5%, p-value = 0.019) and from 2051-2100 (KNMI-RAKMO2, -8 ± 3%, p-value = 0.007). The model that best fits the reference period 1961-2000 for extreme precipitation was the METNO-HIRHAM model, followed by the UCLM-PROMES and KNMI-RAKMO2 models, therefore, these models would best describe the possible changes in future regimes. After calibrating the projections of the heavy rainfall of the climate models, 2 out of 4 models (METNO-HIRHAM and UCLM-PROM) project an increase of 12 ± 1% of the maximum daily rainfall, with a return period of 50 years for a meteorological station on average, for the period 2001-2050 with respect to the period 1961-2000. However, the KNMI-RAKMO2 model delayed this increase for the period 2051-2100 (increase of 7.7 ± 0.7%), and the CNRM-RM4.5 model showed no significant change for the period 2001-2050. Since the CNRM-RM4.5 model was less reliable, the results of analysis of the other three models suggest that the extreme precipitation in the Basque Country will increase around 10% throughout the 21st century. CHRISTENSEN, J.H.; B. HEWITSON, A.; BUSUIOC, A.; CHEN, X.; GAO, I.; HELD, R.; JONES, R.K.; KOLLI, W.-T.; KWON, R.; LAPRISE, V. ; MAGAÑA RUEDA, L.; MEARNS, C.G.; MENÉNDEZ, J.; RÄISÄINEN, A. ;RINKE, A.; SARR y P. WHETTON: "Regional Climate Projections". In: Climate Change (2007): The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [SOLOMON, S.; D. QIN; M. MANNING, Z.; CHEN, M.; MARQUIS, K.B.; AVERYT, M.; TIGNOR y H.L. MILLER (eds.)]. Cambridge University Press, Cambridge, United Kingdom y New York, NY, USA. MONCHO, R.; BELDA, F. and CASELLES, V. (2009): "Climatic study of the exponent n of the IDF curves of the Iberian Peninsula", Tethys, n°6, 2009, 18 pp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12956596','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12956596"><span>Terrestrial water cycle and the impact of climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tao, Fulu; Yokozawa, Masayuki; Hayashi, Yousay; Lin, Erda</p> <p>2003-06-01</p> <p>The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1229995-new-approach-modeling-aerosol-effects-east-asian-climate-parametric-uncertainties-associated-emissions-cloud-microphysics-interactions-aerosol-effects-east-asian-climate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1229995-new-approach-modeling-aerosol-effects-east-asian-climate-parametric-uncertainties-associated-emissions-cloud-microphysics-interactions-aerosol-effects-east-asian-climate"><span>A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions: AEROSOL EFFECTS ON EAST ASIAN CLIMATE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yan, Huiping; Qian, Yun; Zhao, Chun</p> <p>2015-09-09</p> <p>In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. Themore » relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1039829-climate-simulations-isentropic-finite-volume-dynamical-core','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1039829-climate-simulations-isentropic-finite-volume-dynamical-core"><span>Climate Simulations with an Isentropic Finite Volume Dynamical Core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Chih-Chieh; Rasch, Philip J.</p> <p>2012-04-15</p> <p>This paper discusses the impact of changing the vertical coordinate from a hybrid pressure to a hybrid-isentropic coordinate within the finite volume dynamical core of the Community Atmosphere Model (CAM). Results from a 20-year climate simulation using the new model coordinate configuration are compared to control simulations produced by the Eulerian spectral and FV dynamical cores of CAM which both use a pressure-based ({sigma}-p) coordinate. The same physical parameterization package is employed in all three dynamical cores. The isentropic modeling framework significantly alters the simulated climatology and has several desirable features. The revised model produces a better representation of heatmore » transport processes in the atmosphere leading to much improved atmospheric temperatures. We show that the isentropic model is very effective in reducing the long standing cold temperature bias in the upper troposphere and lower stratosphere, a deficiency shared among most climate models. The warmer upper troposphere and stratosphere seen in the isentropic model reduces the global coverage of high clouds which is in better agreement with observations. The isentropic model also shows improvements in the simulated wintertime mean sea-level pressure field in the northern hemisphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.3242M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.3242M"><span>Enhanced future variability during India's rainy season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menon, Arathy; Levermann, Anders; Schewe, Jacob</p> <p>2013-06-01</p> <p>The Indian summer monsoon shapes the livelihood of a large share of the world's population. About 80% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall, the day-to-day variability is crucial for the risk of flooding, national water supply, and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the AR-5 of the Intergovernmental Panel on Climate Change, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. The relative increase by the period 2071-2100 with respect to the control period 1871-1900 ranges from 13% to 50% under the strongest scenario (Representative Concentration Pathways, RCP-8.5), in the 10 models with the most realistic monsoon climatology; and 13% to 85% when all the 20 models are considered. The spread across models reduces when variability increase per degree of global warming is considered, which is independent of the scenario in most models, and is 8% ± 4%/K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915674M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915674M"><span>The future of the Devon Ice cap: results from climate and ice dynamics modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik</p> <p>2017-04-01</p> <p>The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we use high resolution (5km) simulations from HIRHAM5 to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18778269','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18778269"><span>Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B</p> <p>2009-02-01</p> <p>We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.4781L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.4781L"><span>Modelling spatial and temporal vegetation variability with the Climate Constrained Vegetation Index: evidence of CO2 fertilisation and of water stress in continental interiors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Los, S. O.</p> <p>2015-06-01</p> <p>A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen-Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53J..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53J..01D"><span>Effects of Solar Geoengineering on Vegetation: Implications for Biodiversity and Conservation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dagon, K.; Schrag, D. P.