Science.gov

Sample records for climate molecular insights

  1. Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus

    PubMed Central

    2010-01-01

    Background The dynamic geological and climatic histories of temperate South America have played important roles in shaping the contemporary distributions and genetic diversity of endemic freshwater species. We use mitochondria and nuclear sequence variation to investigate the consequences of mountain barriers and Quaternary glacial cycles for patterns of genetic diversity in the diadromous fish Galaxias maculatus in Patagonia (~300 individuals from 36 locations). Results Contemporary populations of G. maculatus, east and west of the Andes in Patagonia, represent a single monophyletic lineage comprising several well supported groups. Mantel tests using control region data revealed a strong positive relationship when geographic distance was modeled according to a scenario of marine dispersal. (r = 0.69, P = 0.055). By contrast, direct distance between regions was poorly correlated with genetic distance (r = -0.05, P = 0.463). Hierarchical AMOVAs using mtDNA revealed that pooling samples according to historical (pre-LGM) oceanic drainage (Pacific vs. Atlantic) explained approximately four times more variance than pooling them into present-day drainage (15.6% vs. 3.7%). Further post-hoc AMOVA tests revealed additional genetic structure between populations east and west of the Chilean Coastal Cordillera (coastal vs. interior). Overall female effective population size appears to have remained relatively constant until roughly 0.5 Ma when population size rapidly increased several orders of magnitude [100× (60×-190×)] to reach contemporary levels. Maximum likelihood analysis of nuclear alleles revealed a poorly supported gene tree which was paraphyletic with respect to mitochondrial-defined haplogroups. Conclusions First diversifying in the central/north-west region of Patagonia, G. maculatus extended its range into Argentina via the southern coastal regions that join the Pacific and Atlantic oceans. More recent gene flow between northern populations involved the most

  2. Extinction risks from climate change: macroecological and historical insights.

    PubMed

    Jansson, Roland

    2009-06-09

    Human-induced climate change may threaten a large proportion of Earth's biota, but the uncertainties involved in projecting the future geographical distributions of species make quantitative predictions of extinction risk difficult to make. I discuss how insight from recent advances in macroecology and knowledge about species responses to past climate change can help predict extinction risks more accurately.

  3. Palaeoclimatic insights into future climate challenges.

    PubMed

    Alley, Richard B

    2003-09-15

    Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.

  4. Tumor metastasis: molecular insights and evolving paradigms.

    PubMed

    Valastyan, Scott; Weinberg, Robert A

    2011-10-14

    Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting.

  5. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  6. Molecular Epidemiology of Tuberculosis: Current Insights

    PubMed Central

    Mathema, Barun; Kurepina, Natalia E.; Bifani, Pablo J.; Kreiswirth, Barry N.

    2006-01-01

    Molecular epidemiologic studies of tuberculosis (TB) have focused largely on utilizing molecular techniques to address short- and long-term epidemiologic questions, such as in outbreak investigations and in assessing the global dissemination of strains, respectively. This is done primarily by examining the extent of genetic diversity of clinical strains of Mycobacterium tuberculosis. When molecular methods are used in conjunction with classical epidemiology, their utility for TB control has been realized. For instance, molecular epidemiologic studies have added much-needed accuracy and precision in describing transmission dynamics, and they have facilitated investigation of previously unresolved issues, such as estimates of recent-versus-reactive disease and the extent of exogenous reinfection. In addition, there is mounting evidence to suggest that specific strains of M. tuberculosis belonging to discrete phylogenetic clusters (lineages) may differ in virulence, pathogenesis, and epidemiologic characteristics, all of which may significantly impact TB control and vaccine development strategies. Here, we review the current methods, concepts, and applications of molecular approaches used to better understand the epidemiology of TB. PMID:17041139

  7. Endometriosis: translation of molecular insights to management.

    PubMed

    Langan, K L; Farrell, M E; Keyser, E A; Salyer, B A; Burney, R O

    2014-09-01

    Endometriosis is a debilitating gynecologic disorder causing pelvic pain and infertility and characterized by the implantation of endometrial tissue to extrauterine locations. Though aspects of the condition remain enigmatic, the molecular pathophysiology of endometriosis appears to be clarifying. Estrogen dependence of the disease is a sentinel endocrine feature and reduction of estrogen bioavailability is the therapeutic principle upon which traditional treatment and prevention approaches have been based. Endometriosis is a chronic inflammatory condition associated with lesional neoangiogenesis and attenuated progesterone action at the level of the endometrium. The elucidation of the molecular pathways mediating these observations has revealed new targets for directed medical and surgical treatment. This paper will review current approaches to the management of endometriosis in the context of the molecular pathophysiology.

  8. Helicases as molecular motors: An insight

    NASA Astrophysics Data System (ADS)

    Tuteja, Narendra; Tuteja, Renu

    2006-12-01

    Helicases are one of the smallest motors of biological system, which harness the chemical free energy of ATP hydrolysis to catalyze the opening of energetically stable duplex nucleic acids and thereby are involved in almost all aspect of nucleic acid metabolism including replication, repair, recombination, transcription, translation, and ribosome biogenesis. Basically, they break the hydrogen bonding between the duplex helix and translocate unidirectionally along the bound strand. Mostly all the helicases contain some conserved signature motifs, which act as an engine to power the unwinding. After the discovery of the first prokaryotic DNA helicase from Escherichia coli bacteria in 1976 and the first eukaryotic one from the lily plant in 1978, many more (>100) have been isolated. All the helicases share some common properties, including nucleic acid binding, NTP hydrolysis and unwinding of the duplex. Many helicases have been crystallized and their structures have revealed an underlying common structural fold for their function. The defects in helicases gene have also been reported to be responsible for variety of human genetic disorders, which can lead to cancer, premature aging or mental retardation. Recently, a new role of a helicase in abiotic stress signaling in plant has been discovered. Overall, helicases act as essential molecular tools for cellular machinery and help in maintaining the integrity of genome. Here an overview of helicases has been covered which includes history, biochemical assay, properties, classification, role in human disease and mechanism of unwinding and translocation.

  9. Hydropower licensing and climate change: Insights from cooperative game theory

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh

    2011-02-01

    Cooperative game theory solutions can provide useful insights into how parties may use water and environmental resources and share any benefits of cooperation. Here, a method based on Nash and Nash-Harsanyi bargaining solutions is developed to explore the Federal Energy Regulatory Commission (FERC) relicensing process, in which owners of non-federal hydropower projects in the United States have to negotiate their allowable operations, with other interest groups (mainly environmental). Linkage of games to expand the feasible solution range and the "strategic loss" concept are discussed and a FERC relicensing bargaining model is developed for studying the bargaining stage (third stage) of the relicensing process. Based on the suggested solution method, how the lack of incentive for cooperation results in long delay in FERC relicensing in practice is explained. Further, potential effects of climate change on the FERC relicensing are presented and how climate change may provide an incentive for cooperation among the parties to hasten the relicensing is discussed. An "adaptive FERC license" framework is proposed, based on cooperative game theory, to improve the performance and adaptability of the system to future changes with no cost to the FERC, in face of uncertainty about future hydrological and ecological conditions.

  10. Temporal Insights on Biomarker-Based Climate Records (Invited)

    NASA Astrophysics Data System (ADS)

    Drenzek, N.; Stanley, R. H.; Santos, G. M.; Southon, J. R.; Druffel, E. R.; Montlucon, D.; Hughen, K. A.; Eglinton, T. I.

    2010-12-01

    Biomarker reconstructions of climate events usually assume that the incorporation of these molecular fossils into the sedimentary archive is both synchronous with those events and temporally discrete. Studies of marine and terrigenous-sourced lipids have nonetheless uncovered significant lags between initial biosynthesis and ultimate deposition, largely owing to intervening transport processes. Here we quantitatively apportion such residence times for vascular plant leaf waxes, commonly used as proxies for various continental climate parameters, into several components by comparing the radiocarbon profiles of individual long chain fatty acids extracted from sediments to the radiocarbon evolution of atmospheric carbon dioxide using a nonlinear optimization model. We then incorporate these findings into a simplified forward box model in order to reinterpret leaf wax reconstructions of environmental changes at orbital to decadal timescales. Results from case studies in the Caribbean Sea (Cariaco Basin) and coastal British Columbia (Saanich Inlet) indicate that at least two pools of plant wax material can be defined by markedly different residence times in these systems. Fully sixty to ninety percent of long chain fatty acids in study site sediments were sequestered on land for an average of some 3340 and 4860 years, respectively, with the remainder encumbering a much shorter time of nominally ten to fifteen years. The fraction of each homologue passing through these ‘millennial’ and ‘decadal’ reservoirs systematically decreased at shorter chain length, possibly reflecting the influence of varying molecular-level properties such as degradation rate and physiochemical speciation. Viewed through this prism, the record of low frequency (orbital) climate shifts preserved in sediments will appear lagged relative to their actual timing while the magnitude of millennial to higher frequency activity will be muted. These findings indicate that a premium should be placed

  11. New insights into the molecular pathogenesis of intrahepatic cholangiocarcinoma

    PubMed Central

    Patel, Tushar

    2013-01-01

    Intrahepatic cholangiocarcinoma is an aggressive malignancy and is one of the most devastating cancers of the gastrointestinal tract. The molecular mechanisms contributing to the pathogenesis of these cancers are not well understood. The recognition and distinction of these cancers from other tumors such as extrahepatic or ductal cholangiocarcinoma and hepatocellular carcinoma have been important in defining the pathogenesis. New insights into molecular mechanisms contributing to disease pathogenesis are emerging from recent epidemiological, genome-wide profiling and laboratory based studies. These have contributed to an improved understanding of risk factors, genetic mutations and pathophysiological mechanisms that are associated with these tumors. The contribution of well-established risk factors such as biliary tract inflammation and key signaling pathways involved in intrahepatic cholangiocarcinoma are being further defined. These new insights have several important implications for both molecular diagnosis and therapy of these cancers. PMID:24145988

  12. Insights on Antarctic climate variability from paleo-temperature proxies

    NASA Astrophysics Data System (ADS)

    Orsi, A. J.; Landais, A.; Stenni, B.; Severinghaus, J. P.

    2015-12-01

    Few direct meteorological observations exist in Antarctica, which limits our understanding of the modes of climate variability in this region. In particular, atmospheric reanalyses do not produce a coherent picture of the known warming trend since 1979. Here we analyze a suite of paleo-temperature proxies to gain insight into both the recent temperature trend and the multi-decadal climate variability in Antarctica over the last 1000 years. We present temperature records from two sites in Antarctica: WAIS Divide (79°S, 112°W, 1766 m a.s.l), and Talos Dome (72°S, 159°E, 2315 m a.s.l), reconstructed from the combination of inert gas isotopes from the ice core and borehole temperature measurements. Borehole temperature provides an absolute estimate of long-term trends, while noble gases track decadal to centennial scale changes. In addition, we use water isotopes to infer information about circulation changes. We find a strong warming trend in West Antarctica over the last 50 years (+0.23°C/decade), which is accelerating (+0.8°C/decade since 1980). The longer temperature record shows that such a trend has analogs happening about every 200 years. However, the study of other climate proxies suggests that the recent trend is due to a different mechanism than the previous events. We also find a long term cooling trend over the last 1000 years, which is stronger in East Antarctica (Talos Dome) than in West Antarctica (WAIS-Divide). At WAIS Divide, we find that "Little Ice Age" cold period of 1400-1800 was 0.52°C colder than the last century. Overall, both records are consistent with the idea that the solar minima and persistent volcanic activity of the Little Ice Age (1400-1850 A.D.) had a significant impact on the surface temperature in Antarctica. The feedbacks amplifying the forcing were likely stronger on the East Antarctic plateau than on the more marine-influenced West Antarctica.

  13. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the economic risks posed to the United States by six categories of climate change impacts: crop yield, energy demand, coastal storm damage, criminal activity, labor productivity, and mortality [1]. At a national level, measured by impact on gross domestic product, increased mortality and decreased labor productivity pose the large risks, followed by increased energy demand and coastal damages. Changes in crop yield and crime have smaller impacts. The ACP was not intended to conduct a benefit-cost analysis of climate change mitigation. It assessed the economic consequences of future impacts on an economy with a structure equivalent to that of the current economy, not accounting for socio-economic development and adaptation, and did not assess the cost of mitigation. One of its primary goals was to inform adaptation decisions that are conventionally considered 'endogenous' in economic analyses of climate change. Nonetheless, its results provide insight into the potential of mitigation to manage climate risk. Differences between RCP 8.5 (moderately-high business-as-usual emissions), RCP 4.5 (moderate mitigation) and RCP 2.6 (extremely strong mitigation) are not apparent until mid-century and become significant only late in the century. For all impacts except coastal damages, mitigation significantly reduces uncertainty in late-century impact estimates. Nationally, mitigation significantly and monotonically reduces median projected labor productivity losses and violent crime. Switching from RCP 8.5 to RCP 4.5 also significantly reduces median projections of mortality and energy demand, but the domestic value to the U.S. of further mitigation to RCP 2.6 is less clear. The marginal benefits decline in part because some regions of the country (especially the Northwest) may experience increased crop yields, reduced mortality, and reduced energy

  14. Molecular population genetic analysis of emerged bacterial pathogens: selected insights.

    PubMed Central

    Musser, J. M.

    1996-01-01

    Research in bacterial population genetics has increased in the last 10 years. Population genetic theory and tools and related strategies have been used to investigate bacterial pathogens that have contributed to recent episodes of temporal variation in disease frequency and severity. A common theme demonstrated by these analyses is that distinct bacterial clones are responsible for disease outbreaks and increases in infection frequency. Many of these clones are characterized by unique combinations of virulence genes or alleles of virulence genes. Because substantial interclonal variance exists in relative virulence, molecular population genetic studies have led to the concept that the unit of bacterial pathogenicity is the clone or cell line. Continued new insights into host parasite interactions at the molecular level will be achieved by combining clonal analysis of bacterial pathogens with large-scale comparative sequencing of virulence genes. PMID:8903193

  15. Recent molecular insights from mutated IKS channels in cardiac arrhythmia.

    PubMed

    Dvir, Meidan; Peretz, Asher; Haitin, Yoni; Attali, Bernard

    2014-04-01

    Co-assembly of KCNQ1 with KCNE1 generates the IKS potassium current that is vital for the proper repolarization of the cardiac action potential. Mutations in either KCNQ1 or KCNE1 genes lead to life-threatening cardiac arrhythmias causing long QT syndrome, short QT syndrome, sinus bradycardia and atrial fibrillation. Findings emerging from recent studies are beginning to provide a picture of how gain-of-function and loss-of-function mutations are associated with pleiotropic cardiac phenotypes in the clinics. In this review, we discuss recent molecular insights obtained from mutations altering different structural modules of the channel complex that are essential for proper IKS function. We present the possible molecular mechanisms underlying mutations impairing the voltage sensing functions, as well as those altering the channel regulation by phosphatidylinositol-4,5-bisphosphate, calmodulin and protein kinase A. We also discuss the significance of diseased IKS channels for adequate pharmacological targeting of cardiac arrhythmias.

  16. Molecular paleobiological insights into the origin of the Brachiopoda.

    PubMed

    Sperling, Erik A; Pisani, Davide; Peterson, Kevin J

    2011-01-01

    Most studies of brachiopod evolution have been based on their extensive fossil record, but molecular techniques, due to their independence from the rock record, can offer new insights into the evolution of a clade. Previous molecular phylogenetic hypotheses of brachiopod interrelationships place phoronids within the brachiopods as the sister group to the inarticulates, whereas morphological considerations suggest that Brachiopoda is a monophyletic group. Here, these hypotheses were tested with a molecular phylogenetic analysis of seven nuclear housekeeping genes combined with three ribosomal genes. The combined analysis finds brachiopods to be monophyletic, but with relatively weak support, and the craniid as the sister taxon of all other brachiopods. Phylogenetic-signal dissection suggests that the weak support is caused by the instability of the craniid, which is attracted to the phoronids. Analysis of slowly evolving sites results in a robustly supported monophyletic Brachiopoda and Inarticulata (Linguliformea+Craniiformea), which is regarded as the most likely topology for brachiopod interrelationships. The monophyly of Brachiopoda was further tested with microRNA-based phylogenetics, which are small, noncoding RNA genes whose presence and absence can be used to infer phylogenetic relationships. Two novel microRNAs were characterized supporting the monophyly of brachiopods. Congruence of the traditional molecular phylogenetic analysis, microRNAs, and morphological cladograms suggest that Brachiopoda is monophyletic with Phoronida as its likely sister group. Molecular clock analysis suggests that extant phoronids have a Paleozoic divergence despite their conservative morphology, and that the early brachiopod fossil record is robust, and is not affected by taphonomic factors relating to the late-Precambrian/early-Cambrian phosphogenic event.

  17. Lymphangioleiomyomatosis (LAM): Molecular insights lead to targeted therapies

    PubMed Central

    Glasgow, Connie G.; Steagall, Wendy K.; Taveira-DaSilva, Angelo; Pacheco-Rodriguez, Gustavo; Cai, Xiong; El-Chemaly, Souheil; Moses, Marsha; Darling, Thomas; Moss, Joel

    2011-01-01

    Summary LAM is a rare lung disease, found primarily in women of childbearing age, characterized by cystic lung destruction and abdominal tumors (e.g., renal angiomyolipoma, lymphangioleiomyoma). The disease results from proliferation of a neoplastic cell, termed the LAM cell, which has mutations in either of the tuberous sclerosis complex (TSC) 1 or TSC2 genes. Molecular phenotyping of LAM patients resulted in the identification of therapeutic targets for drug trials. Loss of TSC gene function leads to activation of mammalian target of rapamycin (mTOR), and thereby, effects on cell size and number. The involvement of mTOR in LAM pathogenesis is the basis for initiation of therapeutic trials of mTOR inhibitors (e.g., sirolimus). Occurrence of LAM essentially entirely in women is consistent with the hypothesis that anti-estrogen agents might prevent disease progression (e.g., gonadotropin-releasing hormone analogues). Levels of urinary matrix metalloproteinases (MMPs) were elevated in LAM patients, and MMPs were found in LAM lung nodules. In part because of these observations, effects of doxycycline, an anti-MMP, and anti-angiogenic agent, are under investigation. The metastatic properties of LAM cells offer additional potential for targets. Thus, insights into the molecular and biological properties of LAM cells and molecular phenotyping of patients with LAM have led to clinical trials of targeted therapies. Funded by the Intramural Research Program, NIH/NHLBI PMID:20630348

  18. Genomic and epigenetic insights into the molecular bases of heterosis.

    PubMed

    Chen, Z Jeffrey

    2013-07-01

    Heterosis, also known as hybrid vigour, is widespread in plants and animals, but the molecular bases for this phenomenon remain elusive. Recent studies in hybrids and allopolyploids using transcriptomic, proteomic, metabolomic, epigenomic and systems biology approaches have provided new insights. Emerging genomic and epigenetic perspectives suggest that heterosis arises from allelic interactions between parental genomes, leading to altered programming of genes that promote the growth, stress tolerance and fitness of hybrids. For example, epigenetic modifications of key regulatory genes in hybrids and allopolyploids can alter complex regulatory networks of physiology and metabolism, thus modulating biomass and leading to heterosis. The conceptual advances could help to improve plant and animal productivity through the manipulation of heterosis.

  19. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  20. Knowledge discovery and nonlinear modeling can complement climate model simulations for predictive insights about climate extremes and their impacts

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Steinbach, M.; Kumar, V.

    2009-12-01

    The IPCC AR4 not only provided conclusive evidence about anticipated global warming at century scales, but also indicated with a high level of certainty that the warming is caused by anthropogenic emissions. However, an outstanding knowledge-gap is to develop credible projections of climate extremes and their impacts. Climate extremes are defined in this context as extreme weather and hydrological events, as well as changes in regional hydro-meteorological patterns, especially at decadal scales. While temperature extremes from climate models have relatively better skills, hydrological variables and their extremes have significant shortcomings. Credible projections about tropical storms, sea level rise, coastal storm surge, land glacier melts, and landslides remain elusive. The next generation of climate models is expected to have higher precision. However, their ability to provide more accurate projections of climate extremes remains to be tested. Projections of observed trends into the future may not be reliable in non-stationary environments like climate change, even though functional relationships derived from physics may hold. On the other hand, assessments of climate change impacts which are useful for stakeholders and policy makers depend critically on regional and decadal scale projections of climate extremes. Thus, climate impacts scientists often need to develop qualitative inferences about the not so-well predicted climate extremes based on insights from observations (e.g., increased hurricane intensity) or conceptual understanding (e.g., relation of wildfires to regional warming or drying and hurricanes to SST). However, neither conceptual understanding nor observed trends may be reliable when extrapolating in a non-stationary environment. These urgent societal priorities offer fertile grounds for nonlinear modeling and knowledge discovery approaches. Thus, qualitative inferences on climate extremes and impacts may be transformed into quantitative

  1. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite.

    PubMed

    Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R

    2008-03-11

    The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.

  2. Recent insights into the molecular genetics of the homocysteine metabolism.

    PubMed

    Födinger, M; Wagner, O F; Hörl, W H; Sunder-Plassmann, G

    2001-02-01

    The homocysteine plasma level is determined by non-genetic and genetic factors. In recent years evidence has accumulated that the total homocysteine plasma level of patients under different forms of renal replacement therapy is influenced by a common mutation at nucleotide position 677 of the gene coding for 5,10-methylenetetrahydrofolate reductase (MTHFR 677C-->T). Furthermore, compound heterozygosity for the 677T allele and a novel A-->C polymorphism at nucleotide position 1298 of MTHFR is suggested to correlate with a decrease of folate plasma concentrations. Because polymorphisms of genes coding for proteins involved in the metabolism of homocysteine may contribute to elevated total homocysteine plasma concentrations, molecular genetic analyses of the homocysteine pathways experienced a drift towards screening for candidate genes with a putative relationship to total homocysteine plasma levels. One example is the cloning of the FOLR1 gene coding for the folate-binding protein (Folbp1), which has recently been inactivated in mice, thus representing an elegant model to investigate the consequence on the homocysteine metabolism. Furthermore, the recent characterization of the CUBN gene encoding the intrinsic factor-vitamin B12 receptor (cubilin) provides a basis to identify the causative mutations in patients suffering from a hereditary syndrome of hyperhomocysteinemia that presents with megaloblastic anemia and proteinuria. This review focuses on recent insights into the molecular genetics of MTHFR, FOLR1, and CUBN, and their relationships to the metabolism of the amino acid homocysteine.

  3. Molecular insight into conformational transmission of human P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-12-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  4. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  5. Molecular insight into conformational transmission of human P-glycoprotein

    SciTech Connect

    Chang, Shan-Yan; Liu, Fu-Feng E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan E-mail: ysun@tju.edu.cn

    2013-12-14

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  6. Molecular Insights into the Biosynthesis of the F420 Coenzyme

    SciTech Connect

    Forouhar,F.; Abashidze, M.; Xu, H.; Grochowski, L.; Seetharaman, J.; Hussain, M.; Kuzin, A.; Chen, Y.; Zhou, W.; et al

    2008-01-01

    Coenzyme F420, a hydride carrier, is found in Archaea and some bacteria and has crucial roles in methanogenesis, antibiotic biosynthesis, DNA repair, and activation of antitubercular compounds. CofD, 2-phospho-l-lactate transferase, catalyzes the last step in the biosynthesis of F420-0 (F420 without polyglutamate), by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (Fo). CofD is highly conserved among F420-producing organisms, and weak sequence homologs are also found in non-F420-producing organisms. This superfamily does not share any recognizable sequence conservation with other proteins. Here we report the first crystal structures of CofD, the free enzyme and two ternary complexes, with Fo and Pi or with Fo and GDP, from Methanosarcina mazei. The active site is located at the C-terminal end of a Rossmann fold core, and three large insertions make significant contributions to the active site and dimer formation. The observed binding modes of Fo and GDP can explain known biochemical properties of CofD and are also supported by our binding assays. The structures provide significant molecular insights into the biosynthesis of the F420 coenzyme. Large structural differences in the active site region of the non-F420-producing CofD homologs suggest that they catalyze a different biochemical reaction.

  7. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    PubMed Central

    Casas, Laura; Saborido-Rey, Fran; Ryu, Taewoo; Michell, Craig; Ravasi, Timothy; Irigoien, Xabier

    2016-01-01

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites. PMID:27748421

  8. Cognitive and psychological science insights to improve climate change data visualization

    NASA Astrophysics Data System (ADS)

    Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.

    2016-12-01

    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.

  9. Decision support: Applying climate information for practical insights and actionable information (Invited)

    NASA Astrophysics Data System (ADS)

    Moss, R. H.

    2013-12-01

    A wide range of decision-makers - including policy makers and many categories of professionals - should be considering climate information in their decisions and plans. AGU members may increasingly be called on to provide this information. This presentation will explore the importance of a broad approach to developing information of use in decision making. Traditional climate research must be supplemented with climate change decision science that incorporates climate information and includes decision analysis and qualitative research on institutions, perceptions, and other socioeconomic processes essential to implementing adaptation and mitigation decisions. Adoption of this broader paradigm and development of partnerships with decision and social scientists is essential to render climate data into actionable insights. The talk will draw on recent experience with applying modeling in decision support and introduce some practical suggestions.

  10. New Molecular Insights of Insulin in Diabetic Cardiomyopathy

    PubMed Central

    Westermeier, Francisco; Riquelme, Jaime A.; Pavez, Mario; Garrido, Valeria; Díaz, Ariel; Verdejo, Hugo E.; Castro, Pablo F.; García, Lorena; Lavandero, Sergio

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a highly prevalent disease worldwide. Cardiovascular disorders generated as a consequence of T2DM are a major cause of death related to this disease. Diabetic cardiomyopathy (DCM) is characterized by the morphological, functional and metabolic changes in the heart produced as a complication of T2DM. This cardiac disorder is characterized by constant high blood glucose and lipids levels which eventually generate oxidative stress, defective calcium handling, altered mitochondrial function, inflammation and fibrosis. In this context, insulin is of paramount importance for cardiac contractility, growth and metabolism and therefore, an impaired insulin signaling plays a critical role in the DCM development. However, the exact pathophysiological mechanisms leading to DCM are still a matter of study. Despite the numerous questions raised in the study of DCM, there have also been important findings, such as the role of micro-RNAs (miRNAs), which can not only have the potential of being important biomarkers, but also therapeutic targets. Furthermore, exosomes also arise as an interesting variable to consider, since they represent an important inter-cellular communication mechanism and therefore, they may explain many aspects of the pathophysiology of DCM and their study may lead to the development of therapeutic agents capable of improving insulin signaling. In addition, adenosine and adenosine receptors (ARs) may also play an important role in DCM. Moreover, the possible cross-talk between insulin and ARs may provide new strategies to reverse its defective signaling in the diabetic heart. This review focuses on DCM, the role of insulin in this pathology and the discussion of new molecular insights which may help to understand its underlying mechanisms and generate possible new therapeutic strategies. PMID:27148064

  11. Proteomic Insight into the Molecular Function of the Vitreous

    PubMed Central

    Skeie, Jessica M.; Roybal, C. Nathaniel; Mahajan, Vinit B.

    2015-01-01

    The human vitreous contains primarily water, but also contains proteins which have yet to be fully characterized. To gain insight into the four vitreous substructures and their potential functions, we isolated and analyzed the vitreous protein profiles of three non-diseased human eyes. The four analyzed substructures were the anterior hyaloid, the vitreous cortex, the vitreous core, and the vitreous base. Proteins were separated by multidimensional liquid chromatography and identified by tandem mass spectrometry. Bioinformatics tools then extracted the expression profiles, signaling pathways, and interactomes unique to each tissue. From each substructure, a mean of 2,062 unique proteins were identified, with many being differentially expressed in a specific substructure: 278 proteins were unique to the anterior hyaloid, 322 to the vitreous cortex, 128 to the vitreous base, and 136 to the vitreous core. When the identified proteins were organized according to relevant functional pathways and networks, key patterns appeared. The blood coagulation pathway and extracellular matrix turnover networks were highly represented. Oxidative stress regulation and energy metabolism proteins were distributed throughout the vitreous. Immune functions were represented by high levels of immunoglobulin, the complement pathway, damage-associated molecular patterns (DAMPs), and evolutionarily conserved antimicrobial proteins. The majority of vitreous proteins detected were intracellular proteins, some of which originate from the retina, including rhodopsin (RHO), phosphodiesterase 6 (PDE6), and glial fibrillary acidic protein (GFAP). This comprehensive analysis uncovers a picture of the vitreous as a biologically active tissue, where proteins localize to distinct substructures to protect the intraocular tissues from infection, oxidative stress, and energy disequilibrium. It also reveals the retina as a potential source of inflammatory mediators. The vitreous proteome catalogues the

  12. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate

  13. The PICS Climate Insights 101 Courses: A Visual Approach to Learning About Climate Science, Mitigation and Adaptation

    NASA Astrophysics Data System (ADS)

    Pedersen, T. F.; Zwiers, F. W.; Breen, C.; Murdock, T. Q.

    2014-12-01

    The Pacific Institute for Climate Solutions (PICS) has now made available online three free, peer-reviewed, unique animated short courses in a series entitled "Climate Insights 101" that respectively address basic climate science, carbon-emissions mitigation approaches and opportunities, and adaptation. The courses are suitable for students of all ages, and use professionally narrated animations designed to hold a viewer's attention. Multiple issues are covered, including complex concerns like the construction of general circulation models, carbon pricing schemes in various countries, and adaptation approaches in the face of extreme weather events. Clips will be shown in the presentation. The first course (Climate Science Basics) has now been seen by over two hundred thousand individuals in over 80 countries, despite being offered in English only. Each course takes about two hours to work through, and in recognizing that that duration might pose an attention barrier to some students, PICS selected a number of short clips from the climate-science course and posted them as independent snippets on YouTube. A companion series of YouTube videos entitled, "Clear The Air", was created to confront the major global-warming denier myths. But a major challenge remains: despite numerous efforts to promote the availability of the free courses and the shorter YouTube pieces, they have yet to become widely known. Strategies to overcome that constraint will be discussed.

  14. Insights from past millennia into climatic impacts on human health and survival

    PubMed Central

    McMichael, Anthony J.

    2012-01-01

    Climate change poses threats to human health, safety, and survival via weather extremes and climatic impacts on food yields, fresh water, infectious diseases, conflict, and displacement. Paradoxically, these risks to health are neither widely nor fully recognized. Historical experiences of diverse societies experiencing climatic changes, spanning multicentury to single-year duration, provide insights into population health vulnerability—even though most climatic changes were considerably less than those anticipated this century and beyond. Historical experience indicates the following. (i) Long-term climate changes have often destabilized civilizations, typically via food shortages, consequent hunger, disease, and unrest. (ii) Medium-term climatic adversity has frequently caused similar health, social, and sometimes political consequences. (iii) Infectious disease epidemics have often occurred in association with briefer episodes of temperature shifts, food shortages, impoverishment, and social disruption. (iv) Societies have often learnt to cope (despite hardship for some groups) with recurring shorter-term (decadal to multiyear) regional climatic cycles (e.g., El Niño Southern Oscillation)—except when extreme phases occur. (v) The drought–famine–starvation nexus has been the main, recurring, serious threat to health. Warming this century is not only likely to greatly exceed the Holocene's natural multidecadal temperature fluctuations but to occur faster. Along with greater climatic variability, models project an increased geographic range and severity of droughts. Modern societies, although larger, better resourced, and more interconnected than past societies, are less flexible, more infrastructure-dependent, densely populated, and hence are vulnerable. Adverse historical climate-related health experiences underscore the case for abating human-induced climate change. PMID:22315419

  15. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide.

    PubMed

    Li, Chun-Yang; Wei, Tian-Di; Zhang, Sheng-Hui; Chen, Xiu-Lan; Gao, Xiang; Wang, Peng; Xie, Bin-Bin; Su, Hai-Nan; Qin, Qi-Long; Zhang, Xi-Ying; Yu, Juan; Zhang, Hong-Hai; Zhou, Bai-Cheng; Yang, Gui-Peng; Zhang, Yu-Zhong

    2014-01-21

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile DMS through the action of DMSP lyases and is important in the global sulfur and carbon cycles. When released into the atmosphere from the oceans, DMS is oxidized, forming cloud condensation nuclei that may influence weather and climate. Six different DMSP lyase genes are found in taxonomically diverse microorganisms, and dddQ is among the most abundant in marine metagenomes. Here, we examine the molecular mechanism of DMSP cleavage by the DMSP lyase, DddQ, from Ruegeria lacuscaerulensis ITI_1157. The structures of DddQ bound to an inhibitory molecule 2-(N-morpholino)ethanesulfonic acid and of DddQ inactivated by a Tyr131Ala mutation and bound to DMSP were solved. DddQ adopts a β-barrel fold structure and contains a Zn(2+) ion and six highly conserved hydrophilic residues (Tyr120, His123, His125, Glu129, Tyr131, and His163) in the active site. Mutational and biochemical analyses indicate that these hydrophilic residues are essential to catalysis. In particular, Tyr131 undergoes a conformational change during catalysis, acting as a base to initiate the β-elimination reaction in DMSP lysis. Moreover, structural analyses and molecular dynamics simulations indicate that two loops over the substrate-binding pocket of DddQ can alternate between "open" and "closed" states, serving as a gate for DMSP entry. We also propose a molecular mechanism for DMS production through DMSP cleavage. Our study provides important insight into the mechanism involved in the conversion of DMSP into DMS, which should lead to a better understanding of this globally important biogeochemical reaction.

  16. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Li, Chun-Yang; Wei, Tian-Di; Zhang, Sheng-Hui; Chen, Xiu-Lan; Gao, Xiang; Wang, Peng; Xie, Bin-Bin; Su, Hai-Nan; Qin, Qi-Long; Zhang, Xi-Ying; Yu, Juan; Zhang, Hong-Hai; Zhou, Bai-Cheng; Yang, Gui-Peng; Zhang, Yu-Zhong

    2014-01-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile DMS through the action of DMSP lyases and is important in the global sulfur and carbon cycles. When released into the atmosphere from the oceans, DMS is oxidized, forming cloud condensation nuclei that may influence weather and climate. Six different DMSP lyase genes are found in taxonomically diverse microorganisms, and dddQ is among the most abundant in marine metagenomes. Here, we examine the molecular mechanism of DMSP cleavage by the DMSP lyase, DddQ, from Ruegeria lacuscaerulensis ITI_1157. The structures of DddQ bound to an inhibitory molecule 2-(N-morpholino)ethanesulfonic acid and of DddQ inactivated by a Tyr131Ala mutation and bound to DMSP were solved. DddQ adopts a β-barrel fold structure and contains a Zn2+ ion and six highly conserved hydrophilic residues (Tyr120, His123, His125, Glu129, Tyr131, and His163) in the active site. Mutational and biochemical analyses indicate that these hydrophilic residues are essential to catalysis. In particular, Tyr131 undergoes a conformational change during catalysis, acting as a base to initiate the β-elimination reaction in DMSP lysis. Moreover, structural analyses and molecular dynamics simulations indicate that two loops over the substrate-binding pocket of DddQ can alternate between "open" and "closed" states, serving as a gate for DMSP entry. We also propose a molecular mechanism for DMS production through DMSP cleavage. Our study provides important insight into the mechanism involved in the conversion of DMSP into DMS, which should lead to a better understanding of this globally important biogeochemical reaction.

  17. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  18. From quantifying historical LULCC impacts to optimizing land management for climate mitigation: Insights from climate modelling

    NASA Astrophysics Data System (ADS)

    Davin, E.; Lejeune, Q.; Seneviratne, S. I.

    2015-12-01

    Human activities have profoundly transformed the land surface through land use/land cover change (LULCC). The consequence of this transformation is twofold: First, the conversion from natural to anthropogenic systems exert a direct forcing on climate (through both biogeochemical and biogeophysical processes); Second the transformed ecosystems may modify land-atmosphere feedback mechanisms thus modulating the response to climate change or to specific weather events. The first point will be illustrated by reviewing recent modelling results, including LUCID and CMIP5 model intercomparisons, to shed some light on the relative importance of LULCC versus other climate forcings. Given the importance of LULCC impacts at the regional scale, some recent efforts to improve the representation of land processes in regional climate models [1] as well as a regional assessment of the impact of amazonian deforestation [2] will be presented. The second point will be discussed through two examples. First, the fact that LULCC may modulate certain modes of variability will be illustrated based on model experiments highlighting the regional interplay between ENSO variability and amazonian deforestation. Second, we will show that peak temperatures during heat waves can be strongly influenced locally by the type of land cover or land management practices. In particular no-till farming, by increasing surface albedo, can lead to a substantial attenuation of hot temperatures during heat waves, in part due to a more efficient radiative cooling effect during cloud-free conditions [3]. References:[1] Davin, E.L. and S.I. Seneviratne (2012), Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate, Biogeosciences, 9, 1695-1707, doi:10.5194/bg-9-1695-2012.[2] Lejeune, Q., E.L. Davin, B. Guillod and S.I. Seneviratne (2015), Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and

  19. Exploring soil organic matter-mineral interactions: mechanistic insights at the nanometer and molecular length scales

    NASA Astrophysics Data System (ADS)

    Newcomb, C.; Qafoku, N. P.; Grate, J. W.; Hufschmid, R.; Browning, N.; De Yoreo, J. J.

    2015-12-01

    With elevated levels of carbon dioxide in the atmosphere due to anthropogenic emissions and disruption to the carbon cycle, the effects of climate change are being accelerated. Approximately 80% of Earth's terrestrial organic carbon is stored in soil, and the residence time of this carbon can range from hours to millenia. Understanding the dynamics of this carbon pool in the carbon cycle is crucial to both predicting climate and sustaining ecosystem services. Soil organic carbon is known to be strongly associated with high surface area clay minerals. The nature of these interactions is not well understood primarily due to the heterogeneity of soil, as much of the current knowledge relies on experiments that take a top-down approach using bulk experimental measurements. Our work seeks to probe physical, chemical, and molecular-level interactions at the organic-mineral interface using a bottom-up approach that establishes a model system where complexity can be built in systematically. By performing in situ techniques such as dynamic force spectroscopy, a technique where organic molecules can be brought into contact with mineral surfaces in a controlled manner using an atomic force microscope, we demonstrate the ability to mechanistically probe the energy landscape of individual organic molecules with mineral surfaces. We demonstrate the ability to measure the binding energies of soil-inspired organic functional groups (including carboxylic acid, amine, methyl, and phosphate) with clay and mineral surfaces as a function of solution chemistry. This effort can provide researchers with both guiding principles about carbon dynamics at the sub-nanometer length scale and insights into early aggregation events, where organic-mineral interactions play a significant role.

  20. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus.

    PubMed

    Zivcec, Marko; Scholte, Florine E M; Spiropoulou, Christina F; Spengler, Jessica R; Bergeron, Éric

    2016-04-21

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  1. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

    DOE PAGES

    Zivcec, Marko; Scholte, Florine; Spiropoulou, Christina; ...

    2016-04-21

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  2. Improving Public Engagement With Climate Change: Five "Best Practice" Insights From Psychological Science.

    PubMed

    van der Linden, Sander; Maibach, Edward; Leiserowitz, Anthony

    2015-11-01

    Despite being one of the most important societal challenges of the 21st century, public engagement with climate change currently remains low in the United States. Mounting evidence from across the behavioral sciences has found that most people regard climate change as a nonurgent and psychologically distant risk-spatially, temporally, and socially-which has led to deferred public decision making about mitigation and adaptation responses. In this article, we advance five simple but important "best practice" insights from psychological science that can help governments improve public policymaking about climate change. Particularly, instead of a future, distant, global, nonpersonal, and analytical risk that is often framed as an overt loss for society, we argue that policymakers should (a) emphasize climate change as a present, local, and personal risk; (b) facilitate more affective and experiential engagement; (c) leverage relevant social group norms; (d) frame policy solutions in terms of what can be gained from immediate action; and (e) appeal to intrinsically valued long-term environmental goals and outcomes. With practical examples we illustrate how these key psychological principles can be applied to support societal engagement and climate change policymaking.

  3. The structure of biodiversity – insights from molecular phylogeography

    PubMed Central

    Hewitt, Godfrey M

    2004-01-01

    DNA techniques, analytical methods and palaeoclimatic studies are greatly advancing our knowledge of the global distribution of genetic diversity, and how it evolved. Such phylogeographic studies are reviewed from Arctic, Temperate and Tropical regions, seeking commonalities of cause in the resulting genetic patterns. The genetic diversity is differently patterned within and among regions and biomes, and is related to their histories of climatic changes. This has major implications for conservation science. PMID:15679920

  4. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Zivcec, Marko; Scholte, Florine E. M.; Spiropoulou, Christina F.; Spengler, Jessica R.; Bergeron, Éric

    2016-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research. PMID:27110812

  5. Ependymoma in children: molecular considerations and therapeutic insights.

    PubMed

    Kim, J-H; Huang, Y; Griffin, A S; Rajappa, P; Greenfield, J P

    2013-10-01

    A multi-modality approach that encompasses maximal surgical resection in combination with adjuvant therapy is critical for achieving optimal disease control in children with ependymoma. In view of its complex biology and variable response to therapy, ependymoma remains a challenge for clinicians involved in the care of these patients. Meanwhile, translation of molecular findings can characterize unique features of childhood ependymoma and their natural history. Furthermore, understanding the biology of pediatric ependymoma serves as a platform for development of future targeted therapies. In line with these goals, we review the molecular basis of pediatric ependymoma and its prognostic implications, as well as novel therapeutic advances in the management of ependymoma in children.

  6. New insights into the molecular mechanisms of general anaesthetics

    PubMed Central

    Chau, P-L

    2010-01-01

    This paper provides new insights of how general anaesthetic research should be carried out in the future by an analysis of what we know, what we do not know and what we would like to know. I describe previous hypotheses on the mechanism of action of general anaesthetics (GAs) involving membranes and protein receptors. I provide the reasons why the GABA type A receptor, the NMDA receptor and the glycine receptor are strong candidates for the sites of action of GAs. I follow with a review on attempts to provide a mechanism of action, and how future research should be conducted with the help of physical and chemical methods. PMID:20735416

  7. Climate change induced transformations of agricultural systems: insights from a global model

    NASA Astrophysics Data System (ADS)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  8. Molecular Insight into Gut Microbiota and Rheumatoid Arthritis.

    PubMed

    Wu, Xiaohao; He, Bing; Liu, Jin; Feng, Hui; Ma, Yinghui; Li, Defang; Guo, Baosheng; Liang, Chao; Dang, Lei; Wang, Luyao; Tian, Jing; Zhu, Hailong; Xiao, Lianbo; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-03-22

    Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.

  9. Molecular Insight into Gut Microbiota and Rheumatoid Arthritis

    PubMed Central

    Wu, Xiaohao; He, Bing; Liu, Jin; Feng, Hui; Ma, Yinghui; Li, Defang; Guo, Baosheng; Liang, Chao; Dang, Lei; Wang, Luyao; Tian, Jing; Zhu, Hailong; Xiao, Lianbo; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA. PMID:27011180

  10. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

    PubMed Central

    Hubbard, Stevan R.

    2015-01-01

    The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2. PMID:25824690

  11. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate.

  12. Interaction of peptides with cell membranes: insights from molecular modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  13. IQGAP1: Insights into the function of a molecular puppeteer

    PubMed Central

    Abel, Alex M.; Schuldt, Kristina M.; Rajasekaran, Kamalakannan; Hwang, David; Riese, Mathew; Rao, Sridhar; Thakar, Monica S.; Malarkannan, Subramaniam

    2015-01-01

    The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells. PMID:25733387

  14. Molecular Responses to Climate and Resource Availability: Emerging Evidence from Systems Biology Research in Populus.

    SciTech Connect

    Wullschleger, Stan D; Weston, David; Davis, John M

    2009-01-01

    The emergence of Populus as a model system for tree biology continues to be driven by a community of scientists dedicated to developing the resources needed to undertake genetic and functional genomic studies in this genus. As a result, understanding the molecular processes that underpin the growth and development of cottonwood, aspen, and hybrid poplar has steadily increased over the last several decades. Recently, our ability to examine the basic mechanisms whereby trees respond to a changing climate and resource limitations has benefitted greatly from the sequencing of the P. trichocarpa genome. This landmark event has laid a solid foundation upon which tree biologists can now explore the genome-wide effects of temperature, water and nutrient limitations on processes that govern the growth and development of some of the longest living and tallest growing organisms on Earth. Although the challenges likely to be encountered by scientists who work with trees are many, recent literature provides a number of examples whereby a systems approach, one that focuses on transcriptomic, proteomic, and metabolomic analyses is beginning to provide insights into the molecular-scale response of poplars to their climatic and edaphic environment.

  15. Antimicrobial agent resistance in mycobacteria: molecular genetic insights.

    PubMed Central

    Musser, J M

    1995-01-01

    The primary theme emerging from molecular genetic work conducted with Mycobacterium tuberculosis and several other mycobacterial species is that resistance is commonly associated with simple nucleotide alterations in target chromosomal genes rather than with acquisition of new genetic elements encoding antibiotic-altering enzymes. Mutations in an 81-bp region of the gene (rpoB) encoding the beta subunit of RNA polymerase account for rifampin resistance in 96% of M. tuberculosis and many Mycobacterium leprae isolates. Streptomycin resistance in about one-half of M. tuberculosis isolates is associated with missense mutations in the rpsL gene coding for ribosomal protein S12 or nucleotide substitutions in the 16S rRNA gene (rrs). Mutations in the katG gene resulting in catalase-peroxidase amino acid alterations nad nucleotide substitutions in the presumed regulatory region of the inhA locus are repeatedly associated with isoniazid-resistant M. tuberculosis isolates. A majority of fluoroquinolone-resistant M. tuberculosis isolates have amino acid substitutions in a region of the DNA gyrase A subunit homologous to a conserved fluoroquinolone resistance-determining region. Multidrug-resistant isolates of M. tuberculosis arise as a consequence of sequential accumulation of mutations conferring resistance to single therapeutic agents. Molecular strategies show considerable promise for rapid detection of mutations associated with antimicrobial resistance. These approaches are now amenable to utilization in an appropriately equipped clinical microbiology laboratory. PMID:8665467

  16. Molecular and isotopic insights into methane oxidation in Lake Kivu

    NASA Astrophysics Data System (ADS)

    Zigah, P. K.; Wehrli, B.; Schubert, C. J.

    2013-12-01

    Lake Kivu is a meromictic lake in the East African Rift Valley, located between the Republic of Rwanda and the Democratic Republic of Congo. The hypolimnion is permanently stratified and contain an unusually high amount of dissolved methane (CH4; ~ 60 km3) and carbon dioxide (CO2; ~300 km3) at standard temperature and pressure. While microbial-mediated methane oxidation is an important sink of methane in the lake, little is known about the distribution of microbes involved in the methane oxidation. To provide insights into methanotrophy in the lake, we analyzed depth profile of CH4, δ13C-CH4 and δ13C-DIC, δ13C-POC and the biomarkers of methanotrophic archaea and bacteria and their stable carbon isotopic composition from suspended particulate matter isolated from the lake water column. Our preliminary data show enhanced methane oxidation in oxic-anoxic transition zone in the water column. Depth distribution of diagnostic methanotrophic archaeal biomarkers such as archaeol and hydroxyarchaeol suggest archaea might be involved in anaerobic methane oxidation. Phospholipid fatty acids and diplopterol distribution and carbon isotopic signatures indicate bacteria-mediated anaerobic (and aerobic) methane oxidation in the lake.

  17. Molecular insights into the premature aging disease progeria.

    PubMed

    Vidak, Sandra; Foisner, Roland

    2016-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.

  18. Molecular insights into protein synthesis with proline residues.

    PubMed

    Melnikov, Sergey; Mailliot, Justine; Rigger, Lukas; Neuner, Sandro; Shin, Byung-Sik; Yusupova, Gulnara; Dever, Thomas E; Micura, Ronald; Yusupov, Marat

    2016-12-01

    Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono- and diprolyl-tRNAs. These structures provide a high-resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.

  19. Temperature fluctuations in canonical systems: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hickman, J.; Mishin, Y.

    2016-11-01

    Molecular dynamics simulations of a quasiharmonic solid are conducted to elucidate the meaning of temperature fluctuations in canonical systems and validate a well-known but frequently contested equation predicting the mean square of such fluctuations. The simulations implement two virtual and one physical (natural) thermostat and examine the kinetic, potential, and total energy correlation functions in the time and frequency domains. The results clearly demonstrate the existence of quasiequilibrium states in which the system can be characterized by a well-defined temperature that follows the mentioned fluctuation equation. The emergence of such states is due to the wide separation of time scales between thermal relaxation by phonon scattering and slow energy exchanges with the thermostat. The quasiequilibrium states exist between these two time scales when the system behaves as virtually isolated and equilibrium.

  20. New insights on molecular interactions of organophosphorus pesticides with esterases.

    PubMed

    Mangas, Iris; Estevez, Jorge; Vilanova, Eugenio; França, Tanos Celmar Costa

    2017-02-01

    Organophosphorus compounds (OPs) are a large and diverse class of chemicals mainly used as pesticides and chemical weapons. People may be exposed to OPs in several occasions, which can produce several distinct neurotoxic effects depending on the dose, frequency of exposure, type of OP, and the host factors that influence susceptibility and sensitivity. These neurotoxic effects are mainly due to the interaction with enzyme targets involved in toxicological or detoxication pathways. In this work, the toxicological relevance of known OPs targets is reviewed. The main enzyme targets of OPs have been identified among the serine hydrolase protein family, some of them decades ago (e.g. AChE, BuChE, NTE and carboxylesterases), others more recently (e.g. lysophospholipase, arylformidase and KIA1363) and others which are not molecularly identified yet (e.g. phenylvalerate esterases). Members of this family are characterized by displaying serine hydrolase activity, containing a conserved serine hydrolase motif and having an alpha-beta hydrolase fold. Improvement in Xray-crystallography and in silico methods have generated new data of the interactions between OPs and esterases and have established new methods to study new inhibitors and reactivators of cholinesterases. Mass spectrometry for AChE, BChE and APH have characterized the active site serine adducts with OPs being useful to detect biomarkers of OPs exposure and inhibitory and postinhibitory reactions of esterases and OPs. The purpose of this review is focus specifically on the interaction of OP with esterases, mainly with type B-esterases, which are able to hydrolyze carboxylesters but inhibited by OPs by covalent phosphorylation on the serine or tyrosine residue in the active sites. Other related esterases in some cases with no-irreversible effect are also discussed. The understanding of the multiple molecular interactions is the basis we are proposing for a multi-target approach for understanding the

  1. Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis

    PubMed Central

    Charlier, Edith; Relic, Biserka; Deroyer, Céline; Malaise, Olivier; Neuville, Sophie; Collée, Julie; Malaise, Michel G.; De Seny, Dominique

    2016-01-01

    Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression. PMID:27999417

  2. Molecular insights provide the critical path to disease mitigation.

    PubMed

    Waldman, S A; Terzic, A

    2014-01-01

    The revolution in scientific innovation, driven by the engines of enabling technologies, is increasingly capable of deconstructing complex disease processes for the express purpose of reconstructing patient-specific solutions. These revelations in biological mechanisms provide the pressure points of opportunity for radical discovery and development to advance modern health care. Principles of mechanism-based discovery and their translation into therapeutic algorithms will, however, be challenged in the near term by emerging global public health crises that currently have no immediate solutions: chronic diseases, obesity, antibiotic-resistant infections, dementia, depression. The threat of these pandemics (multiplied in an increasingly aging population), the global burden of disease they represent, and their worldwide assault on human capital underscore the importance of continued and accelerated investments in science-propelled practice advancement, converting new knowledge into delivery of tangible health solutions. In that context, this annual issue of CPT on therapeutics innovations highlights remarkable recent successes in the discovery-development paradigm translating molecular innovations into diagnostic and therapeutic realities that transform the management of disease, impacting global health.

  3. The Congenital Muscular Dystrophies: Recent Advances and Molecular Insights

    PubMed Central

    Mendell, Jerry R.; Boué, Daniel R.; Martin, Paul T.

    2010-01-01

    Over the past decade, molecular understanding of the congenital muscular dystrophies (CMDs) has greatly expanded. The diseases can be classified into 3 major groups based on the affected genes and the location of their expressed protein: abnormalities of extracellular matrix proteins (LAMA2, COL6A1, COL6A2, COL6A3), abnormalities of membrane receptors for the extracellular matrix (fukutin, POMGnT1, POMT1, POMT2, FKRP, LARGE, and ITGA7), and abnormal endoplasmic reticulum protein (SEPN1). The diseases begin in the perinatal period or shortly thereafter. A specific diagnosis can be challenging because the muscle pathology is usually not distinctive. Immunostaining of muscle using a battery of antibodies can help define a disorder that will need confirmation by gene testing. In muscle diseases with overlapping pathological features, such as CMD, careful attention to the clinical clues (e.g., family history, central nervous system features) can help guide the battery of immunostains necessary to target an unequivocal diagnosis. PMID:17163796

  4. Striped gold nanoparticles: New insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Velachi, Vasumathi; Bhandary, Debdip; Singh, Jayant K.; Cordeiro, M. Natália D. S.

    2016-06-01

    Recent simulations have improved our knowledge of the molecular-level structure and hydration properties of mixed self-assembled monolayers (SAMs) with equal and unequal alkyl thiols at three different arrangements, namely, random, patchy, and Janus. In our previous work [V. Vasumathi et al., J. Phys. Chem. C 119, 3199-3209 (2015)], we showed that the bending of longer thiols over shorter ones clearly depends on the thiols' arrangements and chemical nature of their terminal groups. In addition, such a thiol bending revealed to have a strong impact on the structural and hydration properties of SAMs coated on gold nanoparticles (AuNPs). In this paper, we extend our previous atomistic simulation study to investigate the bending of longer thiols by increasing the stripe thickness of mixed SAMs of equal and unequal lengths coated on AuNPs. We study also the effect of stripe thickness on the structural morphology and hydration of the coated SAMs. Our results show that the structural and hydration properties of SAMs are affected by the stripe thickness for mixtures of alkyl thiols with unequal chain length but not for equal length. Hence, the stability of the stripe configuration depends on the alkyl's chain length, the length difference between the thiol mixtures, and solvent properties.

  5. Embryonic stem cell biology: insights from molecular imaging.

    PubMed

    Sallam, Karim; Wu, Joseph C

    2010-01-01

    Embryonic stem (ES) cells have therapeutic potential in disorders of cellular loss such as myocardial infarction, type I diabetes and neurodegenerative disorders. ES cell biology in living subjects was largely poorly understood until incorporation of molecular imaging into the field. Reporter gene imaging works by integrating a reporter gene into ES cells and using a reporter probe to induce a signal detectable by normal imaging modalities. Reporter gene imaging allows for longitudinal tracking of ES cells within the same host for a prolonged period of time. This has advantages over postmortem immunohistochemistry and traditional imaging modalities. The advantages include expression of reporter gene is limited to viable cells, expression is conserved between generations of dividing cells, and expression can be linked to a specific population of cells. These advantages were especially useful in studying a dynamic cell population such as ES cells and proved useful in elucidating the biology of ES cells. Reporter gene imaging identified poor integration of differentiated ES cells transplanted into host tissue as well as delayed donor cell death as reasons for poor long-term survival in vivo. This imaging technology also confirmed that ES cells indeed have immunogenic properties that factor into cell survival and differentiation. Finally, reporter gene imaging improved our understanding of the neoplastic risk of undifferentiated ES cells in forming teratomas. Despite such advances, much remains to be understood about ES cell biology to translate this technology to the bedside, and reporter gene imaging will certainly play a key role in formulating this understanding.

  6. Molecular and structural insight into plasmodium falciparum RIO2 kinase.

    PubMed

    Chouhan, Devendra K; Sharon, Ashoke; Bal, Chandralata

    2013-02-01

    Among approximately 65 kinases of the malarial genome, RIO2 (right open reading frame) kinase belonging to the atypical class of kinase is unique because along with a kinase domain, it has a highly conserved N-terminal winged helix (wHTH) domain. The wHTH domain resembles the wing like domain found in DNA binding proteins and is situated near to the kinase domain. Ligand binding to this domain may reposition the kinase domain leading to inhibition of enzyme function and could be utilized as a novel allosteric site to design inhibitor. In the present study, we have generated a model of RIO2 kinase from Plasmodium falciparum utilizing multiple modeling, simulation approach. A novel putative DNA-binding site is identified for the first time in PfRIO2 kinase to understand the DNA binding events involving wHTH domain and flexible loop. Induced fit DNA docking followed by minimization, molecular dynamics simulation, energetic scoring and binding mode studies are used to reveal the structural basis of PfRIO2-ATP-DNA complex. Ser105 as a potential site of phosphorylation is revealed through the structural studies of ATP binding in PfRIO2. Overall the present study discloses the structural facets of unknown PfRIO2 complex and opens an avenue toward exploration of novel drug target.

  7. Molecular insights into farm animal and zoonotic Salmonella infections

    PubMed Central

    Stevens, Mark P.; Humphrey, Tom J.; Maskell, Duncan J.

    2009-01-01

    Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Infections may present in a variety of ways, from asymptomatic colonization to inflammatory diarrhoea or typhoid fever depending on serovar- and host-specific factors. Human diarrhoeal infections are frequently acquired via the food chain and farm environment by virtue of the ability of selected non-typhoidal serovars to colonize the intestines of food-producing animals and contaminate the avian reproductive tract and egg. Colonization of reservoir hosts often occurs in the absence of clinical symptoms; however, some S. enterica serovars threaten animal health owing to their ability to cause acute enteritis or translocate from the intestines to other organs causing fever, septicaemia and abortion. Despite the availability of complete genome sequences of isolates representing several serovars, the molecular mechanisms underlying Salmonella colonization, pathogenesis and transmission in reservoir hosts remain ill-defined. Here we review current knowledge of the bacterial factors influencing colonization of food-producing animals by Salmonella and the basis of host range, differential virulence and zoonotic potential. PMID:19687040

  8. Molecular Ecological Insights into Neotropical Bird-Tick Interactions.

    PubMed

    Miller, Matthew J; Esser, Helen J; Loaiza, Jose R; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds' role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually-sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical-Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically-identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly-discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the dynamics of

  9. Molecular insights into tumour metastasis: tracing the dominant events.

    PubMed

    Jin, Ke; Li, Tong; van Dam, Hans; Zhou, Fangfang; Zhang, Long

    2017-04-01

    Metastasis of malignant cells to vital organs remains the major cause of mortality in many types of cancers. The tumour invasion-metastasis cascade is a stepwise and multistage process whereby tumour cells disseminate from primary sites and spread to colonize distant sites through the systemic haematogenous or lymphatic circulations. The general steps of metastasis may be similar in almost all tumour types, but metastasis to different tissues seems to require distinct sets of regulators and/or an 'educated' microenvironment which may facilitate the infiltration and colonization of tumour cells to specific tissues. Moreover, interactions of tumour cells with stromal cells, endothelial cells, and immune cells that they encounter will also aid them to gain survival advantages, evade immune surveillance, and adapt to the new host microenvironment. Due to the high correlation between tumour metastasis and survival rate of patients, a deeper understanding of the molecular participants and processes involved in metastasis could pave the way towards novel, more effective and targeted approaches to prevent and treat tumour metastasis. In this review, we provide an update on the regulation networks orchestrated by the dominant regulators of different stages throughout the metastatic process including, but not limited to, epithelial-mesenchymal transition in local invasion, resistance to anoikis during migration, and colonization of different distant sites. We also put forward some suggestions and problems concerning the treatment of tumour metastasis that should be solved and/or improved for better therapies in the near future. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Molecular Ecological Insights into Neotropical Bird–Tick Interactions

    PubMed Central

    Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds’ role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually–sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical–Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically–identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly–discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the

  11. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences

  12. New clinical and molecular insights on Barth syndrome

    PubMed Central

    2013-01-01

    Background Barth syndrome (BS) is an X-linked infantile-onset cardioskeletal disease characterized by cardiomyopathy, hypotonia, growth delay, neutropenia and 3-methylglutaconic aciduria. It is caused by mutations in the TAZ gene encoding tafazzin, a protein involved in the metabolism of cardiolipin, a mitochondrial-specific phospholipid involved in mitochondrial energy production. Methods Clinical, biochemical and molecular characterization of a group of six male patients suspected of having BS. Three patients presented early with severe metabolic decompensation including respiratory distress, oxygen desaturation and cardiomyopathy and died within the first year of life. The remaining three patients had cardiomyopathy, hypotonia and growth delay and are still alive. Cardiomyopathy was detected during pregnancy through a routine check-up in one patient. All patients exhibited 3-methylglutaconic aciduria and neutropenia, when tested and five of them also had lactic acidosis. Results We confirmed the diagnosis of BS with sequence analysis of the TAZ gene, and found five new mutations, c.641A>G p.His214Arg, c.284dupG (p.Thr96Aspfs*37), c.678_691del14 (p.Tyr227Trpfs*79), g.8009_16445del8437 and g.[9777_9814del38; 9911-?_14402del] and the known nonsense mutation c.367C>T (p.Arg123Term). The two gross rearrangements ablated TAZ exons 6 to 11 and probably originated by non-allelic homologous recombination and by Serial Replication Slippage (SRS), respectively. The identification of the breakpoints boundaries of the gross deletions allowed the direct detection of heterozygosity in carrier females. Conclusions Lactic acidosis associated with 3-methylglutaconic aciduria is highly suggestive of BS, whilst the severity of the metabolic decompensation at disease onset should be considered for prognostic purposes. Mutation analysis of the TAZ gene is necessary for confirming the clinical and biochemical diagnosis in probands in order to identify heterozygous carriers and

  13. A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities.

    PubMed

    Fielding, Kelly S; Hornsey, Matthew J

    2016-01-01

    Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper, we use social identity theory to help describe and explain these processes. We review literature showing, how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories, such as cultural cognition theory, the theory of planned behavior, and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions.

  14. A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities

    PubMed Central

    Fielding, Kelly S.; Hornsey, Matthew J.

    2016-01-01

    Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper, we use social identity theory to help describe and explain these processes. We review literature showing, how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories, such as cultural cognition theory, the theory of planned behavior, and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions. PMID:26903924

  15. Response of the benthic methane cycle to climate variability: insights from reaction-transport simulations

    NASA Astrophysics Data System (ADS)

    Regnier, P.; Dale, A.; Arndt, S.; Tsandev, I.; Ridgwell, A.

    2012-04-01

    Methanogenesis by microorganisms within anoxic sediments is a very slow process of CH4 production. Yet, over thousands or millions of years methanogenesis has resulted in vast CH4 accumulation, either dissolved in the interstitial water, in the form of gas bubbles, or condensed as gas hydrates (Buffett and Archer, 2004). On a global scale, sediments are thus the largest methane reservoir on Earth (Buffett and Archer, 2004), and they may exert a significant influence on the carbon cycle and Earth climate. For instance, CH4 release due to destabilization of gas hydrates has resulted in significant increases in atmospheric CH4 concentration during Earth's history (e.g. Dickens, 2003). Geochemical and microbiological evidence, together with mass balance calculations, nonetheless suggest that currently, up to 90% of the methane produced globally in marine sediments is consumed in situ before reaching the seafloor by the biogeochemical process of anaerobic oxidation of methane (AOM). Yet, the extent to which the efficiency of this methane sink could be affected by climate change remains essentially unknown. This contribution reviews how recent model developments, including improved representations of the physical, chemical and biological components of the benthic system, have led to novel insights into the transient response of the benthic methane cycle at the centennial timescale. Reactive-transport model simulations combined with high resolution data are used to quantify present-day rates of methanogenesis and methanotrophy in shelf sediments where free methane gas is widespread. Results reveal that in passive sediments AOM is currently a very efficient subsurface barrier against both the aqueous and gaseous methane flux migrating towards the seafloor. Numerical experiments are then carried out to forecast the evolution of the methane cycle over the next century, triggered by changes in climate. Simulations predict that the gaseous methane inventory will increase, but

  16. Sustainable management for rangelands in a variable climate: evidence and insights from northern Australia.

    PubMed

    O'Reagain, P J; Scanlan, J C

    2013-03-01

    Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise

  17. New insight into biodegradation of polylactide (PLA)/clay nanocomposites using molecular ecological techniques.

    PubMed

    Sangwan, Parveen; Way, Cameron; Wu, Dong-Yang

    2009-07-07

    Novel molecular ecological techniques were used to study changes in microbial community structure and population during degradation of polylactide (PLA)/organically modified layered silicates (OMLS) nanocomposites. Cloned gene sequences belonging to members of the phyla Actinobacteria and Ascomycota comprized the most dominant groups of microorganisms during biodegradation of PLA/OMLS nanocomposites. Due to their numerical abundance, members of these microbial groups are likely to play an important role during biodegradation process. This paper presents new insights into the biodegradability of PLA/OMLS nanocomposites and highlights the importance of using novel molecular ecological techniques for in situ identification of new microorganisms involved in biodegradation of polymeric materials.

  18. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Yang, Ran; Liang, Huili; Qu, Ling-Bo

    2015-01-01

    In the work described on this paper, the inhibitory effect of 10 flavonoids on pepsin and the interactions between them were investigated by a combination of spectroscopic and molecular docking methods. The results indicated that all flavonoids could bind with pepsin to form flavonoid-pepsin complexes. The binding parameters obtained from the data at different temperatures revealed that flavonoids could spontaneously interact with pepsin mainly through electrostatic forces and hydrophobic interactions with one binding site. According to synchronous and three-dimensional fluorescence spectra and molecular docking results, all flavonoids bound directly into the enzyme cavity site and the binding influenced the microenvironment and conformation of the pepsin activity site which resulted in the reduced enzyme activity. The present study provides direct evidence at a molecular level to understand the mechanism of digestion caused by flavonoids.

  19. Alluvial fan response to climatic change: Insights from numerical modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2009-12-01

    Alluvial fans in the western U.S. exhibit a regionally correlative sequence of Plio-Quaternary deposits. Cosmogenic and U-series dating has greatly improved the age control on these deposits and their associated terraces and generally strengthened the case for aggradation during humid-to-arid transitions. Still, the linkages between climate change, upland basin response, and alluvial fan response are not well constrained. Fans may fill and cut as a result of autogenetic processes/internal adjustments, changes in regional temperature (which controls snowmelt-induced flooding), changes in the frequency-size distribution of rainfall events, and/or changes in upslope vegetation. Here I describe the results of a numerical modeling study designed to better constrain the relationships between different end-member forcing mechanisms and the geologic record of alluvial fan deposits and terraces. The model solves the evolution of the fan topography using Exner's equation (conservation of mass) coupled with a nonlinear, threshold-controlled transport relation for sand and gravel. Bank retreat is modeled using an advection equation with a rate proportional to bank shear stress. I begin by considering the building of a fan under conditions of constant water and sediment supply. This simple system exhibits all of the complexity of fans developed under experimental conditions, and it provides insights into the mechanisms that control avulsions and it provides a baseline estimate for the within-fan relief that can result from autogenetic processes. Relationships between the magnitude and period of variations in the sediment-to-water ratio and the geomorphic response of fans are then discussed. I also consider the response of a coupled drainage basin-fan system to changes in climate, including the hydrologic and vegetation response of upland hillslopes. Fans can aggrade or incise in response to the same climatic event depending on the relief of the upstream drainage basin, which

  20. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies.

    PubMed

    Mackenzie, Ian R A; Neumann, Manuela

    2016-08-01

    Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The past decade has seen the discovery of several new FTD-causing genetic mutations and the identification of many of the relevant pathological proteins. The current neuropathological classification is based on the predominant protein abnormality and allows most cases of FTD to be placed into one of three broad molecular subgroups; frontotemporal lobar degeneration with tau, TDP-43 or FET protein accumulation. This review will describe our current understanding of the molecular basis of FTD, focusing on insights gained from the study of human postmortem tissue, as well as some of the current controversies. Most cases of FTD can be subclassified into one of three broad molecular subgroups based on the predominant protein that accumulates as pathological cellular inclusions. Understanding the associated pathogenic mechanisms and recognizing these FTD molecular subtypes in vivo will likely be crucial for the development and use of targeted therapies. This article is part of the Frontotemporal Dementia special issue.

  1. Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations

    DTIC Science & Technology

    2013-01-01

    W L. Physical properties of concentrated nitric acid . UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.) 23 M. Engelmann... Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Rev. 8-98) Prescribed by ANSI Std. 239.18 1     Thermophysical  Properties  of  Energetic  Ionic  Liquids/ Nitric   Acid

  2. Novel molecular fossils of bacteria: insights into hydrothermal origin of life.

    PubMed

    Dai, Jianghong

    2012-10-07

    Hydrothermal vents, in particular, alkaline submarine vents, are potential systems for the origin of life. Early hydrothermal vents may have imprinted on biochemical processes and housekeeping proteins of life and have hallmarked key molecules. This essay introduces new information to this discussion by focusing on newly identified sulfur-modified DNA and a heretofore ignored anhydro bond of the cell wall peptidoglycan in bacteria. It is suggested that they are novel molecular fossils that are relevant to the settings of alkaline submarine vents and harbor clues of early life. As DNA and the cell wall are bound up with genetic information and the integrity of cell, respectively, these two molecular fossils may provide insights into hydrothermal origin of life from a new angle.

  3. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    SciTech Connect

    Sidhu, Navdeep S.; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M.; Gärtner, Jutta; Krätzner, Ralph Steinfeld, Robert

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  4. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations

    SciTech Connect

    Wang, Jing-Fang; Chou, Kuo-Chen

    2009-12-18

    Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.

  5. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change.

    PubMed

    Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.

  6. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    PubMed Central

    Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938

  7. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    PubMed

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-04-03

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally.

  8. Communicating Climate Change in the Agricultural Sector: Insights from Surveys and Interviews with Agricultural Advisors in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Prokopy, L. S.; Carlton, S.; Dunn, M.

    2014-12-01

    Understanding U.S. agricultural stakeholder views about the existence of climate change and what influences these views is central to developing communication in support of adaptation and mitigation. It has been postulated in the literature that extreme weather events can shape people's climate change beliefs and adaptation attitudes. In this presentation, we use data from pre- and post-extreme event surveys and interviews to examine the effects of the 2012 Midwestern US drought on agricultural advisors' climate change beliefs, adaptation attitudes, and risk perceptions. We found that neither climate change beliefs nor attitudes toward adaptation changed significantly as a result of the drought. Risk perceptions did change, however, with advisors becoming more concerned about risks from drought and pests and less concerned about risks related to flooding and ponding. Qualitative interviews revealed that while advisors readily accept the occurrence of extreme weather as a risk, the irregularity and unpredictability of extreme events for specific localities limits day-to-day consideration in respect to prescribed management advice. Instead, advisors' attention is directed towards planning for short-term changes encompassing weather, pests, and the market, as well as planning for long-term trends related to water availability. These findings provide important insights for communicating climate change in this critical sector while illustrating the importance of social science research in planning and executing communication campaigns.

  9. Molecular Insight into Affinities of Gallated and Nongallated Proanthocyanidins Dimers to Lipid Bilayers

    PubMed Central

    Zhu, Wei; Xiong, Le; Peng, Jinming; Deng, Xiangyi; Gao, Jun; Li, Chun-mei

    2016-01-01

    Experimental studies have proved the beneficial effects of proanthocyanidins (Pas) relating to interaction with the cell membrane. But the detailed mechanisms and structure-function relationship was unclear. In present study, molecular dynamics (MD) simulations were used to study the interactions of four PA dimers with a lipid bilayer composed of 1:1 mixed 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE). The results showed that the gallated PA dimers had much higher affinities to the bilayer with lower binding free energies compared with nongallated PA dimers. The gallated PA dimers penetrated deeper into the bilayer and formed more hydrogen bonds (H-bonds) with bilayer oxygen atoms, especially the deeper oxygen atoms of the lipids simultaneously, thus inducing stronger lateral expansion of the membrane and lipid tails disorder. The present results provided molecular insights into the interactions between PA dimers and bio-membranes and agreed with our experimental results well. These molecular interactions helped to elucidate the structure-function relationship of the PA dimers and provided a foundation for a better understanding of the underlying mechanisms of the bioactivities of PA oligomers. PMID:27874097

  10. Insight into the Functionality of Microbial Exopolysaccharides by NMR Spectroscopy and Molecular Modeling.

    PubMed

    Larsen, Flemming H; Engelsen, Søren B

    2015-01-01

    Microbial polysaccharides represent an important class of microbial polymers with diverse functions such as biofilm formation, thickening, and gelling properties as well as health-promoting properties. The broad range of exopolysaccharide (EPS) functionalities has sparked a renewed interest in this class of molecules. Chemical, enzymatic as well as genetic modifications by metabolic engineering can be used to create large numbers of analogous EPS variants with respect to EPS functionality. While this top-down approach is effective in finding new candidates for desired functionality, there seems to be a lack of the corresponding bottom-up approach. The molecular mechanisms of the desired functionalities can be established from Nuclear Magnetic Resonance (NMR) and molecular models and it is proposed that these models can be fed back into the biotechnology by using a quantitative structure-property approach. In this way it will be possible to tailor specific functionality within a given design space. This perspective will include two well-known commercial microbial EPS examples namely gellan and diutan and show how even a limited use of multiphase NMR and molecular modeling can increase the insight into their different properties, which are based on only minor structural differences.

  11. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA.

    PubMed

    Sidhu, Navdeep S; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M; Gärtner, Jutta; Krätzner, Ralph; Steinfeld, Robert

    2014-05-01

    Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  12. Molecular Insight into Affinities of Gallated and Nongallated Proanthocyanidins Dimers to Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Xiong, Le; Peng, Jinming; Deng, Xiangyi; Gao, Jun; Li, Chun-Mei

    2016-11-01

    Experimental studies have proved the beneficial effects of proanthocyanidins (Pas) relating to interaction with the cell membrane. But the detailed mechanisms and structure-function relationship was unclear. In present study, molecular dynamics (MD) simulations were used to study the interactions of four PA dimers with a lipid bilayer composed of 1:1 mixed 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE). The results showed that the gallated PA dimers had much higher affinities to the bilayer with lower binding free energies compared with nongallated PA dimers. The gallated PA dimers penetrated deeper into the bilayer and formed more hydrogen bonds (H-bonds) with bilayer oxygen atoms, especially the deeper oxygen atoms of the lipids simultaneously, thus inducing stronger lateral expansion of the membrane and lipid tails disorder. The present results provided molecular insights into the interactions between PA dimers and bio-membranes and agreed with our experimental results well. These molecular interactions helped to elucidate the structure-function relationship of the PA dimers and provided a foundation for a better understanding of the underlying mechanisms of the bioactivities of PA oligomers.

  13. Limitations of Climatic Data for Inferring Species Boundaries: Insights from Speckled Rattlesnakes

    PubMed Central

    Flores-Villela, Oscar; Fujita, Matthew K.

    2015-01-01

    Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the “climatic niche”); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus. PMID:26107178

  14. Migration out of 1930s Rural Eastern Oklahoma: Insights for Climate Change Research

    ERIC Educational Resources Information Center

    McLeman, Robert

    2006-01-01

    The question of how communities and individuals adapt to changing climatic conditions is of pressing concern to scientists and policymakers in light of the growing evidence that human activity has modified the Earth's climate. A number of authors have suggested that widespread changes in human settlement and migration patterns may occur in…

  15. A closer look at novel climates: new methods and insights at continental to landscape scales.

    PubMed

    Mahony, Colin R; Cannon, Alex J; Wang, Tongli; Aitken, Sally N

    2017-02-01

    Novel climates - emerging conditions with no analog in the observational record - are an open problem in ecological modeling. Detecting extrapolation into novel conditions is a critical step in evaluating bioclimatic projections of how species and ecosystems will respond to climate change. However, biologically informed novelty detection methods remain elusive for many modeling algorithms. To assist with bioclimatic model design and evaluation, we present a first-approximation assessment of general novelty based on a simple and consistent characterization of climate. We build on the seminal global analysis of Williams et al. (2007 PNAS, 104, 5738) by assessing of end-of-21st-century novelty for North America at high spatial resolution and by refining their standardized Euclidean distance into an intuitive Mahalanobian metric called sigma dissimilarity. Like this previous study, we found extensive novelty in end-of-21st-century projections for the warm southern margin of the continent as well as the western Arctic. In addition, we detected localized novelty in lower topographic positions at all latitudes: By the end of the 21st century, novel climates are projected to emerge at low elevations in 80% and 99% of ecoregions in the RCP4.5 and RCP8.5 emissions scenarios, respectively. Novel climates are limited to 7% of the continent's area in RCP4.5, but are much more extensive in RCP8.5 (40% of area). These three risk factors for novel climates - regional susceptibility, topographic position, and the magnitude of projected climate change - represent a priori evaluation criteria for the credibility of bioclimatic projections. Our findings indicate that novel climates can emerge in any landscape. Interpreting climatic novelty in the context of nonlinear biological responses to climate is an important challenge for future research.

  16. Protein Fibrillar Nanopolymers: Molecular-Level Insights into Their Structural, Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.

    2015-09-01

    Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.

  17. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors.

    PubMed

    Fuchs, M; Schmitt-Keichinger, C; Sanfaçon, H

    2017-01-01

    Nepoviruses supplied seminal landmarks to the historical trail of plant virology. Among the first agriculturally relevant viruses recognized in the late 1920s and among the first plant viruses officially classified in the early 1970s, nepoviruses also comprise the first species for which a soil-borne ectoparasitic nematode vector was identified. Early research on nepoviruses shed light on the genome structure and expression, biological properties of the two genomic RNAs, and mode of transmission. In recent years, research on nepoviruses enjoyed an extraordinary renaissance. This resurgence provided new insights into the molecular interface between viruses and their plant hosts, and between viruses and dagger nematode vectors to advance our understanding of some of the major steps of the infectious cycle. Here we examine these recent findings, highlight ongoing work, and offer some perspectives for future research.

  18. Genetic, structural, and molecular insights into the function of ras of complex proteins domains.

    PubMed

    Civiero, Laura; Dihanich, Sybille; Lewis, Patrick A; Greggio, Elisa

    2014-07-17

    Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson's disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.

  19. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    SciTech Connect

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.

  20. Camptothecin resistance in cancer: insights into the molecular mechanisms of a DNA-damaging drug.

    PubMed

    Beretta, G L; Gatti, L; Perego, P; Zaffaroni, N

    2013-01-01

    Poisoning of DNA topoisomerase I is the mechanism by which camptothecins interfere with tumor growth. Although the clinical use of camptothecins has had a significant impact on cancer therapy, de novo or acquired clinical resistance to these drugs is common. Clinical resistance to camptothecins is still a poorly understood phenomenon, likely involving pharmacological and tumor-related factors. Experimental models including yeast and mammalian cell cultures suggest three general mechanisms of camptothecin resistance: i) reduced cellular accumulation of drugs, ii) alteration in the structure/expression of topoisomerase I, and iii) alterations in the cellular response to camptothecin-DNA-ternary complex formation. Some lines of evidence have also suggested links between cellular camptothecin resistance, the existence of a subset of tumor-initiating cells and miRNA deregulation. In this regard, a better definition of the molecular events clarifying the regulation of tumorigenesis and gene expression might contribute to gain insight into the molecular mechanisms on the basis of camptothecin resistance of tumors and to identify new molecular tools for targeting cancer cells. The relevance of these mechanisms to clinical drug resistance has not yet been completely defined, but their evaluation in clinical specimens should help to define personalized treatments including camptothecins as single agents or in combination with other cytotoxic and target-specific anticancer agents. The present review focuses on the cellular/ molecular aspects involved in resistance of tumor cells to camptothecins, including the potential role of cancer stem cells and deregulated miRNAs, and on the approaches proposed for overcoming resistance.

  1. Human Metapneumovirus: Insights from a Ten-Year Molecular and Epidemiological Analysis in Germany

    PubMed Central

    Reiche, Janine; Jacobsen, Sonja; Neubauer, Katrin; Hafemann, Susi; Nitsche, Andreas; Milde, Jeanette; Wolff, Thorsten; Schweiger, Brunhilde

    2014-01-01

    Human metapneumovirus (HMPV) is a cause of respiratory tract illness at all ages. In this study the epidemiological and molecular diversity among patients of different ages was investigated. Between 2000–2001 and 2009–2010, HMPV was detected in 3% (138/4,549) of samples from outpatients with influenza-like illness with a new, sensitive real-time RT-PCR assay. Several hundred (797) clinical specimens from hospitalized children below the age of 4 years with acute respiratory illness were investigated and HMPV was detected in 11.9% of them. Investigation of outpatients revealed that HMPV infections occurred in individuals of all ages but were most prevalent in children (0–4 years) and the elderly (>60 years). The most present clinical features of HMPV infections were cough, bronchitis, fever/shivers and pneumonia. About two thirds of HMPV-positive samples were detected in February and March throughout the study period. Molecular characterization of HMPV revealed a complex cyclic pattern of group dominance where HMPV subgroup A and B viruses predominated in general for three consecutive seasons. German HMPV represented all genetic lineages including A1, A2, B1, B2, sub-clusters A2a and A2b. For Germany, not only time-dependent circulation of lineages and sub-clusters was observed but also co-circulation of two or three predominant lineages. Two newly emerging amino acid substitutions (positions 223 and 280) of lineage B2 were detected in seven German HMPV sequences. Our study gives new insights into the molecular epidemiology of HMPV in in- and outpatients over a time period of 10 years for the first time. It is one of only few long-term surveillance studies in Europe, and allows comparative molecular analyses of HMPV circulating worldwide. PMID:24505479

  2. Climate forcing and Neanderthal extinction in Southern Iberia: insights from a multiproxy marine record

    NASA Astrophysics Data System (ADS)

    Jiménez-Espejo, Francisco J.; Martínez-Ruiz, Francisca; Finlayson, Clive; Paytan, Adina; Sakamoto, Tatsuhiko; Ortega-Huertas, Miguel; Finlayson, Geraldine; Iijima, Koichi; Gallego-Torres, David; Fa, Darren

    2007-04-01

    Paleoclimate records from the western Mediterranean have been used to further understand the role of climatic changes in the replacement of archaic human populations inhabiting South Iberia. Marine sediments from the Balearic basin (ODP Site 975) was analysed at high resolution to obtain both geochemical and mineralogical data. These data were compared with climate records from nearby areas. Baexcces was used to characterize marine productivity and then related to climatic variability. Since variations in productivity were the consequence of climatic oscillations, climate/productivity events have been established. Sedimentary regime, primary marine productivity and oxygen conditions at the time of population replacement were reconstructed by means of a multiproxy approach. Climatic/oceanographic variations correlate well with Homo spatial and occupational patterns in Southern Iberia. It was found that low ventilation (U/Th), high river supply (Mg/Al), low aridity (Zr/Al) and low values of Baexcess coefficient of variation, may be linked with Neanderthal hospitable conditions. We attempt to support recent findings which claim that Neanderthals populations continued to inhabit southern Iberia between 30 and ˜28 ky cal BP and that this persistence was due to the specific characteristics of South Iberian climatic refugia. Comparisons of our data with other marine and continental records appear to indicate that conditions in South Iberia were highly inhospitable at ˜24 ky cal BP. Thus, it is proposed that the final disappearance of Neanderthals in this region could be linked with these extreme conditions.

  3. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data.

    PubMed

    González-Andrade, Martin; Rodríguez-Sotres, Rogelio; Madariaga-Mazón, Abraham; Rivera-Chávez, José; Mata, Rachel; Sosa-Peinado, Alejandro; Del Pozo-Yauner, Luis; Arias-Olguín, Imilla I

    2016-01-01

    In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.

  4. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes

    PubMed Central

    Bo, Zheng; Yang, Huachao; Zhang, Shuo; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2015-01-01

    Vertically-oriented graphenes (VGs) are promising active materials for electric double layer capacitors (EDLCs) due to their unique morphological and structural features. This study, for the first time, reports the molecular dynamics (MD) simulations on aqueous NaCl electrolytes confined within VG channels with different surface charge densities and channel widths. Simulation results show that the accessibility of ions and the structure of EDLCs are determined by the ion type/size, surface charging, and VG channel width. For relatively narrow VG channels with the same width, the threshold charge density (to compensate the energy penalty for shedding hydration shell) and the dehydration rate of Cl− ions are larger than those of Na+ ions. To achieve the highest ion concentration coefficient, the effective VG channel width should be between the crystal and hydration diameters of the ions. The results are further quantified and elucidated by calculating the electrolyte density profiles. The molecular insights obtained in the current work are useful in guiding the design and fabrication of VGs for advancing their EDLC applications. PMID:26424365

  5. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

    PubMed Central

    2016-01-01

    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo. PMID:27267364

  6. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view. PMID:26989626

  7. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    PubMed Central

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2015-01-01

    Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features. PMID:25653592

  8. Molecular level activation insights from a NR2A/NR2B agonist.

    PubMed

    Ieong Tou, Weng; Chang, Su-Sen; Wu, Dongchuan; Lai, Ted Weita; Wang, Yu Tian; Hsu, Chung Y; Chen, Calvin Yu-Chian

    2014-01-01

    N-methyl D-aspartate receptors (NMDARs), a subclass of glutamate receptors have broad actions in neural transmission for major brain functions. Overactivation of NMDARs leading to "excitotoxicity" is the underlying mechanism of neuronal death in a number of neurological diseases, especially stroke. Much research effort has been directed toward developing pharmacological agents to modulate NMDAR actions for treating neurological diseases, in particular stroke. Here, we report that Alliin, a sulfoxide in fresh garlic, exhibits affinity toward NR2A as well as NR2B receptors based on virtual screening. Biological activities of Alliin on these two receptors were confirmed in electrophysiological studies. Ligand-binding site closure, a structural change precluding ion channel opening, was observed with Alliin during 100 ns molecular dynamics simulation. Alliin interactions with NR2A and NR2B suggest that residues E/A413, H485, T690, and Y730 may play important roles in the conformation shift. Activation of NR2A and NR2B by Alliin can be differentiated from that caused by glutamate, the endogenous neurotransmitter. These characteristic molecular features in NR2A and NR2B activation provide insight into structural requirements for future development of novel drugs with selective interaction with NR2A and NR2B for treating neurological diseases, particularly stroke.

  9. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.

    PubMed

    Barbe, Sophie; Lafaquière, Vincent; Guieysse, David; Monsan, Pierre; Remaud-Siméon, Magali; André, Isabelle

    2009-11-15

    The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so-called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position-restrained MD simulations. Our conclusions indicate that the sole mobility of alpha9 helix side-chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by alpha5 helix movement. The role of selected alpha5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase.

  10. H2S biosynthesis and catabolism: new insights from molecular studies.

    PubMed

    Rose, Peter; Moore, Philip K; Zhu, Yi Zhun

    2016-11-14

    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.

  11. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view.

    PubMed

    Bachère, Evelyne; Rosa, Rafael Diego; Schmitt, Paulina; Poirier, Aurore C; Merou, Nicolas; Charrière, Guillaume M; Destoumieux-Garzón, Delphine

    2015-09-01

    Oysters are sessile filter feeders that live in close association with abundant and diverse communities of microorganisms that form the oyster microbiota. In such an association, cellular and molecular mechanisms have evolved to maintain oyster homeostasis upon stressful conditions including infection and changing environments. We give here cellular and molecular insights into the Crassostrea gigas antimicrobial defense system with focus on antimicrobial peptides and proteins (AMPs). This review highlights the central role of the hemocytes in the modulation and control of oyster antimicrobial response. As vehicles for AMPs and other antimicrobial effectors, including reactive oxygen species (ROS), and together with epithelia, hemocytes provide the oyster with local defense reactions instead of systemic humoral ones. These reactions are largely based on phagocytosis but also, as recently described, on the extracellular release of antimicrobial histones (ETosis) which is triggered by ROS. Thus, ROS can signal danger and activate cellular responses in the oyster. From the current literature, AMP production/release could serve similar functions. We provide also new lights on the oyster genetic background that underlies a great diversity of AMP sequences but also an extraordinary individual polymorphism of AMP gene expression. We discuss here how this polymorphism could generate new immune functions, new pathogen resistances or support individual adaptation to environmental stresses.