</p> <p>2017-12-01</p> <p>Climate change will have significant impacts on vegetation and biodiversity. Solar geoengineering has potential to reduce the climate effects of greenhouse gas emissions through albedo modification, yet more research is needed to better understand how these techniques might impact terrestrial ecosystems. Here we utilize the fully coupled version of the Community Earth System Model to run transient solar geoengineering simulations designed to stabilize radiative forcing starting mid-century, relative to the Representative Concentration Pathway 6 (RCP6) scenario. Using results from 100-year simulations, we analyze model output through the lens of ecosystem-relevant metrics. We find that solar geoengineering improves the conservation outlook under climate change, but there are still potential impacts on biodiversity. Two commonly used climate classification systems show shifts in vegetation under solar geoengineering relative to RCP6, though we acknowledge the associated uncertainties with these systems. We also show that rates of warming and the climate velocity are minimized globally under solar geoengineering by the end of the century, while trends persist over land in the Northern Hemisphere. Shifts in the amplitude of temperature and precipitation seasonal cycles are observed in the results, and have implications for vegetation phenology. Different metrics for vegetation productivity also show decreases under solar geoengineering relative to RCP6, but could be related to the model parameterization of nutrient cycling. Vegetation water cycling is found to be an important mechanism for understanding changes in ecosystems under solar geoengineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28324174','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28324174"><span>Combining climatic and soil properties better predicts covers of Brazilian biomes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arruda, Daniel M; Fernandes-Filho, Elpídio I; Solar, Ricardo R C; Schaefer, Carlos E G R</p> <p>2017-04-01</p> <p>Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km 2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SciNa.104...32A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SciNa.104...32A"><span>Combining climatic and soil properties better predicts covers of Brazilian biomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arruda, Daniel M.; Fernandes-Filho, Elpídio I.; Solar, Ricardo R. C.; Schaefer, Carlos E. G. R.</p> <p>2017-04-01</p> <p>Several techniques have been used to model the area covered by biomes or species. However, most models allow little freedom of choice of response variables and are conditioned to the use of climate predictors. This major restriction of the models has generated distributions of low accuracy or inconsistent with the actual cover. Our objective was to characterize the environmental space of the most representative biomes of Brazil and predict their cover, using climate and soil-related predictors. As sample units, we used 500 cells of 100 km2 for ten biomes, derived from the official vegetation map of Brazil (IBGE 2004). With a total of 38 (climatic and soil-related) predictors, an a priori model was run with the random forest classifier. Each biome was calibrated with 75% of the samples. The final model was based on four climate and six soil-related predictors, the most important variables for the a priori model, without collinearity. The model reached a kappa value of 0.82, generating a highly consistent prediction with the actual cover of the country. We showed here that the richness of biomes should not be underestimated, and that in spite of the complex relationship, highly accurate modeling based on climatic and soil-related predictors is possible. These predictors are complementary, for covering different parts of the multidimensional niche. Thus, a single biome can cover a wide range of climatic space, versus a narrow range of soil types, so that its prediction is best adjusted by soil-related variables, or vice versa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26626704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26626704"><span>A mixed model for the relationship between climate and human cranial form.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katz, David C; Grote, Mark N; Weaver, Timothy D</p> <p>2016-08-01</p> <p>We expand upon a multivariate mixed model from quantitative genetics in order to estimate the magnitude of climate effects in a global sample of recent human crania. In humans, genetic distances are correlated with distances based on cranial form, suggesting that population structure influences both genetic and quantitative trait variation. Studies controlling for this structure have demonstrated significant underlying associations of cranial distances with ecological distances derived from climate variables. However, to assess the biological importance of an ecological predictor, estimates of effect size and uncertainty in the original units of measurement are clearly preferable to significance claims based on units of distance. Unfortunately, the magnitudes of ecological effects are difficult to obtain with distance-based methods, while models that produce estimates of effect size generally do not scale to high-dimensional data like cranial shape and form. Using recent innovations that extend quantitative genetics mixed models to highly multivariate observations, we estimate morphological effects associated with a climate predictor for a subset of the Howells craniometric dataset. Several measurements, particularly those associated with cranial vault breadth, show a substantial linear association with climate, and the multivariate model incorporating a climate predictor is preferred in model comparison. Previous studies demonstrated the existence of a relationship between climate and cranial form. The mixed model quantifies this relationship concretely. Evolutionary questions that require population structure and phylogeny to be disentangled from potential drivers of selection may be particularly well addressed by mixed models. Am J Phys Anthropol 160:593-603, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..561..160T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..561..160T"><span>Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teutschbein, Claudia; Grabs, Thomas; Laudon, Hjalmar; Karlsen, Reinert H.; Bishop, Kevin</p> <p>2018-06-01</p> <p>In this paper we explored how landscape characteristics such as topography, geology, soils and land cover influence the way catchments respond to changing climate conditions. Based on an ensemble of 15 regional climate models bias-corrected with a distribution-mapping approach, present and future streamflow in 14 neighboring and rather similar catchments in Northern Sweden was simulated with the HBV model. We established functional relationships between a range of landscape characteristics and projected changes in streamflow signatures. These were then used to analyze hydrological consequences of physical perturbations in a hypothetically ungauged basin in a climate change context. Our analysis showed a strong connection between the forest cover extent and the sensitivity of different components of a catchment's hydrological regime to changing climate conditions. This emphasizes the need to redefine forestry goals and practices in advance of climate change-related risks and uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4410635','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4410635"><span>Skilful multi-year predictions of tropical trans-basin climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei</p> <p>2015-01-01</p> <p>Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation. PMID:25897996</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>