  12. First insight into the molecular epidemiology of Mycobacterium tuberculosis in Santa Catarina, southern Brazil.

    PubMed

    Nogueira, Christiane Lourenço; Prim, Rodrigo Ivan; Senna, Simone Gonçalves; Rovaris, Darcita Büerger; Maurici, Rosemeri; Rossetti, Maria Lúcia; Couvin, David; Rastogi, Nalin; Bazzo, Maria Luiza

    2016-03-01

    Molecular epidemiology of Mycobacterium tuberculosis is useful for understanding disease transmission dynamics, and to establish strategic measures for TB control and prevention. The aim of this study was to analyze clinical, epidemiological and molecular characteristics of MTBC clinical isolates from Santa Catarina state, southern Brazil. During one-year period, 406 clinical isolates of MTBC were collected from Central Laboratory of Public Health and typed by spoligotyping. Demographic and clinical data were collected from the Brazilian National Mandatory Disease Reporting System. The majority of cases occurred in highest population densities regions and about 50% had some condition associated with TB. Among all isolates, 5.7% were MDR, which showed association with drug addiction. LAM was the most predominant lineage with 47.5%, followed by the T superfamily with 25.9% and Haarlem with 12.3%. The MST showed two major groups: the first was formed mainly by the LAM lineage and the second was mainly formed by the T and Haarlem lineages. Others lineages were distributed in peripheral positions. This study provides the first insight into the population structure of M. tuberculosis in SC State. Spoligotyping and other genotyping analyses are important to establish strategic measures for TB control and prevention.

  13. Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions.

    PubMed

    Kirubakaran, Palani; Kothandan, Gugan; Cho, Seung J; Muthusamy, Karthikeyan

    2014-02-01

    Tankyrases (TNKS) belong to the poly(ADP-ribose)polymerase (PARP) protein super family and play a vital role in the Wnt/β-catenin signaling pathway. TNKS is a potential target for therapeutic intervention against various cancers, heritable diseases (e.g. cherubism) and implications in the replication of herpes simplex virus (HSV). The recent discovery of the structure of TNKS with an IWR1 inhibitor has provided insight into the binding modes which are specific for the TNKS protein which will aid in the development of drugs that are specific for the TNKS protein. The current study investigates molecular interactions between the induced pocket of TNKS1 and TNKS2 with an IWR1 compound using computational approaches. Molecular docking analysis of IWR1 at the induced pocket of TNKS1 and TNKS2 was performed. The resulting protein-ligand complexes were simulated for a timescale of 100 ns. Results revealed the stable binding of IWR1 at the induced pocket of TNKS1 and TNKS2 proteins. Apart from active site amino acids, π-π stack paring interactions were also crucial for the protein-ligand binding and stability of the complex. Further, energy-optimized pharmacophore mapping was performed and the resulting pharmacophore model contained a four (TNKS1-IWR1) and five (TNKS2-IWR1) featured sites. Based on the pharmacophore models, the best inhibitors were screened from the ZINC natural product compound database and these could be used as potential drugs against TNKS1 and TNKS2.

  14. How does joint remodeling work?: new insights in the molecular regulation of the architecture of joints.

    PubMed

    Schett, Georg

    2007-01-01

    Remodeling of joints is a key feature of inflammatory and degenerative joint disease. Bone erosion, cartilage degeneration and growth of bony spurs termed osteophytes are key features of structural joint pathology in the course of arthritis, which lead to impairment of joint function. Understanding their molecular mechanisms is essential to tailor targeted therapeutic approaches to protect joint architecture from inflammatory and mechanical stress. This addendum summarizes the new insights in the molecular regulation of bone formation in the joint and its relation to bone resorption. It describes how inflammatory cytokines impair bone formation and block the repair response of joints towards inflammatory stimuli. It particularly points out the key role of Dickkopf-1 protein, a regulator of the Wingless signaling and inhibitor of bone formation. This new link between inflammation and bone formation is also crucial for explaining the generation of osteophytes, bony spurs along joints, which are characterized by new bone and cartilage formation. This mechanism is largely dependent on an activation of wingless protein signaling and can lead to complete joint fusion. This addendum summarized the current concepts of joint remodeling in the limelight of these new findings.

  15. Selective Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Binding Mode Insights from Molecular Dynamics Simulations

    PubMed Central

    Huang, He; Ji, Haitao; Li, Huiying; Jing, Qing; Labby, Kristin Jansen; Martásek, Pavel; Roman, Linda J.; Poulos, Thomas L.; Silverman, Richard B.

    2012-01-01

    The reduction of pathophysiologic levels of nitric oxide through inhibition of neuronal nitric oxide synthase (nNOS) has the potential to be therapeutically beneficial in various neurodegenerative diseases. We have developed a series of pyrrolidine-based nNOS inhibitors that exhibit excellent potencies and isoform selectivities (J. Am. Chem. Soc. 2010, 132, 5437). However, there are still important challenges, such as how to decrease the multiple positive charges derived from basic amino groups, which contribute to poor bioavailability, without losing potency and/or selectivity. Here we present an interdisciplinary study combining molecular docking, crystallography, molecular dynamics simulations, synthesis, and enzymology to explore potential pharmacophoric features of nNOS inhibitors and to design potent and selective monocationic nNOS inhibitors. The simulation results indicate that different hydrogen bond patterns, electrostatic interactions, hydrophobic interactions, and a water molecule bridge are key factors for stabilizing ligands and controlling ligand orientation. We find that a heteroatom in the aromatic head or linker chain of the ligand provides additional stability and blocks the substrate binding pocket. Finally, the computational insights are experimentally validated with double-headed pyridine analogs. The compounds reported here are among the most potent and selective monocationic pyrrolidine-based nNOS inhibitors reported to date, and 10 shows improved membrane permeability. PMID:22731813

  16. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability

    NASA Astrophysics Data System (ADS)

    Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent

    2016-12-01

    Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.

  17. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability

    PubMed Central

    Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent

    2016-01-01

    Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity. PMID:27917893

  18. The Psychology of Climate Change Communication - Insights from the Center for Research on Environmental Decisions (CRED) (Invited)

    NASA Astrophysics Data System (ADS)

    Marx, S.

    2010-12-01

    social goals in favor or self interest; early involvement of stakeholders through participatory processes can help identify key concerns and information needs which can then be addressed in a tailored approach; taking advantage of default effects can make it easier for people to choose environmentally and socially beneficial options. Using research into the reactions of groups as disparate as African farmers and conservative U.S. voters, we offer insights on how scientists, educators, journalists and others can effectively connect with wider audiences. The communication principles presented in this talk can be applied beyond climate change and to science communication in general.

  19. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are

  20. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food.

    PubMed

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are

  1. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction.

    PubMed

    Svenning, Jens-Christian; Fløjgaard, Camilla; Baselga, Andrés

    2011-03-01

    1. Environmental sorting, historical factors and neutral dynamics may all drive beta diversity (change in species composition across space), but their relative importance remains unresolved. In the case of European mammals, key potential drivers of large-scale beta diversity include current climate, neutral dynamics and two historical factors: Pleistocene glaciations and peninsular dynamics (immigration from extra-regional eastern faunal source areas and inter-linked relictual survival and evolutionary differentiation in isolated areas). 2. We assessed the relative importance of these drivers using a novel analytical framework to deconstruct beta diversity of non-volant mammals in Europe (138 species) into its turnover (change in species composition because of species replacements) and nestedness components (change in species composition because of species richness differences) at continental and regional (250,000 km(2) ) scales. 3. We found continental-scale mammal beta diversity to be mainly caused by spatial turnover (99·9%), with only a small contribution (0·1%) from nestedness. 4. Current climate emerged as an important driver of beta diversity, given the strong continental-scale turnover, particularly in north-south direction, i.e., in line with the latitudinal climate gradient, and, more directly, the strong correlation of climate with spatial turnover at both continental and regional scales. 5. However, there was also evidence for the importance of non-climatic drivers. Notably, the compositional variation purely accounted for by space was greater than that purely accounted for by environment for both the turnover and the nestedness component of beta diversity. Furthermore, the strong longitudinal turnover within Southern Europe is in accordance with the region's long-term climatic stability having allowed multiple refugia and local evolutionary diversification. As expected from peninsular dynamics, there was increasing dissimilarity with

  2. Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries.

    PubMed

    Polley, Lydden; Thompson, R C Andrew

    2009-06-01

    For human, domestic animal and wildlife health, key effects of directional climate change include the risk of the altered occurrence of infectious diseases. Many parasite zoonoses have high potential for vulnerability to the new climate, in part because their free-living life-cycle stages and ectothermic hosts are directly exposed to climatic conditions. For these zoonoses, climate change can shift boundaries for ecosystem components and processes integral to parasite transmission and persistence, and these shifts can impact host health. Vulnerable boundaries include those for spatial distributions, host-parasite assemblages, demographic rates, life-cycle phenologies, associations within ecosystems, virulence, and patterns of infection and disease. This review describes these boundary shifts and how molecular techniques can be applied to defining the new boundaries.

  3. Migration in the context of vulnerability and adaptation to climate change: insights from analogues

    PubMed Central

    McLeman, Robert A.; Hunter, Lori M.

    2011-01-01

    Migration is one of the variety of ways by which human populations adapt to environmental changes. The study of migration in the context of anthropogenic climate change is often approached using the concept of vulnerability and its key functional elements: exposure, system sensitivity, and adaptive capacity. This article explores the interaction of climate change and vulnerability through review of case studies of dry-season migration in the West African Sahel, hurricane-related population displacements in the Caribbean basin, winter migration of ‘snowbirds’ to the US Sun-belt, and 1930s drought migration on the North American Great Plains. These examples are then used as analogues for identifying general causal, temporal, and spatial dimensions of climate migration, along with potential considerations for policy-making and future research needs. PMID:22022342

  4. Mechanistic insights into the effects of climate change on larval cod.

    PubMed

    Kristiansen, Trond; Stock, Charles; Drinkwater, Kenneth F; Curchitser, Enrique N

    2014-05-01

    Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual-based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM-projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950-1999 and 2050-2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050-2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold-water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large-scale assessment of the impacts of climate change on larval cod in the North Atlantic.

  5. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations

    PubMed Central

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the

  6. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations.

    PubMed

    Garcia-Castellanos, Daniel; Jiménez-Munt, Ivone

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the

  7. Informing climate change adaptation with insights from famine early warning (Invited)

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Verdin, J. P.

    2010-12-01

    Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the

  8. Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories

    NASA Astrophysics Data System (ADS)

    Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.

    2014-12-01

    Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly

  9. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    SciTech Connect

    Wyrick, Jonathan; Bartels, Ludwig; Einstein, T. L.

    2015-03-14

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species’ diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  10. Climate change threatens archaeologically significant ice patches: insights into their age, internal structure, mass balance and climate sensitivity

    NASA Astrophysics Data System (ADS)

    Strand Ødegård, Rune; Nesje, Atle; Isaksen, Ketil; Andreassen, Liss Marie; Eiken, Trond; Schwikowski, Margit; Uglietti, Chiara

    2017-01-01

    Despite numerous spectacular archaeological discoveries worldwide related to melting ice patches and the emerging field of glacial archaeology, governing processes related to ice patch development during the Holocene and their sensitivity to climate change are still largely unexplored. Here we present new results from an extensive 6-year (2009-2015) field experiment at the Juvfonne ice patch in Jotunheimen in central southern Norway. Our results show that the ice patch has existed continuously since the late Mesolithic period. Organic-rich layers and carbonaceous aerosols embedded in clear ice show ages spanning from modern at the surface to ca. 7600 cal years BP at the bottom. This is the oldest dating of ice in mainland Norway. The expanding ice patch covered moss mats appearing along the margin of Juvfonne about 2000 years ago. During the study period, the mass balance record showed a strong negative balance, and the annual balance is highly asymmetric over short distances. Snow accumulation is poorly correlated with estimated winter precipitation, and single storm events may contribute significantly to the total winter balance. Snow accumulation is approx. 20 % higher in the frontal area compared to the upper central part of the ice patch. There is sufficient meltwater to bring the permeable snowpack to an isothermal state within a few weeks in early summer. Below the seasonal snowpack, ice temperatures are between -2 and -4 °C. Juvfonne has clear ice stratification of isochronic origin.

  11. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed.

  12. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants.

    PubMed

    Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D; Pape, Jean William; Nair, G Balakrish; Kim, Dong Wook

    2014-09-01

    Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.

  13. Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae).

    PubMed

    Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G; González-Martínez, Santiago C

    2015-03-01

    Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.

  14. Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)

    PubMed Central

    Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H.; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G.; González-Martínez, Santiago C.

    2015-01-01

    Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP–climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. PMID:25549630

  15. Investigating the Mechanism of Peptide Aggregation: Insights from Mixed Monte Carlo-Molecular Dynamics Simulations

    PubMed Central

    Meli, Massimiliano; Morra, Giulia; Colombo, Giorgio

    2008-01-01

    The early stages of peptide aggregation are currently not accessible by experimental techniques at atomic resolution. In this article, we address this problem through the application of a mixed simulation scheme in which a preliminary coarse-grained Monte Carlo analysis of the free-energy landscape is used to identify representative conformations of the aggregates and subsequent all-atom molecular dynamics simulations are used to analyze in detail possible pathways for the stabilization of oligomers. This protocol was applied to systems consisting of multiple copies of the model peptide GNNQQNY, whose detailed structures in the aggregated state have been recently solved in another study. The analysis of the various trajectories provides dynamical and structural insight into the details of aggregation. In particular, the simulations suggest a hierarchical mechanism characterized by the initial formation of stable parallel β-sheet dimers and identify the formation of the polar zipper motif as a fundamental feature for the stabilization of initial oligomers. Simulation results are consistent with experimentally derived observations and provide an atomically detailed view of the putative initial stages of fibril formation. PMID:18263661

  16. UV Photodissociation of Proline-containing Peptide Ions: Insights from Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe

    2015-03-01

    UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S2 and S3, lie close to 213 nm. Non-adiabatic MD simulation starting from S2 and S3 shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.

  17. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer

    PubMed Central

    Dal Pra, Alan; Locke, Jennifer A.; Borst, Gerben; Supiot, Stephane; Bristow, Robert G.

    2016-01-01

    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa. PMID:26909338

  18. The topology and dynamics of protein complexes: insights from intra- molecular network theory.

    PubMed

    Hu, Guang; Zhou, Jianhong; Yan, Wenying; Chen, Jiajia; Shen, Bairong

    2013-03-01

    Intra-molecular interactions within complex systems play a pivotal role in the biological function. They form a major challenge to computational structural proteomics. The network paradigm treats any system as a set of nodes linked by edges corresponding to the relations existing between the nodes. It offers a computationally efficient tool to meet this challenge. Here, we review the recent advances in the use of network theory to study the topology and dynamics of protein- ligand and protein-nucleic acid complexes. The study of protein complexes networks not only involves the topological classification in term of network parameters, but also reveals the consistent picture of intrinsic functional dynamics. Current dynamical analysis focuses on a plethora of functional phenomena: the process of allosteric communication, the binding induced conformational changes, prediction and identification of binding sites of protein complexes, which will give insights into intra-protein complexes interactions. Furthermore, such computational results may elucidate a variety of known biological processes and experimental data, and thereby demonstrate a huge potential for applications such as drug design and functional genomics. Finally we describe some web-based resources for protein complexes, as well as protein network servers and related bioinformatics tools.

  19. Molecular Insight into the Line Tension of Bilayer Membranes Containing Hybrid Polyunsaturated Lipids.

    PubMed

    Rosetti, Carla M; Montich, Guillermo G; Pastorino, Claudio

    2017-02-23

    Line tension (γ) is a key parameter for the structure and dynamics of membrane domains. It was proposed that hybrid lipids, with mixed saturated and unsaturated acyl chains, participate in the relaxation of γ through different mechanisms. In this work, we used molecular dynamics simulations of the coarse-grained MARTINI model to measure γ in liquid-ordered-liquid-disordered (Lo-Ld) membranes, with increasingly larger relative proportion of the hybrid polyunsaturated lipid PAPC (4:0-5:4PC) to DAPC (di5:4PC) (i.e., XH). We also calculated an elastic contribution to γ by the Lo-Ld thickness mismatch, tilt moduli, and bending moduli, as predicted by theory. We found that an increase in XH decreased the overall γ value and the elastic contribution to line tension. The effect on the elastic line tension is driven by a reduced hydrophobic mismatch. Changes in the elastic constants of the phases due to an increase in XH produced a slightly larger elastic γ term. In addition to this elastic energy, other major contributions to γ are found in these model membranes. Increasing XH decreases both elastic and nonelastic contributions to γ. Finally, PAPC also behaves as a linactant, relaxing γ through an interfacial effect, as predicted by theoretical results. This study gives insight into the actual contribution of distinct energy terms to γ in bilayers containing polyunsaturated hybrid lipids.

  20. Molecular Insights into Plant-Microbial Processes and Carbon Storage in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Romero, I. C.; Ziegler, S. E.; Fogel, M.; Jacobson, M.; Fuhrman, J. A.; Capone, D. G.

    2009-12-01

    Mangrove forests, in tropical and subtropical coastal zones, are among the most productive ecosystems, representing a significant global carbon sink. We report new molecular insights into the functional relationship among microorganisms, mangrove trees and sediment geochemistry. The interactions among these elements were studied in peat-based mangrove sediments (Twin Cays, Belize) subjected to a long-term fertilization experiment with N and P, providing an analog for eutrophication. The composition and δ13C of bacterial PLFA showed that bacteria and mangrove trees had similar nutrient limitation patterns (N in the fringe mangrove zone, P in the interior zone), and that fertilization with N or P can affect bacterial metabolic processes and bacterial carbon uptake (from diverse mangrove sources including leaf litter, live and dead roots). PCR amplified nifH genes showed a high diversity (26% nifH novel clones) and a remarkable spatial and temporal variability in N-fixing microbial populations in the rhizosphere, varying primarily with the abundance of dead roots, PO4-3 and H2S concentrations in natural and fertilized environments. Our results indicate that eutrophication of mangrove ecosystems has the potential to alter microbial organic matter remineralization and carbon release with important implications for the coastal carbon budget. In addition, we will present preliminary data from a new study exploring the modern calibration of carbon and hydrogen isotopes of plant leaf waxes as a proxy recorder of past environmental change in mangrove ecosystems.

  1. Mechanism for cocaine blocking the transport of dopamine: insights from molecular modeling and dynamics simulations.

    PubMed

    Huang, Xiaoqin; Gu, Howard H; Zhan, Chang-Guo

    2009-11-12

    Molecular modeling and dynamics simulations have been performed to study how cocaine inhibits dopamine transporter (DAT) for the transport of dopamine. The computationally determined DAT-ligand binding mode is totally different from the previously proposed overlap binding mode in which cocaine- and dopamine-binding sites are the same (Beuming, T.; et al. Nat. Neurosci. 2008, 11, 780-789). The new cocaine-binding site does not overlap with, but is close to, the dopamine-binding site. Analysis of all results reveals that when cocaine binds to DAT, the initial binding site is likely the one modeled in this study because this binding site can naturally accommodate cocaine. Then cocaine may move to the dopamine-binding site after DAT makes some necessary conformational change and expands the binding site cavity. It has been demonstrated that cocaine may inhibit the transport of dopamine through both blocking the initial DAT-dopamine binding and reducing the kinetic turnover of the transporter following the DAT-dopamine binding. The relative contributions to the phenomenological inhibition of the transport of dopamine from blocking the initial binding and reducing the kinetic turnover can be different in different types of assays. The obtained general structural and mechanistic insights are consistent with available experimental data and could be valuable for guiding future studies toward understanding cocaine's inhibiting of other transporters.

  2. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations.

    PubMed

    Feliciano, G T; Steidl, R J; Reguera, G

    2015-09-14

    Geobacter sulfurreducens (GS) electronically connects with extracellular electron acceptors using conductive protein filaments or pili. To gain insights into their role as biological nanowires, we investigated the structural dynamics of the GS pilus in solution via molecular dynamics simulations. In the model, all of the pilin's aromatics clustered as a right-handed helical band along the pilus, maintaining inter-aromatic distances and dimer configurations optimal for multistep hopping. The aromatics were interspersed within the regions of highest negative potential, which influenced the type and configuration of the aromatic contacts and the rates of electron transfer. Small foci of positive potential were also present but were neutralized within uncharged regions, thus minimizing charge trapping. Consistent with the model predictions, mutant strains with reduced aromatic contacts or negative potentials had defects in pili functions such as the reduction of Fe(III) oxides and electrodes. The results therefore support the notion of a pilus fiber evolved to function as an electronic conduit between the cell and extracellular electron acceptors.

  3. Insights into Medium-chain Acyl-CoA Dehydrogenase Structure by Molecular Dynamics Simulations.

    PubMed

    Bonito, Cátia A; Leandro, Paula; Ventura, Fátima V; Guedes, Rita C

    2016-08-01

    The medium-chain acyl-CoA dehydrogenase (MCAD) is a mitochondrial enzyme that catalyzes the first step of mitochondrial fatty acid β-oxidation (mFAO) pathway. Its deficiency is the most common genetic disorder of mFAO. Many of the MCAD disease-causing variants, including the most common p.K304E variant, show loss of function due to protein misfolding. Herein, we used molecular dynamics simulations to provide insights into the structural stability and dynamic behavior of MCAD wild-type (MCADwt) and validate a structure that would allow reliable new studies on its variants. Our results revealed that in both proteins the flavin adenine dinucleotide (FAD) has an important structural role on the tetramer stability and also in maintaining the volume of the enzyme catalytic pockets. We confirmed that the presence of substrate changes the dynamics of the catalytic pockets and increases FAD affinity. A comparison between the porcine MCADwt (pMCADwt) and human MCADwt (hMCADwt) structures revealed that both proteins are essentially similar and that the reversion of the double mutant E376G/T255E of hMCAD enzyme does not affect the structure of the protein neither its behavior in simulation. Our validated hMCADwt structure is crucial for complementing and accelerating the experimental studies aiming for the discovery and development of potential stabilizers of MCAD variants as candidates for the treatment of MCAD deficiency (MCADD).

  4. Water oxidation with molecularly defined iridium complexes: insights into homogeneous versus heterogeneous catalysis.

    PubMed

    Junge, Henrik; Marquet, Nicolas; Kammer, Anja; Denurra, Stefania; Bauer, Matthias; Wohlrab, Sebastian; Gärtner, Felix; Pohl, Marga-Martina; Spannenberg, Anke; Gladiali, Serafino; Beller, Matthias

    2012-10-01

    Molecularly defined Ir complexes and different samples of supported IrO(2) nanoparticles have been tested and compared in the catalytic water oxidation with cerium ammonium nitrate (CAN) as the oxidant. By comparing the activity of nano-scaled supported IrO(2) particles to the one of organometallic complexes it is shown that the overall activity of the homogeneous Ir precursors is defined by both the formation of the homogeneous active species and its conversion to Ir(IV)-oxo nanoparticles. In the first phase of the reaction the activity is dominated by the homogeneous active species. With increasing reaction time, the influence of nano-sized Ir-oxo particles becomes more evident. Notably, the different conversion rates of the homogeneous precursor into the active species as well as the conversion into Ir-oxo nanoparticles and the different particle sizes have a significant influence on the overall activity. In addition to the homogeneous systems, IrO(2)@MCM-41 has also been synthesized, which contains stabilized nanoparticles of between 1 and 3 nm in size. This latter system shows a similar activity to IrCl(3)⋅xH(2)O and complexes 4 and 5. Mechanistic insights were obtained by in situ X-ray absorption spectroscopy and scanning transmission electron microscopy.

  5. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    USGS Publications Warehouse

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.

  6. Atractaspis aterrima Toxins: The First Insight into the Molecular Evolution of Venom in Side-Stabbers

    PubMed Central

    Terrat, Yves; Sunagar, Kartik; Fry, Bryan G.; Jackson, Timothy N. W.; Scheib, Holger; Fourmy, Rudy; Verdenaud, Marion; Blanchet, Guillaume; Antunes, Agostinho; Ducancel, Frederic

    2013-01-01

    Although snake venoms have been the subject of intense research, primarily because of their tremendous potential as a bioresource for design and development of therapeutic compounds, some specific groups of snakes, such as the genus Atractaspis, have been completely neglected. To date only limited number of toxins, such as sarafotoxins have been well characterized from this lineage. In order to investigate the molecular diversity of venom from Atractaspis aterrima—the slender burrowing asp, we utilized a high-throughput transcriptomic approach completed with an original bioinformatics analysis pipeline. Surprisingly, we found that Sarafotoxins do not constitute the major ingredient of the transcriptomic cocktail; rather a large number of previously well-characterized snake venom-components were identified. Notably, we recovered a large diversity of three-finger toxins (3FTxs), which were found to have evolved under the significant influence of positive selection. From the normalized and non-normalized transcriptome libraries, we were able to evaluate the relative abundance of the different toxin groups, uncover rare transcripts, and gain new insight into the transcriptomic machinery. In addition to previously characterized toxin families, we were able to detect numerous highly-transcribed compounds that possess all the key features of venom-components and may constitute new classes of toxins. PMID:24169588

  7. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  8. Improved insights into protein thermal stability: from the molecular to the structurome scale.

    PubMed

    Pucci, Fabrizio; Rooman, Marianne

    2016-11-13

    Despite the intense efforts of the last decades to understand the thermal stability of proteins, the mechanisms responsible for its modulation still remain debated. In this investigation, we tackle this issue by showing how a multiscale perspective can yield new insights. With the help of temperature-dependent statistical potentials, we analysed some amino acid interactions at the molecular level, which are suggested to be relevant for the enhancement of thermal resistance. We then investigated the thermal stability at the protein level by quantifying its modification upon amino acid substitutions. Finally, a large scale analysis of protein stability-at the structurome level-contributed to the clarification of the relation between stability and natural evolution, thereby showing that the mutational profile of proteins differs according to their thermal properties. Some considerations on how the multiscale approach could help in unravelling the protein stability mechanisms are briefly discussed.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  9. New Insights into Molecular Mechanisms of Immune Complex-Induced Injury in Lung

    PubMed Central

    Ward, Peter A.; Fattahi, Fatemeh; Bosmann, Markus

    2016-01-01

    While the phlogistic activities of IgM or IgG immune complexes (ICs) have been well established as complement-activating agents and seem likely to play important roles in humans with vasculitis, certain types of glomerulonephritis as well as in a variety of autoimmune diseases, the predominant clinical strategies have involved the use of immunosuppressive or anti-inflammatory drugs. Over the past decade, new insights into molecular events developing during IC models in rodents have identified new phlogistic products that may be candidates for therapeutic blockade. Extracellular histones, located in the web-like structures of neutrophil extracellular traps, are released from complement-activated polymorphonuclear neutrophils (PMNs) downstream of IC deposition. Extracellular histones appear to be a new class of highly tissue-damaging products derived from complement-activated PMNs. Histones have also been discovered in cell-free broncho-alveolar lavage fluids from humans with acute respiratory distress syndrome (ARDS). Recent studies emphasize that in the setting of ARDS-like reactions in rodents, extracellular histones are released and are exceedingly proinflammatory, tissue damaging, and prothrombotic. Such studies suggest that in humans with ARDS, extracellular histones may represent therapeutic targets for blockade. PMID:27014266

  10. Novel insights from genetic and molecular characterization of the human clock.

    PubMed

    Ptácek, L J; Jones, C R; Fu, Y-H

    2007-01-01

    Biological rhythms govern the ebb and flow of life on planet Earth. Animals have an internal timekeeping mechanism that precisely regulates 24-hour rhythms of body function and behavior and synchronizes them to the day/night cycle. Circadian pacemakers trigger behavioral and physiological processes that dictate our daily rhythms. Despite the importance of the circadian clock to all aspects of our physiology and behavior, the opportunity to probe the human circadian clock only recently became possible with the recognition of Mendelian circadian variants in people (familial advanced sleep phase syndrome, FASPS). We have now cloned several genes and identified mutations causing FASPS. Study of these genes and the proteins they encode and engineering of the human mutations into mouse models are allowing study of this fascinating phenotype and yielding novel insights into circadian regulation in humans. Ultimately, such work will allow us to understand the similarities and differences between the human clock and those of model organisms. In addition, recent studies have also linked disruption of the circadian clock with numerous ailments, including cancer, cardiovascular diseases, asthma, and learning disorders. Thus, studying the molecular mechanism of human circadian rhythmicity will have an enormous impact on our understanding of human health and disease. It should also lead to new strategies for pharmacological manipulation of the human clock to improve the treatment of jet lag, various clock-related sleep and psychiatric disorders, and other human diseases.

  11. Dissecting the molecular structure of the Orion B cloud: insight from principal component analysis

    NASA Astrophysics Data System (ADS)

    Gratier, Pierre; Bron, Emeric; Gerin, Maryvonne; Pety, Jérôme; Guzman, Viviana V.; Orkisz, Jan; Bardeau, Sébastien; Goicoechea, Javier R.; Le Petit, Franck; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Roueff, Evelyne; Sievers, Albrech; Tremblin, Pascal

    2017-03-01

    Context. The combination of wideband receivers and spectrometers currently available in (sub-)millimeter observatories deliver wide-field hyperspectral imaging of the interstellar medium. Tens of spectral lines can be observed over degree wide fields in about 50 h. This wealth of data calls for restating the physical questions about the interstellar medium in statistical terms. Aims: We aim to gain information on the physical structure of the interstellar medium from a statistical analysis of many lines from different species over a large field of view, without requiring detailed radiative transfer or astrochemical modeling. Methods: We coupled a non-linear rescaling of the data with one of the simplest multivariate analysis methods, namely the principal component analysis, to decompose the observed signal into components that we interpret first qualitatively and then quantitatively based on our deep knowledge of the observed region and of the astrochemistry at play. Results: We identify three principal components, linear compositions of line brightness temperatures, that are correlated at various levels with the column density, the volume density and the UV radiation field. Conclusions: When sampling a sufficiently diverse mixture of physical parameters, it is possible to decompose the molecular emission in order to gain physical insight on the observed interstellar medium. This opens a new avenue for future studies of the interstellar medium. Based on observations carried out at the IRAM-30 m single-dish telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  12. Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990-2010.

    PubMed

    Huai, Jianjun

    2016-01-01

    In many agricultural countries, development of rural livelihood through increasing capital is a major regional policy to adapt to climate change. However, the role of livelihood capital in reducing climatic vulnerability is uncertain. This study assesses vulnerability and identifies the effects of common capital indicators on it, using Australian wheat as an example. We calculate exposure (a climate index) and sensitivity (a wheat failure index) to measure vulnerability and classify the resilient and sensitive cases, and express adaptive capacity through financial, human, natural, physical, and social capital indicators for 12 regions in the Australian wheat-sheep production zone from 1991-2010. We identify relationships between 12 indicators of five types of capital and vulnerability with t-tests and six logistic models considering the capital indicator itself, its first-order lag and its square as dependent variables to test the hypothesis that a high level of each capital metric results in low vulnerability. Through differing adaptive capacities between resilient and sensitive groups, we found that only four of the 12 (e.g., the access to finance, cash income level, total crop gross revenues, and family share of farm income) relate to vulnerability, which challenges the hypothesis that increasing capital reduces vulnerability. We conclude that further empirical reexaminations are required to test the relationships between capital measures and vulnerability under the sustainable livelihood framework (SLF).

  13. Environmental gradients and grassland trait variation: Insight into the effects of climate change

    NASA Astrophysics Data System (ADS)

    Tardella, Federico M.; Piermarteri, Karina; Malatesta, Luca; Catorci, Andrea

    2016-10-01

    The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.

  14. Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, Aleix; Scott, Russell L.; James Shuttleworth, W.; Valdés, Juan B.

    2011-03-01

    SummaryThis paper presents an approach to quantify evapotranspiration under changing climates, using field observations, theoretical evaporation models and meteorological predictions from global climate models. We analyzed evaporation and meteorological data from three riparian sites located in a semi-arid watershed in southern Arizona USA and found that the surface resistance to water vapor transport was closely related to the vapor pressure deficit. From this, we developed a relatively simple daily conductance model and included a growing season index to accurately replicate the onset and the end of the growing season. After the model was calibrated with observations from January 2003 to December 2007, it was used to predict daily evapotranspiration rates from 2000 to 2100 using Penman-Monteith equation and meteorological projections from the IPCC fourth assessment report climate model runs. Results indicate that atmospheric demand will be greater and lead to increased reference crop evaporation, but evapotranspiration rates at the studied field sites will remain largely unchanged due to stomatal regulation. However, the length of the growing season will increase leading to a greater annual riparian water use. These findings of increased riparian water use and atmospheric demand, likely affecting recharge processes, will lead to greater groundwater deficits and decreased streamflow and have important implications for water management in semi-arid regions.

  15. Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010

    PubMed Central

    Huai, Jianjun

    2016-01-01

    In many agricultural countries, development of rural livelihood through increasing capital is a major regional policy to adapt to climate change. However, the role of livelihood capital in reducing climatic vulnerability is uncertain. This study assesses vulnerability and identifies the effects of common capital indicators on it, using Australian wheat as an example. We calculate exposure (a climate index) and sensitivity (a wheat failure index) to measure vulnerability and classify the resilient and sensitive cases, and express adaptive capacity through financial, human, natural, physical, and social capital indicators for 12 regions in the Australian wheat–sheep production zone from 1991–2010. We identify relationships between 12 indicators of five types of capital and vulnerability with t-tests and six logistic models considering the capital indicator itself, its first-order lag and its square as dependent variables to test the hypothesis that a high level of each capital metric results in low vulnerability. Through differing adaptive capacities between resilient and sensitive groups, we found that only four of the 12 (e.g., the access to finance, cash income level, total crop gross revenues, and family share of farm income) relate to vulnerability, which challenges the hypothesis that increasing capital reduces vulnerability. We conclude that further empirical reexaminations are required to test the relationships between capital measures and vulnerability under the sustainable livelihood framework (SLF). PMID:27022910

  16. Water accommodation on ice and organic surfaces: insights from environmental molecular beam experiments.

    PubMed

    Kong, Xiangrui; Thomson, Erik S; Papagiannakopoulos, Panos; Johansson, Sofia M; Pettersson, Jan B C

    2014-11-26

    Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.

  17. What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat

    PubMed Central

    Bryan, Brett A.; Huai, Jianjun; Connor, Jeff; Gao, Lei; King, Darran; Kandulu, John; Zhao, Gang

    2015-01-01

    Vulnerability assessments have often invoked sustainable livelihoods theory to support the quantification of adaptive capacity based on the availability of capital—social, human, physical, natural, and financial. However, the assumption that increased availability of these capitals confers greater adaptive capacity remains largely untested. We quantified the relationship between commonly used capital indicators and an empirical index of adaptive capacity (ACI) in the context of vulnerability of Australian wheat production to climate variability and change. We calculated ACI by comparing actual yields from farm survey data to climate-driven expected yields estimated by a crop model for 12 regions in Australia’s wheat-sheep zone from 1991–2010. We then compiled data for 24 typical indicators used in vulnerability analyses, spanning the five capitals. We analyzed the ACI and used regression techniques to identify related capital indicators. Between regions, mean ACI was not significantly different but variance over time was. ACI was higher in dry years and lower in wet years suggesting that farm adaptive strategies are geared towards mitigating losses rather than capitalizing on opportunity. Only six of the 24 capital indicators were significantly related to adaptive capacity in a way predicted by theory. Another four indicators were significantly related to adaptive capacity but of the opposite sign, countering our theory-driven expectation. We conclude that the deductive, theory-based use of capitals to define adaptive capacity and vulnerability should be more circumspect. Assessments need to be more evidence-based, first testing the relevance and influence of capital metrics on adaptive capacity for the specific system of interest. This will more effectively direct policy and targeting of investment to mitigate agro-climatic vulnerability. PMID:25668192

  18. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors.

    PubMed

    Dineshram, Ramadoss; Chandramouli, Kondethimmanahalli; Ko, Ginger Wai Kuen; Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen

    2016-06-01

    The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.

  19. Insights into Low-frequency Climate Dynamics from a Surface Temperature Reconstruction Spanning the Last 2,000 Years

    NASA Astrophysics Data System (ADS)

    Wang, J.; Emile-Geay, J.; McKay, N.; Guillot, D.

    2015-12-01

    Reconstructions of surface temperature over the past 2000 years extend our knowledge of temperature changes beyond the instrumental era, and thus allows for the characterization of climate variability on multidecadal to centennial timescales. This lends insight into our understanding and quantification of the influence of exogenous and endogenous global climate variability. In this study, we do so via a set of global temperature reconstructions based on the latest incarnation of the PAGES 2k global multi-proxy database (http://www.pages-igbp.org/ini/wg/2k-network/data/phase-2-data-status). Two climate field reconstruction (CFR) methods are employed: Gaussian graphical models embedded within the regularized EM algorithm (GraphEM, Guillot et al., 2015) and Canonical Correlation Analysis (CCA, Smerdon et al., 2010). We find a globally warm Medieval period, which was colder than the late twentieth-century by 0.5 C. With a probability of 87%, the 1961 - 1990 period was the warmest 40-year period in the past 2000 years in most regions, especially in the high latitudes of the Northern Hemisphere. We show that surface temperature has a robust large-scale cooling pattern shortly after a volcanic eruption; in particular, over the North Atlantic Ocean, the cooling can persist up to 3 years after an eruption. An El Niño-like response (~0.2 C) is also found in 2 and 3 years after an eruption. Solar irradiance forcing is found to be an important modulator of multidecadal climate variability, with the strongest solar response (0.25 C) in high latitude North America. These key features are echoed in multiple GCM simulations of the last millennium, though we find notable differences, in particular regarding the timing of the post-volcanic ENSO response, and the magnitude of the temperature response to solar irradiance forcing. The results suggest that there is no fundamental discrepancy between simulated and reconstructed climates of the last millennium, and thus lend credibility

  20. Late Oligocene to Late Miocene Antarctic Climate Reconstructions Using Molecular and Isotopic Biomarker Proxies

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Mckay, R. M.; Bendle, J. A.; Naish, T.; Levy, R. H.; Ventura, G. T.; Moossen, H. M.; Krishnan, S.; Pagani, M.

    2015-12-01

    Major climate and environmental changes occurred during late Oligocene to the late Miocene when atmospheric CO2 ranged between 500 and 300ppm, indicating threshold response of Antarctic ice sheets and climate to relatively modest CO2 variations. This implies that the southern high latitudes are highly sensitive to feedbacks associated with changes in global ice sheet and sea-ice extent, as well as terrestrial and marine ecosystems. This study focuses on two key intervals during the evolution of the Antarctic Ice Sheet: (1) The Late Oligocene and the Oligocene/Miocene boundary, when the East Antarctic Ice Sheet expanded close to present day volume following an extended period of inferred warmth. (2) The Mid-Miocene Climate Optimum (MMCO ~17-15 Ma), a period of global warmth and moderately elevated CO2 (350->500 ppm) which was subsequently followed by rapid cooling at 14-13.5 Ma. Reconstructions of climate and ice sheet variability, and thus an understanding of the various feedbacks that occurred during these intervals, are hampered by a lack of temperature and hydroclimate proxy data from the southern high latitudes. We present proxy climate reconstructions using terrestrial and marine organic biomarkers that provide new insights into Antarctica's climate evolution, using Antarctic drill cores and outcrop samples from a range of depositional settings. Bacterial ether-lipids have been analysed to determine terrestrial mean annual temperatures and soil pH (via the methylation and cyclisation indexes of branched tetraethers - MBT and CBT, respectively). Tetraether-lipids of crenarchaeota found in marine sediments sampled from continental shelves around Antarctica have been used to derive sea surface temperatures using the TEX86 index. Compound specific stable isotopes on n-alkanes sourced from terrestrial plants have been analysed to investigate changes in the hydrological and carbon cycles.

  1. The role of observational reference data for climate downscaling: Insights from the VALUE COST Action

    NASA Astrophysics Data System (ADS)

    Kotlarski, Sven; Gutiérrez, José M.; Boberg, Fredrik; Bosshard, Thomas; Cardoso, Rita M.; Herrera, Sixto; Maraun, Douglas; Mezghani, Abdelkader; Pagé, Christian; Räty, Olle; Stepanek, Petr; Soares, Pedro M. M.; Szabo, Peter

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research (http://www.value-cost.eu). A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of downscaling methods. Such assessments can be expected to crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling, observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. We here present a comprehensive assessment of the influence of uncertainties in observational reference data and of scale-related issues on several of the above-mentioned aspects. First, temperature and precipitation characteristics as simulated by a set of reanalysis-driven EURO-CORDEX RCM experiments are validated against three different gridded reference data products, namely (1) the EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. The analysis reveals a considerable influence of the choice of the reference data on the evaluation results, especially for precipitation. It is also illustrated how differences between the reference data sets influence the ranking of RCMs according to a comprehensive set of performance measures.

  2. Insights into scFv:drug binding using the molecular dynamics simulation and free energy calculation.

    PubMed

    Hu, Guodong; Zhang, Qinggang; Chen, L Y

    2011-08-01

    Molecular dynamics simulations and free energy calculation have been performed to study how the single-chain variable fragment (scFv) binds methamphetamine (METH) and amphetamine (AMP). The structures of the scFv:METH and the scFv:AMP complexes are analyzed by examining the time-dependence of their RMSDs, by analyzing the distance between some key atoms of the selected residues, and by comparing the averaged structures with their corresponding crystallographic structures. It is observed that binding an AMP to the scFv does not cause significant changes to the binding pocket of the scFv:ligand complex. The binding free energy of scFv:AMP without introducing an extra water into the binding pocket is much stronger than scFv:METH. This is against the first of the two scenarios postulated in the experimental work of Celikel et al. (Protein Science 18, 2336 (2009)). However, adding a water to the AMP (at the position of the methyl group of METH), the binding free energy of the scFv:AMP-H2O complex, is found to be significantly weaker than scFv:METH. This is consistent with the second of the two scenarios given by Celikel et al. Decomposition of the binding energy into ligand-residue pair interactions shows that two residues (Tyr175 and Tyr177) have nearly-zero interactions with AMP in the scFv:AMP-H2O complex, whereas their interactions with METH in the scFv:METH complex are as large as -0.8 and -0.74 kcal mol(-1). The insights gained from this study may be helpful in designing more potent antibodies in treating METH abuse.

  3. Dispersing perylene diimide/SWCNT hybrids: structural insights at the molecular level and fabricating advanced materials.

    PubMed

    Tsarfati, Yael; Strauss, Volker; Kuhri, Susanne; Krieg, Elisha; Weissman, Haim; Shimoni, Eyal; Baram, Jonathan; Guldi, Dirk M; Rybtchinski, Boris

    2015-06-17

    The unique properties of carbon nanotubes (CNT) are advantageous for emerging applications. Yet, the CNT insolubility hampers their potential. Approaches based on covalent and noncovalent methodologies have been tested to realize stable dispersions of CNTs. Noncovalent approaches are of particular interest as they preserve the CNT's structures and properties. We report on hybrids, in which perylene diimide (PDI) amphiphiles are noncovalently immobilized onto single wall carbon nanotubes (SWCNT). The resulting hybrids were dispersed and exfoliated both in water and organic solvents in the presence of two different PDI derivatives, PP2b and PP3a. The dispersions were investigated using cryogenic transmission electron microscopy (cryo-TEM), providing unique structural insights into the exfoliation. A helical arrangement of PP2b assemblies on SWCNTs dominates in aqueous dispersions, while a single layer of PP2b and PP3a was found on SWCNTs in organic dispersions. The dispersions were probed by steady-state and time-resolved spectroscopies, revealing appreciable charge redistribution in the ground state, and an efficient electron transfer from SWCNTs to PDIs in the excited state. We also fabricated hybrid materials from the PP2b/SWCNT dispersions. A supramolecular membrane was prepared from aqueous dispersions and used for size-selective separation of gold nanoparticles. Hybrid buckypaper films were prepared from the organic dispersions. In the latter, high conductivity results from enhanced electronic communication and favorable morphology within the hybrid material. Our findings shed light onto SWCNT/dispersant molecular interactions, and introduce a versatile approach toward universal solution processing of SWCNT-based materials.

  4. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Boldgiv, Bazartseren; Lkhagva, Ariuntsetseg; Helliker, Brent R; Casper, Brenda B; Petraitis, Peter S

    2012-04-01

    The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold

  5. Climate Variability in the Antarctic Peninsula: Insights from the 2010 Bruce Plateau Ice Core

    NASA Astrophysics Data System (ADS)

    Mosley-Thompson, E. S.; Goodwin, B. P.; Sierra, R.; Lin, P.; Miller, D.; Thompson, L. G.; Kenny, D. V.

    2013-12-01

    A new ice core was drilled to bedrock (448.12 m) in 2010 on the Bruce Plateau (BP) ice field (66.03°S; 64.07°W; 1975.5 masl) in the northern Antarctic Peninsula (AP). This is the second ice core, the 2008 James Ross Island (JRI) core was the first, in the AP to reach bedrock and thereby capture the entire record preserved at the drill site. There are just a handful of multi-century long ice core records from the AP, most extending back less than 500 years. The very high annual mass accumulation on the BP (~1.8 m w.e. from 1900 to 2009 CE) allows precise layer counting back to 1400 CE and with temporal constraints by known volcanic eruptions the record is annually resolved back to 1250 CE. The δ18O of individual samples correlates well with temperature observations at Rothera Station (1977 to 2009) which allows calculation of monthly estimates of mass accumulation. These reveal a late winter/ early spring precipitation maximum which imparts a seasonal bias to the climate signals closely linked to wet deposition (e.g., δ18O, various chemical species). The annually resolved records of δ18O and mass accumulation provide proxy-based histories of temperature and precipitation. Comparison with meteorological observations indicates that the BP δ18O record provides a reliable proxy of mean annual air temperature along the west side of the AP. The resulting δ18O-inferred air temperatures for the last 600 years reveal multi-decadal scale variability with warm conditions during some periods exceeding that of the last few decades. Extracting the annual accumulation history is complicated by layer thinning at depth and to reconstruct annual layer thicknesses a Dansgaard-Johnsen model configured for flank flow was applied. The resulting record indicates that over the last 600 years the average annual mass accumulation (precipitation) rises slightly until ~1800 CE (~2.3 m w.e.) after which it declines to a minimum (~1.5 m w.e.) around 1950 CE. Accumulation then rises

  6. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Cheng, Linyin; Mazdiyasni, Omid; Farahmand, Alireza

    2014-12-01

    Global warming and the associated rise in extreme temperatures substantially increase the chance of concurrent droughts and heat waves. The 2014 California drought is an archetype of an event characterized by not only low precipitation but also extreme high temperatures. From the raging wildfires, to record low storage levels and snowpack conditions, the impacts of this event can be felt throughout California. Wintertime water shortages worry decision-makers the most because it is the season to build up water supplies for the rest of the year. Here we show that the traditional univariate risk assessment methods based on precipitation condition may substantially underestimate the risk of extreme events such as the 2014 California drought because of ignoring the effects of temperature. We argue that a multivariate viewpoint is necessary for assessing risk of extreme events, especially in a warming climate. This study discusses a methodology for assessing the risk of concurrent extremes such as droughts and extreme temperatures.

  7. New Insights on Hydro-Climate Feedback Processes over the Tropical Ocean from TRMM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Li, Xiaofan; Sui, C. H.

    2002-01-01

    In this paper, we study hydro-climate feedback processes over the tropical oceans, by examining the relationships among large scale circulation and Tropical Rainfall Measuring Mission Microwave Imager-Sea Surface Temperature (TMI-SST), and a range of TRMM rain products including rain rate, cloud liquid water, precipitable water, cloud types and areal coverage, and precipitation efficiency. Results show that for a warm event (1998), the 28C threshold of convective precipitation is quite well defined over the tropical oceans. However, for a cold event (1999), the SST threshold is less well defined, especially over the central and eastern Pacific cold tongue, where stratiform rain occurs at much lower than 28 C. Precipitation rates and cloud liquid water are found to be more closely related to the large scale vertical motion than to the underlying SST. While total columnar water vapor is more strongly dependent on SST. For a large domain, over the eastern Pacific, we find that the areal extent of the cloudy region tends to shrink as the SST increases. Examination of the relationship between cloud liquid water and rain rate suggests that the residence time of cloud liquid water tends to be shorter, associated with higher precipitation efficiency in a warmer climate. It is hypothesized that the reduction in cloudy area may be influenced both by the shift in large scale cloud patterns in response to changes in large scale forcings, and possible increase in the cloud liquid water conversion to rain water in a warmer environment. Results of numerical experiments with the Goddard cloud resolving model to test the hypothesis will be discussed.

  8. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle

    NASA Astrophysics Data System (ADS)

    Buchanan, Pearse J.; Matear, Richard J.; Lenton, Andrew; Phipps, Steven J.; Chase, Zanna; Etheridge, David M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon-Ocean-Atmosphere-Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267 Pg C in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation ( > 100 mmol O2 m-3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317 Pg C) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194 ± 2 and 330 ± 400 Pg C, respectively). Assuming an LGM-PI difference of 95 ppm pCO2, we find that 55 ppm can be attributed to the biological pump, 28 ppm to circulation changes and the remaining 12 ppm to solubility. The biogeochemical

  9. Late Triassic tropical climate of Pangea: Carbon isotopic and other insights into the rise of dinosaurs

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Lindström, S.; Irmis, R. B.; Glasspool, I.; Schaller, M. F.; Dunlavey, M.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H.

    2015-12-01

    The rarity and species-poor nature of early dinosaurs and their relatives at low paleolatitudes persisted for 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New environmental reconstructions from stable carbon isotope ratios of preserved organic matter (δ13Corg), atmospheric pCO2 data based on the δ13C of soil carbonate, palynological, and wildfire data from charcoal from early dinosaur-bearing strata at low paleolatitudes in western North America show that variations in δ13Corg and palynomorph ecotypes are tightly correlated, displaying large and high-frequency excursions. These variations occurred within an environment characterized by elevated and increasing atmospheric pCO2, pervasive wildfires, and rapidly fluctuating extreme climatic conditions. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions until the end-Triassic, the large-bodied, fast-growing tachymetabolic dinosaurian herbivores were not. We hypothesize that the greater resources required by the herbivores made it difficult from them to adapt to the unstable conditions at low paleolatitudes in the Late Triassic.

  10. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  11. New insights into the molecular-level control of silica mineralization by diatoms

    NASA Astrophysics Data System (ADS)

    Wallace, A. F.; Dove, P. M.

    2007-12-01

    microscopy with elements of modern materials chemistry, to directly measure the rate of amorphous silica nucleation on COOH, NH3+, and COOH / NH3+-terminated surfaces under controlled solution conditions. Our results provide new insights into the molecular-level control of silica mineralization in diatoms. We show that differences between substrate-specific nucleation rates are controlled largely by kinetic factors rather than thermodynamic drivers, and that amine-terminated surfaces are not capable of triggering the onset of silica deposition without the synergistic activity of neighboring negatively charged species on the surface or in solution (e.g. carboxyl or phosphoryl groups). In light of this result we conclude that sites on the organic matrix that have phosphate and amine moieties in close proximity serve not only as contact points between the constituent macromolecules in the matrix, but also as initial sites of silica deposition.

  12. Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod.

    PubMed

    Townhill, Bryony L; Maxwell, David; Engelhard, Georg H; Simpson, Stephen D; Pinnegar, John K

    2015-01-01

    Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930-1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15-45°E longitude and 73-77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond.

  13. Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod

    PubMed Central

    Townhill, Bryony L.; Maxwell, David; Engelhard, Georg H.; Simpson, Stephen D.; Pinnegar, John K.

    2015-01-01

    Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond. PMID:26331271

  14. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change

    PubMed Central

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification. PMID:26510159

  15. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    PubMed

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  16. Understanding impacts of climatic extremes on diarrheal disease epidemics: Insights from mechanistic disease propagation models

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2013-12-01

    increased climatic variability, such as acceleration of hydrological cycle, hydroclimatic hazards, etc on diarrheal disease outbreaks.

  17. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integration from fossil records and molecular analyses

    PubMed Central

    2014-01-01

    Background Given that most species that have ever existed on earth are extinct, it stands to reason that the evolutionary history can be better understood with fossil taxa. Bauhinia is a typical genus of pantropical intercontinental disjunction among the Asian, African, and American continents. Geographic distribution patterns are better recognized when fossil records and molecular sequences are combined in the analyses. Here, we describe a new macrofossil species of Bauhinia from the Upper Miocene Xiaolongtan Formation in Wenshan County, Southeast Yunnan, China, and elucidate the biogeographic significance through the analyses of molecules and fossils. Results Morphometric analysis demonstrates that the leaf shapes of B. acuminata, B. championii, B. chalcophylla, B. purpurea, and B. podopetala closely resemble the leaf shapes of the new finding fossil. Phylogenetic relationships among the Bauhinia species were reconstructed using maximum parsimony and Bayesian inference, which inferred that species in Bauhinia species are well-resolved into three main groups. Divergence times were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method under a relaxed clock, and inferred that the stem diversification time of Bauhinia was ca. 62.7 Ma. The Asian lineage first diverged at ca. 59.8 Ma, followed by divergence of the Africa lineage starting during the late Eocene, whereas that of the neotropical lineage starting during the middle Miocene. Conclusions Hypotheses relying on vicariance or continental history to explain pantropical disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. We suggest that Bauhinia originated in the middle Paleocene in Laurasia, probably in Asia, implying a possible Tethys Seaway origin or an “Out of Tropical Asia”, and dispersal of legumes. Its present pantropical disjunction resulted from disruption of the boreotropical flora by climatic cooling after the Paleocene-Eocene Thermal

  18. Climatic vs. Seismic Controlled Rockglacier Advances in Northern Tien Shan - Insights from Lichenometry

    NASA Astrophysics Data System (ADS)

    Rosenwinkel, S.; Korup, O.; Landgraf, A.; Dzhumabaeva, A.

    2014-12-01

    patterns vary between the different locations and support the notion that the analyzed Tien Shan rockglaciers do not record climate-driven advances exclusively. We conclude by highlighting a number of constraints that may limit the use of lichenometry for dating rockglacier advances, and scope for future research on seismic triggers.

  19. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    SciTech Connect

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces

  20. Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-10-01

    The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders' perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.

  1. Crater palaeolakes in the Tibesti mountains (Central Sahara, North Chad) - New insights into past Saharan climates

    NASA Astrophysics Data System (ADS)

    Kröpelin, Stefan; Dinies, Michèle; Sylvestre, Florence; Hoelzmann, Philipp

    2016-04-01

    For the first time continuous lacustrine sections were sampled from the volcanic Tibesti Mountains (Chad): In the 900 m deep crater of Trou au Natron at Pic Toussidé (3,315 m a.s.l.) and from the 800 m deep Era Kohor, the major sub-caldera of Emi Koussi (3,445 m a.s.l.). The remnant diatomites on their slopes are located 360 m (Trou au Natron) and 125 m (Era Kohor) above the present day bottom of the calderas. These sediments from highly continental positions in the central Sahara are keys for the reconstruction of the last climatic cycles (Kröpelin et al. 2015). We report first results from sedimentary-geochemical (total organic and total inorganic carbon contents; total nitrogen; major elements; mineralogy) and palynological analyses for palaeo-environmental interpretations. The diatomites from the Trou au Natron comprise 330 cm of mostly calcitic sediments with relatively low organic carbon (<2.5 %) and strongly varying aragonite and gypsum contents. Major elements (Ca, Fe, K, Mg, Mn, Na, P, S, Sr), elemental ratios (Sr/Ca, Mg/Ca, Fe/Mn) and the mineralogy are used to interpret the lake's salinity, productivity and ecological conditions. Trilete spores are preserved throughout the sequence, probably reflecting local moss/fern stands. Regional pollen rain-e.g. grasses and wormwood-is scarcely represented. Golden algae dominate in the lower section. The results of the first palynological samples suggest a small sedimentation basin. Two 14C-dated charcoals out of the upper part of the section indicate mid-Holocene ages and a linear extrapolation based on a sediment accumulation rate of 1.4mma-1 would lead to tentative dates of ~8650 cal a BP for basal lacustrine sediments and ~4450 cal a BP for the cessation of this lacustrine sequence. The diatomites from the Era Kohor reflect a suite of sections that in total sum up to 145 cm of mostly silica-based sediments with very low carbon contents (< 2% TC). Calcite dominated sediments are only present in the topmost 15

  2. Using Variation Theory with Metacognitive Monitoring to Develop Insights into How Students Learn from Molecular Visualizations

    ERIC Educational Resources Information Center

    Kelly, Resa M.

    2014-01-01

    Molecular visualizations have been widely endorsed by many chemical educators as an efficient way to convey the dynamic and atomic-level details of chemistry events. Research indicates that students who use molecular visualizations are able to incorporate most of the intended features of the animations into their explanations. However, studies…

  3. Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics.

    PubMed

    Darling, Kate F; Kucera, Michal; Pudsey, Carol J; Wade, Christopher M

    2004-05-18

    It is unknown how pelagic marine protists undergo diversification and speciation. Superficially, the open ocean appears homogeneous, with few clear barriers to gene flow, allowing extensive, even global, dispersal. Yet, despite the apparent lack of opportunity for genetic isolation, diversity is prevalent within marine taxa. A lack of candidate isolating mechanisms would seem to favor sympatric over allopatric speciation models to explain the diversity and biogeographic patterns observed in the oceans today. However, the ocean is a dynamic system, and both current and past circulation patterns must be considered in concert to gain a true perspective of gene flow through time. We have derived a comprehensive picture of the mechanisms potentially at play in the high latitudes by combining molecular, biogeographic, fossil, and paleoceanographic data to reconstruct the evolutionary history of the polar planktonic foraminifer Neogloboquadrina pachyderma sinistral. We have discovered extensive genetic diversity within this morphospecies and that its current "extreme" polar affinity did not appear until late in its evolutionary history. The molecular data demonstrate a stepwise progression of diversification starting with the allopatric isolation of Atlantic Arctic and Antarctic populations after the onset of the Northern Hemisphere glaciation. Further diversification occurred only in the Southern Hemisphere and seems to have been linked to glacial-interglacial climate dynamics. Our findings demonstrate the role of Quaternary climate instability in shaping the modern high-latitude plankton. The divergent evolutionary history of N. pachyderma sinistral genotypes implies that paleoceanographic proxies based on this taxon should be calibrated independently.

  4. Climate Variability and Surface Processes in Tectonically Active Orogens: Insights From the Southern Central Andes and the Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Strecker, M. R.; Bookhagen, B.

    2008-12-01

    an increase in the fluvial efficiency and connectivity. Farther into the orogen interior, however, the episodically occurring increase in the availability of material may have contributed to the overall long-term reduction of relief due to reduced fluvial connectivity and the inability of rivers to evacuate material to the foreland. Pronounced coeval variations in erosion and depositional processes therefore emphasize the far-reaching impact of climate variability on the surface-process regime and hence provide insights into intensified episodes of landscape evolution in orogens. In addition, the present-day effects of climatic variability on the surface-process system may serve as a model for similar intensified processes that might be expected in a future global change scenario.

  5. Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series

    PubMed Central

    Gómez, Giovan F.; Bickersmith, Sara A.; González, Ranulfo; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  6. Scombroid fishes provide novel insights into the trait/rate associations of molecular evolution.

    PubMed

    Qiu, Fan; Kitchen, Andrew; Burleigh, J Gordon; Miyamoto, Michael M

    2014-06-01

    The study of which life history traits primarily affect molecular evolutionary rates is often confounded by the covariance of these traits. Scombroid fishes (billfishes, tunas, barracudas, and their relatives) are unusual in that their mass-specific metabolic rate is positively associated with body size. This study exploits this atypical pattern of trait variation, which allows for direct tests of whether mass-specific metabolic rate or body size is the more important factor of molecular evolutionary rates. We inferred a phylogeny for scombroids from a supermatrix of molecular and morphological characters and used new phylogenetic comparative approaches to assess the associations of body size and mass-specific metabolic rate with substitution rate. As predicted by the body size hypothesis, there is a negative correlation between body size and substitution rate. However, unexpectedly, we also find a negative association between mass-specific metabolic and substitution rates. These relationships are supported by analyses of the total molecular data, separate mitochondrial and nuclear genes, and individual loci, and they are robust to phylogenetic uncertainty. The molecular evolutionary rates of scombroids are primarily tied to body size. This study demonstrates that groups with novel patterns of trait variation can be particularly informative for identifying which life history traits are the primary factors of molecular evolutionary rates.

  7. Molecular recognition of malachite green by hemoglobin and their specific interactions: insights from in silico docking and molecular spectroscopy.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Sun, Ying

    2014-01-01

    Malachite green is an organic compound that can be widely used as a dyestuff for various materials; it has also emerged as a controversial agent in aquaculture. Since malachite green is proven to be carcinogenic and mutagenic, it may become a hazard to public health. For this reason, it is urgently required to analyze this controversial dye in more detail. In our current research, the interaction between malachite green and hemoglobin under physiological conditions was investigated by the methods of molecular modeling, fluorescence spectroscopy, circular dichroism (CD) as well as hydrophobic ANS displacement experiments. From the molecular docking, the central cavity of hemoglobin was assigned to possess high-affinity for malachite green, this result was corroborated by time-resolved fluorescence and hydrophobic ANS probe results. The recognition mechanism was found to be of static type, or rather the hemoglobin-malachite green complex formation occurred via noncovalent interactions such as π-π interactions, hydrogen bonds and hydrophobic interactions with an association constant of 10(4) M(-1). Moreover, the results also show that the spatial structure of the biopolymer was changed in the presence of malachite green with a decrease of the α-helix and increase of the β-sheet, turn and random coil suggesting protein damage, as derived from far-UV CD and three-dimensional fluorescence. Results of this work will help to further comprehend the molecular recognition of malachite green by the receptor protein and the possible toxicological profiles of other compounds, which are the metabolites and ramifications of malachite green.

  8. Molecular interactions of UvrB protein and DNA from Helicobacter pylori: Insight into a molecular modeling approach.

    PubMed

    Bavi, Rohit; Kumar, Raj; Rampogu, Shailima; Son, Minky; Park, Chanin; Baek, Ayoung; Kim, Hyong-Ha; Suh, Jung-Keun; Park, Seok Ju; Lee, Keun Woo

    2016-08-01

    Helicobacter pylori (H. pylori) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as 'machinery,' such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3' overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.

  9. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation.

    PubMed

    Próchnicki, Tomasz; Mangan, Matthew S; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K (+) efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca (2+) fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation.

  10. Coarse-grained modelling of triglyceride crystallisation: a molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe

    2015-12-01

    The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.

  11. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme—Catalase

    PubMed Central

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals’ forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  12. Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae) – Insights from transcriptome sequences

    PubMed Central

    Yu, Yan; Xiang, Qiuyun; Manos, Paul S.; Soltis, Douglas E.; Soltis, Pamela S.; Song, Bao-Hua; Cheng, Shifeng; Liu, Xin; Wong, Gane

    2017-01-01

    The pattern and rate of genome evolution have profound consequences in organismal evolution. Whole-genome duplication (WGD), or polyploidy, has been recognized as an important evolutionary mechanism of plant diversification. However, in non-model plants the molecular signals of genome duplications have remained largely unexplored. High-throughput transcriptome data from next-generation sequencing have set the stage for novel investigations of genome evolution using new bioinformatic and methodological tools in a phylogenetic framework. Here we compare ten de novo-assembled transcriptomes representing the major lineages of the angiosperm genus Cornus (dogwood) and relevant outgroups using a customized pipeline for analyses. Using three distinct approaches, molecular dating of orthologous genes, analyses of the distribution of synonymous substitutions between paralogous genes, and examination of substitution rates through time, we detected a shared WGD event in the late Cretaceous across all taxa sampled. The inferred doubling event coincides temporally with the paleoclimatic changes associated with the initial divergence of the genus into three major lineages. Analyses also showed an acceleration of rates of molecular evolution after WGD. The highest rates of molecular evolution were observed in the transcriptome of the herbaceous lineage, C. canadensis, a species commonly found at higher latitudes, including the Arctic. Our study demonstrates the value of transcriptome data for understanding genome evolution in closely related species. The results suggest dramatic increase in sea surface temperature in the late Cretaceous may have contributed to the evolution and diversification of flowering plants. PMID:28225773

  13. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul

    2015-05-01

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  14. Functional Proteomic And Structural Insights Into Molecular Recognition in the Nitrilase Family Enzymes

    SciTech Connect

    Barglow, K.T.; Saikatendu, K.; Bracey, M.H.; Huey, R.; Morris, G.M.; Olson, A.J.; Stevens, R.C.; Cravatt, B.F.

    2009-05-11

    Nitrilases are a large and diverse family of nonpeptidic C-N hydrolases. The mammalian genome encodes eight nitrilase enzymes, several of which remain poorly characterized. Prominent among these are nitrilase-1 (Nit1) and nitrilase-2 (Nit2), which, despite having been shown to exert effects on cell growth and possibly serving as tumor suppressor genes, are without known substrates or selective inhibitors. In previous studies, we identified several nitrilases, including Nit1 and Nit2, as targets for dipeptide-chloroacetamide activity-based proteomics probes. Here, we have used these probes, in combination with high-resolution crystallography and molecular modeling, to systematically map the active site of Nit2 and identify residues involved in molecular recognition. We report the 1.4 {angstrom} crystal structure of mouse Nit2 and use this structure to identify residues that discriminate probe labeling between the Nit1 and Nit2 enzymes. Interestingly, some of these residues are conserved across all vertebrate Nit2 enzymes and, conversely, not found in any vertebrate Nit1 enzymes, suggesting that they are key discriminators of molecular recognition between these otherwise highly homologous enzymes. Our findings thus point to a limited set of active site residues that establish distinct patterns of molecular recognition among nitrilases and provide chemical probes to selectively perturb the function of these enzymes in biological systems.

  15. Structure and Function: Insights into Bioinorganic Systems from Molecular Mechanics Calculations

    NASA Astrophysics Data System (ADS)

    Marques, Helder M.; Egan, Timothy J.; de Villiers, Katherine A.

    The use of empirical force field methods for modeling important systems in bioinorganic chemistry, including the cobalt corrins (derivatives of vitamin B12) and the iron porphyrins, is described. Particular attention is given to the use of molecular dynamics and simulated annealing calculations in exploring the solution structures of corrin, and those of likely complexes between the ferriprotoporphyrin-IX and the arylmethanol antimalarials.

  16. Molecular insights into 14-membered macrolides using the MM-PBSA method.

    PubMed

    Yam, Wai Keat; Wahab, Habibah A

    2009-06-01

    Erythromycin A and roxithromycin are clinically important macrolide antibiotics that selectively act on the bacterial 50S large ribosomal subunit to inhibit bacteria's protein elongation process by blocking the exit tunnel for the nascent peptide away from ribosome. The detailed molecular mechanism of macrolide binding is yet to be elucidated as it is currently known to the most general idea only. In this study, molecular dynamics (MD) simulation was employed to study their interaction at the molecular level, and the binding free energies for both systems were calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculated binding free energies for both systems were slightly overestimated compared to the experimental values, but individual energy terms enabled better understanding in the binding for both systems. Decomposition of results into residue basis was able to show the contribution of each residue at the binding pocket toward the binding affinity of macrolides and hence identified several key interacting residues that were in agreement with previous experimental and computational data. Results also indicated the contributions from van der Waals are more important and significant than electrostatic contribution in the binding of macrolides to the binding pocket. The findings from this study are expected to contribute to the understanding of a detailed mechanism of action in a quantitative matter and thus assisting in the development of a safer macrolide antibiotic.

  17. New insights into molecular diagnostic pathology of primary liver cancer: Advances and challenges.

    PubMed

    Cong, Wen-Ming; Wu, Meng-Chao

    2015-11-01

    Primary liver cancer (PLC) is one of the most common malignancies worldwide with increasing incidence and accounts for the third leading cause of cancer-related mortality. Traditional morphopathology primarily emphasizes qualitative diagnosis of PLC, which is not sufficient to resolve the major concern of increasing the long-term treatment efficacy of PLC in clinical management for the modern era. Since the beginning of the 21st century, molecular pathology has played an active role in the investigation of the evaluation of the metastatic potential of PLC, detection of drug targets, prediction of recurrence risks, analysis of clonal origins, evaluation of the malignancy trend of precancerous lesions, and determination of clinical prognosis. As a result, many new progresses have been obtained, and new strategies of molecular-pathological diagnosis have been formed. Moreover, the new types of pathobiological diagnosis indicator systems for PLC have been preliminarily established. These achievements provide valuable molecular pathology-based guide for clinical formulation of individualized therapy programs for PLC. This review article briefly summarizes some relevant progresses of molecular-pathological diagnosis of PLC from the perspective of clinical translational application other than basic experimental studies.

  18. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    SciTech Connect

    Rastogi, Monisha; Vaish, Rahul

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  19. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  20. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    PubMed Central

    Próchnicki, Tomasz; Mangan, Matthew S.; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation. PMID:27508077

  1. Extending Molecular Signatures of Climatic and Environmental Change to the Mesozoic

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2007-12-01

    The distributions, abundances and isotopic compositions of molecular constituents in sediments depend on their source organisms and the combination of environmental and climatic parameters that constrain or control their biosynthesis. Many such relationships are well documented and understood, thereby providing proxies of proven utility in paleoclimatic reconstructions. Thus, the temperature dependence in the extent of unsaturation in alkenones derived from prymnesiophyte algae, and in the proportion of ring structures in glycerol dibiphytanyl glycerol tetraethers (GDGTs) synthesized by crenarchaeota enables determination of sea surface paleotemperatures from sedimentary records. This molecular approach presumes temporal uniformity in the controlling factors on biosynthesis of these lipids, and their survival in the geological record, notwithstanding the challenge of establishing ancient calibrations for such proxies. Thus, alkenone records from marine sediments document cooling at the Eocene/Oligocene boundary but cannot assess changes in ocean temperatures during the Cretaceous, unlike GDGTs, which record fluctuations in ocean temperatures during the Early Cretaceous, and even survive in Jurassic strata. Other molecular measures offer less precise, yet informative, indications of climate. For example, the occurrence of sterol ethers in Valanginian sediments from the mid-Pacific suggests some cooling at that time, since these compounds are only known to occur elsewhere in cold waters or upwelling systems. Molecular compositions can also attest to levels of oxygenation in marine systems. In particular, the occurrence of 13C-depleted isorenieratane indicates the presence of photosynthetic green sulfur bacteria, and therefore anoxic conditions, albeit perhaps short-lived. Intermittent occurrences of isorenieratane often alternate with the appearance of 2-methylhopanoids, which provide separate distinct evidence for variations in oxygenation, linked to circumstances

  2. Molecular and cellular insights into a distinct myopathy of Great Dane dogs.

    PubMed

    Chang, Kin-Chow; McCulloch, Maj-Lis C; Anderson, Thomas James

    2010-03-01

    A myopathy in the Great Dane dog with characteristic pathological and molecular features is reported. Young adults present with progressive weakness and generalised muscle atrophy. To better define this condition, an investigation using histopathology, confocal microscopy, biochemistry and microarray analysis was undertaken. The skeletal muscles of affected dogs exhibited increased oxidative fibre phenotype and core fibre lesions characterised by the disruption of the sarcomeric architecture and the accumulation of mitochondrial organelles. Affected muscles displayed co-ordinated expression of genes consistent with a slow-oxidative phenotype, which was possibly a compensatory response to chronic muscle damage. There was disruption of Z-lines in affected muscles which, at the molecular level, manifested as transcriptional dysregulation of several Z-line associated genes, including alpha-actinin, myotilin, desmin, vimentin and telethonin. The pathology of this canine myopathy is distinct from that of human central core myopathies that are characterised by cores devoid of mitochondria and by the presence of myofibrillar breakdown products.

  3. Molecular Structure of Aggregated Amyloid-β: Insights from Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made on characterization of the molecular structures of Aβ aggregates. Full molecular structural models that are based primarily on data from solid state nuclear magnetic resonance measurements have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  4. Plant-parasitic nematode infections in rice: molecular and cellular insights.

    PubMed

    Kyndt, Tina; Fernandez, Diana; Gheysen, Godelieve

    2014-01-01

    Being one of the major staple foods in the world, and an interesting model monocot plant, rice (Oryza sativa L.) has recently received attention from molecular nematologists studying the cellular and molecular aspects of the interaction between this crop and plant-parasitic nematodes. In this review, we highlight recent advances in this field, with a focus on the best-studied root-knot nematodes. Histological studies have revealed the cellular changes inside root-knot nematode-induced feeding sites, both in the compatible interaction with Oryza sativa and the incompatible interaction with the related species Oryza glaberrima. After comparing the published data from transcriptome analyses, mutant studies, and exogenous hormone applications, we provide a comprehensive model showing the role and interaction of plant hormone pathways in defense of this monocot crop against root nematodes, where jasmonate seems to play a key role. Finally, recent evidence indicates that effectors secreted from rice-infecting nematodes can suppress plant defense.

  5. Insights into the molecular interaction between two polyoxygenated cinnamoylcoumarin derivatives and human serum albumin.

    PubMed

    Khammari, Anahita; Saboury, Ali Akbar; Karimi-Jafari, Mohammad Hossein; Khoobi, Mehdi; Ghasemi, Atiyeh; Yousefinejad, Saeed; Abou-Zied, Osama K

    2017-04-03

    Ligand binding studies on human serum albumin (HSA) are crucial in determining the pharmacological properties of drug candidates. Here, two representatives of coumarin-chalcone hybrids were selected and their binding mechanism was identified via thermodynamics techniques, curve resolution analysis and computational methods at molecular levels. The binding parameters were derived using spectroscopic approaches and the results point to only one pocket located near the Trp214 residue in subdomain IIA of HSA. The protein tertiary structure was altered during ligand binding and formed an intermediate structure to create stronger ligand binding interactions. The best binding mode of the ligand was initially estimated by docking on an ensemble of HSA crystallographic structures and by molecular dynamics (MD) simulations. Per residue interaction energies were calculated over the MD trajectories as well. Reasonable agreement was found between experimental and theoretical results about the nature of binding, which was dominated by hydrogen bonding and van der Waals contributions.

  6. Environmental controls on denitrifying communities and denitrification rates--Insights from molecular methods

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Myrold, David D.; Firestone, Mary; Voytek, Mary

    2006-01-01

    The advent of molecular techniques has improved our understanding of the microbial communities responsible for denitrification and is beginning to address their role in controlling denitrification processes. There is a large diversity of bacteria, archaea, and fungi capable of denitrification, and their community composition is structured by long-term environmental drivers. The range of temperature and moisture conditions, substrate availability, competition, and disturbances have long-lasting legacies on denitrifier community structure. These communities may differ in physiology, environmental tolerances to pH and O2, growth rate, and enzyme kinetics. Although factors such as O2, pH, C availability, and NO3− pools affect instantaneous rates, these drivers act through the biotic community. This review summarizes the results of molecular investigations of denitrifier communities in natural environments and provides a framework for developing future research for addressing connections between denitrifier community structure and function.

  7. Molecular insights into the heterogeneous crystal growth of si methane hydrate.

    PubMed

    Vatamanu, Jenel; Kusalik, Peter G

    2006-08-17

    In this paper we report a successful molecular simulation study exploring the heterogeneous crystal growth of sI methane hydrate along its [001] crystallographic face. The molecular modeling of the crystal growth of methane hydrate has proven in the past to be very challenging, and a reasonable framework to overcome the difficulties related to the simulation of such systems is presented. Both the microscopic mechanisms of heterogeneous crystal growth as well as interfacial properties of methane hydrate are probed. In the presence of the appropriate crystal template, a strong tendency for water molecules to organize into cages around methane at the growing interface is observed; the interface also demonstrates a strong affinity for methane molecules. The maximum growth rate measured for a hydrate crystal is about 4 times higher than the value previously determined for ice I in a similar framework (Gulam Razul, M. S.; Hendry, J. G.; Kusalik, P. G. J. Chem. Phys. 2005, 123, 204722).

  8. Novel insights into the molecular mechanism of sperm-egg fusion via IZUMO1.

    PubMed

    Inoue, Naokazu

    2016-12-19

    When a spermatozoon fertilizes an oocyte in mammals, there must be an extremely precise regulation system for successful gamete fusion to occur, which is the final step of fertilization. Using gene-modified animals, IZUMO1 on the sperm side and its receptor, JUNO, on the ovum side, have been unveiled as indispensable factors for triggering membrane fusion. We recently analyzed the detailed molecular machinery of the IZUMO1-JUNO recognition system and clarified the tertiary architecture of the IZUMO1-JUNO complex based on the crystal structure. Over the past 2 years, important discoveries have successively emerged, presenting a new perspective on fertilization. In this mini-review, I will initially explain the historical background of the molecular mechanism study of gamete fusion, and go on to describe our latest study data.

  9. Aminoglycosides: Molecular Insights on the Recognition of RNA and Aminoglycoside Mimics

    PubMed Central

    Chittapragada, Maruthi; Roberts, Sarah; Ham, Young Wan

    2009-01-01

    RNA is increasingly recognized for its significant functions in biological systems and has recently become an important molecular target for therapeutics development. Aminoglycosides, a large class of clinically significant antibiotics, exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, aminoglycosides are accepted as the single most important model in understanding the principles that govern small molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological efficacy, binding affinity and selectivity, or to circumvent bacterial resistance. PMID:19812740

  10. Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    SciTech Connect

    Vela-Becerra, Javier

    2013-02-01

    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group’s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange.

  11. Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling

    SciTech Connect

    Vlcek, Lukas; Chialvo, Ariel A.

    2016-01-03

    The importance of single-ion hydration thermodynamic properties for understanding the driving forces of aqueous electrolyte processes, along with the impossibility of their direct experimental measurement, have prompted a large number of experimental, theoretical, and computational studies aimed at separating the cation and anion contributions. Here we provide an overview of historical approaches based on extrathermodynamic assumptions and more recent computational studies of single-ion hydration in order to evaluate the approximations involved in these methods, quantify their accuracy, reliability, and limitations in the light of the latest developments. Finally, we also offer new insights into the factors that influence the accuracy of ion–water interaction models and our views on possible ways to fill this substantial knowledge gap in aqueous physical chemistry.

  12. Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling

    DOE PAGES

    Vlcek, Lukas; Chialvo, Ariel A.

    2016-01-03

    The importance of single-ion hydration thermodynamic properties for understanding the driving forces of aqueous electrolyte processes, along with the impossibility of their direct experimental measurement, have prompted a large number of experimental, theoretical, and computational studies aimed at separating the cation and anion contributions. Here we provide an overview of historical approaches based on extrathermodynamic assumptions and more recent computational studies of single-ion hydration in order to evaluate the approximations involved in these methods, quantify their accuracy, reliability, and limitations in the light of the latest developments. Finally, we also offer new insights into the factors that influence the accuracymore » of ion–water interaction models and our views on possible ways to fill this substantial knowledge gap in aqueous physical chemistry.« less

  13. Of molecular interactions, mice and mechanisms: new insights into Huntington's disease.

    PubMed

    Wellington, C L; Hayden, M R

    1997-08-01

    Huntington's disease is caused by expansion of a CAG trinucleotide beyond 35 repeats within the coding region of a novel gene. Recently, new insights into the relationship between CAG expansion in the HD gene and pathological mechanisms have emerged. These include a more precise understanding of the relationship between CAG repeat length and age of onset, progress in transgenic and excitotoxic animal models, identification of a novel huntington-interacting protein, and intriguing connections between huntington and the apoptotic machinery. We have combined many of these new findings into a model that suggests mechanisms and predicts outcomes by which the pathogenesis of Huntington's disease may be initiated. The development of appropriate in-vitro and animal models for Huntington's disease will allow the validity of this model to be tested.

  14. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  15. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei.

    PubMed

    Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes

  16. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei

    PubMed Central

    Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes

  17. New insights into the roles of molecular chaperones in Chlamydomonas and Volvox.

    PubMed

    Nordhues, André; Miller, Stephen M; Mühlhaus, Timo; Schroda, Michael

    2010-01-01

    The unicellular green alga Chlamydomonas reinhardtii has been used as a model organism for many decades, mainly to study photosynthesis and flagella/cilia. Only recently, Chlamydomonas has received much attention because of its ability to produce hydrogen and nonpolar lipids that have promise as biofuels. The best-studied multicellular cousin of Chlamydomonas reinhardtii is Volvox carteri, whose life cycle comprises events that have clear parallels in higher plants and/or animals, making it an excellent system in which to study fundamental developmental processes. Molecular chaperones are proteins that guide other cellular proteins through their life cycle. They assist in de novo folding of nascent chains, mediate assembly and disassembly of protein complexes, facilitate protein transport across membranes, disassemble protein aggregates, fold denatured proteins back to the native state, and transfer unfoldable proteins to proteolytic degradation. Hence, molecular chaperones regulate protein function under all growth conditions and play important roles in many basic cellular and developmental processes. The aim of this chapter is to describe recent advances toward understanding molecular chaperone biology in Chlamydomonas and Volvox.

  18. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    PubMed Central

    Fu, Ting; Min, Hanyi; Xu, Yong; Chen, Jianzhong; Li, Guohui

    2012-01-01

    As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level. PMID:22949826

  19. Photodynamic efficiency of cationic meso-porphyrins at lipid bilayers: insights from molecular dynamics simulations.

    PubMed

    Cordeiro, Rodrigo M; Miotto, Ronei; Baptista, Maurício S

    2012-12-20

    Porphyrin derivatives have applications as photoactive drugs in photodynamic therapy. However, little is known about their interactions with phospholipid membranes at the molecular level. We employed molecular dynamics simulations to model the binding between a series of cationic meso-(N-methyl-4-pyridinium)phenylporphyrins and anionic phosphatidylglycerol lipid bilayers. This was done in the presence of molecular oxygen within the membrane. The ability of various porphyrins to cause photodamage was quantified in terms of their immersion depth and degree of exposition to a higher oxygen concentration inside the membrane. Simulations showed that the photodynamic efficiency could be improved as the number of hydrophobic phenyl substituents attached to the porphyrinic ring increased. In the specific case of porphyrins containing two hydrophobic and two charged substituents, the cis isomer was significantly more efficient than the trans. These results correlate well with previous experimental observations. They highlight the importance of both the total charge and amphiphilicity of the photosensitizer for its performance in photodynamic therapy.

  20. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.

    PubMed

    Zienkiewicz, Krzysztof; Du, Zhi-Yan; Ma, Wei; Vollheyde, Katharina; Benning, Christoph

    2016-09-01

    Photosynthetic microalgae have promise as biofuel feedstock. Under certain conditions, they produce substantial amounts of neutral lipids, mainly in the form of triacylglycerols (TAGs), which can be converted to fuels. Much of our current knowledge on the genetic and molecular basis of algal neutral lipid metabolism derives mainly from studies of plants, i.e. seed tissues, and to a lesser extent from direct studies of algal lipid metabolism. Thus, the knowledge of TAG synthesis and the cellular trafficking of TAG precursors in algal cells is to a large extent based on genome predictions, and most aspects of TAG metabolism have yet to be experimentally verified. The biofuel prospects of microalgae have raised the interest in mechanistic studies of algal TAG biosynthesis in recent years and resulted in an increasing number of publications on lipid metabolism in microalgae. In this review we summarize the current findings on genetic, molecular and physiological studies of TAG accumulation in microalgae. Special emphasis is on the functional analysis of key genes involved in TAG synthesis, molecular mechanisms of regulation of TAG biosynthesis, as well as on possible mechanisms of lipid droplet formation in microalgal cells. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  1. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-05-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  2. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    PubMed Central

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-01-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents. PMID:27147293

  3. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica.

    PubMed

    Dowling, Anna; Doroba, Carolyn; Maier, Jennifer A; Cohen, Lorna; VandeBerg, John; Sears, Karen E

    2016-06-01

    A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs.

  4. New insights from molecular characterization of the tick Rhipicephalus (Boophilus) microplus in Brazil.

    PubMed

    Csordas, Bárbara Guimarães; Garcia, Marcos Valério; Cunha, Rodrigo Casquero; Giachetto, Poliana Fernanda; Blecha, Isabella Maiumi Zaidan; Andreotti, Renato

    2016-01-01

    The Rhipicephalus (Boophilus) microplus complex currently consists of five taxa, namely R. australis, R. annulatus, R. (B.) microplus clade A sensu, R. microplus clade B sensu, and R. (B.) microplus clade C sensu. Mitochondrial DNA-based methods help taxonomists when they are facing the morpho-taxonomic problem of distinguishing members of the R. (B.) microplus complex. The purpose of this study was to perform molecular characterization of ticks in all five regions of Brazil and infer their phylogenetic relationships. Molecular analysis characterized 10 haplotypes of the COX-1 gene. Molecular network analysis revealed that haplotype H-2 was the most dispersed of the studied populations (n = 11). Haplotype H-3 (n = 2) had the greatest genetic differentiation when compared to other Brazilian populations. A Bayesian phylogenetic tree of the COX-1 gene obtained strong support. In addition, it was observed that the population of R. (B.) microplus haplotype H-3 exhibited diverging branches among the other Brazilian populations in the study. The study concludes that the different regions of Brazil have R. (B.) microplus tick populations with distinct haplotypes.

  5. Insight into the molecular basis of Schistosoma haematobium-induced bladder cancer through urine proteomics.

    PubMed

    Bernardo, Carina; Cunha, Maria Cláudia; Santos, Júlio Henrique; da Costa, José M Correia; Brindley, Paul J; Lopes, Carlos; Amado, Francisco; Ferreira, Rita; Vitorino, Rui; Santos, Lúcio Lara

    2016-08-01

    Infection due to Schistosoma haematobium is carcinogenic. However, the cellular and molecular mechanisms underlying urogenital schistosomiasis (UGS)-induced carcinogenesis have not been well defined. Conceptually, early molecular detection of this phenomenon, through non-invasive procedures, seems feasible and is desirable. Previous analysis of urine collected during UGS suggests that estrogen metabolites, including depurinating adducts, may be useful for this purpose. Here, a new direction was pursued: the identification of molecular pathways and potential biomarkers in S. haematobium-induced bladder cancer by analyzing the proteome profiling of urine samples from UGS patients. GeLC-MS/MS followed by protein-protein interaction analysis indicated oxidative stress and immune defense systems responsible for microbicide activity are the most representative clusters in UGS patients. Proteins involved in immunity, negative regulation of endopeptidase activity, and inflammation were more prevalent in UGS patients with bladder cancer, whereas proteins with roles in renal system process, sensory perception, and gas and oxygen transport were more abundant in subjects with urothelial carcinoma not associated with UGS. These findings highlighted a Th2-type immune response induced by S. haematobium, which seems to be further modulated by tumorigenesis, resulting in high-grade bladder cancer characterized by an inflammatory response and complement activation alternative pathway. These findings established a starting point for the development of multimarker strategies for the early detection of UGS-induced bladder cancer.

  6. Thermal behavior of disordered phase of caffeine molecular crystal: Insights from Monte Carlo simulation studies

    NASA Astrophysics Data System (ADS)

    Murugan, N. Arul; Sayeed, Ahmed

    2009-05-01

    We have studied the thermal behavior of orientationally disordered phase of caffeine molecular crystal using variable shape variable size Monte Carlo simulations in isothermal-isobaric ensemble. We have investigated the structure, especially the nature of orientational disorder of caffeine molecules as a function of temperature in the range of 400-550 K. Experimentally this system is known to undergo a phase transition at 426 K (considered to be an orientational order-disorder transition) and melt at 512 K. Our simulations reproduce these two transitions in excellent agreement with experiment. We find that the in-plane reorientational motion of molecules is restricted to small angles below 425 K, and above this temperature, molecules undergo essentially free rotations in molecular plane, and we find the melting to occur between 525 and 550 K. In the high temperature disordered phase, the disorder is mostly attributable to the in-plane orientational motion of the molecules. The potential energy profile for the in-plane reorientational rotation has six wells as a consequence of specific packing of molecules in the ab crystallographic plane. Also we find considerable out-of-plane reorientational disorder for the molecules in the high temperature disordered phase. We have also studied the structure and orientational disorder of the system that is quenched from 450 to 300 K. We find that in the quenched phase, the molecular orientational arrangement remains partially frozen.

  7. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    SciTech Connect

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; Grest, Gary S.

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the grafted PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.

  8. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    DOE PAGES

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; ...

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less

  9. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum

    PubMed Central

    O’Brien, Connor; Henrich, Philipp P.; Passi, Neha; Fidock, David A.

    2012-01-01

    Purpose of review Artemisinin-based combination therapies (ACTs) have been deployed globally with remarkable success for more than 10 years without having lost their malaria treatment efficacy. However, recent reports from the Thai–Cambodian border reveal evidence of emerging resistance to artemisinins. The latest published clinical and molecular findings are summarized herein. Recent findings Clinical studies have identified delayed parasite clearance time as the most robust marker of artemisinin resistance. Resistance has only been documented from Southeast Asia and has been observed in isolates that show no significant decrease in drug susceptibility in vitro. Genetic investigations have yet to uncover robust molecular markers. In-vitro studies have identified parasite quiescence or dormancy mechanisms that protect early ‘ring-stage’ intra-erythrocytic parasites against short-term artemisinin exposure. This might be achieved by reducing the rate of hemoglobin degradation, important for artemisinin bioactivation. Summary Should ACTs fail, no suitable alternatives exist as first-line treatments of P. falciparum malaria. Intensified efforts are essential to monitor the spread of resistance, define therapeutic and operational strategies to counter its impact, and understand its molecular basis. Success in these areas is critical to ensuring that recent gains in reducing the burden of malaria are not lost. PMID:22001944

  10. Exploring molecular insights into aggregation of hydrotrope sodium cumene sulfonate in aqueous solution: a molecular dynamics simulation study.

    PubMed

    Das, Shubhadip; Paul, Sandip

    2015-02-19

    Hydrotropes are an important class of molecules that enhance the solubility of an otherwise insoluble or sparingly soluble solute in water. Besides this, hydrotropes are also known to self-assemble in aqueous solution and form aggregates. It is the hydrotrope aggregate that helps in solubilizing a solute molecule in water. In view of this, we try to understand the underlying mechanism of self-aggregation of hydrotrope sodium cumene sulfonate (SCS) in water. We have carried out classical molecular dynamics simulations of aqueous SCS solutions with a regime of concentrations. Moreover, to examine the effect of temperature change on SCS aggregation, if any, we consider four different temperatures ranging from 298 to 358 K. From the estimation of densities of different solutions we calculate apparent and partial molal volumes of the hydrotrope. The changes in these quantities increase sharply at a characteristic minimum hydrotrope concentration. The determination of molal expansibility at infinite dilution for different temperatures indicates the water structure breaking by SCS molecules, which is further confirmed by the calculations of water-water pair correlation functions. In comparison with typical surfactants in micelles, a slightly lower value of volumetric change upon aggregation per carbon atom suggests the formation of a more closely packed structure of hydrotrope aggregates. A close examination of different structural properties of hydrotrope solutions reveals that the hydrophobic interactions through their hydrophobic tails significantly contribute in hydrotrope aggregation,and the dehydration of hydrophobic tail at elevated temperatures is also visible. Remarkably, the aggregates have little or no impact on the average number of water-SCS hydrogen bonds.

  11. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  12. Mutations in catalase-peroxidase KatG from isoniazid resistant Mycobacterium tuberculosis clinical isolates: insights from molecular dynamics simulations.

    PubMed

    Pimentel, Arethusa Lobo; de Lima Scodro, Regiane Bertin; Caleffi-Ferracioli, Katiany Rizzieri; Siqueira, Vera Lúcia Dias; Campanerut-Sá, Paula Aline Zanetti; Lopes, Luciana Dias Ghiraldi; de Almeida, Aryadne Larissa; Cardoso, Rosilene Fressatti; Seixas, Flavio Augusto Vicente

    2017-04-01

    The current multidrug therapy for tuberculosis (TB) is based on the use of isoniazid (INH) in combination with other antibiotics such as rifampin, ethambutol and pyrazinamide. Literature reports have shown that Mycobacterium tuberculosis, the causative agent of TB, has become resistant to this treatment by means of point mutations in the target enzymes of these drugs, such as catalase-peroxidase (KatG). By means of equilibrium molecular dynamics in the presence of the ligand, this work evaluated ten point mutations described in the enzyme KatG that are related to resistance to INH . The results showed that the resistance mechanism is related to stereochemical modifications at the N-terminal domain of the protein, which restrict INH access to its catalytic site, not involving mechanisms of electrostatic nature. These results show insights that can be useful for the identification of new anti-TB drugs which may be able to circumvent this mechanism of resistance.

  13. Insights into the Functions of M-T Hook Structure in HIV Fusion Inhibitor Using Molecular Modeling.

    PubMed

    Tan, Jianjun; Yuan, Hongling; Li, Chunhua; Zhang, Xiaoyi; Wang, Cunxin

    2016-04-01

    HIV-1 membrane fusion plays an important role in the process that HIV-1 entries host cells. As a treatment strategy targeting HIV-1 entry process, fusion inhibitors have been proposed. Nevertheless, development of a short peptide possessing high anti-HIV potency is considered a daunting challenge. He et al. found that two residues, Met626 and Thr627, located the upstream of the C-terminal heptad repeat of the gp41, formed a unique hook-like structure (M-T hook) that can dramatically improve the binding stability and anti-HIV activity of the inhibitors. In this work, we explored the molecular mechanism why M-T hook structure could improve the anti-HIV activity of inhibitors. Firstly, molecular dynamic simulation was used to obtain information on the time evolution between gp41 and ligands. Secondly, based on the simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface area (MM-GBSA) methods were used to calculate the binding free energies. The binding free energy of the ligand with M-T hook was considerably higher than the other without M-T. Further studies showed that the hydrophobic interactions made the dominant contribution to the binding free energy. The numbers of Hydrogen bonds between gp41 and the ligand with M-T hook structure were more than the other. These findings should provide insights into the inhibition mechanism of the short peptide fusion inhibitors and be useful for the rational design of novel fusion inhibitors in the future.

  14. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions.

    PubMed

    Ansell, Brendan R E; Schnyder, Manuela; Deplazes, Peter; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Mangiola, Stefano; Boag, Peter R; Hofmann, Andreas; Sternberg, Paul W; Jex, Aaron R; Gasser, Robin B

    2013-12-01

    Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention.

  15. Cationic complexation with dissolved organic matter: Insights from molecular dynamics computer simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Xu, X.; Kirkpatrick, R.

    2006-12-01

    Dissolved organic matter (DOM) is ubiquitous in soil and surface water and plays many important geochemical and environmental roles acting as a proton donor/acceptor and pH buffer and interacting with metal ions, minerals and organic species to form water-soluble and water-insoluble complexes of widely differing chemical and biological stabilities. There are strong correlations among the concentration of DOM and the speciation, solubility and toxicity of many trace metals in soil and water due to metal-DOM interaction. DOM can also significantly negatively affect the performance of nanofiltration and reverse osmosis membranes used industrially for water purification and desalination, being one of the major causes of a so-called `membrane bio- fouling'. The molecular scale mechanisms and dynamics of the DOM interactions with metals and membranes are, however, quite poorly understood. Methods of computational molecular modeling, combined with element- specific nuclear magnetic resonance (NMR) spectroscopy, can serve as highly effective tools to probe and quantify on a fundamental molecular level the DOM interactions with metal cations in aqueous solutions, and to develop predictive models of the molecular mechanisms responsible for the metal-DOM complexation in the environment. This paper presents the results of molecular dynamics (MD) computer simulations of the interaction of DOM with dissolved Na+, Cs+, Mg2+, and Ca2+. Na+ forms only very weak outer-sphere complexes with DOM. These results and the results of other recent molecular modeling efforts (e.g., Sutton et al., Environmental Toxicology and Chemistry, 24, 1902-1911, 2005), clearly indicate that both the structural and dynamic aspects of the cation-DOM complexation follow a simple trend in terms of the charge/size ratio for the ions. Due to the competition between ion hydration in bulk aqueous solution and adsorption of these cations by the negatively charged DOM functional groups (primarily carboxylate

  16. Mitochondrial DNA disease—molecular insights and potential routes to a cure

    SciTech Connect

    Russell, Oliver; Turnbull, Doug

    2014-07-01

    Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focussed on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. This review focuses on the molecular effects of mutations, the symptoms they cause and current work focusing on the development of targeted treatments for mitochondrial DNA disease. - Highlights: • We discuss several common disease causing mtDNA mutations. • We highlight recent work linking pathogenicity to deletion size and heteroplasmy. • We discuss recent advances in the development of targeted mtDNA disease treatments.

  17. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  18. Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Xubo; Bai, Tingting; Zuo, Yi Y.; Gu, Ning

    2014-02-01

    Nanoparticles (NPs) show great promises in biomedical applications as the respiratory drug carrier system. Once reaching the alveolar region, NPs first interact with the pulmonary surfactant (PS) film, which serves as the first biological barrier and plays an important role in maintaining the normal respiratory mechanics. Therefore, understanding the interactions between NPs and PS can help promote the NP-based respiratory drug carrier systems. Using coarse-grained molecular dynamics simulations, we studied the effect of rigid spherical NPs with different hydrophobicity and sizes on a dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface. Four different NPs were considered, including hydrophilic and hydrophobic NPs, each with two diameters of 3 nm and 5 nm (the sizes are comparable to that of generation 3 and 5 PAMAM dendrimers, which have been widely used for nanoscale drug carrier systems). Our simulations showed that hydrophilic NPs can readily penetrate into the aqueous phase with little or no disturbance on the DPPC monolayer. However, hydrophobic NPs tend to induce large structural disruptions, thus inhibiting the normal phase transition of the DPPC monolayer upon film compression. Our simulations also showed that this inhibitory effect of hydrophobic NPs can be mitigated through PEGylation. Our results provide useful guidelines for molecular design of NPs as carrier systems for pulmonary drug delivery.Nanoparticles (NPs) show great promises in biomedical applications as the respiratory drug carrier system. Once reaching the alveolar region, NPs first interact with the pulmonary surfactant (PS) film, which serves as the first biological barrier and plays an important role in maintaining the normal respiratory mechanics. Therefore, understanding the interactions between NPs and PS can help promote the NP-based respiratory drug carrier systems. Using coarse-grained molecular dynamics simulations, we studied the effect of rigid spherical NPs

  19. Synthesis, biological characterization and molecular modeling insights of spirochromanes as potent HDAC inhibitors.

    PubMed

    Thaler, Florian; Moretti, Loris; Amici, Raffaella; Abate, Agnese; Colombo, Andrea; Carenzi, Giacomo; Fulco, Maria Carmela; Boggio, Roberto; Dondio, Giulio; Gagliardi, Stefania; Minucci, Saverio; Sartori, Luca; Varasi, Mario; Mercurio, Ciro

    2016-01-27

    In the last decades, inhibitors of histone deacetylases (HDAC) have become an important class of anti-cancer agents. In a previous study we described the synthesis of spiro[chromane-2,4'-piperidine]hydroxamic acid derivatives able to inhibit histone deacetylase enzymes. Herein, we present our exploration for new derivatives by replacing the piperidine moiety with various cycloamines. The goal was to obtain highly potent compounds with a good in vitro ADME profile. In addition, molecular modeling studies unravelled the binding mode of these inhibitors.

  20. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies.

    PubMed

    Chen, Chia-Yen; Liu, Xiang; Boris-Lawrie, Kathleen; Sharma, Amit; Jeang, Kuan-Teh

    2013-02-01

    RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.

  1. Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches

    PubMed Central

    Lombard, Thomas; Neirinckx, Virginie; Gilon, Yves

    2016-01-01

    In recent years, medication-related osteonecrosis of the jaw (MRONJ) became an arising disease due to the important antiresorptive drug prescriptions to treat oncologic and osteoporotic patients, as well as the use of new antiangiogenic drugs such as VEGF antagonist. So far, MRONJ physiopathogenesis still remains unclear. Aiming to better understand MRONJ physiopathology, the first objective of this review would be to highlight major molecular mechanisms that are known to be involved in bone formation and remodeling. Recent development in MRONJ pharmacological treatments showed good results; however, those treatments are not curative and could have major side effects. In parallel to pharmacological treatments, MSC grafts appeared to be beneficial in the treatment of MRONJ, in multiple aspects: (1) recruitment and stimulation of local or regional endogenous cells to differentiate into osteoblasts and thus bone formation, (2) beneficial impact on bone remodeling, and (3) immune-modulatory properties that decrease inflammation. In this context, the second objective of this manuscript would be to summarize the molecular regulatory events controlling osteogenic differentiation, bone remodeling, and osteoimmunology and potential beneficial effects of MSC related to those aspects, in order to apprehend MRONJ and to develop new therapeutic approaches. PMID:27721837

  2. Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations.

    PubMed

    Lin, Xubo; Bai, Tingting; Zuo, Yi Y; Gu, Ning

    2014-03-07

    Nanoparticles (NPs) show great promises in biomedical applications as the respiratory drug carrier system. Once reaching the alveolar region, NPs first interact with the pulmonary surfactant (PS) film, which serves as the first biological barrier and plays an important role in maintaining the normal respiratory mechanics. Therefore, understanding the interactions between NPs and PS can help promote the NP-based respiratory drug carrier systems. Using coarse-grained molecular dynamics simulations, we studied the effect of rigid spherical NPs with different hydrophobicity and sizes on a dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface. Four different NPs were considered, including hydrophilic and hydrophobic NPs, each with two diameters of 3 nm and 5 nm (the sizes are comparable to that of generation 3 and 5 PAMAM dendrimers, which have been widely used for nanoscale drug carrier systems). Our simulations showed that hydrophilic NPs can readily penetrate into the aqueous phase with little or no disturbance on the DPPC monolayer. However, hydrophobic NPs tend to induce large structural disruptions, thus inhibiting the normal phase transition of the DPPC monolayer upon film compression. Our simulations also showed that this inhibitory effect of hydrophobic NPs can be mitigated through PEGylation. Our results provide useful guidelines for molecular design of NPs as carrier systems for pulmonary drug delivery.

  3. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy

    PubMed Central

    Sahin, Ibrahim H; Iacobuzio-Donahue, Christine A; O’Reilly, Eileen M

    2016-01-01

    Introduction Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. Areas covered In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. Expert opinion Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a ‘precision medicine’ approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes. PMID:26439702

  4. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders.

    PubMed

    Schubert, D; Martens, G J M; Kolk, S M

    2015-07-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.

  5. Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies.

    PubMed

    Wang, Yaping; Zhang, Guowen; Wang, Langhong

    2014-01-01

    Prometryn possesses much potential hazard to environment because of its chemical stability and biological toxicity. Here, the binding properties of prometryn with human serum albumin (HSA) and the protein structural changes were determined under simulative physiological conditions (pH 7.4) by multispectroscopic methods including fluorescence, UV-vis absorption, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy, coupled with molecular modeling technique. The result of fluorescence titration suggested that the fluorescence quenching of HSA by prometryn was considered as a static quenching procedure. The negative enthalpy change (ΔH(○)) and positive entropy change (ΔS(○)) values indicated that the binding process was governed mainly by hydrophobic interactions and hydrogen bonds. The site marker displacement experiments suggested the location of prometryn binding to HSA was Sudlow's site I in subdomain IIA. Furthermore, molecular docking studies revealed prometryn can bind in the large hydrophobic activity of subdomain IIA. Analysis of UV-vis absorption, synchronous fluorescence, CD and FT-IR spectra demonstrated that the addition of prometryn resulted in rearrangement and conformational alteration of HSA with reduction in α-helix and increases in β-sheet, β-turn and random coil structures. This work provided reasonable model helping us further understand the transportation, distribution and toxicity effect of prometryn when it spreads into human blood serum.

  6. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies.

    PubMed

    Liu, Yingying; Zhang, Guowen; Liao, Yijing; Wang, Yaping

    2015-01-01

    Psoralen (PSO) is a naturally occurring furanocoumarin with a variety of pharmacological activities, however very limited information on the interaction of PSO with trypsin is available. In this study, the binding characteristics between PSO and trypsin at physiological pH were investigated using a combination of fluorescence, UV-vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic, chemometric and molecular modeling approaches. It was found that the fluorescence quenching of trypsin by PSO was a static quenching procedure, ascribing the formation of a PSO-trypsin complex. The binding of PSO to trypsin was driven mainly by hydrophobic forces as the positive enthalpy change and entropy change values. The molecular docking showed that PSO inserted into the active site pocket of trypsin to interact with the catalytic residues His57, Asp102 and Ser195 and may cause a decrease in trypsin activity. The results of CD and FT-IR spectra along with the temperature-induced denaturation studies indicated that the addition of PSO to trypsin led to the changes in the secondary structure of the enzyme. The concentration profiles and spectra of the three components (PSO, trypsin, and PSO-trypsin complex) obtained by multivariate curve resolution-alternating least squares analysis exhibited the kinetic processes of PSO-trypsin interaction. This study will be helpful to understand the mechanism of PSO that affects the conformation and activity of trypsin in biological processes.

  7. Enhanced heme accessibility in horse heart mini-myoglobin: Insights from molecular modelling and reactivity studies.

    PubMed

    Polticelli, Fabio; Zobnina, Veranika; Ciaccio, Chiara; de Sanctis, Giampiero; Ascenzi, Paolo; Coletta, Massimo

    2015-11-01

    Mini-myoglobin (mini-HHMb) is a fragment of horse-heart myoglobin (HHMb) considered to be the prototype of the product encoded by the central exon of the HHMb gene. For this reason, mini-HHMb has been studied extensively showing that carbonylation and oxygenation properties of the ferrous form are similar to those of the full-length protein, while kinetics and thermodynamics of azide binding to the ferric form are significantly different from those of HHMb. To analyze the structure-function relationships in mini-HHMb and the role of conformational fluctuations in ligand accessibility, the molecular model of mini-HHMb has been built and refined by molecular dynamics simulations, and analyzed in parallel with that of full length HHMb. Moreover, imidazole binding parameters of ferric mini-HHMb and HHMb have been determined. Furthermore, structural data of ferric mini-HHMb and HHMb have been correlated with the imidazole and previously determined azide binding properties. Present results indicate that, despite the extensive trimming, the heme-α-helices E-F substructure is essentially unaltered in mini-HHMb with respect to HHMb. However, the heme-Fe atom displays an enhanced accessibility in mini-HHMb, which may affect both ligand association and dissociation kinetics.

  8. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures.

    PubMed

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Benítez-Cardoza, Claudia Guadalupe; Zamorano-Carrillo, Absalom

    2011-12-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment.

  9. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition

    PubMed Central

    Shieh, Sean R.; Jarrige, Ignace; Wu, Min; Hiraoka, Nozomu; Tse, John S.; Mi, Zhongying; Kaci, Linada; Jiang, Jian-Zhong; Cai, Yong Q.

    2013-01-01

    Knowledge of the high-pressure behavior of carbon dioxide (CO2), an important planetary material found in Venus, Earth, and Mars, is vital to the study of the evolution and dynamics of the planetary interiors as well as to the fundamental understanding of the C–O bonding and interaction between the molecules. Recent studies have revealed a number of crystalline polymorphs (CO2-I to -VII) and an amorphous phase under high pressure–temperature conditions. Nevertheless, the reported phase stability field and transition pressures at room temperature are poorly defined, especially for the amorphous phase. Here we shed light on the successive pressure-induced local structural changes and the molecular-to-nonmolecular transition of CO2 at room temperature by performing an in situ study of the local electronic structure using X-ray Raman scattering, aided by first-principle exciton calculations. We show that the transition from CO2-I to CO2-III was initiated at around 7.4 GPa, and completed at about 17 GPa. The present study also shows that at ∼37 GPa, molecular CO2 starts to polymerize to an extended structure with fourfold coordinated carbon and minor CO3 and CO-like species. The observed pressure is more than 10 GPa below previously reported. The disappearance of the minority species at 63(±3) GPa suggests that a previously unknown phase transition within the nonmolecular phase of CO2 has occurred. PMID:24167283

  10. Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.))

    PubMed Central

    2016-01-01

    Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes. PMID:28149050

  11. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues

    PubMed Central

    Konar, Arpita; Singh, Padmanabh; Thakur, Mahendra K.

    2016-01-01

    Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets. PMID:27114845

  12. Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges

    NASA Astrophysics Data System (ADS)

    Jirsák, Jan; Moučka, Filip; Škvor, Jiří; Nezbeda, Ivo

    2015-04-01

    Exposing aqueous surfaces to a strong electric field gives rise to interesting phenomena, such as formation of a floating water bridge or an eruption of a jet in electrospinning. In an effort to account for the phenomena at the molecular level, we performed molecular dynamics simulations using several protocols on both pure water and aqueous solutions of sodium chloride subjected to an electrostatic field. All simulations consistently point to the same mechanisms which govern the rearrangement of the originally planar surface. The results show that the phenomena are primarily governed by an orientational reordering of the water molecules driven by the applied field. It is demonstrated that, for pure water, a sufficiently strong field yields a columnar structure parallel to the field with an anisotropic arrangement of the water molecules with their dipole moments aligned along the applied field not only in the surface layer but over the entire cross section of the column. Nonetheless, the number of hydrogen bonds per molecule does not seem to be affected by the field regardless of its strength and molecule's orientation. In the electrolyte solutions, the ionic charge is able to overcome the effect of the external field tending to arrange the water molecules radially in the first coordination shell of an ion. The ion-water interaction interferes thus with the water-electric field interaction, and the competition between these two forces (i.e., strength of the field versus concentration) provides the key mechanism determining the stability of the observed structures.

  13. Molecular clocks provide new insights into the evolutionary history of Galeichthyine sea catfishes.

    PubMed

    Betancur-R, Ricardo; Armbruster, Jonathan W

    2009-05-01

    Intercontinental distributions in the southern hemisphere can either be the result of Gondwanan vicariance or more recent transoceanic dispersal. Transoceanic dispersal has come into vogue for explaining many intercontinental distributions; however, it has been used mainly for organisms that can float or raft between the continents. Despite their name, the Sea Catfishes (Ariidae) have limited dispersal ability, and there are no examples of nearshore ariid genera with a transoceanic distribution except for Galeichthys where three species occur in southern Africa and one in the Peruvian coast. A previous study suggested that the group originated in Gondwana, and that the species arrived at their current range after the breakup of the supercontinent in the Early Cretaceous. To test this hypothesis, we infer molecular phylogenies (mitochondrial cytochrome b, ATP synthase 8/6, 12S, and 16S; nuclear rag2; total approximately 4 kb) and estimate intercontinental divergence via molecular clocks (penalized-likelihood, Bayesian relaxed clock, and universal clock rates in fishes). Age ranges for cladogenesis of African and South American lineages are 15.4-2.5 my, far more recent than would be suggested by Gondwanan vicariance; thus, the distribution of galeichthyines must be explained by dispersal or more recent vicariant events. The nested position of the Peruvian species (Galeichthys peruvianus) within the African taxa is robust, suggesting that the direction of the dispersal was from Africa to South America. The progenitor of the Peruvian species likely arrived at its current distribution with the aid of ocean currents, and several scenarios are discussed.

  14. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  15. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs

    PubMed Central

    Wright, Bernice; Spencer, Jeremy P.E.; Lovegrove, Julie A.; Gibbins, Jonathan M.

    2013-01-01

    Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy. PMID:23024269

  16. Insights into molecular therapy of glioma: current challenges and next generation blueprint.

    PubMed

    Rajesh, Y; Pal, Ipsita; Banik, Payel; Chakraborty, Sandipan; Borkar, Sachin A; Dey, Goutam; Mukherjee, Ahona; Mandal, Mahitosh

    2017-03-20

    Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.

  17. Inhibitory effects of daidzein and genistein on trypsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Wang, Ya-Ping; Yang, Ran; You, Jing; Qu, Ling-Bo

    2016-08-01

    In this work, the inhibitory effect of two isoflavonoids including daidzein and genistein on trypsin and their binding mechanism were determined by spectroscopic and molecular docking approaches. The results indicated that both daidzein and genistein reversibly inhibited trypsin in a competitive manner with IC50 values of 68.01×10(-6)molL(-1) and 64.70×10(-6)molL(-1) and Ki values of 62.12×10(-6)molL(-1) and 59.83×10(-6)molL(-1), respectively. They could spontaneously bind with trypsin mainly through hydrophobic force and electrostatic interactions with a single binding site. Analysis of circular dichrosim spectra and molecular docking revealed that both isoflavonoids bound directly into the catalytic cavity and the microenvironment and secondary structure of trypsin were changed in this process, which caused the inhibition of trypsin activity. All these experimental results and theoretical data in this work would be help in understanding the mechanism of inhibitory effects of daidzein and genistein against trypsin and the potential of isoflavonoid to relieve symptoms of pancreatitis.

  18. Proteomics of thyroid tumours provides new insights into their molecular composition and changes associated with malignancy

    PubMed Central

    Martínez-Aguilar, Juan; Clifton-Bligh, Roderick; Molloy, Mark P.

    2016-01-01

    Around 5% of the general population have palpable thyroid nodules. Although most thyroid tumours are benign, thyroid cancer represents the most common malignancy of the endocrine system, comprising mainly follicular and papillary thyroid carcinomas. Previous studies have shed some light on the molecular pathogenesis of thyroid cancer but there have not been any comprehensive mass spectrometry-based proteomic studies of large scale to reveal protein expression differences between thyroid tumours and the molecular alterations associated with tumour malignancy. We applied data-independent acquisition mass spectrometry which enabled quantitative expression analysis of over 1,600 proteins from 32 specimens to compare normal thyroid tissue with the three most common tumours of the thyroid gland: follicular adenoma, follicular carcinoma and papillary carcinoma. In follicular tumours, we found marked reduction of the tumour suppressor and therapeutic target extracellular protein decorin. We made the novel observation that TGFβ-induced protein ig-h3 (TGFBI) was found frequently overexpressed in follicular carcinoma compared with follicular adenoma. Proteomic pathway analysis showed changes in papillary carcinoma were associated with disruption of cell contacts (loss of E-cadherin), actin cytoskeleton dynamics and loss of differentiation markers, all hallmarks of an invasive phenotype. PMID:27025787

  19. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

    PubMed Central

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom

    2011-01-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009

  20. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs.

    PubMed

    Wright, Bernice; Spencer, Jeremy P E; Lovegrove, Julie A; Gibbins, Jonathan M

    2013-01-01

    Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy.

  1. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102

  2. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    PubMed Central

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R.

    2016-01-01

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients. PMID:27725636

  3. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  4. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    SciTech Connect

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R.

    2016-10-26

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients.

  5. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations

    PubMed Central

    Jafari, Majid; Mehrnejad, Faramarz

    2016-01-01

    Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD) simulations of human lysozyme in sodium dodecyl sulfate (SDS) at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC) [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures. PMID:27768744

  6. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

    PubMed

    Purohit, Rituraj

    2014-01-01

    KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.

  7. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches.

    PubMed

    Jamal, Mohammad S; Parveen, Shadma; Beg, Mohd A; Suhail, Mohd; Chaudhary, Adeel G A; Damanhouri, Ghazi A; Abuzenadah, Adel M; Rehan, Mohd

    2014-01-01

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. The present study is the first attempt to provide structural insights into the binding mode of plumbagin to five cancer signaling proteins viz. PI3Kγ, AKT1/PKBα, Bcl-2, NF-κB, and Stat3 using molecular docking and (un)binding simulation analysis. We validated plumbagin docking to these targets with previously known important residues. The study also identified and characterized various novel interacting residues of these targets which mediate the binding of plumbagin. Moreover, the exact modes of inhibition when multiple mode of inhibition existed was also shown. Results indicated that the engaging of these important interacting residues in plumbagin binding leads to inhibition of these cancer-signaling proteins which are key players in the pathogenesis of cancer and thereby ceases the progression of the disease.

  8. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights

    NASA Astrophysics Data System (ADS)

    Duan, Ke; Li, Li; Hu, Yujin; Wang, Xuelin

    2017-04-01

    The molecular bridging between carbon nanotube (CNT) within the meta matrix is hopeful for enhancing nanocomposite's mechanical performance. One of the main problems for nanocomposites is the inadequate bonding between nonstructural reinforcement and meta matrix. Ni-coating on CNT is an effective method to overcome the drawback of the inadequate strength, but the enhancing mechanism has not well interpreted yet. In this paper, the enhancing mechanism will be interpreted from the molecular-dynamics insights. The pullout process of CNT and Ni-coated CNT against copper matrix is investigated. The effects of geometric parameters, including CNT length and diameter, are taken into considerations and discussed. Results show that the interfacial strength is significantly improved after the Ni-coated CNT, which shows a good agreement with the experimental results available in the open literature. Besides, the sliding mechanism of Ni-coated CNTs against copper matrix is much more like a kind of friction sliding and directly related to the embedded zone. However, the pullout force of the CNT without Ni-coating is nearly proportional to its diameter, but independent of embedded length.

  9. Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects.

    PubMed

    Logan, Clare V; Abdel-Hamed, Zakia; Johnson, Colin A

    2011-02-01

    Meckel-Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder characterized by developmental defects of the central nervous system that comprise neural tube defects that most commonly present as occipital encephalocele. MKS is considered to be the most common syndromic form of neural tube defect. MKS is genetically heterogeneous with six known disease genes: MKS1, MKS2/TMEM216, MKS3/TMEM67, RPGRIP1L, CEP290, and CC2D2A with the encoded proteins all implicated in the correct function of primary cilia. Primary cilia are microtubule-based organelles that project from the apical surface of most epithelial cell types. Recent progress has implicated the involvement of cilia in the Wnt and Shh signaling pathways and has led to an understanding of their role in normal mammalian neurodevelopment. The aim of this review is to provide an overview of the molecular genetics of the human disorder, and to assess recent insights into the etiology and molecular cell biology of severe ciliopathies from mammalian animal models of MKS.

  10. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  11. Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives

    PubMed Central

    2016-01-01

    Clear cell carcinoma (CCC) of the ovary is known to show poorer sensitivity to chemotherapeutic agents and to be associated with a worse prognosis than the more common serous adenocarcinoma or endometrioid adenocarcinoma. To improve the survival of patients with ovarian CCC, the deeper understanding of the mechanism of CCC carcinogenesis as well as the efforts to develop novel treatment strategies in the setting of both front-line treatment and salvage treatment for recurrent disease are needed. In this presentation, we first summarize the mechanism responsible for carcinogenesis. Then, we highlight the promising therapeutic targets in ovarian CCC and provide information on the novel agents which inhibit these molecular targets. Moreover, we discuss on the cytotoxic anti-cancer agents that can be best combined with targeted agents in the treatment of ovarian CCC. PMID:27029752

  12. Novel therapeutics in metastatic colorectal cancer: molecular insights and pharmacogenomic implications.

    PubMed

    Hanna, Diana L; Lenz, Heinz-Josef

    2016-08-01

    Although the survival of metastatic colorectal cancer (mCRC) patients has improved five-fold over the last century, CRC remains a significant global health burden. Impressive strides have been made in identifying new regimens, employing maintenance strategies to limit treatment toxicities, and combining multidisciplinary approaches to achieve cure in oligometastatic disease. Attempts at personalized integration of targeted agents have been limited by the ability to identify molecularly enriched patient populations most likely to benefit. In this review, we discuss novel therapeutics and regimens recently approved and in development for mCRC. In addition, we discuss using older agents in novel combination and maintenance strategies, and highlight evidence for implementing pharmacogenomic data and non-invasive monitoring into the personalized management of mCRC patients.

  13. Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Tesi, Lorenzo; Benci, Stefano; Lunghi, Alessandro; Righini, Roberto; Taschin, Andrea; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2017-03-15

    Here we report the investigation of the magnetization dynamics of a vanadyl complex with diethyldithiocarbamate (Et2dtc(-)) ligands, namely [VO(Et2dtc)2] (1), in both solid-state and frozen solution. This showed an anomalous and unprecedentedly observed field dependence of the relaxation time, which was modeled with three contributions to the relaxation mechanism. The temperature dependence of the weight of the two processes dominating at low fields was found to well correlate with the low energy vibrations as determined by THz spectroscopy. This detailed experimental comparative study represents a fundamental step to understand the spin dynamics of potential molecular quantum bits, and enriches the guidelines to design molecule-based systems with enhanced quantum coherence.

  14. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions

    PubMed Central

    Wong, Hon Lun; Ahmed-Cox, Aria; Burns, Brendan Paul

    2016-01-01

    Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S’Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems. PMID:27681900

  15. Molecular insights into the taxonomy of Hypanis (Bivalvia, Cardiidae, Lymnocardiinae) in the Black Sea lagoons

    NASA Astrophysics Data System (ADS)

    Popa, Luis; Popa, Oana; Iorgu, Elena; Kelemen, Beatrice; Murariu, Dumitru

    2012-06-01

    In this study, we used data from morphology and three DNA markers to assess the taxonomic status of the putative bivalve species Hypanis colorata and Hypanis angusticostata in a Black Sea lagoon, the Razelm Lake in Romania. The morphological data (the shape of shell ribs and the multivariate analysis of morphometric variance of three variables constructed as the ratios between the main dimensions of the shell) confirmed that the two analyzed species are distinct morphological entities. Three molecular markers, one from the nuclear genome (18S rRNA) and two from the mitochondrial genome (16S rRNA and COI), showed extremely reduced sequence divergence (0-0.1%) between the two putative species. Based on these results, we suggest that H. angusticostata and H. colorata are morphotypes of a single species.

  16. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs

    PubMed Central

    Tatsumi, Norifumi; Kobayashi, Ritsuko; Yano, Tohru; Noda, Masatsugu; Fujimura, Koji; Okada, Norihiro; Okabe, Masataka

    2016-01-01

    The lung is an important organ for air breathing in tetrapods and originated well before the terrestrialization of vertebrates. Therefore, to better understand lung evolution, we investigated lung development in the extant basal actinopterygian fish Senegal bichir (Polypterus senegalus). First, we histologically confirmed that lung development in this species is very similar to that of tetrapods. We also found that the mesenchymal expression patterns of three genes that are known to play important roles in early lung development in tetrapods (Fgf10, Tbx4, and Tbx5) were quite similar to those of tetrapods. Moreover, we found a Tbx4 core lung mesenchyme-specific enhancer (C-LME) in the genomes of bichir and coelacanth (Latimeria chalumnae) and experimentally confirmed that these were functional in tetrapods. These findings provide the first molecular evidence that the developmental program for lung was already established in the common ancestor of actinopterygians and sarcopterygians. PMID:27466206

  17. Continuum mechanics at the atomic scale: Insights into non-adhesive contacts using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Solhjoo, Soheil; Vakis, Antonis I.

    2016-12-01

    Classical molecular dynamics (MD) simulations were performed to study non-adhesive contact at the atomic scale. Starting from the case of Hertzian contact, it was found that the reduced Young's modulus E* for shallow indentations scales as a function of, both, the indentation depth and the contact radius. Furthermore, the contact of two representative rough surfaces was investigated: one multi-asperity, Greenwood-Williamson-type (GW-type) rough surface — where asperities were approximated as spherical caps — and a comparable randomly rough one. The results of the MD simulations were in agreement for both representations and showed that the relative projected contact areas Ar p c were linear functions of nominal applied pressures, even after the initiation of plastic deformation. When comparing the MD simulation results with the corresponding continuum GW and Persson models, both continuum models were found to overestimate the values of Ar p c relative to the MD simulation results.

  18. Biological and molecular profile of fracture non-union tissue: current insights

    PubMed Central

    Panteli, Michalis; Pountos, Ippokratis; Jones, Elena; Giannoudis, Peter V

    2015-01-01

    Delayed bone healing and non-union occur in approximately 10% of long bone fractures. Despite intense investigations and progress in understanding the processes governing bone healing, the specific pathophysiological characteristics of the local microenvironment leading to non-union remain obscure. The clinical findings and radiographic features remain the two important landmarks of diagnosing non-unions and even when the diagnosis is established there is debate on the ideal timing and mode of intervention. In an attempt to understand better the pathophysiological processes involved in the development of fracture non-union, a number of studies have endeavoured to investigate the biological profile of tissue obtained from the non-union site and analyse any differences or similarities of tissue obtained from different types of non-unions. In the herein study, we present the existing evidence of the biological and molecular profile of fracture non-union tissue. PMID:25726940

  19. Membrane Remodeling by Surface-Bound Protein Aggregates: Insights from Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    2015-01-01

    The mechanism of curvature generation in membranes has been studied for decades due to its important role in many cellular functions. However, it is not clear if, or how, aggregates of lipid-anchored proteins might affect the geometry and elastic property of membranes. As an initial step toward addressing this issue, we performed structural, geometrical, and stress field analyses of coarse-grained molecular dynamics trajectories of a domain-forming bilayer in which an aggregate of lipidated proteins was asymmetrically bound. The results suggest a general mechanism whereby asymmetric incorporation of lipid-modified protein aggregates curve multidomain membranes primarily by expanding the surface area of the monolayer in which the lipid anchor is inserted. PMID:24803997

  20. Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy.

    PubMed

    Monza, Emanuele; Lucas, M Fatima; Camarero, Susana; Alejaldre, Lorea C; Martínez, Angel T; Guallar, Victor

    2015-04-16

    Understanding the molecular determinants of enzyme performance is of primary importance for the rational design of ad hoc mutants. A novel approach, which combines efficient conformational sampling and quick reactivity scoring, is used here to shed light on how substrate oxidation was improved during the directed evolution experiment of a fungal laccase (from Pycnoporus cinnabarinus), an industrially relevant class of oxidoreductases. It is found that the enhanced activity of the evolved enzyme is mainly the result of substrate arrangement in the active site, with no important change in the redox potential of the T1 copper. Mutations at the active site shift the binding mode into a more buried substrate position and provide a more favorable electrostatic environment for substrate oxidation. As a consequence, engineering the binding event seems to be a viable way to in silico evolution of oxidoreductases.

  1. Towards personalized therapy for patients with malignant melanoma: molecular insights into the biology of BRAF mutations.

    PubMed

    Bradish, Joshua R; Montironi, Rodolfo; Lopez-Beltran, Antonio; Post, Kristin M; MacLennan, Gregory T; Cheng, Liang

    2013-02-01

    BRAF mutations have been identified as the most common oncogene mutation in melanomas, especially important in those originating on nonchronically sun-damaged skin. There is a large and continually growing body of evidence regarding the importance of this mutation in targeted therapy for melanoma. In this review, we outline these findings including: molecular pathways used by BRAF, the importance in nonmalignant neoplasms, histologic associations, the relationship of BRAF to KIT and NRAS mutations, and their impact on survival, as well as resistance mechanisms to BRAF inhibitors employed by melanoma. Understanding these topics and how they relate to one another may facilitate the development of new treatments and eventually improve the prognosis for those patients afflicted with this disease.

  2. Evolution of land plants: insights from molecular studies on basal lineages.

    PubMed

    Ishizaki, Kimitsune

    2017-01-01

    The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.

  3. Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations.

    PubMed

    Cherukuvada, Subbulakshmi Latha; Seshasayee, Aswin Sai Narain; Raghunathan, Krishnan; Anishetty, Sharmila; Pennathur, Gautam

    2005-08-01

    Pseudomonas aeruginosa lipase is a 29-kDa protein that, following the determination of its crystal structure, was postulated to have a lid that stretched between residues 125 and 148. In this paper, using molecular dynamics simulations, we propose that there exists, in addition to the above-mentioned lid, a novel second lid in this lipase. We further show that the second lid, covering residues 210-222, acts as a triggering lid for the movement of the first. We also investigate the role of hydrophobicity in the movement of the lids and show that two residues, Phe214 and Ala217, play important roles in lid movement. To our knowledge, this is the first time that a double-lid movement of the type described in our manuscript has been presented to the scientific community. This work also elucidates the interplay of hydrophobic interactions in the dynamics, and hence the function, of an enzyme.

  4. Primary and Secondary Lymphatic Valve Development: Molecular, Functional and Mechanical Insights

    PubMed Central

    Bazigou, Eleni; Wilson, John T.; Moore, James E.

    2015-01-01

    Fluid homeostasis in vertebrates critically relies on the lymphatic system forming a hierarchical network of lymphatic capillaries and collecting lymphatics, for the efficient drainage and transport of extravasated fluid back to the cardiovascular system. Blind–ended lymphatic capillaries employ specialized junctions and anchoring filaments to encourage a unidirectional flow of the interstitial fluid into the initial lymphatic vessels, whereas collecting lymphatics are responsible for the active propulsion of the lymph to the venous circulation via the combined action of lymphatic muscle cells and intraluminal valves. Here we describe recent findings on molecular and physical factors regulating the development and maturation of these two types of valves and examine their role in tissue-fluid homeostasis. PMID:25086182

  5. Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation.

    PubMed

    Breuer, Marian; Rosso, Kevin M; Blumberger, Jochen

    2015-12-15

    Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as "extracellular respiration". Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (Kd) = 490 μM, in good agreement with recent experimental estimates, Kd = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration.

  6. A new gating site in human aquaporin-4: Insights from molecular dynamics simulations.

    PubMed

    Alberga, Domenico; Nicolotti, Orazio; Lattanzi, Gianluca; Nicchia, Grazia Paola; Frigeri, Antonio; Pisani, Francesco; Benfenati, Valentina; Mangiatordi, Giuseppe Felice

    2014-12-01

    Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373-385], our analysis on 200ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability.

  7. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells.

    PubMed

    Laiño, Jonathan; Villena, Julio; Kanmani, Paulraj; Kitazawa, Haruki

    2016-08-15

    Researchers have demonstrated that lactic acid bacteria (LAB) with immunomodulatory capabilities (immunobiotics) exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS), that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells) as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR)-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105)/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  8. Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus.

    PubMed

    Marie, Benjamin; Le Roy, Nathalie; Zanella-Cléon, Isabelle; Becchi, Michel; Marin, Frédéric

    2011-06-01

    Shell matrix proteins (SMPs) that are embedded within calcified layers of mollusc shells are believed to play an essential role in controlling the biomineral synthesis and in increasing its mechanical properties. Among the wide diversity of mollusc shell textures, nacro-prismatic shells represent a tremendous opportunity for the investigation of the SMP evolution. Indeed, nacro-prismatic texture appears early in Cambrian molluscs and is still present in the shell of some bivalves, gastropods, cephalopods and very likely also, of some monoplacophorans. One key question is to know whether these shells are constructed from similar matrix protein assemblages, i.e. whether they share a common origin. Most of the molecular data published so far are restricted to two genera, the bivalve Pinctada and the gastropod Haliotis. The shell protein content of these two genera are clearly different, suggesting independent origins or considerable genetic drift from a common ancestor. In order to describe putatively conserved mollusc shell proteins, here we have investigated the SMP set of a new bivalve model belonging to another genera, the edible mussel Mytilus, using an up-to-date proteomic approach based on the interrogation of more than 70,000 EST sequences, recently available from NCBI public databases. We describe nine novel SMPs, among which three are completely novel, four are homologues of Pinctada SMPs and two are very likely homologues of Haliotis SMPs. This latter result constitutes the first report of conserved SMPs between bivalves and gastropods. More generally, our data suggest that mollusc SMP set may follow a mosaic pattern within the different mollusc models (Mytilus, Pinctada, Haliotis). We discuss the function of such proteins in calcifying matrices, the molecular evolution of SMP genes and the origin of mollusc nacro-prismatic SMPs.

  9. Molecular Phylogeny of the Neotropical Genus Christensonella (Orchidaceae, Maxillariinae): Species Delimitation and Insights into Chromosome Evolution

    PubMed Central

    Koehler, Samantha; Cabral, Juliano S.; Whitten, W. Mark; Williams, Norris H.; Singer, Rodrigo B.; Neubig, Kurt M.; Guerra, Marcelo; Souza, Anete P.; Amaral, Maria do Carmo E.

    2008-01-01

    Background and Aims Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Methods Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Key Results Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularis–C. madida’ and ‘C. ferdinandiana–C. neowiedii’ species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. Conclusions The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent

  10. Molecular dynamics simulations of Zika virus NS3 helicase: Insights into RNA binding site activity.

    PubMed

    Mottin, Melina; Braga, Rodolpho C; da Silva, Roosevelt A; Silva, Joao H Martins da; Perryman, Alexander L; Ekins, Sean; Andrade, Carolina Horta

    2017-03-21

    America is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV. The ZIKV NS3 helicase (NS3h) protein is a promising target for drug discovery due to its essential role in viral genome replication. NS3h unwinds the viral RNA to enable the replication of the viral genome by the NS5 protein. NS3h contains two important binding sites: the NTPase binding site and the RNA binding site. Here, we used molecular dynamics (MD) simulations to study the molecular behavior of ZIKV NS3h in the presence and absence of ssRNA and the potential implications for NS3h activity and inhibition. Although there is conformational variability and poor electron densities of the RNA binding loop in various apo flaviviruses NS3h crystallographic structures, the MD trajectories of NS3h-ssRNA demonstrated that the RNA binding loop becomes more stable when NS3h is occupied by RNA. Our results suggest that the presence of RNA generates important interactions with the RNA binding loop, and these interactions stabilize the loop sufficiently that it remains in a closed conformation. This closed conformation likely keeps the ssRNA bound to the protein for a sufficient duration to enable the unwinding/replication activities of NS3h to occur. In addition, conformational changes of this RNA binding loop can change the nature and location of the optimal ligand binding site, according to ligand binding site prediction results. These are important findings to help guide the design and discovery of new inhibitors of NS3h as promising compounds to treat the ZIKV infection.

  11. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2016-05-01

    Striated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.

  12. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    PubMed

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  13. Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation

    PubMed Central

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    2015-01-01

    Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as “extracellular respiration”. Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (Kd) = 490 μM, in good agreement with recent experimental estimates, Kd = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration. PMID:26682818

  14. Insights using a molecular approach into the life cycle of a tapeworm infecting great white sharks.

    PubMed

    Randhawa, Haseeb S

    2011-04-01

    The great white shark Carcharodon carcharias Linnaeus, 1758 is a versatile and fierce predator (and responsible for many shark attacks on humans). This apex predator feeds on a wide range of organisms including teleosts, other elasmobranchs, cephalopods, pinnipeds, and cetaceans. Although much is known about its diet, no trophic links have been empirically identified as being involved in the transmission of its tapeworm parasites. Recently, the use of molecular tools combined with phylogenetics has proven useful to identify larval and immature stages of marine tapeworms; utilization of the technique has been increasing rapidly. However, the usefulness of this approach remains limited by the availability of molecular data. Here, I employed gene sequence data from the D2 region of the large subunit of ribosomal DNA to link adults of the tapeworm Clistobothrium carcharodoni Dailey and Vogelbein, 1990 (Cestoda: Tetraphyllidea) to larvae for which sequence data for this gene are available. The sequences from the adult tapeworms were genetically identical (0% sequence divergence) to those available on GenBank for "SP" 'small' Scolex pleuronectis recovered from the striped dolphin (Stenella coeruleoalba) and Risso's dolphin (Grampus griseus). This study is the first to provide empirical evidence linking the trophic interaction between great white sharks and cetaceans as a definitive route for the successful transmission of a tetraphyllidean tapeworm. Using the intensity of infection data from this shark and from cetaceans as proxies for the extent of predation, I estimate that this individual shark would have consumed between 9 to 83 G. griseus , fresh, dead, or both, in its lifetime.

  15. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    PubMed Central

    Laiño, Jonathan; Villena, Julio; Kanmani, Paulraj; Kitazawa, Haruki

    2016-01-01

    Researchers have demonstrated that lactic acid bacteria (LAB) with immunomodulatory capabilities (immunobiotics) exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS), that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells) as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR)-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105)/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals. PMID:27681921

  16. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations.

    PubMed

    Bocchinfuso, Gianfranco; Palleschi, Antonio; Orioni, Barbara; Grande, Giacinto; Formaggio, Fernando; Toniolo, Claudio; Park, Yoonkyung; Hahm, Kyung-Soo; Stella, Lorenzo

    2009-09-01

    Most antimicrobial peptides exert their activity by interacting with bacterial membranes, thus perturbing their permeability. They are investigated as a possible solution to the insurgence of bacteria resistant to the presently available antibiotic drugs. However, several different models have been proposed for their mechanism of membrane perturbation, and the molecular details of this process are still debated. Here, we compare fluorescence spectroscopy experiments and molecular dynamics (MD) simulations regarding the association with lipid bilayers and lipid perturbation for two different amphiphilic helical antimicrobial peptides, PMAP-23 and trichogin GA IV. PMAP-23, a cationic peptide member of the cathelicidin family, is considered to induce membrane permeability according to the Shai-Matsuzaki-Huang "carpet" model, while trichogin GA IV is a neutral peptide, member of the peptaibol family. Although several lines of evidence suggest a "barrel-stave" mechanism of pore formation for the latter peptide, its length is only half the normal thickness of a lipid bilayer. Both fluorescence spectroscopy experiments and MD simulations indicated that PMAP-23 associates with membranes close to their surface and parallel to it, and in this arrangement it causes a severe perturbation to the bilayer, both regarding its surface tension and lipid order. By contrast, trichogin GA IV can undergo a transition from a surface-bound state to a transmembrane orientation. In the first arrangement, it does not cause any strong membrane perturbation, while in the second orientation it might be able to span the bilayer from one side to the other, despite its relatively short length, by causing a significant thinning of the membrane.

  17. Comparative molecular epidemiology provides new insights into Zucchini yellow mosaic virus occurrence in France.

    PubMed

    Lecoq, H; Wipf-Scheibel, C; Nozeran, K; Millot, P; Desbiez, C

    2014-06-24

    Zucchini yellow mosaic virus (ZYMV, genus Potyvirus) causes important crop losses in cucurbits worldwide. In France, ZYMV epidemics are sporadic but occasionally very severe. This contrasts with Watermelon mosaic virus (WMV, genus Potyvirus) which causes regular and early epidemics. Factors influencing ZYMV epidemiology are still poorly understood. In order to gain new insights on the ecology and epidemiology of this virus, a 5-year multilocation trial was conducted in which ZYMV spread and populations were studied in each of the 20 plot/year combinations and compared with WMV. Search for ZYMV alternative hosts was conducted by testing weeds growing naturally around one plot and also by checking ZYMV natural infections in selected ornamental species. Although similar ZYMV populations were observed occasionally in the same plot in two successive years suggesting the occurrence of overwintering hosts nearby, only two Lamium amplexicaule plants were found to be infected by ZYMV of 3459 weed samples that were tested. The scarcity of ZYMV reservoirs contrasts with the frequent detection of WMV in the same samples. Since ZYMV and WMV have many aphid vectors in common and are transmitted with similar efficiencies, the differences observed in ZYMV and WMV reservoir abundances could be a major explanatory factor for the differences observed in the typology of ZYMV and WMV epidemics in France. Other potential ZYMV alternative hosts have been identified in ornamental species including begonia. Although possible in a few cases, exchanges of populations between different plots located from 500 m to 4 km apart seem uncommon. Therefore, the potential dissemination range of ZYMV by its aphid vectors seems to be rather limited in a fragmented landscape.

  18. Insights into the molecular mechanisms underlying diversified wing venation among insects.

    PubMed

    Shimmi, Osamu; Matsuda, Shinya; Hatakeyama, Masatsugu

    2014-08-22

    Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.

  19. Human T-Cell Lymphotropic Virus Type 1 Subtype C Molecular Variants among Indigenous Australians: New Insights into the Molecular Epidemiology of HTLV-1 in Australo-Melanesia

    PubMed Central

    Afonso, Philippe V.; Gessain, Antoine

    2013-01-01

    Background HTLV-1 infection is endemic among people of Melanesian descent in Papua New Guinea, the Solomon Islands and Vanuatu. Molecular studies reveal that these Melanesian strains belong to the highly divergent HTLV-1c subtype. In Australia, HTLV-1 is also endemic among the Indigenous people of central Australia; however, the molecular epidemiology of HTLV-1 infection in this population remains poorly documented. Findings Studying a series of 23 HTLV-1 strains from Indigenous residents of central Australia, we analyzed coding (gag, pol, env, tax) and non-coding (LTR) genomic proviral regions. Four complete HTLV-1 proviral sequences were also characterized. Phylogenetic analyses implemented with both Neighbor-Joining and Maximum Likelihood methods revealed that all proviral strains belong to the HTLV-1c subtype with a high genetic diversity, which varied with the geographic origin of the infected individuals. Two distinct Australians clades were found, the first including strains derived from most patients whose origins are in the North, and the second comprising a majority of those from the South of central Australia. Time divergence estimation suggests that the speciation of these two Australian clades probably occurred 9,120 years ago (38,000–4,500). Conclusions The HTLV-1c subtype is endemic to central Australia where the Indigenous population is infected with diverse subtype c variants. At least two Australian clades exist, which cluster according to the geographic origin of the human hosts. These molecular variants are probably of very ancient origin. Further studies could provide new insights into the evolution and modes of dissemination of these retrovirus variants and the associated ancient migration events through which early human settlement of Australia and Melanesia was achieved. PMID:24086779

  20. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase in Mycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy.

    PubMed

    Chaitanya V, Sundeep; Das, Madhusmita; Bhat, Pritesh; Ebenezer, Mannam

    2015-10-01

    The molecular basis for determination of resistance to anti-leprosy drugs is the presence of point mutations within the genes of Mycobacterium leprae (M. leprae) that encode active drug targets. The downstream structural and functional implications of these point mutations on drug targets were scarcely studied. In this study, we utilized computational tools to develop native and mutant protein models for 5 point mutations at codon positions 53 and 55 in 6-hydroxymethyl-7, 8-dihydropteroate synthase (DHPS) of M. leprae, an active target for dapsone encoded by folp1 gene, that confer resistance to dapsone. Molecular docking was performed to identify variations in dapsone interaction with mutant DHPS in terms of hydrogen bonding, hydrophobic interactions, and energy changes. Schrodinger Suite 2014-3 was used to build homology models and in performing molecular docking. An increase in volume of the binding cavities of mutant structures was noted when compared to native form indicating a weakening in interaction (60.7 Å(3) in native vs. 233.6 Å(3) in Thr53Ala, 659.9 Å(3) in Thr53Ile, 400 Å(3) for Thr53Val, 385 Å(3) for Pro55Arg, and 210 Å(3) for Pro55Leu). This was also reflected by changes in hydrogen bonds and decrease in hydrophobic interactions in the mutant models. The total binding energy (ΔG) decreased significantly in mutant forms when compared to the native form (-51.92 Kcal/mol for native vs. -35.64, -35.24, -46.47, -47.69, and -41.36 Kcal/mol for mutations Thr53Ala, Thr53Ile, Thr53Val, Pro55Arg, and Pro55Leu, respectively. In brief, this analysis provided structural and mechanistic insights to the degree of dapsone resistance contributed by each of these DHPS mutants in leprosy.

  1. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis).

    PubMed

    Lu, Xiaopeng; Cao, Xiongjun; Li, Feifei; Li, Jing; Xiong, Jiang; Long, Guiyou; Cao, Shangyin; Xie, Shenxi

    2016-12-01

    Citrate, the predominant organic acid in citrus, determines the taste of these fruits. However, little is known about the synergic molecular processes regulating citrate accumulation. Using 'Dahongtiancheng' (Citrus sinensis) and 'Bingtangcheng' (C. sinensis) with significant difference in citrate, the objectives of this study were to understand the global mechanisms of high-citrate accumulation in sweet orange. 'Dahongtiancheng' and 'Bingtangcheng' exhibit significantly different patterns in citrate accumulation throughout fruit development, with the largest differences observed at 50-70 days after full bloom (DAFB). Comparative transcriptome profiling was performed for the endocarps of both cultivars at 50 and 70 DAFB. Over 34.5 million clean reads per library were successfully mapped to the reference database and 670-2630 differentially expressed genes (DEGs) were found in four libraries. Among the genes, five transcription factors were ascertained to be the candidates regulating citrate accumulation. Functional assignments of the DEGs indicated that photosynthesis, the citrate cycle and amino acid metabolism were significantly altered in 'Dahongtiancheng'. Physiological and molecular analyses suggested that high photosynthetic efficiency and partial impairment of citrate catabolism were crucial for the high-citrate trait, and amino acid biosynthesis was one of the important directions for citrate flux. The results reveal a global insight into the gene expression changes in a high-citrate compared with a low-citrate sweet orange. High accumulating efficiency and impaired degradation of citrate may be associated with the high-citrate trait of 'Dahongtiancheng'. Findings in this study increase understanding of the molecular processes regulating citrate accumulation in sweet orange.

  2. Molecular insight into systematics, host associations, life cycles and geographic distribution of the nematode family Rhabdiasidae.

    PubMed

    Tkach, Vasyl V; Kuzmin, Yuriy; Snyder, Scott D

    2014-04-01

    Rhabdiasidae Railliet, 1915 is a globally distributed group of up to 100 known species of nematodes parasitic in amphibians and reptiles. This work presents the results of a molecular phylogenetic analysis of 36 species of Rhabdiasidae from reptiles and amphibians from six continents. New DNA sequences encompassing partial 18S rDNA, ITS1, 5.8S rDNA, ITS2 and partial 28S rDNA regions of nuclear ribosomal DNA were obtained from 27 species and pre-existing sequences for nine species were incorporated. The broad taxonomic, host and geographical coverage of the specimens allowed us to address long-standing questions in rhabdiasid systematics, evolution, geographic distribution, and patterns of host association. Our analysis demonstrated that rhabdiasids parasitic in snakes are an independent genus sister to the rest of the Rhabdiasidae, a status supported by life cycle data. Based on the combined evidence of molecular phylogeny, morphology and life cycle characteristics, a new genus Serpentirhabdias gen. nov. with the type species Serpentirhabdias elaphe (Sharpilo, 1976) comb. nov. is established. The phylogeny supports the monophyly of Entomelas Travassos, 1930, Pneumonema Johnston, 1916 and the largest genus of the family, Rhabdias Stiles and Hassall, 1905. DNA sequence comparisons demonstrate the presence of more than one species in the previously monotypic Pneumonema from Australian scincid lizards. The distribution of some morphological characters in the genus Rhabdias shows little consistency within the phylogenetic tree topology, in particular the apical structures widely used in rhabdiasid systematics. Our data suggest that some of the characters, while valuable for species differentiation, are not appropriate for differentiation among higher taxa and are of limited phylogenetic utility. Rhabdias is the only genus with a cosmopolitan distribution, but some of the lineages within Rhabdias are distributed on a single continent or a group of adjacent

  3. Molecular insights into the role of aqueous trehalose solution on temperature-induced protein denaturation.

    PubMed

    Paul, Subrata; Paul, Sandip

    2015-01-29

    To investigate the underlying mechanism by which trehalose acts as a bioprotectant against thermal denaturation of protein in aqueous solution, we carry out classical molecular dynamics simulations at two different temperatures. Though it is widely accepted that trehalose acts as an antidote against such protein structural destabilization and numerous hypotheses have been proposed in regard to its mechanism of stabilization, there is still no definitive generally accepted answer to this question and it remains a subject of active research. In view of this, in this article we report the thermal denaturation process of a 15-residue S-peptide analogue at 360 K temperature and the counteracting ability of trehalose of varying concentrations at that temperature. In order to verify the conformational stability of the peptide at ambient temperature condition, we also carry out a separate simulation of peptide-water binary system at 300 K temperature. The goal is to provide a molecular level understanding of how trehalose protects protein at elevated temperature. The Cα-rmsd calculation shows that in pure water, the peptide is stable at 300 K temperature and its unfolding is observed at 360 K. However, in peptide-water-trehalose ternary system, the value of Cα-rmsd decreases as trehalose concentration is increased. Remarkably, at the highest trehalose concentration considered in this study, the value of Cα-rmsd at 360 K is similar to that of water-peptide binary system at 300 K temperature. Further, the calculations of radius of gyration of Cα-atoms and helical percentage of the peptide residues support the above observations. The total number of hydrogen bonds formed by the peptide with solution species (trehalose and water) remains constant, though the peptide water hydrogen bond decreases and peptide trehalose hydrogen bond increases with increasing trehalose concentration. This finding suggests replacement of water molecules by trehalose molecules and supports

  4. Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations.

    PubMed

    de Moura, André F; Bernardino, Kalil; Dalmaschio, Cleocir J; Leite, Edson R; Kotov, Nicholas A

    2015-02-07

    Although the molecular modeling of self-assembling processes stands as a challenging research issue, there have been a number of breakthroughs in recent years. This report describes the use of large-scale molecular dynamics simulations with coarse grained models to study the spontaneous self-assembling of capped nanoparticles in chloroform suspension. A model system comprising 125 nanoparticles in chloroform evolved spontaneously from a regular array of independent nanoparticles to a single thread-like, ramified superstructure spanning the whole simulation box. The aggregation process proceeded by means of two complementary mechanisms, the first characterized by reactive collisions between monomers and oligomers, which were permanently trapped into the growing superstructure, and the second a slow structural reorganization of the nanoparticle packing. Altogether, these aggregation processes were over after ca. 0.6 μs and the system remained structurally and energetically stable until 1 μs. The thread-like structure closely resembles the TEM images of capped ZrO2, but a better comparison with experimental results was obtained by the deposition of the suspension over a graphene solid substrate, followed by the complete solvent evaporation. The agreement between the main structural features from this simulation and those from the TEM experiment was excellent and validated the model system. In order to shed further light on the origins of the stable aggregation of the nanoparticles, the Gibbs energy of aggregation was computed, along with its enthalpy and entropy contributions, both in chloroform and in a vacuum. The thermodynamic parameters arising from the modeling are consistent with larger nanoparticles in chloroform due to the solvent-swelled organic layer and the overall effect of the solvent was the partial destabilization of the aggregated state as compared to the vacuum system. The modeling strategy has been proved effective and reliable to describe the self

  5. Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Miebach, Andrea; Niestrath, Phoebe; Roeser, Patricia; Litt, Thomas

    2016-03-01

    The Marmara region in northwestern Turkey provides a unique opportunity for studying the vegetation history in response to climate changes and anthropogenic impacts because of its location between different climate and vegetation zones and its long settlement history. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate-related changes of the lake level and the lake mixing. However, a palynological investigation encompassing the Late Pleistocene to Middle Holocene was still missing. Here, we present the first pollen record of the last ca. 31 ka cal BP (calibrated kilo years before 1950) inferred from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Our study reveals that the vegetation in the Iznik area changed generally between (a) steppe during glacials and stadials indicating dry and cold climatic conditions, (b) forest-steppe during interstadials indicating milder and moister climatic conditions, and (c) oak-dominated mesic forest during interglacials indicating warm and moist climatic conditions. Moreover, a pronounced succession of pioneer trees, cold temperate, warm temperate, and Mediterranean trees appeared since the Lateglacial. Rapid climate changes, which are reflected by vegetation changes, can be correlated with Dansgaard-Oeschger (DO) events such as DO-4, DO-3, and DO-1, the Younger Dryas, and probably also the 8.2 event. Since the mid-Holocene, the vegetation was influenced by anthropogenic activities. During early settlement phases, the distinction between climate-induced and human-induced changes of the vegetation is challenging. Still, evidence for human activities consolidates since the Early Bronze Age (ca. 4.8 ka cal BP): cultivated trees, crops, and secondary human indicator taxa appeared, and forests were cleared. Subsequent fluctuations between extensive agricultural uses and regenerations of the natural vegetation become apparent.

  6. Molecular insights into chronotype and time-of-day effects on decision-making

    PubMed Central

    Ingram, Krista K; Ay, Ahmet; Kwon, Soo Bin; Woods, Kerri; Escobar, Sue; Gordon, Molly; Smith, Isaac H.; Bearden, Neil; Filipowicz, Allan; Jain, Kriti

    2016-01-01

    Recent reports highlight that human decision-making is influenced by the time of day and whether one is a morning or evening person (i.e., chronotype). Here, we test whether these behavioral effects are associated with endogenous biological rhythms. We asked participants to complete two well-established decision-making tasks in the morning or evening: the matrix task (an ethical decision task) and the balloon analog risk task (BART; a risk-taking task), and we measured their chronotype in two ways. First, participants completed a self-report measure, the Horne-Östberg Morningness-Eveningness Questionnaire (MEQ). Second, we measured the expression of two circadian clock-regulated genes—Per3 and Nr1d2—from peripheral clock cells in participants’ hair follicle samples. Using a cosinor model, we estimated the phase of the peripheral clock and assigned RNA chronotypes to participants with advanced (larks) or delayed (owls) phases. The behavioral data were analyzed independently for self-reported (MEQ) and RNA-based chronotypes. We find that significant chronotype and/or time-of-day effects between larks and owls in decision-making tasks occur only in RNA-based chronotypes. Our results provide evidence that time-of-day effects on decision-making can be explained by phase differences in oscillating clock genes and suggest that variation in the molecular clockwork may influence inter-individual differences in decision-making behavior. PMID:27388366

  7. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.

    PubMed

    Ekka, Deepak; Roy, Mahendra Nath

    2013-10-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of β-cyclodextrin (β-CD) have been probed by thermophysical properties. Density (ρ), viscosity (η), and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume ([Formula: see text]), viscosity B-coefficient and limiting apparent molar adiabatic compressibility ([Formula: see text]). The changes on the enthalpy ([Formula: see text]) and entropy ([Formula: see text]) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes, [Formula: see text], have been interpreted in terms of solute-cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of β-CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  8. Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches.

    PubMed

    Gropman, Andrea L; Batshaw, Mark L

    2010-09-01

    The diagnostic evaluation of children with intellectual disability (ID) and other neurodevelopmental disabilities (NDD) has become increasingly complex in recent years owing to a number of newly recognized genetic mechanisms and sophisticated methods to diagnose them. Previous studies have attempted to address the diagnostic yield of finding a genetic cause in ID. The results have varied widely from 10% to 81%, with the highest percentage being found in studies using new array comparative genomic hybridization methodology especially in autism. Although many cases of ID/NDD result from chromosomal aneuploidy or structural rearrangements, single gene disorders and new categories of genome modification, including epigenetics and copy number variation play an increasingly important role in diagnosis and testing. Epigenetic mechanisms, such as DNA methylation and modifications to histone proteins, regulate high-order DNA structure and gene expression. Aberrant epigenetic and copy number variation mechanisms are involved in several neurodevelopmental and neurodegenerative disorders including Rett syndrome, fragile X syndrome, and microdeletion syndromes. This review will describe a number of the molecular genetic mechanisms that play a role in disorders leading to ID/NDD and will discuss the categories and technologies for diagnostic testing of these conditions.

  9. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    PubMed

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  10. Interaction of counterions with subtilisin in acetonitrile: insights from molecular dynamics simulations.

    PubMed

    Lousa, Diana; Cianci, Michele; Helliwell, John R; Halling, Peter J; Baptista, António M; Soares, Cláudio M

    2012-05-24

    A recent X-ray structure has enabled the location of chloride and cesium ions on the surface of subtilisin Carlsberg in acetonitrile soaked crystals. (1) To complement the previous study and analyze the system in solution, molecular dynamics (MD) simulations, in acetonitrile, were performed using this structure. Additionally, Cl(-) and Cs(+) ions were docked on the protein surface and this system was also simulated. Our results indicate that chloride ions tend to stay close to the protein, whereas cesium ions frequently migrate to the solvent. The distribution of the ions around the enzyme surface is not strongly biased by their initial locations. Replacing cesium by sodium ions showed that the distribution of the two cations is similar, indicating that Cs(+) can be used to find the binding sites of cations like Na(+) and K(+), which, unlike Cs(+), have physiological and biotechnological roles. The Na(+)Cl(-) is more stable than the Cs(+)Cl(-) ion pair, decreasing the probability of interaction between Cl(-) and subtilisin. The comparison of water and acetonitrile simulations indicates that the solvent influences the distribution of the ions. This work provides an extensive theoretical analysis of the interaction between ions and the model enzyme subtilisin in a nonaqueous medium.

  11. Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics

    PubMed Central

    Pickersgill, Barbara

    2007-01-01

    Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas. PMID:17766847

  12. Molecular insights into the function, fate, and prospects of stem cells.

    PubMed

    Rajasekhar, Vinagolu K; Vemuri, Mohan C

    2005-09-01

    This article forms a review and an appraisal of the third annual meeting of the International Society for Stem Cell Research (http://www.isscr.org), held in San Francisco on June 23-25, 2005. The focus of the meeting was recent advances in stem cell biology. More than 2,000 scientists from around the world met to discuss stem cell research, clinical applications, and the ethical hurdles facing the field. Major topics highlighted during the meeting included the self-renewal and differentiation of embryonic stem cells as well as adult stem cells. Presentations included diverse topics such as cancer stem cells, tissue-specific stem cells, technology development, and clinical aspects of stem cells. Given the excitement the field has generated, linking basic stem cell research and clinical applications was paramount for discussion at the meeting. With the current resources in molecular biology research, improvements in genetic engineering, postgenomic capabilities, and biotechnological advances, it appears timely that stem cell biology research is headed toward making a major therapeutic contribution to human health.

  13. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens

    PubMed Central

    Alkan, Noam; Fortes, Ana M.

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204

  14. Cytochrome P450 structure-function: insights from molecular dynamics simulations.

    PubMed

    Nair, Pramod C; McKinnon, Ross A; Miners, John O

    2016-08-01

    Cytochrome P450 (CYP) family 1, 2, and 3 enzymes play an essential role in the metabolic clearance and detoxification of a myriad of structurally and chemically diverse drugs and non-drug xenobiotics. The individual CYP enzymes exhibit distinct substrate and inhibitor selectivities, and hence differing patterns of inhibitory drug-drug interactions. In addition, CYP enzymes differ in terms of regulation of expression, genetic polymorphism, and environmental factors that alter activity. The availability of three-dimensional structures from X-ray crystallography have been invaluable for understanding the structural basis of the ligand selectivity of CYP enzymes. Moreover, the X-ray crystal structures demonstrate that CYP proteins exhibit marked flexibility, particularly around the active site, and the principle of ligand-induced conformational changes is now well accepted. Recent studies have demonstrated that molecular dynamics simulations (MDS) provide an additional approach for modeling the structural flexibility of CYP enzymes, both in the presence and absence of bound ligand, and understanding the functional consequences of plasticity. However, most of the MDS studies reported to date have utilized short simulation time scales, and few have validated the computationally-generated data experimentally (e.g. by site-directed mutagenesis and enzyme kinetic approaches). Although modeling approaches require further development and validation, MDS has the potential to provide a deeper understanding of CYP structure-function than is available from experimental techniques such as X-ray crystallography alone.

  15. Postcollision multifragmentation in fullerene-surface impact: Microscopic insights via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bernstein, Victor; Kolodney, Eli

    2016-07-01

    Postcollision multifragmentation which we have recently observed experimentally in C60 - -surface impact is the phenomenon of a delayed multiparticle breakup of a highly collisionally vibrationally excited large molecule/cluster (the precursor species) into several polyatomic fragments, after leaving the surface. In this paper, we show that the molecular dynamics simulations of near-grazing C60 collisions with a gold surface at 300 eV impact energy (very similar to the experimental conditions) successfully reproduce the experimentally observed characteristics of the postcollision multifragmentation process. The calculated mass resolved kinetic energy distributions and the time dependent yield curves of the Cn fragments revealed a precursor mediated, velocity correlated, delayed fragmentation event along the outgoing trajectory, far away from the surface. Most of the large fragments (n ≥ 5) are formed within a time window of 2-20 ps after leaving the surface, corresponding to the vertical distances of 3-30 nm from the surface. Analysis of delay times and actual time duration for multifragmentation reveal that a large part can be described as simultaneous postcollision (delayed) multifragmentation events. The delayed nature of the event seems to be due to an early sequence of structural transformations of the precursor.

  16. Insights into the Interactions between Maleimide Derivates and GSK3β Combining Molecular Docking and QSAR

    PubMed Central

    Quesada-Romero, Luisa; Mena-Ulecia, Karel; Tiznado, William; Caballero, Julio

    2014-01-01

    Many protein kinase (PK) inhibitors have been reported in recent years, but only a few have been approved for clinical use. The understanding of the available molecular information using computational tools is an alternative to contribute to this process. With this in mind, we studied the binding modes of 77 maleimide derivates inside the PK glycogen synthase kinase 3 beta (GSK3β) using docking experiments. We found that the orientations that these compounds adopt inside GSK3β binding site prioritize the formation of hydrogen bond (HB) interactions between the maleimide group and the residues at the hinge region (residues Val135 and Asp133), and adopt propeller-like conformations (where the maleimide is the propeller axis and the heterocyclic substituents are two slanted blades). In addition, quantitative structure–activity relationship (QSAR) models using CoMSIA methodology were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. We found a model to explain the structure–activity relationship of non-cyclic maleimide (NCM) derivatives (54 compounds). The best CoMSIA model (training set included 44 compounds) included steric, hydrophobic, and HB donor fields and had a good Q2 value of 0.539. It also predicted adequately the most active compounds contained in the test set. Furthermore, the analysis of the plots of the steric CoMSIA field describes the elements involved in the differential potency of the inhibitors that can be considered for the selection of suitable inhibitors. PMID:25010341

  17. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies.

    PubMed

    Feuer, S K; Camarano, L; Rinaudo, P F

    2013-04-01

    Since the birth of the first IVF-conceived child in 1978, the use of assisted reproductive technologies (ART) has grown dramatically, contributing to the successful birth of 5 million individuals worldwide. However, there are several reported associations of ART with pregnancy complications, such as low birthweight (LBW), preterm birth, birth defects, epigenetic disorders, cancer and poor metabolic health. Whether this is attributed to ART procedures or to the subset of the population seeking ART remains a controversy, but the most relevant question today concerns the potential long-term implications of assisted conception. Recent evidence has emerged suggesting that ART-conceived children have distinct metabolic profiles that may predispose to cardiovascular pathologies in adulthood. Because the eldest IVF individuals are still too young to exhibit components of chronic middle-aged syndromes, the use of animal models has become particularly useful in describing the effects of unusual or stressful preimplantation experiences on adult fitness. Elucidating the molecular mechanisms by which embryos integrate environmental signals into development and metabolic gene expression programs will be essential for optimizing ART procedures such as in vitro culture conditions, embryo selection and transfer. In the future, additional animal studies to identify mechanisms underlying unfavorable ART outcomes, as well as more epidemiological reviews to monitor the long-term health of ART children are required, given that ART procedures have become routine medical practice.

  18. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking.

    PubMed

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP(+)). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (-)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure-function relationship studies.

  19. Merkel Cell Polyomavirus: Molecular Insights into the Most Recently Discovered Human Tumour Virus

    PubMed Central

    Stakaitytė, Gabrielė; Wood, Jennifer J.; Knight, Laura M.; Abdul-Sada, Hussein; Adzahar, Noor Suhana; Nwogu, Nnenna; Macdonald, Andrew; Whitehouse, Adrian

    2014-01-01

    A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC. PMID:24978434

  20. Molecular insights into Adgra2/Gpr124 and Reck intracellular trafficking

    PubMed Central

    Bostaille, Naguissa; Gauquier, Anne; Twyffels, Laure

    2016-01-01

    ABSTRACT Adgra2, formerly known as Gpr124, is a key regulator of cerebrovascular development in vertebrates. Together with the GPI-anchored glycoprotein Reck, this adhesion GPCR (aGPCR) stimulates Wnt7-dependent Wnt/β-catenin signaling to promote brain vascular invasion in an endothelial cell-autonomous manner. Adgra2 and Reck have been proposed to assemble a receptor complex at the plasma membrane, but the molecular modalities of their functional synergy remain to be investigated. In particular, as typically found in aGPCRs, the ectodomain of Adgra2 is rich in protein-protein interaction motifs whose contributions to receptor function are unknown. In opposition to the severe ADGRA2 genetic lesions found in previously generated zebrafish and mouse models, the zebrafish ouchless allele encodes an aberrantly-spliced and inactive receptor lacking a single leucine-rich repeat (LRR) unit within its N-terminus. By characterizing this allele we uncover that, in contrast to all other extracellular domains, the precise composition of the LRR domain determines proper receptor trafficking to the plasma membrane. Using CRISPR/Cas9 engineered cells, we further show that Adgra2 trafficking occurs in a Reck-independent manner and that, similarly, Reck reaches the plasma membrane irrespective of Adgra2 expression or localization, suggesting that the partners meet at the plasma membrane after independent intracellular trafficking events. PMID:27979830

  1. Paratransgenesis: an approach to improve colony health and molecular insight in honey bees (Apis mellifera)?

    PubMed

    Rangberg, Anbjørg; Diep, Dzung B; Rudi, Knut; Amdam, Gro V

    2012-07-01

    The honey bee (Apis mellifera) is highly valued as a commercial crop pollinator and a model animal in research. Over the past several years, governments, beekeepers, and the general public in the United States and Europe have become concerned by increased losses of honey bee colonies, calling for more research on how to keep colonies healthy while still employing them extensively in agriculture. The honey bee, like virtually all multicellular organisms, has a mutually beneficial relationship with specific microbes. The microbiota of the gut can contribute essential nutrients and vitamins and prevent colonization by non-indigenous and potentially harmful species. The gut microbiota is also of interest as a resource for paratransgenesis; a Trojan horse strategy based on genetically modified symbiotic microbes that express effector molecules antagonizing development or transmission of pathogens. Paratransgenesis was originally engineered to combat human diseases and agricultural pests that are vectored by insects. We suggest an alternative use, as a method to promote health of honey bees and to expand the molecular toolbox for research on this beneficial social insect. The honey bees' gut microbiota contains lactic acid bacteria including the genus Lactobacillus that has paratransgenic potential. We present a strategy for transforming one Lactobacillus species, L. kunkeei, for use as a vector to promote health of honey bees and functional genetic research.

  2. Molecular Background of miRNA Role in Asthma and COPD: An Updated Insight

    PubMed Central

    Szymczak, Izabela; Wieczfinska, Joanna; Pawliczak, Rafal

    2016-01-01

    Inflammatory airway diseases are a significant health problems requiring new approaches to the existing therapies and addressing fundamental issues. Difficulties in developing effective therapeutic strategies might be caused by lack of understanding of their exact molecular mechanism. MicroRNAs (miRNAs) are a class of regulators that already revolutionized the view of gene expression regulation. A cumulating number of investigations show a pivotal role of miRNAs in the pathogenesis of asthma, chronic obstructive pulmonary disease (COPD), or airway remodeling through the regulation of many pathways involved in their pathogenesis. Expression changes of several miRNAs have also been found to play a role in the development and/or improvement in asthma or COPD. Still, relatively little is known about the role of miRNAs in inflammatory disorders. The microRNA profiles may differ depending on the cell type or antigen-presenting cell. Based on the newest literature, this review discusses the current knowledge concerning miRNA contribution and influence on lung inflammation and chosen inflammatory airway diseases: asthma and COPD. PMID:27376086

  3. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies

    PubMed Central

    Feuer, S.K.; Camarano, L.; Rinaudo, P.F.

    2013-01-01

    Since the birth of the first IVF-conceived child in 1978, the use of assisted reproductive technologies (ART) has grown dramatically, contributing to the successful birth of 5 million individuals worldwide. However, there are several reported associations of ART with pregnancy complications, such as low birthweight (LBW), preterm birth, birth defects, epigenetic disorders, cancer and poor metabolic health. Whether this is attributed to ART procedures or to the subset of the population seeking ART remains a controversy, but the most relevant question today concerns the potential long-term implications of assisted conception. Recent evidence has emerged suggesting that ART-conceived children have distinct metabolic profiles that may predispose to cardiovascular pathologies in adulthood. Because the eldest IVF individuals are still too young to exhibit components of chronic middle-aged syndromes, the use of animal models has become particularly useful in describing the effects of unusual or stressful preimplantation experiences on adult fitness. Elucidating the molecular mechanisms by which embryos integrate environmental signals into development and metabolic gene expression programs will be essential for optimizing ART procedures such as in vitro culture conditions, embryo selection and transfer. In the future, additional animal studies to identify mechanisms underlying unfavorable ART outcomes, as well as more epidemiological reviews to monitor the long-term health of ART children are required, given that ART procedures have become routine medical practice. PMID:23264495

  4. From molecular insight to therapeutic strategy: The holistic approach for treating triple negative breast cancer.

    PubMed

    Bhattacharya, Rittwika; Banerjee, Koyel; Mukherjee, Nupur; Sen, Minakshi; Mukhopadhyay, Ashis

    2017-03-01

    Aim of the present study was to analyze the molecular pathogenesis of TNBC, therapeutic practice, challenges, and future goals in treatment strategies. Based on the alterations of distinct pathways, Lehmann's subgroups of TNBCs were further categorized. Those with defective DNA damage repair and replication pathways, viz. Basal Like 1 & 2 (BL1, BL2) were found susceptible to DNA intercalating drugs while those with upregulated cell signalling & motility (mesenchymal (M), mesemchymal stem like (MSL)), cell survival (BL2, M, MSL), angiogenesis (BL2, MSL), T cell signalling (Immunomodulatory/IM) pathways required targeted therapies. Our Meta-analysis categorized 12 randomized previous trial cases, solely under the following drug regimens: [1] DNA destabilizers, [2] PARP inhibitors, [3] Microtubule stabilizers, [4] Angiogenesis inhibitors, [5] Antimetabolite, [6] T cell targeted therapy; as single or combinational therapy. Best therapeutic efficacies of DNA destabilizers with angiogenesis inhibitors in combination than monotherapy with either (OR: 5.011-7.286; p value<0.001) indicated a significant prevalence of BL1 type TNBCs in populations. Statistical significance with antimetabolites as combination therapy (OR: 2.343; p value: 0.018) and not with microtubule stabilizer (OR: 0.377) were observed. Thus, for best ORR in TNBC, personalized medicine should be the therapeutic choice for the clinicians.

  5. Aqua Ions-Graphene Interfacial and Confinement Behavior: Insights from isobaric-isothermal molecular dynamics

    SciTech Connect

    Chialvo, Ariel A; Cummings, Peter T

    2011-01-01

    We carry out a systematic micro-structural characterization of the solidfluid interface (SFI) of water and simple metal chloride aqueous solutions in contact with a free standing plate or with two such plates separated by an inter-plate distance 0 ! h( ) ! 30 at ambient conditions via isothermalisobaric molecular dynamics. With this characterization we target the interrogation of the system in search for answers to fundamental questions regarding the structure of the external and internal (confined) SFI s, the effect of the differential hydration behavior among species and its link to species expulsion from confinement. For water at ambient conditions we found that the structure of the external SFI s is independent of the interplate distance h in the range 0 ! h( ) ! 30 , i.e., the absence of wallmediated correlation effects between external and internal SFI s, and that for h < 9 the slit-pores de-wet. Moreover, we observed a selective expulsion of ions caused by the differential hydration between the anion and the cations with a consequent charging of the slit-pore. All these observations were interpreted in terms of the axial profiles for precisely defined order parameters including tetrahedral configuration, hydrogen bonding, and species coordination numbers.

  6. Molecular Insights into Toluene Sensing in the TodS/TodT Signal Transduction System*

    PubMed Central

    Koh, Serry; Hwang, Jungwon; Guchhait, Koushik; Lee, Eun-Gyeong; Kim, Sang-Yoon; Kim, Sujin; Lee, Sangmin; Chung, Jeong Min; Jung, Hyun Suk; Lee, Sang Jun; Ryu, Choong-Min; Lee, Seung-Goo; Oh, Tae-Kwang; Kwon, Ohsuk; Kim, Myung Hee

    2016-01-01

    TodS is a sensor kinase that responds to various monoaromatic compounds, which either cause an agonistic or antagonistic effect on phosphorylation of its cognate response regulator TodT, and controls tod operon expression in Pseudomonas putida strains. We describe a molecular sensing mechanism of TodS that is activated in response to toluene. The crystal structures of the TodS Per-Arnt-Sim (PAS) 1 sensor domain (residues 43–164) and its complex with toluene (agonist) or 1,2,4-trimethylbenzene (antagonist) show a typical β2α3β3 PAS fold structure (residues 45–149), forming a hydrophobic ligand-binding site. A signal transfer region (residues 150–163) located immediately after the canonical PAS fold may be intrinsically flexible and disordered in both apo-PAS1 and antagonist-bound forms and dramatically adapt an α-helix upon toluene binding. This structural change in the signal transfer region is proposed to result in signal transmission to activate the TodS/TodT two-component signal transduction system. Site-directed mutagenesis and β-galactosidase assays using a P. putida reporter strain system verified the essential residues involved in ligand sensing and signal transfer and suggest that the Phe46 residue acts as a ligand-specific switch. PMID:26903514

  7. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking

    PubMed Central

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP+). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (–)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure–function relationship studies. PMID:26357462

  8. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia.

    PubMed

    Marker, Laurie L; Pearks Wilkerson, Alison J; Sarno, Ronald J; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetahs.

  9. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment.

    PubMed

    Moeller, Hanne B; Rittig, Søren; Fenton, Robert A

    2013-04-01

    The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.

  10. In Silico identification of SNP diversity in cultivated and wild tomato species: insight from molecular simulations

    PubMed Central

    Bhardwaj, Archana; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Bag, Sumit K

    2016-01-01

    Single Nucleotide Polymorphisms (SNPs), an important source of genetic variations, are often used in crop improvement programme. The present study represented comprehensive In silico analysis of nucleotide polymorphisms in wild (Solanum habrochaites) and cultivated (Solanum lycopersicum) species of tomato to explore the consequence of substitutions both at sequence and structure level. A total of 8978 SNPs having Ts/Tv (Transition/Transversion) ratio 1.75 were identified from the Expressed Sequence Tag (EST) and Next Generation Sequence (NGS) data of both the species available in public databases. Out of these, 1838 SNPs were non-synonymous and distributed in 988 protein coding genes. Among these, 23 genes containing 96 SNPs were involved in traits markedly different between the two species. Furthermore, there were 28 deleterious SNPs distributed in 27 genes and a few of these genes were involved in plant pathogen interaction and plant hormone pathways. Molecular docking and simulations of several selected proteins showed the effect of SNPs in terms of compactness, conformation and interaction ability. Observed SNPs exhibited various types of motif binding effects due to nucleotide changes. SNPs that provide the evidence of differential motif binding and interaction behaviour could be effectively used for the crop improvement program. PMID:27929054

  11. Molecular insights into the origin of the Hox-TALE patterning system

    PubMed Central

    Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir

    2014-01-01

    Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410

  12. Insight into the early stages of thermal unfolding of peanut agglutinin by molecular dynamics simulations.

    PubMed

    Hansia, Priti; Dev, Sagarika; Surolia, Avadhesha; Vishveshwara, Saraswathi

    2007-10-01

    Peanut agglutinin is a homotetrameric nonglycosylated protein. The protein has a unique open quaternary structure. Molecular dynamics simulations have been employed to follow the atomistic details of its unfolding at different temperatures. The early events of the deoligomerization of the protein have been elucidated in the present study. Simulation trajectories of the monomer as well as those of the tetramer have been compared and the tetramer is found to be substantially more stable than its monomeric counterpart. The tetramer shows retention of most of its secondary structure but considerable loss of the tertiary structure at high temperature. This observation implies the generation of a molten globule-like intermediate in the later stages of deoligomerization. The quaternary structure of the protein has weakened to a large extent, but none of the subunits are separated. In addition, the importance of the metal-binding to the stability of the protein structure has also been investigated. Binding of the metal ions not only enhances the local stability of the metal-ion binding loop, but also imparts a global stability to the overall structure. The dynamics of different interfaces vary significantly as probed through interface clusters. The differences are substantially enhanced at higher temperatures. The dynamics and the stability of the interfaces have been captured mainly by cluster analysis, which has provided detailed information on the thermal deoligomerization of the protein.

  13. Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations.

    PubMed

    Esposito, Luciana; Daggett, Valerie

    2005-03-08

    Bovine pancreatic ribonuclease (RNase A) deserves a special place among the numerous proteins that form oligomers by three-dimensional domain swapping. In fact, under destabilizing conditions and at high protein concentrations, it can swap two different domains, the N-terminal alpha-helix or the C-terminal beta-strand, leading to dimers with different quaternary structures. With the change in the unfolding conditions, the relative abundance of the two dimers varies, and the prevalence of one dimer over the other is inverted. To investigate the dynamic behavior of the termini, four independent 10 ns high-temperature molecular dynamics simulations of RNase A were carried out at two different pH values in an attempt to reproduce the experimental conditions of neutral and very low pH that favor the formation of the N- and C-terminal domain-swapped dimers, respectively. In agreement with experimental data, under mild unfolding conditions, a partial or complete opening of the N-terminal arm is observed, whereas the dislocation of the C-terminus away from the core of the structure occurs only during the low-pH simulations. Furthermore, the picture emerging from this study indicates that the same protein can have different pathways for domain swapping. Indeed, in RNase A the C-terminal swapping requires a substantial unfolding of the monomers, whereas the N-terminal swapping can occur through only partial unfolding.

  14. Effect of Zn(2+) ions on the assembly of amylin oligomers: insight into the molecular mechanisms.

    PubMed

    Wineman-Fisher, Vered; Miller, Yifat

    2016-08-03

    Amylin is an endocrine hormone and is a member of the family of amyloid peptides and proteins that emerge as potential scaffolds by self-assembly processes. Zn(2+) ions can bind to amylin peptides to form self-assembled Zn(2+)-amylin oligomers. In the current work the binding sites of Zn(2+) ions in the self-assembled amylin oligomers at various concentrations of zinc have been investigated. Our results yield two conclusions. First, in the absence of Zn(2+) ions polymorphic states (i.e. various classes of amylin oligomers) are obtained, but when Zn(2+) ions bind to amylin peptides to form Zn(2+)-amylin oligomers, the polymorphism is decreased, i.e. Zn(2+) ions bind only to specific classes of amylin. At low concentrations of Zn(2+) ions the polymorphism is smaller than at high concentrations. Second, the structural features of the self-assembled amylin oligomers are not affected by the presence of Zn(2+) ions. This study proposes new molecular mechanisms of the self-assembly of Zn(2+)-amylin oligomers.

  15. Molecular basis of floral petaloidy: insights from androecia of Canna indica

    PubMed Central

    Fu, Qian; Liu, Huanfang; Almeida, Ana M. R.; Kuang, Yanfeng; Zou, Pu; Liao, Jingping

    2014-01-01

    Floral organs that take on the characteristics of petals can occur in all whorls of the monocot order Zingiberales. In Canna indica, the most ornamental or ‘petaloid’ parts of the flowers are of androecial origin and are considered staminodes. However, the precise nature of these petaloid organs is yet to be determined. In order to gain a better understanding of the genetic basis of androecial identity, a molecular investigation of B- and C-class genes was carried out. Two MADS-box genes GLOBOSA (GLO) and AGAMOUS (AG) were isolated from young inflorescences of C. indica by 3′ rapid amplification of cDNA ends polymerase chain reaction (3′-RACE PCR). Sequence characterization and phylogenetic analyses show that CiGLO and CiAG belong to the B- and C-class MADS-box gene family, respectively. CiAG is expressed in petaloid staminodes, the labellum, the fertile stamen and carpels. CiGLO is expressed in petals, petaloid staminodes, the labellum, the fertile stamen and carpels. Expression patterns in mature tissues of CiGLO and CiAG suggest that petaloid staminodes and the labellum are of androecial identity, in agreement with their position within the flower and with described Arabidopsis thaliana expression patterns. Although B- and C-class genes are important components of androecial determination, their expression patterns are not sufficient to explain the distinct morphology observed in staminodes and the fertile stamen in C. indica. PMID:24876297

  16. Insights into the proline hydroxylase (PHD) family, molecular evolution and its impact on human health.

    PubMed

    Minervini, Giovanni; Quaglia, Federica; Tosatto, Silvio C E

    2015-09-01

    PHDs (proline hydroxylases) are a small protein family found in all organisms, considered the central regulator of the molecular hypoxia response due to PHDs being completely inactivated under low oxygen concentration. At physiological oxygen concentration, PHDs drive the degradation of the HIF-1α (hypoxia-inducible factor 1-α), which is responsible for upregulating the expression of genes involved in the cellular response to hypoxia. Hypoxia is a common feature of most tumors, in particular during metastasis development. Indeed, cancer reacts by activating pathways promoting new blood vessel formation and activating strategies aimed to improve survival. In this scenario, the PHD family regulates the activation of HIF-1α and cell-cycle regulation. Several PHD mutations were found in cancer patients, underlining their importance for human health. Here, we propose a Bayesian model able to predict the pathological effect of human PHD mutations and their correlation with cancer outcome. The model was developed through an integrative in silico approach, where data collected from the literature has been coupled with sequence evolution and structural analysis. The model was used to assess 135 human PHD variants. Finally, bioinformatics characterization was used to demonstrate how few amino acid changes are able to explain the functional specialization of PHD family members and their physiological role in human health.

  17. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens.

    PubMed

    Alkan, Noam; Fortes, Ana M

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers' plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening.

  18. Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study.

    PubMed

    Gao, Xing; Peng, Qian; Niu, Yingli; Wang, Dong; Shuai, Zhigang

    2012-11-07

    The diphenyldibenzofulvene (DPDBF) molecule appears in two forms: ring open and ring closed. The former fluoresces weakly in solution, but it becomes strongly emissive in the solid phase, exhibiting an exotic aggregation-induced emission phenomenon. The latter presents a normal aggregation quenching phenomenon, as is expected. We implement nonadiabatic molecular dynamics based on the combination of time-dependent Kohn-Sham (TDKS) and density functional tight binding (DFTB) methods with Tully's fewest switches surface hopping algorithm to investigate the excited state nonradiative decay processes. From the analysis of the nonadiabatic coupling vectors, it is found that the low frequency twisting motion in the ring open DPDBF couples strongly with the electronic excitation and dissipates the energy efficiently. While in the closed form, such motion is blocked by a chemical bond. This leads to the nonradiative decay rate for the open form (1.4 ps) becoming much faster than the closed form (24.5 ps). It is expected that, in the solid state, the low frequency motion of the open form will be hindered and the energy dissipation pathway by nonradiative decay will be slowed, presenting a remarkable aggregation enhanced emission phenomenon.

  19. Insights into the interactions between maleimide derivates and GSK3β combining molecular docking and QSAR.

    PubMed

    Quesada-Romero, Luisa; Mena-Ulecia, Karel; Tiznado, William; Caballero, Julio

    2014-01-01

    Many protein kinase (PK) inhibitors have been reported in recent years, but only a few have been approved for clinical use. The understanding of the available molecular information using computational tools is an alternative to contribute to this process. With this in mind, we studied the binding modes of 77 maleimide derivates inside the PK glycogen synthase kinase 3 beta (GSK3β) using docking experiments. We found that the orientations that these compounds adopt inside GSK3β binding site prioritize the formation of hydrogen bond (HB) interactions between the maleimide group and the residues at the hinge region (residues Val135 and Asp133), and adopt propeller-like conformations (where the maleimide is the propeller axis and the heterocyclic substituents are two slanted blades). In addition, quantitative structure-activity relationship (QSAR) models using CoMSIA methodology were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. We found a model to explain the structure-activity relationship of non-cyclic maleimide (NCM) derivatives (54 compounds). The best CoMSIA model (training set included 44 compounds) included steric, hydrophobic, and HB donor fields and had a good Q(2) value of 0.539. It also predicted adequately the most active compounds contained in the test set. Furthermore, the analysis of the plots of the steric CoMSIA field describes the elements involved in the differential potency of the inhibitors that can be considered for the selection of suitable inhibitors.

  20. The quantum nature of the hydrogen bond: insight from path-integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Walker, Brent; Li, Xin-Zheng; Michaelides, Angelos

    2011-03-01

    Hydrogen (H) bonds are weak, generally intermolecular bonds, that hold together much of soft matter, the condensed phases of water, network liquids, and many ferroelectric crystals. The small mass of H means H-bonds are inherently quantum mechanical; effects such as zero point motion and tunneling should be considered, although often are not. In particular, a consistent picture of quantum nuclear effects on the strength of H-bonds and consequently the structure of H-bonded systems is still absent. Here, we report ab initio path-integral molecular dynamics studies on the quantum nature of the H-bond. Systematic examination of a range of H-bonded systems shows that quantum nuclei weaken weak H-bonds but strengthen relatively strong ones. This correlation arises from a competition between anharmonic intermolecular bond bending and intramolecular bond stretching. A simple rule of thumb enables predictions to be made for H-bonded bonded materials in general with merely classical knowledge (e.g. H-bond strength or H-bond length). Our work rationalizes the contrasting influence of quantum nuclear dynamics on a wide variety of materials, including liquid water and HF, and highlights the need for flexible molecules in force-field based studies of quantum nuclear dynamics.

  1. Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X.

    PubMed

    Kleinau, Gunnar; Kalveram, Laura; Köhrle, Josef; Szkudlinski, Mariusz; Schomburg, Lutz; Biebermann, Heike; Grüters-Kieslich, Annette

    2016-09-01

    Naturally occurring thyrotropin (TSH) mutations are rare, which is also the case for the homologous heterodimeric glycoprotein hormones (GPHs) follitropin (FSH), lutropin (LH), and choriogonadotropin (CG). Patients with TSH-inactivating mutations present with central congenital hypothyroidism. Here, we summarize insights into the most frequent loss-of-function β-subunit of TSH mutation C105Vfs114X, which is associated with isolated TSH deficiency. This review will address the following question. What is currently known on the molecular background of this TSH variant on a protein level? It has not yet been clarified how C105Vfs114X causes early symptoms in affected patients, which are comparably severe to those observed in newborns lacking any functional thyroid tissue (athyreosis). To better understand the mechanisms of this mutant, we have summarized published reports and complemented this information with a structural perspective on GPHs. By including the ancestral TSH receptor agonist thyrostimulin and pathogenic mutations reported for FSH, LH, and choriogonadotropin in the analysis, insightful structure function and evolutionary restrictions become apparent. However, comparisons of immunogenicity and bioactivity of different GPH variants is hindered by a lack of consensus for functional analysis and the diversity of used GPH assays. Accordingly, relevant gaps of knowledge concerning details of GPH mutation-related effects are identified and highlighted in this review. These issues are of general importance as several previous and recent studies point towards the high impact of GPH variants in differential signaling regulation at GPH receptors (GPHRs), both endogenously and under diseased conditions. Further improvement in this area is of decisive importance for the development of novel targeted therapies.

  2. Phylogeny, evolutionary trends and classification of the Spathelia–Ptaeroxylon clade: morphological and molecular insights

    PubMed Central

    Appelhans, M. S.; Smets, E.; Razafimandimbison, S. G.; Haevermans, T.; van Marle, E. J.; Couloux, A.; Rabarison, H.; Randrianarivelojosia, M.; Keßler, P. J. A.

    2011-01-01

    Background and Aims The Spathelia–Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia–Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. Methods A species-level phylogenetic analysis of the Spathelia–Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL–trnF, rps16 and psbA–trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. Key Results With the exception of Spathelia, all genera of the Spathelila–Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. Conclusions The Spathelia–Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities

  3. The molecular analysis of Trypanosoma cruzi metallocarboxypeptidase 1 provides insight into fold and substrate specificity.

    PubMed

    Niemirowicz, Gabriela; Fernández, Daniel; Solà, Maria; Cazzulo, Juan J; Avilés, Francesc X; Gomis-Rüth, F Xavier

    2008-11-01

    Trypanosoma cruzi is the aetiological agent of Chagas' disease, a chronic infection that affects millions in Central and South America. Proteolytic enzymes are involved in the development and progression of this disease and two metallocarboxypeptidases, isolated from T. cruzi CL Brener clone, have recently been characterized: TcMCP-1 and TcMCP-2. Although both are cytosolic and closely related in sequence, they display different temporary expression patterns and substrate preferences. TcMCP-1 removes basic C-terminal residues, whereas TcMCP-2 prefers hydrophobic/aromatic residues. Here we report the three-dimensional structure of TcMCP-1. It resembles an elongated cowry, with a long, deep, narrow active-site cleft mimicking the aperture. It has an N-terminal dimerization subdomain, involved in a homodimeric catalytically active quaternary structure arrangement, and a proteolytic subdomain partitioned by the cleft into an upper and a lower moiety. The cleft accommodates a catalytic metal ion, most likely a cobalt, which is co-ordinated by residues included in a characteristic zinc-binding sequence, HEXXH and a downstream glutamate. The structure of TcMCP-1 shows strong topological similarity with archaeal, bacterial and mammalian metallopeptidases including angiotensin-converting enzyme, neurolysin and thimet oligopeptidase. A crucial residue for shaping the S(1') pocket in TcMCP-1, Met-304, was mutated to the respective residue in TcMCP-2, an arginine, leading to a TcMCP-1 variant with TcMCP-2 specificity. The present studies pave the way for a better understanding of a potential target in Chagas' disease at the molecular level and provide a template for the design of novel therapeutic approaches.

  4. New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice.

    PubMed

    Holz, George G; Leech, Colin A; Chepurny, Oleg G

    2014-12-01

    Recently published findings indicate that a knockout (KO) of soluble adenylyl cyclase (sAC, also known as AC-10) gene expression in mice leads to defective glucoregulation that is characterized by reduced pancreatic insulin secretion and reduced intraperitoneal glucose tolerance. Summarized here are current concepts regarding the molecular basis for this phenotype, with special emphasis on the potential role of sAC as a determinant of glucose-stimulated insulin secretion. Highlighted is new evidence that in pancreatic beta cells, oxidative glucose metabolism stimulates mitochondrial CO₂production that in turn generates bicarbonate ion (HCO(3)(-)). Since HCO(3)(-) binds to and directly stimulates the activity of sAC, we propose that glucose-stimulated cAMP production in beta cells is mediated not simply by transmembrane adenylyl cyclases (TMACs), but also by sAC. Based on evidence that sAC is expressed in mitochondria, there exists the possibility that beta-cell glucose metabolism is linked to mitochondrial cAMP production with consequent facilitation of oxidative phosphorylation. Since sAC is also expressed in the cytoplasm, sAC catalyzed cAMP production may activate cAMP sensors such as PKA and Epac2 to control ion channel function, intracellular Ca²⁺ handling, and Ca²⁺-dependent exocytosis. Thus, we propose that the existence of sAC in beta cells provides a new and unexpected explanation for previously reported actions of glucose metabolism to stimulate cAMP production. It seems possible that alterations of sAC activity might be of importance when evaluating new strategies for the treatment of type 2 diabetes (T2DM), or when evaluating why glucose metabolism fails to stimulate insulin secretion in patients diagnosed with T2DM. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.

  5. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.

    PubMed

    Gong, Bei; Shin, Minsang; Sun, Jiali; Jung, Che-Hun; Bolt, Edward L; van der Oost, John; Kim, Jeong-Sun

    2014-11-18

    Mobile genetic elements in bacteria are neutralized by a system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. Type I CRISPR-Cas systems use a "Cascade" ribonucleoprotein complex to guide RNA specifically to complementary sequence in invader double-stranded DNA (dsDNA), a process called "interference." After target recognition by Cascade, formation of an R-loop triggers recruitment of a Cas3 nuclease-helicase, completing the interference process by destroying the invader dsDNA. To elucidate the molecular mechanism of CRISPR interference, we analyzed crystal structures of Cas3 from the bacterium Thermobaculum terrenum, with and without a bound ATP analog. The structures reveal a histidine-aspartate (HD)-type nuclease domain fused to superfamily-2 (SF2) helicase domains and a distinct C-terminal domain. Binding of ATP analog at the interface of the SF2 helicase RecA-like domains rearranges a motif V with implications for the enzyme mechanism. The HD-nucleolytic site contains two metal ions that are positioned at the end of a proposed nucleic acid-binding tunnel running through the SF2 helicase structure. This structural alignment suggests a mechanism for 3' to 5' nucleolytic processing of the displaced strand of invader DNA that is coordinated with ATP-dependent 3' to 5' translocation of Cas3 along DNA. In agreement with biochemical studies, the presented Cas3 structures reveal important mechanistic details on the neutralization of genetic invaders by type I CRISPR-Cas systems.

  6. Binding of PFOS to serum albumin and DNA: insight into the molecular toxicity of perfluorochemicals

    PubMed Central

    Zhang, Xian; Chen, Ling; Fei, Xun-Chang; Ma, Yin-Sheng; Gao, Hong-Wen

    2009-01-01

    Background Health risk from exposure of perfluorochemicals (PFCs) to wildlife and human has been a subject of great interest for understanding their molecular mechanism of toxicity. Although much work has been done, the toxigenicity of PFCs remains largely unknown. In this work, the non-covalent interactions between perfluorooctane sulfonate (PFOS) and serum albumin (SA) and DNA were investigated under normal physiological conditions, aiming to elucidate the toxigenicity of PFCs. Results In equilibrium dialysis assay, the bindings of PFOS to SA correspond to the Langmuir isothermal model with two-step sequence model. The saturation binding number of PFOS was 45 per molecule of SA and 1 per three base-pairs of DNA, respectively. ITC results showed that all the interactions were spontaneous driven by entropy change. Static quenching of the fluorescence of SA was observed when interacting with PFOS, indicating PFOS bound Trp residue of SA. CD spectra of SA and DNA changed obviously in the presence of PFOS. At normal physiological conditions, 1.2 mmol/l PFOS reduces the binding ratio of Vitamin B2 to SA by more than 30%. Conclusion The ion bond, van der Waals force and hydrophobic interaction contributed to PFOS binding to peptide chain of SA and to the groove bases of DNA duplex. The non-covalent interactions of PFOS with SA and DNA alter their secondary conformations, with the physiological function of SA to transport Vitamin B2 being inhibited consequently. This work provides a useful experimental method for further studying the toxigenicity of PFCs. PMID:19239717

  7. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation.

    PubMed

    Pavlov, Alexander S; Khalatur, Pavel G

    2016-06-28

    Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more

  8. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation.

    PubMed

    Liu, Jie; Yu, Huimin; Shen, Zhongyao

    2008-11-01

    Thermal stability is of great importance for industrial enzymes. Here we explored the thermal-stable mechanism of thermophilic nitrile hydratases (NHases) utilizing a molecular dynamic simulation. At a nanosecond timescale, profiles of root mean square fluctuation (RMSF) of two thermophilic NHases, 1UGQ and 1V29, under enhancing thermal stress were carried out at 300 K, 320 K, 350 K and 370 K, respectively. Results showed that the region A1 (211-231 aa) and A2 (305-316 aa) in 1UGQ, region B1 (186-192 aa) in 1V29, and most of terminal ends in both enzymes are hyper-sensitive. Salt-bridge analyses revealed that in one hand, salt-bridges contributed to maintaining the rigid structure and stable performance of the thermophilic 1UGQ and 1V29; in the other hand, salt-bridges involved in thermal sensitive regions are relatively weak and prone to be broken at elevated temperature, thereby cannot hold the stable conformation of the spatial neighborhood. In 1V29, region A1 was stabilized by a well-organized hook-hook like cluster with multiple salt-bridge interactions, region A2 was stabilized by two strong salt-bridge interactions of GLU52-ARG332 and GLU334-ARG332. In 1UGQ, the absence of a charged residue decreased its thermal sensitivity of region B1, and the formation of a small beta-sheet containing a stable salt-bridge in C-beta-terminal significantly enhanced its thermal stability. By radius of gyration calculation containing or eliminating the thermal sensitive regions, we quantified the contribution of thermal sensitive regions for thermal sensitivity of 1UGQ and 1V29. Consequently, we presented strategies to improve thermal stability of the industrialized mesophilic NHase by introducing stable salt-bridge interactions into its thermal sensitive regions.

  9. Molecular Mechanisms of Mild and Severe Pneumonia: Insights from RNA Sequencing.

    PubMed

    Huang, Sai; Feng, Cong; Chen, Li; Huang, Zhi; Zhou, Xuan; Li, Bei; Wang, Li-Li; Chen, Wei; Lv, Fa-Qin; Li, Tan-Shi

    2017-04-06

    BACKGROUND This study aimed to uncover the molecular mechanisms underlying mild and severe pneumonia by use of mRNA sequencing (RNA-seq). MATERIAL AND METHODS RNA was extracted from the peripheral blood of patients with mild pneumonia, severe pneumonia, and healthy controls. Sequencing was performed on the HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differentially expressed genes (DEGs) were identified between the control group and the mild or severe group. A transcription factor-gene network was constructed for each group. Biological process (BP) terms enriched by DEGs in the network were analyzed and these genes were also mapped to the Connectivity map to search for small-molecule drugs. RESULTS A total of 199 and 560 DEGs were identified from the mild group and severe group, respectively. A transcription factor-gene network consisting of 215 nodes and another network consisting of 451 nodes were constructed in the mild group and severe group, respectively, and 54 DEGs (e.g., S100A9 and S100A12) were found to be common, with consistent differential expression changes in the 2 groups. Genes in the transcription factor-gene network for the mild group were mainly enriched in 13 BP terms, especially defense and inflammatory response (e.g., S100A8) and spermatogenesis, while the top BP terms enriched by genes in the severe group include response to oxidative stress (CCL5), wound healing, and regulation of cell differentiation (CCL5), and of the cellular protein metabolic process. CONCLUSIONS S100A9 and S100A12 may have a role in the pathogenesis of pneumonia: S100A9 and CXCL1 may contribute solely in mild pneumonia, and CCL5 and CXCL11 may contribute in severe pneumonia.

  10. Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: Insights from molecular dynamics simulations

    PubMed Central

    Rodrigues, J Rui; Simões, Carlos J V; Silva, Cândida G; Brito, Rui M M

    2010-01-01

    Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt-Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT-TTR and L55P-TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P-TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α-helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation-prone conformations characterized by full displacement of strands C and D from the main β-sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H-bond network and consequent destabilization of the CBEF β-sheet of the β-sandwich; (v) WT forms aggregation-compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P-TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation. PMID:19937650

  11. Effects of oxidation on tensile deformation of iron nanowires: Insights from reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Aral, Gurcan; Wang, Yun-Jiang; Ogata, Shigenobu; van Duin, Adri C. T.

    2016-10-01

    The influence of oxidation on the mechanical properties of nanostructured metals is rarely explored and remains poorly understood. To address this knowledge gap, in this work, we systematically investigate the mechanical properties and changes in the metallic iron (Fe) nanowires (NWs) under various atmospheric conditions of ambient dry O2 and in a vacuum. More specifically, we focus on the effect of oxide shell layer thickness over Fe NW surfaces at room temperature. We use molecular dynamics (MD) simulations with the variable charge ReaxFF force field potential model that dynamically handles charge variation among atoms as well as breaking and forming of the chemical bonds associated with the oxidation reaction. The ReaxFF potential model allows us to study large length scale mechanical atomistic deformation processes under the tensile strain deformation process, coupled with quantum mechanically accurate descriptions of chemical reactions. To study the influence of an oxide layer, three oxide shell layer thicknesses of ˜4.81 Å, ˜5.33 Å, and ˜6.57 Å are formed on the pure Fe NW free surfaces. It is observed that the increase in the oxide layer thickness on the Fe NW surface reduces both the yield stress and the critical strain. We further note that the tensile mechanical deformation behaviors of Fe NWs are dependent on the presence of surface oxidation, which lowers the onset of plastic deformation. Our MD simulations show that twinning is of significant importance in the mechanical behavior of the pure and oxide-coated Fe NWs; however, twin nucleation occurs at a lower strain level when Fe NWs are coated with thicker oxide layers. The increase in the oxide shell layer thickness also reduces the external stress required to initiate plastic deformation.

  12. Insight into the molecular mechanism of water evaporation via the finite temperature string method.

    PubMed

    Musolino, Nicholas; Trout, Bernhardt L

    2013-04-07

    The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.

  13. Calcium Induced Regulation of Skeletal Troponin — Computational Insights from Molecular Dynamics Simulations

    PubMed Central

    Genchev, Georgi Z.; Kobayashi, Tomoyoshi; Lu, Hui

    2013-01-01

    The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation. PMID:23554884

  14. Molecular and pathologic insights from latent HIV-1 infection in the human brain

    PubMed Central

    Desplats, Paula; Dumaop, Wilmar; Smith, David; Adame, Anthony; Everall, Ian; Letendre, Scott; Ellis, Ronald; Cherner, Mariana; Grant, Igor

    2013-01-01

    Objective: We aimed to investigate whether HIV latency in the CNS might have adverse molecular, pathologic, and clinical consequences. Methods: This was a case-control comparison of HIV-1 seropositive (HIV+) patients with clinical and neuropathologic examination. Based on the levels of HIV-1 DNA, RNA, and p24 in the brain, cases were classified as controls, latent HIV CNS infection, and HIV encephalitis (HIVE). Analysis of epigenetic markers including BCL11B, neurodegeneration, and neuroinflammation was performed utilizing immunoblot, confocal microscopy, immunochemistry/image analysis, and qPCR. Detailed antemortem neurocognitive data were available for 23 out of the 32 cases. Results: HIV+ controls (n = 12) had no detectable HIV-1 DNA, RNA, or p24 in the CNS; latent HIV+ cases (n = 10) showed high levels of HIV-1 DNA but no HIV RNA or p24; and HIVE cases (n = 10) had high levels of HIV-1 DNA, RNA, and p24. Compared to HIV+ controls, the HIV+ latent cases displayed moderate cognitive impairment with neurodegenerative and neuroinflammatory alterations, although to a lesser extent than HIVE cases. Remarkably, HIV+ latent cases showed higher levels of BCL11B and other chromatin modifiers involved in silencing. Increased BCL11B was associated with deregulation of proinflammatory genes like interleukin-6, tumor necrosis factor–α, and CD74. Conclusion: Persistence of latent HIV-1 infection in the CNS was associated with increased levels of chromatin modifiers, including BCL11B. Alteration of these epigenetic factors might result in abnormal transcriptomes, leading to inflammation, neurodegeneration, and neurocognitive impairment. BCL11B and other epigenetic factors involved in silencing might represent potential targets for HIV-1 involvement of the CNS. PMID:23486877

  15. Long-distance communication in the HDV ribozyme: insights from molecular dynamics and experiments.

    PubMed

    Veeraraghavan, Narayanan; Bevilacqua, Philip C; Hammes-Schiffer, Sharon

    2010-09-10

    The hepatitis delta virus ribozyme is a small, self-cleaving RNA with a compact tertiary structure and buried active site that is important in the life cycle of the virus. The ribozyme's function in nature is to cleave an internal phosphodiester bond and linearize concatemers during rolling circle replication. Crystal structures of the ribozyme have been solved in both pre-cleaved and post-cleaved (product) forms and reveal an intricate network of interactions that conspire to catalyze bond cleavage. In addition, extensive biochemical studies have been performed to work out a mechanism for bond cleavage in which C75 and a magnesium ion catalyze the reaction by general acid-base chemistry. One issue that has remained unclear in this ribozyme and in other ribozymes is the nature of long-distance communication between peripheral regions of the RNA and the buried active site. We performed molecular dynamics simulations on the hepatitis delta virus ribozyme in the product form and assessed communication between a distal structural portion of the ribozyme-the protonated C41 base triple-and the active site containing the critical C75. We varied the ionization state of C41 in both the wild type and a C41 double mutant variant and determined the impact on the active site. In all four cases, effects at the active site observed in the simulations agree with experimental studies on ribozyme activity. Overall, these studies indicate that small functional RNAs have the potential to communicate interactions over long distances and that wild-type RNAs may have evolved ways to prevent such interactions from interfering with catalysis.

  16. New insights into the enigma of boron carbide inverse molecular behavior

    SciTech Connect

    Dera, Przemyslaw; Manghnani, Murli H.; Hushur, Anwar; Hu, Yi; Tkachev, Sergey

    2014-07-01

    Equation of state and compression mechanism of nearly stoichiometric boron carbide B{sub 4}C were investigated using diamond anvil cell single crystal synchrotron X-ray diffraction technique up to a maximum quasi-hydrostatic pressure of 74.0(1) GPa in neon pressure transmitting medium at ambient temperature. No signatures of structural phase transitions were observed on compression. Crystal structure refinements indicate that the icosahedral units are less compressible (13% volume reduction at 60 GPa) than the unit cell volume (18% volume reduction at 60 GPa), contrary to expectations based on the inverse molecular behavior hypothesis, but consistent with spectroscopic evidence and first principles calculations. The high-pressure crystallographic refinements reveal that the nature of the chemical bonds (two, versus three centered character) has marginal effect on the bond compressibility and the compression of the crystal is mainly governed by the force transfer between the rigid icosahedral structural units. - Graphical abstract: Single crystal measurements of equation of state and compression mechanism of B{sub 4}C show that the icosahedral units are less compressibe than the unit cell volume, despite the threei-ceneterd nature of some icosahedral bonds. - Highlights: • Equation of state and compression mechanism of B{sub 4}C were measured to 75 GPa. • No signatures of structural phase transitions were observed on compression. • Icosahedral units are less compressibe than the unit cell volume. • The nature of the chemical bonds has mariginal effect on the bond compressibility. • The compression is governed by force transfer between the rigid icosahedra.

  17. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies.

    PubMed

    Gogoi, Prerana; Chandravanshi, Monika; Mandal, Suraj Kumar; Srivastava, Ambuj; Kanaujia, Shankar Prasad

    2016-07-01

    About one-third of the existing proteins require metal ions as cofactors for their catalytic activities and structural complexities. While many of them bind only to a specific metal, others bind to multiple (different) metal ions. However, the exact mechanism of their metal preference has not been deduced to clarity. In this study, we used molecular dynamics (MD) simulations to investigate whether a cognate metal (bound to the structure) can be replaced with other similar metal ions. We have chosen seven different proteins (phospholipase A2, sucrose phosphatase, pyrazinamidase, cysteine dioxygenase (CDO), plastocyanin, monoclonal anti-CD4 antibody Q425, and synaptotagmin 1 C2B domain) bound to seven different divalent metal ions (Ca(2+), Mg(2+), Zn(2+), Fe(2+), Cu(2+), Ba(2+), and Sr(2+), respectively). In total, 49 MD simulations each of 50 ns were performed and each trajectory was analyzed independently. Results demonstrate that in some cases, cognate metal ions can be exchanged with similar metal ions. On the contrary, some proteins show binding affinity specifically to their cognate metal ions. Surprisingly, two proteins CDO and plastocyanin which are known to bind Fe(2+) and Cu(2+), respectively, do not exhibit binding affinity to any metal ion. Furthermore, the study reveals that in some cases, the active site topology remains rigid even without cognate metals, whereas, some require them for their active site stability. Thus, it will be interesting to experimentally verify the accuracy of these observations obtained computationally. Moreover, the study can help in designing novel active sites for proteins to sequester metal ions particularly of toxic nature.

  18. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility

    PubMed Central

    Marzagalli, Monica; Montagnani Marelli, Marina; Casati, Lavinia; Fontana, Fabrizio; Moretti, Roberta Manuela; Limonta, Patrizia

    2016-01-01

    Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to

  19. New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis

    PubMed Central

    Tingaud-Sequeira, Angèle; Chauvigné, François; Lozano, Juanjo; Agulleiro, María J; Asensio, Esther; Cerdà, Joan

    2009-01-01

    Background The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. Results Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na+-K+-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis

  20. Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae): insights into the floristic relationship between Taiwan and its adjacent areas.

    PubMed

    Wei, Xiao-Xin; Yang, Zu-Yu; Li, Yan; Wang, Xiao-Quan

    2010-06-01

    Climatic oscillations and geological events play major roles in shaping species diversity and the distribution of plants. The mechanisms underlying the high level of plant species diversity in eastern Asia are hotly debated. In this study, five cpDNA regions, two mtDNA fragments and one nuclear gene (LEAFY) were employed to investigate species diversification and the historical biogeography of Pseudotsuga (Pinaceae), a genus with a typical eastern Asia and western North America disjunct distribution. Both the nuclear LEAFY gene and cpDNA phylogenies strongly suggest that eastern Asian and North American species are monophyletic, respectively. Within the eastern Asia clade, the cpDNA tree placed P. japonica as sister to the rest of the Asian species, but the LEAFY gene tree showed a sister relationship between P. japonica-P. sinensis-P. gaussenii and P. brevifolia-P. forrestii. Molecular dating indicated that the Asian species last shared a common ancestor 20.26+/-5.84 mya and the species diversification of Pseudotsuga was correlated with the Tertiary climatic and tectonic changes. These results, together with the fossil evidence, suggest that Pseudotsuga might have originated from North America and then migrated to eastern Asia by the Bering land bridge during the early Miocene. The Taiwanese species P. wilsoniana harbored two divergent types of LEAFY sequences, which implies that this species might have originated by hybridization between P. brevifolia or its ancestor and the ancestor of P. japonica-P. sinensis-P. gaussenii. Our study also suggests that Taiwan is closely related to both southwest and east China in flora.

  1. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    NASA Astrophysics Data System (ADS)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  2. Combined terrestrial and marine biomarker records from an Icelandic fjord: insights into Holocene climate drivers and marine/ terrestrial responses

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2012-12-01

    Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early

  3. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the collared lemming Dicrostonyx torquatus.

    NASA Astrophysics Data System (ADS)

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-05-01

    Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographic distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum (LGM) had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with cold and dry climate. Using three dimensional network reconstruction and model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference we show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Blling/Allerd) warming phase at 14.5 kyrs BP. Our results show that previous climate warming events had a strong influence on collard lemming populations. A similar population reduction due to predicted future climate change would have severe effects on the arctic ecosystem, as collared lemmings are a key species in the trophic interactions and ecosystem processes in the Arctic.

  4. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  5. Simple Indices Provide Insight to Climate Attributes Delineating the Geographic Range of Aedes albopictus (Diptera: Culicidae) Prior to Worldwide Invasion.

    PubMed

    Mogi, Motoyoshi; Armbruster, Peter; Tuno, Nobuko; Campos, Raúl; Eritja, Roger

    2015-07-01

    Aedes albopictus (Skuse) has expanded its distribution worldwide during the past decades. Despite attempts to explain and predict its geographic occurrence, analyses of the distribution of Ae. albopictus in the context of broad climatic regions (biomes) has not been performed. We analyzed climate conditions at its distribution sites in the range before the worldwide invasions (from the easternmost Hawaii through westernmost Madagascar) by using thermal and aridity-humidity indices descriptive of major biomes. A significant advantage of this approach is that it uses simple indices clearly related to the population dynamics of Ae. albopictus. Although Ae. albopictus has been regarded as a forest species preferring humid climate, in areas with significant human habitation, the distribution sites extended from the perhumid, rain forest zone to the semiarid, steppe zone. This pattern was common from the tropics through the temperate zone. Across the distribution range, there was no seasonal discordance between temperature and precipitation; at sites where winter prevents Ae. albopictus reproduction (monthly means<10°C), precipitation was concentrated in warm months (>10°C) under the Asian summer monsoon. Absence of the species in northern and eastern coastal Australia and eastern coastal Africa was not attributable solely to climate conditions. However, Asia west of the summer monsoon range was climatically unsuitable because of low precipitation throughout the year or in warm months favorable to reproduction (concentration of precipitation in winter). We hypothesized that Ae. albopictus originated in continental Asia under the monsoon climate with distinct dry seasons and hot, wet summer, enabling rapid population growth.

  6. Integrated Molecular and Microscopic Scale Insight into Morphology and Ion Dynamics in Ca2+-Mediated Natural Organic Matter Floccs

    SciTech Connect

    Bowers, Geoffrey M.; Argersinger, Haley E.; Reddy, Venkataswara; Johnson, Timothy A.; Arey, Bruce W.; Bowden, Mark E.; Kirkpatrick, Robert J.

    2015-08-06

    Combined X-ray diffraction (XRD), helium ion microscopy (HeIM), and Ca-43 nuclear magnetic resonance (NMR) results provide novel insight into the nano- and microstructure of flocculated NOM; the molecular-scale interaction among natural organic matter (NOM), dissolved Ca2+ ions, and water in NOM floccs; and the effects of pH and ionic strength on these characteristics. Suwannee River humic acid (HA), fulvic acid (FA), and NOM flocculated from Ca2+ bearing solutions share similar morphological characteristics on the 100 nm to micron scales, including micron-sized equant fragments and rounded, rough areas with features on the 100 nm scale. HeIM suggests that the NOM floccs are built from a fundamental spheroidal structure that is similar to 10 nm in diameter, in agreement with published AFM and small-angle X-ray scattering results. Calcium is incorporated into these floccs at 100% relative humidity in a wide range of disordered structural environments, with basic pH leading to shorter mean Ca-O distances and lower mean coordination numbers with respect to floccs formed under acidic conditions. The NMR results show that dynamical processes involving water and Ca2+ occurring at frequencies >10(4) Hz are important for hydrated OM floccs, in agreement with published molecular dynamics simulations of OM in solution. From the NMR results, we find evidence for two Ca2+ dynamic averaging mechanisms: one related to rapid exchange (>100 kHz) between surface proximity-restricted (those within 5 angstrom of a surface) and bulk solution environments when excess Ca2+ is present in the pore solution when pore water is unfrozen and a second consisting of intermediate scale (tens of kHz) site exchange among strongly sorbed inner-sphere sites when excess Ca2+ is absent and the carboxylic and phenolic functional groups of the NOM are deprotonated.

  7. Molecular Insights of p47phox Phosphorylation Dynamics in the Regulation of NADPH Oxidase Activation and Superoxide Production*

    PubMed Central

    Meijles, Daniel N.; Fan, Lampson M.; Howlin, Brendan J.; Li, Jian-Mei

    2014-01-01

    Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2⨪ production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells. PMID:24970888

  8. Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films.

    PubMed

    Costentin, Cyrille; Porter, Thomas R; Savéant, Jean-Michel

    2016-05-04

    Cyclic voltammetry of phosphate cobalt oxide (CoPi) films catalyzing O2-evolution from water oxidation as a function of scan rate, phosphate concentration and film thickness allowed for new insights into the coupling between charge transport and catalysis. At pH = 7 and low buffer concentrations, the film is insulating below 0.8 (V vs SHE) but becomes conductive above 0.9 (V vs SHE). Between 1.0 to 1.3 (V vs SHE), the mesoporous structure of the film gives rise to a large thickness-dependent capacitance. At higher buffer concentrations, two reversible proton-coupled redox couples appear over the capacitive response with 0.94 and 1.19 (V vs SHE) pH = 7 standard potentials. The latter is, at most, very weakly catalytic and not responsible for the large catalytic current observed at higher potentials. CV-response analysis showed that the amount of redox-active cobalt-species in the film is small, less than 10% of total. The catalytic process involves a further proton-coupled-electron-transfer and is so fast that it is controlled by diffusion of phosphate, the catalyst cofactor. CV-analysis with newly derived relationships led to a combination of the catalyst standard potential with the catalytic rate constant and a lower-limit estimation of these parameters. The large currents resulting from the fast catalytic reaction result in significant potential losses related to charge transport through the film. CoPi films appear to combine molecular catalysis with semiconductor-type charge transport. This mode of heterogeneous molecular catalysis is likely to occur in many other catalytic films.

  9. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.

    PubMed

    Abhinand, P A; Shaikh, Faraz; Bhakat, Soumendranath; Radadiya, Ashish; Bhaskar, L V K S; Shah, Anamik; Ragunath, P K

    2016-01-01

    Methylenetetrahydrofolate reductase (MTHFR) protein catalyzes the only biochemical reaction which produces methyltetrahydrofolate, the active form of folic acid essential for several molecular functions. The Ala222Val polymorphism of human MTHFR encodes a thermolabile protein associated with increased risk of neural tube defects and cardiovascular disease. Experimental studies have shown that the mutation does not affect the kinetic properties of MTHFR, but inactivates the protein by increasing flavin adenine dinucleotide (FAD) loss. The lack of completely solved crystal structure of MTHFR is an impediment in understanding the structural perturbations caused by the Ala222Val mutation; computational modeling provides a suitable alternative. The three-dimensional structure of human MTHFR protein was obtained through homology modeling, by taking the MTHFR structures from Escherichia coli and Thermus thermophilus as templates. Subsequently, the modeled structure was docked with FAD using Glide, which revealed a very good binding affinity, authenticated by a Glide XP score of -10.3983 (kcal mol(-1)). The MTHFR was mutated by changing Alanine 222 to Valine. The wild-type MTHFR-FAD complex and the Ala222Val mutant MTHFR-FAD complex were subjected to molecular dynamics simulation over 50 ns period. The average difference in backbone root mean square deviation (RMSD) between wild and mutant variant was found to be ~.11 Å. The greater degree of fluctuations in the mutant protein translates to increased conformational stability as a result of mutation. The FAD-binding ability of the mutant MTHFR was also found to be significantly lowered as a result of decreased protein grip caused by increased conformational flexibility. The study provides insights into the Ala222Val mutation of human MTHFR that induces major conformational changes in the tertiary structure, causing a significant reduction in the FAD-binding affinity.

  10. The Drosophila early ovarian transcriptome provides insight to the molecular causes of recombination rate variation across genomes

    PubMed Central

    2013-01-01

    Background Evidence in yeast indicates that gene expression is correlated with recombination activity and double-strand break (DSB) formation in some hotspots. Studies of nucleosome occupancy in yeast and mice also suggest that open chromatin influences the formation of DSBs. In Drosophila melanogaster, high-resolution recombination maps show an excess of DSBs within annotated transcripts relative to intergenic sequences. The impact of active transcription on recombination landscapes, however, remains unexplored in a multicellular organism. We then investigated the transcription profile during early meiosis in D. melanogaster females to obtain a glimpse at the relevant transcriptional dynamics during DSB formation, and test the specific hypothesis that DSBs preferentially target transcriptionally active genomic regions. Results Our study of transcript profiles of early- and late-meiosis using mRNA-seq revealed, 1) significant differences in gene expression, 2) new genes and exons, 3) parent-of-origin effects on transcription in early-meiosis stages, and 4) a nonrandom genomic distribution of transcribed genes. Importantly, genomic regions that are more actively transcribed during early meiosis show higher rates of recombination, and we ruled out DSB preference for genic regions that are not transcribed. Conclusions Our results provide evidence in a multicellular organism that transcription during the initial phases of meiosis increases the likelihood of DSB and give insight into the molecular determinants of recombination rate variation across the D. melanogaster genome. We propose that a model where variation in gene expression plays a role altering the recombination landscape across the genome could provide a molecular, heritable and plastic mechanism to observed patterns of recombination variation, from the high level of intra-specific variation to the known influence of environmental factors and stress conditions. PMID:24228734

  11. Molecular insights of p47phox phosphorylation dynamics in the regulation of NADPH oxidase activation and superoxide production.

    PubMed

    Meijles, Daniel N; Fan, Lampson M; Howlin, Brendan J; Li, Jian-Mei

    2014-08-15

    Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47(phox) is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47(phox) phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47(phox) protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47(phox) is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22(phox) binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47(phox-/-) coronary microvascular cells. Compared with wild-type p47(phox) cDNA transfected cells, the single mutation of S379A completely blocked p47(phox) membrane translocation, binding to p22(phox) and endothelial O2(·-) production in response to acute stimulation of PKC. p47(phox) C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47(phox) conformational changes and NADPH oxidase-dependent superoxide production by cells.

  12. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    PubMed

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  13. Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase – inhibitor complex in leishmaniasis: Insight into the structure based drug design

    PubMed Central

    Mandlik, Vineetha; Singh, Shailza

    2016-01-01

    Inositol phosphorylceramide synthase (IPCS) has emerged as an important, interesting and attractive target in the sphingolipid metabolism of Leishmania. IPCS catalyzes the conversion of ceramide to IPC which forms the most predominant sphingolipid in Leishmania. IPCS has no mammalian equivalent and also plays an important role in maintaining the infectivity and viability of the parasite. The present study explores the possibility of targeting IPCS; development of suitable inhibitors for the same would serve as a treatment strategy for the infectious disease leishmaniasis. Five coumarin derivatives were developed as inhibitors of IPCS protein. Molecular dynamics simulations of the complexes of IPCS with these inhibitors were performed which provided insights into the binding modes of the inhibitors. In vitro screening of the top three compounds has resulted in the identification of one of the compounds (compound 3) which shows little cytotoxic effects. This compound therefore represents a good starting point for further in vivo experimentation and could possibly serve as an important drug candidate for the treatment of leishmaniasis. PMID:27853511

  14. Insights into rapid climate change: A high resolution, compound-specific n-alkane δD study of the 8.2 ka event (Tenaghi Philippon, Greece)

    NASA Astrophysics Data System (ADS)

    Schemmel, F.; Niedermeyer, E.; Schwab, V.; Pross, J.; Mulch, A.

    2013-12-01

    Despite being characterized as remarkably stable, the Holocene climate has experienced a number of abrupt, relatively short-term climate changes. Arguably the most prominent climate perturbation, the 8.2 ka event, was caused by the catastrophic drainage of the ice-dammed Laurentide ice-lake into the North Atlantic, leading to a severe weakening of thermohaline circulation, causing a decline in temperature and significant changes in atmospheric circulation in the Northern Hemisphere, especially in the North Atlantic realm and Europe. Being located between the climate systems of the higher and lower latitudes, the Mediterranean region is particularly susceptible to rapid climate change. Available proxy data and climate models provide first-order insight into the impact of the 8.2 ka event in this area but often lack the temporal resolution to supply information about changes in seasonality, hence severely hindering the understanding of rapid climate changes and revealing the need for high resolution terrestrial archives. Here, we present a multi-proxy, high resolution stable isotope study across the 8.2 ka event on a peat core from the classical site of Tenaghi Philippon (NE Greece). We aim to characterize the effects of changing temperature and rainfall patterns by using compound-specific δD values of the long-chain n-alkanes as a proxy for terrestrial (summer) precipitation. We compare changes in hydrogen isotopic composition to the concentration of the long-chain n-alkanes as well as to δ13Cbulk measurements of the organic material and high-resolution palynomorphic data from the same core. Analysis of 35 samples of telmatic peat shows significant decreases in concentration of the long-chain n-alkanes along with strong positive shifts in δD (over 40 ‰ in δDC29) during the 8.2 ka event. The general trend of δD of the n-Alkanes n-C27, n-C29 and n-C31 coincides with changes in δ13Cbulk, and to some degree reflects changes in moisture availability. We attribute

  15. Multilocus sequence analysis provides insights into molecular epidemiology of Chlamydia pecorum infections in Australian sheep, cattle, and koalas.

    PubMed

    Jelocnik, Martina; Frentiu, Francesca D; Timms, Peter; Polkinghorne, Adam

    2013-08-01

    Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.

  16. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  17. Further Insights in the Binding Mode of Selective Inhibitors to Human PDE4D Enzyme Combining Docking and Molecular Dynamics

    PubMed Central

    D'Ursi, Pasqualina; Guariento, Sara; Trombetti, Gabriele; Orro, Alessandro; Cichero, Elena; Milanesi, Luciano; Bruno, Olga

    2016-01-01

    Abstract Alzheimer′s disease has recently emerged as a possible field of application for PDE4D inhibitors (PDE4DIs). The great structure similarity among the various PDE4 isoforms and, furthermore, the lack of the full length crystal structure of the enzyme, impaired the rational design of new selective PDE4DIs. In this paper, with the aim of exploring new insights into the PDE4D binding, we tackled the problem by performing a computational study based on docking simulations combined with molecular dynamics (D‐MD). Our work uniquely identified the binding mode and the key residues involved in the interaction with a number of in‐house catechol iminoether derivatives, acting as PDE4DIs. Moreover, the new binding mode was tested using a series of analogues previously reported by us and it was used to confirm their key structural features to allow PDE4D inhibition. The binding model disclosed within the current computational study may prove to be useful to further advance the design and synthesis of novel, more potent and selective, PDE4D inhibitors. PMID:27546041

  18. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series.

    PubMed

    Rita, Angelo; Cherubini, Paolo; Leonardi, Stefano; Todaro, Luigi; Borghetti, Marco

    2015-08-01

    The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions.

  19. Denudational slope processes and slope response to global climate changes and other disturbances: insights from the Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.

  20. Climate change and hazardous convective weather in the United States: Insights from high-resolution dynamical downscaling

    NASA Astrophysics Data System (ADS)

    Hoogewind, Kimberly A.

    Global climate model (GCM) projections increasingly suggest that large-scale environmental conditions favorable for hazardous convective weather (HCW) may increase in frequency in the future due to anthropogenic climate change. However, this storm environment-based approach is undoubtedly limited by the assumption that convective-scale phenomena will be realized within these environments. The spatial resolution of GCMs remains much too coarse to adequately represent the scales at which severe convective storms occur, including processes that may lead to storm initiation. With the advancement of computing resources, however, it has now become feasible to explicitly represent deep convective storms within a high-resolution regional climate model. This research utilized the Weather Research and Forecasting (WRF) model to produce high-resolution, dynamically downscaled simulations for the continental United States under historical (1971-2000) and future (2071-2100) climate periods using GCM data provided by the Geophysical Fluid Dynamic Laboratory Climate Model version 3 (GFDL-CM3). Model proxies were used to provide an objective estimate of the occurrence of simulated severe weather and how their spatiotemporal distribution may change in the future under an aggressive climate change scenario. Results demonstrated that severe storms may increase in both their frequency and intensity in the future. In comparison to the projected changes in HCW favorable environments from the GCM, the dynamically downscaled largely agree in terms of the seasonal timing and spatial patterns of greatest potential change in activity by the end of the 21st century. Likewise, each approach supports the notion that severe weather activity may begin earlier within the annual cycle and also later within the calendar year, such that the severe weather season is lengthened. However, by all indications, the environment-event frequency relationship has been altered in future climate, such that the

  1. Improving Holocene Climate Reconstructions from Galápagos Lake Sediments: New Insights From Long-Term Lake Monitoring

    NASA Astrophysics Data System (ADS)

    Conroy, J. L.; Thompson, D. M.; Overpeck, J. T.; Bush, M. B.; Cole, J. E.

    2011-12-01

    Lake sediment records from the Galápagos Islands have provided valuable information on Holocene climate variability in the eastern tropical Pacific on interannual to millennial timescales. However, many uncertainties remain, such as the seasonal bias of climate reconstructions, how seasonal and mean state changes relate to changes in interannual climate variability, and the degree of spatial variability within this unique region, where many different ocean currents converge. One key source of these uncertainties is the lack of modern calibration studies between lake sediment variables and instrumental climate data. At present, only one lake sediment record has a quantitative relationship with instrumental climate data, and there has been no long term monitoring of Galápagos lakes to see how they respond to local climate variability, such as El Niño, La Niña, and the seasonal cycle. To improve our understanding of the climatic controls on Galápagos lake sediments, we have embarked on a long-term limnologic monitoring project. Since 2009, we have continuously collected weather data, limnologic measurements and sediment samples from Laguna El Junco, Bainbridge Crater Lake, and Genovesa Crater Lake. Our initial analysis of the first six months of data spanning the 2009-2010 El Niño show that the three lakes responded to warmer temperatures and increased precipitation during the event, which peaked during the warm/wet season in the archipelago. Both Genovesa and Bainbridge Crater Lakes warmed and freshened during peaks in air temperature and precipitation, without substantial changes in lake level. El Junco water temperature peaked several weeks later than water temperature at Genovesa and Bainbridge, and the increase in temperature was accompanied by water column stratification. The moderate El Niño event in 2009-2010 led to the deposition of brown-green, organic-rich sediment in Bainbridge and Genovesa, with minor amounts of authigenic calcium carbonate. Thus

  2. Impacts of climate and humans on the vegetation in NW Turkey: palynological insights from Lake Iznik since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Miebach, A.; Niestrath, P.; Roeser, P.; Litt, T.

    2015-11-01

    The Marmara region in northwestern Turkey provides a unique opportunity for studying the vegetation history in response to climate changes and anthropogenic impacts because of its location between different climate and vegetation zones and its long settlement history. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate related changes of the lake level and the lake mixing. However, a palynological investigation encompassing the Late Pleistocene to Middle Holocene was still missing. Here, we present the first pollen record of the last ca. 31 ka cal BP (calibrated kilo years before 1950) inferred from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Our study reveals that the vegetation in the Iznik area changed generally between steppe during glacial/stadial conditions, forest-steppe during interstadial conditions, and oak dominated mesic forest during interglacial conditions. Moreover, a pronounced succession of pioneer trees, cold temperate, warm temperate, and Mediterranean trees appeared since the Lateglacial. Rapid climate changes, which are reflected by vegetation changes, can be correlated with Dansgaard-Oeschger (DO) events such as DO-4, DO-3, and DO-1, the Younger Dryas, and probably also the 8.2 event. Since the mid-Holocene, the vegetation was influenced by anthropogenic activities. During early settlement phases, the distinction between climate-induced and human-induced changes of the vegetation is challenging. Still, evidence for human activities consolidates since the Early Bronze Age (ca. 4.8 ka cal BP): cultivated trees, crops, and secondary human indicator taxa appeared, and forests got cleared. Subsequent fluctuations between extensive agricultural use and regeneration of the natural vegetation become apparent.

  3. Southern African continental climate since the late Pleistocene: Insights from biomarker analyses of Kalahari salt pan sediments

    NASA Astrophysics Data System (ADS)

    Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz

    2016-04-01

    The climate system of sub-tropical southern Africa is mainly controlled by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. This underlines the importance of paleoenvironmental reconstructions in order to estimate regional implications of current global changes. However, the majority of studies on southern African paleoclimate are based on the investigation of marine sedimentary archives and past climate development especially in continental areas is still poorly understood. This emphasizes the necessity of continental proxy-data from this area. Proxy datasets from local geoarchives especially of the southwestern Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. An age model based on 14C dating of total organic carbon (TOC) shows evidence that sedimentation predominates over erosional processes with respect to pan formation. Besides the analyses of basic geochemical bulk parameters including TOC, δ13CTOC, total inorganic carbon, δ13CTIC, δ18OTIC, total nitrogen and δ15N, our paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Results show prominent shifts in n-alkane and n-alkanol distributions and compound specific carbon isotope values, pointing to changes to a more grass dominated environment during Heinrich Stadial 1 (18.5-14.6 ka BP), while hydrogen isotope values suggest wetter phases during Holocene and LGM. This high variability indicates the local vulnerability to global change.

  4. Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights.

    PubMed

    Trontin, Jean-François; Klimaszewska, Krystyna; Morel, Alexandre; Hargreaves, Catherine; Lelu-Walter, Marie-Anne

    2016-01-01

    Genome-wide profiling (transcriptomics, proteomics, metabolomics) is providing unprecedented opportunities to unravel the complexity of coordinated gene expression during embryo development in trees, especially conifer species harboring "giga-genome." This knowledge should be critical for the efficient delivery of improved varieties through seeds and/or somatic embryos in fluctuating markets and to cope with climate change. We reviewed "omics" as well as targeted gene expression studies during both somatic and zygotic embryo development in conifers and tentatively puzzled over the critical processes and genes involved at the specific developmental and transition stages. Current limitations to the interpretation of these large datasets are going to be lifted through the ongoing development of comprehensive genome resources in conifers. Nevertheless omics already confirmed that master regulators (e.g., transcription and epigenetic factors) play central roles. As in model angiosperms, the molecular regulation from early to late embryogenesis may mainly arise from spatiotemporal modulation of auxin-, gibberellin-, and abscisic acid-mediated responses. Omics also showed the potential for the development of tools to assess the progress of embryo development or to build genotype-independent, predictive models of embryogenesis-specific characteristics.

  5. Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity

    PubMed Central

    Solomon, Scott E.; Bacci, Mauricio; Martins, Joaquim; Vinha, Giovanna Gonçalves; Mueller, Ulrich G.

    2008-01-01

    The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area. PMID:18648512

  6. Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries.

    PubMed

    Moreno, J; Fatela, F; Leorri, E; Moreno, F; Freitas, M C; Valente, T; Araújo, M F; Gómez-Navarro, J J; Guise, L; Blake, W H

    2017-02-15

    This paper aims at providing insight about bromine (Br) cycle in four Portuguese estuaries: Minho, Lima (in the NW coast) and Sado, Mira (in the SW coast). The focus is on their tidal marsh environments, quite distinct with regard to key biophysicochemical attributes. Regardless of the primary bromide (Br(-)) common natural source, i.e., seawater, the NW marshes present relatively higher surface soil/sediment Br concentrations than the ones from SW coast. This happens in close connection with organic matter (OM) content, and is controlled by their main climatic contexts. Yet, the anthropogenic impact on Br concentrations cannot be discarded. Regarding [Br] spatial patterns across the marshes, the results show a general increase from tidal flat toward high marsh. Maxima [Br] occur in the upper driftline zone, at transition from highest low marsh to high marsh, recognized as a privileged setting for OM accumulation. Based on the discovery of OM ubiquitous bromination in marine and transitional environments, it is assumed that this Br occurs mainly as organobromine. Analysis of two dated sediment cores indicates that, despite having the same age (AD ~1300), the Caminha salt marsh (Minho estuary) evidences higher Br enrichment than the Casa Branca salt marsh (Mira estuary). This is related to a greater Br storage ability, which is linked to OM build-up and rate dynamics under different climate scenarios. Both cores evidence a fairly similar temporal Br enrichment pattern, and may be interpreted in light of the sun-climate coupling. Thereby, most of the well-known Grand Solar Minima during the Little Ice Age appear to have left an imprint on these marshes, supported by higher [Br] in soils/sediments. Besides climate changes driven by solar activity and impacting marsh Br biogeodynamics, those Br enrichment peaks might also reflect inputs of enhanced volcanic activity covarying with Grand Solar Minima.

  7. Climate and human impacts on the vegetation in NW Turkey: palynological insights from Lake Iznik since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Miebach, Andrea; Niestrath, Phoebe; Roeser, Patricia A.; Litt, Thomas

    2015-04-01

    The reconstruction of the climate and vegetation history of the Marmara region in northwestern Turkey is of particular interest because of its long occupation history and its location between different climate and vegetation zones. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate related changes of the lake level and the lake mixing during the last 31 ka cal BP (Roeser 2014). However, a palynological investigation, encompassing the Late Pleistocene to Middle Holocene, was still missing. Here, we present the first pollen record of the last 31 ka cal BP from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Lake Iznik is situated east of the Marmara Sea. Its catchment area is located in a climatic transition zone between the Mediterranean and Pontic climate zones. Today, the region is highly influenced by (sub-) Euxinian temperate deciduous and mixed forests dominated by deciduous oak and beech. Coastal areas of the southeastern Marmara Sea and the Aegean Sea are dominated by (sub-) Mediterranean woods and shrubs with sclerophyllous and evergreen elements (Zohary 1973). The pollen record of Lake Iznik reflects typical Eastern Mediterranean vegetation pattern and northern hemispheric climate changes. In contrast to the recent vegetation, a steppe vegetation dominated during the Late Pleistocene. In response to Dansgaard-Oeschger events, the vegetation changed rapidly into a steppe-forest. A remarkable expansion of deciduous oak forest, indicating warmer temperatures, is registered since the Bölling-Alleröd. A short period of dryer and/or cooler climate, corresponding to the Younger Dryas, is marked by an increase of steppe components and by a decrease of several trees. Deciduous oaks predominated the vegetation since the Early Holocene. They were successively accompanied by cold temperate, warm temperate, and Mediterranean trees. In addition to the climate impact

  8. Insights into soil carbon dynamics across climatic and geologic gradients from time-series and fraction-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim

    2016-04-01

    Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.

  9. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  10. Phenological shifts of native and invasive species under climate change: insights from the Boechera-Lythrum model.

    PubMed

    Colautti, Robert I; Ågren, Jon; Anderson, Jill T

    2017-01-19

    Warmer and drier climates have shifted phenologies of many species. However, the magnitude and direction of phenological shifts vary widely among taxa, and it is often unclear when shifts are adaptive or how they affect long-term viability. Here, we model evolution of flowering phenology based on our long-term research of two species exhibiting opposite shifts in floral phenology: Lythrum salicaria, which is invasive in North America, and the sparse Rocky Mountain native Boechera stricta Genetic constraints are similar in both species, but differences in the timing of environmental conditions that favour growth lead to opposite phenological shifts under climate change. As temperatures increase, selection is predicted to favour earlier flowering in native B. stricta while reducing population viability, even if populations adapt rapidly to changing environmental conditions. By contrast, warming is predicted to favour delayed flowering in both native and introduced L. salicaria populations while increasing long-term viability. Relaxed selection from natural enemies in invasive L. salicaria is predicted to have little effect on flowering time but a large effect on reproductive fitness. Our approach highlights the importance of understanding ecological and genetic constraints to predict the ecological consequences of evolutionary responses to climate change on contemporary timescales.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

  11. The Climate Potentials and Side-Effects of Large-Scale terrestrial CO2 Removal - Insights from Quantitative Model Assessments

    NASA Astrophysics Data System (ADS)

    Boysen, L.; Heck, V.; Lucht, W.; Gerten, D.

    2015-12-01

    Terrestrial carbon dioxide removal (tCDR) through dedicated biomass plantations is considered as one climate engineering (CE) option if implemented at large-scale. While the risks and costs are supposed to be small, the effectiveness depends strongly on spatial and temporal scales of implementation. Based on simulations with a dynamic global vegetation model (LPJmL) we comprehensively assess the effectiveness, biogeochemical side-effects and tradeoffs from an earth system-analytic perspective. We analyzed systematic land-use scenarios in which all, 25%, or 10% of natural and/or agricultural areas are converted to tCDR plantations including the assumption that biomass plantations are established once the 2°C target is crossed in a business-as-usual climate change trajectory. The resulting tCDR potentials in year 2100 include the net accumulated annual biomass harvests and changes in all land carbon pools. We find that only the most spatially excessive, and thus undesirable, scenario would be capable to restore the 2° target by 2100 under continuing high emissions (with a cooling of 3.02°C). Large-scale biomass plantations covering areas between 1.1 - 4.2 Gha would produce a climate reduction potential of 0.8 - 1.4°C. tCDR plantations at smaller scales do not build up enough biomass over this considered period and the potentials to achieve global warming reductions are substantially lowered to no more than 0.5-0.6°C. Finally, we demonstrate that the (non-economic) costs for the Earth system include negative impacts on the water cycle and on ecosystems, which are already under pressure due to both land use change and climate change. Overall, tCDR may lead to a further transgression of land- and water-related planetary boundaries while not being able to set back the crossing of the planetary boundary for climate change. tCDR could still be considered in the near-future mitigation portfolio if implemented on small scales on wisely chosen areas.

  12. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKenna, Amy

    2013-03-01

    events in the FT-ICR experiment. For example, the high density of peaks at each nominal mass unit provides unprecedented insight into how excitation conditions affect ion motion during detection. Aggregated oil (i.e., tar balls, tar mats) that reached the surface exhibits a more than two-fold increase in the total number of detected species, with an increased number of oxygenated species. Principal component analysis (PCA) applied to two possible source oils (contained within the same ship) and weathered samples provide the first application of FT-ICR MS for source identification. Molecular formulae from parent and weathered oil indicate that the lightest petroleum fractions (saturated hydrocarbons) are the most readily oxidized components, and can serve as a template to determine chemical transformations that occur throughout the water column. The ability to differentiate and catalogue compositional changes that occur to oil after its release into the environment relies heavily on gains achieved in nearly all steps in the FT-ICR mass spectral experiment required to accommodate larger ion populations inherent to heavily weathered crude oil. Here, we present the requirement for FT-ICR MS for comprehensive oil spill characterization, and highlight advances made to FT-ICR MS experimental conditions developed from petroleum characterization. Work supported by DMR-06-54118, NSF CHE-10-49753 (RAPID), BP/The Gulf of Mexico Research Initiative, and the State of Florida

  13. Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations.

    PubMed

    Balasco, Nicole; Barone, Daniela; Vitagliano, Luigi

    2015-01-01

    Recent structural investigations have shown that the C-terminal domain (CTD) of the transcription factor RfaH undergoes unique structural modifications that have a profound impact into its functional properties. These modifications cause a complete change in RfaH(CTD) topology that converts from an α-hairpin to a β-barrel fold. To gain insights into the determinants of this major structural conversion, we here performed computational studies (protein structure prediction and molecular dynamics simulations) on RfaH(CTD). Although these analyses, in line with literature data, suggest that the isolated RfaH(CTD) has a strong preference for the β-barrel fold, they also highlight that a specific region of the protein is endowed with a chameleon conformational behavior. In particular, the Leu-rich region (residues 141-145) has a good propensity to adopt both α-helical and β-structured states. Intriguingly, in the RfaH homolog NusG, whose CTD uniquely adopts the β-barrel fold, the corresponding region is rich in residues as Val or Ile that present a strong preference for the β-structure. On this basis, we suggest that the presence of this Leu-rich element in RfaH(CTD) may be responsible for the peculiar structural behavior of the domain. The analysis of the sequences of RfaH family (PfamA code PF02357) unraveled that other members potentially share the structural properties of RfaH(CTD). These observations suggest that the unusual conformational behavior of RfaH(CTD) may be rare but not unique.

  14. Molecular Dissection of Mycobacterium tuberculosis Integration Host Factor Reveals Novel Insights into the Mode of DNA Binding and Nucleoid Compaction*

    PubMed Central

    Sharadamma, Narayanaswamy; Harshavardhana, Yadumurthy; Ravishankar, Apoorva; Anand, Praveen; Chandra, Nagasuma; Muniyappa, K.

    2014-01-01

    The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαβ. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins. PMID:25324543

  15. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics

    NASA Astrophysics Data System (ADS)

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  16. Molecular, ethno-spatial epidemiology of leprosy in China: Novel insights for tracing leprosy in endemic and non endemic provinces

    PubMed Central

    Weng, Xiaoman; Xing, Yan; Liu, Jian; Wang, Yonghong; Ning, Yong; Li, Ming; Wu, Wenbin; Zhang, Lianhua; Li, Wei; Heiden, Jason Vander; Vissa, Varalakshmi

    2013-01-01

    Leprosy continues to be detected at near stable rates in China even with established control programs, necessitating new knowledge and alternative methods to interrupt transmission. A molecular epidemiology investigation of 190 patients was undertaken to define M. leprae strain types and discern genetic relationships and clusters in endemic and non-endemic regions spanning seventeen provinces and two autonomous regions. The findings support multiple locus variable number of tandem repeat (VNTR) analysis as a useful tool in uncovering characteristic patterns across the multiethnic and divergent geographic landscape of China. Several scenarios of clustering of leprosy from township to provincial to regional levels were recognized, while recent occupational or remote migration showed geographical separation of certain strains. First, prior studies indicated that of the four major M. leprae subtypes defined by single nucleotide polymorphisms (SNPs), only type 3 was present in China, purportedly entering from Europe/West/Central Asia via the Silk Road. However, this study revealed VNTR linked strains that are of type 1 in Guangdong, Fujian and Guangxi in southern China. Second, a subset of VNTR distinguishable strains of type 3, co-exist in these provinces. Third, type 3 strains with rpoT VNTR allele of 4, detected in Japan and Korea were discovered in Jiangsu and Anhui in the east and in western Sichuan bordering Tibet. Fourth, considering the overall genetic diversity, strains of endemic counties of Qiubei, Yunnan; Xing Yi, Guizhou; and across Sichuan in southwest were related. However, closer inspection showed distinct local strains and clusters. Altogether, these insights, primarily derived from VNTR typing, reveal multiple and overlooked paths for spread of leprosy into, within and out of China and invoke attention to historic maritime routes in the South and East China Sea. More importantly, new concepts and approaches for prospective case finding and tracking of

  17. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  18. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  19. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa

    NASA Astrophysics Data System (ADS)

    Berke, Melissa A.; Johnson, Thomas C.; Werne, Josef P.; Grice, Kliti; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2012-11-01

    New molecular proxies of temperature and hydrology are helping to constrain tropical climate change and elucidate possible forcing mechanisms during the Holocene. Here, we examine a ˜14,000 year record of climate variability from Lake Victoria, East Africa, the world's second largest freshwater lake by surface area. We determined variations in local hydroclimate using compound specific δD of terrestrial leaf waxes, and compared these results to a new record of temperature utilizing the TEX86 paleotemperature proxy, based on aquatic Thaumarchaeotal membrane lipids. In order to assess the impact of changing climate on the terrestrial environment, we generated a record of compound specific δ13C from terrestrial leaf waxes, a proxy for ecosystem-level C3/C4 plant abundances, and compared the results to previously published pollen-inferred regional vegetation shifts. We observe a general coherence between temperature and rainfall, with a warm, wet interval peaking ˜10-9 ka and subsequent gradual cooling and drying over the remainder of the Holocene. These results, particularly those of rainfall, are in general agreement with other tropical African climate records, indicating a somewhat consistent view of climate over a wide region of tropical East Africa. The δ13C record from Lake Victoria leaf waxes does not appear to reflect changes in regional climate or vegetation. However, palynological analyses document an abrupt shift from a Poaceae (grasses)-dominated ecosystem during the cooler, arid late Pleistocene to a Moraceae-dominated (trees/shrubs) landscape during the warm, wet early Holocene. We theorize that these proxies are reflecting vegetation in different locations around Lake Victoria. Our results suggest a predominantly insolation-forced climate, with warm, wet conditions peaking at the maximum interhemispheric seasonal insolation contrast, likely intensifying monsoonal precipitation, while maximum aridity coincides with the rainy season insolation and the

  20. A tale of two spartinas: Climatic, photobiological and isotopic insights on the fitness of non-indigenous versus native species

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Baeta, A.; Rousseau-Gueutin, M.; Ainouche, M.; Marques, J. C.; Caçador, I.

    2015-12-01

    Salt marshes are facing a new threat: the invasion by non-indigenous species (NIS), Although its introduction time is not established yet, in 1999 Spartina versicolor was already identified as a NIS in the Mediterranean marshes, significantly spreading its area of colonization. Using the Mediterranean native Spartina maritima as a reference, the present research studied the ecophysiological fitness of this NIS in its new environment, as a tool to understand its potential invasiveness. It was found that Spartina versicolor had a stable photobiological pattern, with only minor fluctuations during an annual cycle, and lower efficiencies comparated to S. maritima. The NIS seems to be rather insensitive to the observed abiotic factors fluctuations (salinity and pH of the sediment), and thus contrasts with the native S. maritima, known to be salinity dependent with higher productivity values in higher salinity environments. Most of the differences observed between the photobiology of these species could be explained by their nitrogen nutrition (here evaluated by the δ15N stable isotope) and directly related with the Mediterranean climate. Enhanced by a higher N availability during winter, the primary production of S. maritima which lead to dilution of the foliar δ15N concentration in the newly formed biomass, similarly to what is observed along a rainfall gradient. On the other hand, S. versicolor showed an increased δ15N in its tissues along the annual rainfall gradient, probably due to a δ15N concentration effect during low biomass production periods (winter and autumn). Together with the photobiological traits, these isotopic data point out to a climatic misfit of S. versicolor to the Mediterranean climate compared to the native S. maritima. This appears to be the major constrain shaping the ecophysiological fitness of this NIS, its primary production and consequently, its spreading rate along the Mediterranean marshes.

  1. Significance of pre-Quaternary climate change for montane species diversity: insights from Asian salamanders (Salamandridae: Pachytriton).

    PubMed

    Wu, Yunke; Wang, Yuezhao; Jiang, Ke; Hanken, James

    2013-01-01

    Despite extensive focus on the genetic legacy of Pleistocene glaciation, impacts of earlier climatic change on biodiversity are poorly understood. Because amphibians are highly sensitive to variations in precipitation and temperature, we use a genus of Chinese montane salamanders (Salamandridae: Pachytriton) to study paleoclimatic change in East Asia, which experienced intensification of its monsoon circulation in the late Miocene associated with subsequent Pliocene warming. Using both nuclear and mitochondrial DNA sequences, we reconstruct the species tree under a coalescent model and demonstrate that all major lineages originated before the Quaternary. Initial speciation within the genus occurred after the summer monsoon entered a stage of substantial intensification. Heavy summer precipitation established temporary water connectivity through overflows between adjacent stream systems, which may facilitate geographic range expansion by aquatic species such as Pachytriton. Species were formed in allopatry likely through vicariant isolation during or after range expansion. To evaluate the influence of Pliocene warming on these cold-adapted salamanders, we construct a novel temperature buffer-zone model, which suggests widespread physiological stress or even extinction during the warming period. A significant deceleration of species accumulation rate is consistent with Pliocene range contraction, which affected P. granulosus and P. archospotus the most because they lack large temperature buffer zones. In contrast, demographic growth occurred in species for which refugia persist. The buffer-zone model reveals the Huangshan Mountain as a potential climatic refugium, which is similar to that found for other East Asian organisms. Our approach can incorporate future climatic data to evaluate the potential impact of ongoing global warming on montane species (particularly amphibians) and to predict possible population declines.

  2. Timing of alluvial fan development along the Chajnantor Plateau, Atacama Desert, northern Chile: Insights about climate variation

    NASA Astrophysics Data System (ADS)

    Cesta, J. M.; Ward, D.

    2015-12-01

    An extensive alluvial apron of coalescing gravel fans blankets the western flank of the Chajnantor Plateau in the Atacama Desert of northern Chile. Remnant alluvial surfaces, terraces, and intermittent debris flow deposits preserved in this bajada indicate multiple intervals of aggradation, incision and terrace abandonment, and deposition. The high preservation potential and sensitivity to climate shifts of the region provides a unique opportunity to elucidate the sedimentary response to climate variations at an extreme of Earth's climate. We use cosmogenic 36Cl exposure dating, aided by mapping, to establish a detailed chronology of the depositional history of the Chajnantor alluvial apron. Alluvial surfaces and gravel deposits yield cosmogenic exposure ages ranging from 20.7 ± 1.4 ka to 419.2 ± 39.6 ka. Debris flow boulders confined to modern and ancient channels yield cosmogenic exposure ages ranging from 9.3 ± 1.1 ka to 202.5 ± 19.6 ka. One localized (Qcf1) and two extensive (Qcf2 and Qcf3) abandoned alluvial fan surfaces yield cosmogenic exposure ages of ~145 ka, ~55 ka, and ~33 ka respectively. These abandonment ages coincide with periods of moraine stabilization and deglaciation on the adjacent Chajnantor Plateau. The cosmogenic exposure ages also reveal a transition from aggradation to incision during marine oxygen isotope stage II (MIS II), coincident with local deglaciation. We interpret that protracted periods of aggradation coincide with periods of increased precipitation and glacial occupation of the Chajnantor Plateau, and are punctuated by phases of incision and surface abandonment during interglacial periods. These results suggest that precipitation is the dominant mechanism driving alluvial fan formation and modulating sediment supply along the western margin of the Chajnantor Plateau.

  3. Translating Scientific Judgment, Technological Insight and Economic Theory Into Practical Policy Lessons: The Case of Climate Regulation in the United States

    NASA Astrophysics Data System (ADS)

    Mignone, B. K.

    2008-12-01

    Effective solutions to the climate change problem will require unprecedented cooperation across space, continuity across time and coordination between disciplines. One well-known methodology for synthesizing the lessons of physical science, energy engineering and economics is integrated assessment. Typically, integrated assessment models use scientific and technological relationships as physical constraints in a larger macroeconomic optimization that is designed to either balance the costs and benefits of climate change mitigation or find the least-cost path to an exogenously prescribed endpoint (e.g. atmospheric CO2 stabilization). The usefulness of these models depends to a large extent on the quality of the assumptions and the relevance of the outcome metrics chosen by the user. In this study, I show how a scientifically-based emissions reduction scenario can be combined with engineering-based assumptions about the energy system (e.g. estimates of the marginal cost premium of carbon-free technology) to yield insights about the price path of CO2 under a future regulatory regime. I then show how this outcome metric (carbon price) relates to key decisions about the design of a future cap-and-trade system and the way in which future carbon markets may be regulated.

  4. Cool episode and platform demise in the Early Aptian: New insights on the links between climate and carbonate production

    NASA Astrophysics Data System (ADS)

    Bonin, Aurélie; Pucéat, Emmanuelle; Vennin, Emmanuelle; Mattioli, Emanuela; Aurell, Marcos; Joachimski, Michael; Barbarin, Nicolas; Laffont, Rémi

    2016-01-01

    The Early Aptian encountered several crises in neritic and pelagic carbonate production, major perturbations in the carbon cycle, and an oceanic anoxic event (OAE1a). Yet the causal links between these perturbations and climate changes remain poorly understood, partly because temperature records spanning the Early Aptian interval are still scant. We present new δ18O data from well-preserved bivalves from a carbonate platform of the Galve subbasin (Spain) that document a major cooling event postdating most of OAE1a. Our data show that cooling postdates the global platform demise and cannot have triggered this event that occurred during the warmest interval. The warmest temperatures coincide with the time equivalent of OAE1a and with platform biotic assemblages dominated by microbialites at Aliaga as well as on other Tethyan platforms. Coral-dominated assemblages then replace microbialites during the subsequent cooling. Nannoconids are absent during most of the time equivalent of the OAE1a, probably related to the well-known crisis affecting this group. Yet they present a transient recovery in the upper part of this interval with an increase in both size and abundance during the cool interval portion that postdates OAE1a. An evolution toward cooler and drier climatic conditions may have induced the regional change from microbial to coral assemblages as well as nannoconids size and abundance increase by limiting continent-derived input of nutrients.

  5. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  6. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes.

    PubMed

    Nottingham, Andrew T; Whitaker, Jeanette; Turner, Benjamin L; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-09-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of "cold-adapted" and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change.

  7. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    PubMed

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  8. Response of lightning NOx emissions and ozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Finney, D. L.; Doherty, R. M.; Wild, O.; Young, P. J.; Butler, A.

    2016-05-01

    Results from an ensemble of models are used to investigate the response of lightning nitrogen oxide emissions to climate change and the consequent impacts on ozone production. Most models generate lightning using a parameterization based on cloud top height. With this approach and a present-day global emission of 5 TgN, we estimate a linear response with respect to changes in global surface temperature of +0.44 ± 0.05 TgN K-1. However, two models using alternative approaches give +0.14 and -0.55 TgN K-1 suggesting that the simulated response is highly dependent on lightning parameterization. Lightning NOx is found to have an ozone production efficiency of 6.5 ± 4.7 times that of surface NOx sources. This wide range of efficiencies across models is partly due to the assumed vertical distribution of the lightning source and partly to the treatment of nonmethane volatile organic compound (NMVOC) chemistry. Careful consideration of the vertical distribution of emissions is needed, given its large influence on ozone production.

  9. The relationships between temperature changes and reproductive investment in a Mediterranean goby: Insights for the assessment of climate change effects

    NASA Astrophysics Data System (ADS)

    Zucchetta, M.; Cipolato, G.; Pranovi, F.; Antonetti, P.; Torricelli, P.; Franzoi, P.; Malavasi, S.

    2012-04-01

    The relationships between changes in water temperature and the timing and level of reproductive investment were investigated in an estuarine fish, inhabiting the Venice lagoon: the grass goby Zosterisessor ophiocephalus. A time series of the mean monthly values of gonado-somatic index was coupled with thermal profiles of lagoon water temperatures over 14 years, from 1997 to 2010. Results showed that the reproductive investment was positively affected by water temperature changes, both in terms of monthly thermal anomalies and cumulative degree days. A predictive model was also developed to assess the temporal shift of reproductive peaks as a response to inter-annual thermal fluctuations. This model allowed the detection of deviations from the median level, indicating that during warmer years, the reproductive peak tended to occur earlier than during colder years. The model is therefore proposed as a tool to predict anticipated consequences of climate change on fish phenology in transitional waters, regarding recurrent biological phenomena, such as reproduction and recruitment.

  10. Palynological records of Gondwana's mid-Permian climate amelioration: New insights from black shale deposits (Collingham Formation, South Africa)

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.

    2015-04-01

    Permian black shale deposits of the southern Karoo Basin were studied with respect to palynostratigraphy, palaeoenvironment, and palaeoclimate signatures recorded in palynomorph assemblages. The 28 m thick black shales of the Collingham Formation, exposed along road cuttings of the Ecca Pass north of Grahamstown (Eastern Cape Province, South Africa), are rich in sedimentary organic matter with a high content of amorphous organic matter and prasinophytes, characteristic of a deep, stratified marine basin. Moderately preserved pollen grains of the lower part of the formation reveal a mid-Permian (Roadian) age, corresponding to the stratigraphic position of the Collingham Formation in the Namibian part of the Karoo with an absolute age of 270 Ma obtained from a tuff (Stollhofen et al., 2000). The samples from the lower Collingham Formation show a very similar composition as samples from coal seams of the upper Vryheid Formation in the northeastern part of the Karoo Basin. Additionally, a similar stratigraphic trend in changes of palynomorph assemblages was detected, showing a striking increase in taeniate bissacate pollen grains up section. This signature points to a warm-temperate bisaccate-producing plant community in the hinterland, replacing cool-temperate floras of the underlying Whitehill Formation (Ruckwied et al., 2014). The detected palaeoclimate signatures document Gondwana's mid-Permian climate amelioration and have proved to be a powerful tool for high-resolution basin-wide correlation of marine and non-marine successions. References Ruckwied, K., Götz, A.E., Jones, P. 2014. Palynological records of the Permian Ecca Group (South Africa): Utilizing climatic icehouse-greenhouse signals for cross basin correlations. Palaeogeography, Palaeoclimatology, Palaeoecology 413, 167-172. Stollhofen, H., Stanistreet, I.G., Bangert, B., Grill, H. 2000. Tuffs, tectonism and glacially related sea-level changes, Carboniferous-Permian, southern Namibia. Palaeogeography

  11. Contextual and interdependent causes of climate change adaptation barriers: Insights from water management institutions in Himachal Pradesh, India.

    PubMed

    Azhoni, Adani; Holman, Ian; Jude, Simon

    2017-01-15

    Research on adaptation barriers is increasing as the need for climate change adaptation becomes evident. However, empirical studies regarding the emergence, causes and sustenance of adaptation barriers remain limited. This research identifies key contextual causes of adaptation barriers in water institutions in the mountainous Himalayan state of Himachal Pradesh in northern India. Semi-structured interviews were carried out with representatives from twenty-six key governmental, non-governmental, academic and research institutions in the State with responsibilities spanning domestic water supply, irrigation and hydropower generation, environmental monitoring and research. It identified low knowledge capacity and resources, policy implementation gaps, normative attitudes, and unavailability and inaccessibility of data and information compounded with weak interinstitutional networks as key adaptation barriers. Although these barriers are similar to those reported elsewhere, they have important locally-contextual root causes. For instance, inadequate resources result from fragmented resources allocation due to competing developmental priorities and the desire of the political leadership to please diverse electors, rather than climate scepticism. The identified individual barriers are found to be highly inter-dependent and closely intertwined which enables the identification of leverage points for interventions to maximise barrier removal. For instance, breaking down key barriers hindering accessibility to data and information, which are shaped by systemic bureaucracies and cultural attitudes, will involve attitudinal change through sensitisation to the importance of accurate and accessible data and information and the building trust between different actors, in addition to institutional structural changes through legislation and inter-institutional agreements. Approaching barriers as a system of contextually interconnected cultural, systemic, geographical and political

  12. Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale

    PubMed Central

    Sahoo, Bikash Ranjan; Fujiwara, Toshimichi

    2016-01-01

    The cathelicidin derived bovine antimicrobial peptide BMAP27 exhibits an effective microbicidal activity and moderate cytotoxicity towards erythrocytes. Irrespective of its therapeutic and multidimensional potentiality, the structural studies are still elusive. Moreover, the mechanism of BMAP27 mediated pore formation in heterogeneous lipid membrane systems is poorly explored. Here, we studied the effect of BMAP27 in model cell-membrane systems such as zwitterionic, anionic, thymocytes-like (TLM) and leukemia-like membranes (LLM) by performing molecular dynamics (MD) simulation longer than 100 μs. All-atom MD studies revealed a stable helical conformation in the presence of anionic lipids, however, significant loss of helicity was identified in TLM and zwitterionic systems. A peptide tilt (~45˚) and central kink (at residue F10) was found in anionic and LLM models, respectively, with an average membrane penetration of < 0.5 nm. Coarse-grained (CG) MD analysis on a multi-μs scale shed light on the membrane-dependent peptide and lipid organization. Stable micelle and end-to-end like oligomers were formed in zwitterionic and TLM models, respectively. In contrast, unstable oligomer formation and monomeric BMAP27 penetration were observed in anionic and LLM systems with selective anionic lipid aggregation (in LLM). Peptide penetration up to ~1.5 nm was observed in CG-MD systems with the BMAP27 C-terminal oriented towards the bilayer core. Structural inspection suggested membrane penetration by micelle/end-to-end like peptide oligomers (carpet-model like) in the zwitterionic/TLM systems, and transmembrane-mode (toroidal-pore like) in the anionic/LLM systems, respectively. Structural insights and energetic interpretation in BMAP27 mutant highlighted the role of F10 and hydrophobic residues in mediating a membrane-specific peptide interaction. Free energy profiling showed a favorable (-4.58 kcal mol-1 for LLM) and unfavorable (+0.17 kcal mol-1 for TLM) peptide insertion

  13. Centennial-scale vegetation and climate changes in the Middle Atlas, Morocco: new insights from multi-proxy investigations at Lake Sidi Ali

    NASA Astrophysics Data System (ADS)

    Fletcher, William; Campbell, Jennifer; Joannin, Sebastien; Mischke, Steffen; Zielhofer, Christoph; de Batist, Marc; Mikdad, Abdes

    2016-04-01

    The karstic lakes of the Middle Atlas, Morocco, represent a valuable archive of environmental and climatic change for Northwest Africa. Here we present the results of centennial-scale palynological and charcoal analyses as part of a multiproxy palaeolimnological study of sediment cores from Lake Sidi Ali in the Middle Atlas, Morocco (33° 03 N, 05° 00 W; 2,080 m a.s.l.). Supported by absolute dating including 23 more than twenty AMS 14C dates on pollen concentrates, the record covers the entire Holocene and offers insights into vegetation and climate change at a regionally unprecedented centennial-scale. Pollen assemblages are dominated by steppic herbs, evergreen oaks (Quercus), junipers (Cupressaceae) and Atlantic cedar (Cedrus atlantica). A long-term evolution of the montane vegetation is recorded, reflecting progressive changes in the dominant arboreal taxa and leading to the full establishment of the emblematic cedar forests of the area during the mid-Holocene by 6000 cal BP. Orbital-scale changes in seasonality and growing season moisture availability linked to declining summer insolation are implicated, with a transition from (a) warm, dry summers associated with summer drought tolerant taxa especially evergreen Quercus, high algal productivity in the lake, and high background levels of microcharcoal reflecting distant fire activity during the early Holocene, to (b) cool, relatively humid summers with dominance of montane conifers, declining algal productivity in the lake, and episodic local fire activity during the mid- to late Holocene. Superimposed on the long-term environmental changes are recurrent centennial-scale fluctuations in vegetation composition, reflecting competitive dynamics between the major taxa, initially between steppic and arboreal elements, and later between the major tree taxa. Parallels with hydrological proxies including stable O and C isotopes suggest common responses to climatic drivers (fluctuations in moisture sources and

  14. Insights into the molecular level composition, sources, and formation mechanisms of dissolved organic matter in aerosols and precipitation

    NASA Astrophysics Data System (ADS)

    Altieri, Katye Elisabeth

    Atmospheric aerosols scatter and absorb light influencing the global radiation budget and climate, and are associated with adverse effects on human health. Precipitation is an important removal mechanism for atmospheric dissolved organic matter (DOM), and a potentially important input for receiving ecosystems. However, the sources, formation, and composition of atmospheric DOM in aerosols and precipitation are not well understood. This dissertation investigates the composition and formation mechanisms of secondary organic aerosol (SOA) formed through cloud processing reactions, elucidates the composition and sources of DOM in rainwater, and provides links connecting the two. Photochemical batch aqueous-phase reactions of organics with both biogenic and anthropogenic sources (i.e., methylglyoxal, pyruvic acid) and OH radical were performed to simulate cloud processing. The composition of products formed through cloud processing experiments and rainwater collected in New Jersey, USA was investigated using a combination of electrospray ionization mass spectrometry techniques, including ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. This dissertation has resulted in the first evidence that oligomers form through cloud processing reactions, the first detailed chemical mechanism of aqueous phase oligomerization, the first identification of oligomers, organosulfates, and nitrooxy organosulfates in precipitation, and the first molecular level chemical characterization of organic nitrogen in precipitation. The formation of oligomers in SOA helps to explain the presence of large multifunctional compounds and humic like substances (HULIS) that dominate particulate organic mass. Oligomers have low vapor pressures and remain in the particle phase after cloud evaporation, enhancing SOA. The chemical properties of the oligomers suggest that they are less hygroscopic than the monomeric reaction products (i.e., organic acids). Their elemental

  15. The response of stratospheric water vapor to a changing climate: Insights from in situ water vapor measurements

    NASA Astrophysics Data System (ADS)

    Sargent, Maryann Racine

    Stratospheric water vapor plays an important role in the Earth system, both through its role in stratospheric ozone destruction and as a greenhouse gas contributing to radiative forcing of the climate. Highly accurate water vapor measurements are critical to understanding how stratospheric water vapor concentrations will respond to a changing climate. However, the past disagreement among water vapor instruments on the order of 1-2 ppmv hinders understanding of the mechanisms which control stratospheric humidity, and the reliable detection of water vapor trends. In response to these issues, we present a new dual axis water vapor instrument that combines the heritage Harvard Lyman-alpha hygrometer with the newly developed Harvard Herriott Hygrometer (HHH). The Lyman-alpha instrument utilizes ultraviolet photo-fragment fluorescence detection, and its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell; it demonstrated in-flight precision of 0.1 ppmv (1-sec) with accuracy of 5%±0.5 ppmv. We describe these two measurement techniques in detail along with our methodology for calibration and details of the measurement uncertainties. We also examine the recent flight comparison of the two instruments with several other in situ hygrometers during the 2011 MACPEX campaign, in which five independent instruments agreed to within 0.7 ppmv, a significant improvement over past comparisons. Water vapor measurements in combination with simultaneous in situ measurements of O3, CO, CO2, HDO, and HCl are also used to investigate transport in the Tropical Tropopause Layer (TTL). Data from the winter 2006 CR-AVE campaign and the summer 2007 TC4 campaign are analyzed in a one-dimensional mixing model to explore the seasonal importance of transport within the TTL via slow upward ascent, convective injection, and isentropic

  16. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauz, B.; Hijma, M. P.; Amorosi, A.; Porat, N.; Galili, E.; Bloemendal, J.

    2013-06-01

    Relict beach ridges of aeolian origin and associated soils are often used for inferring relative sea level and climate with contrasting results. Most studies link the aeolian coastal deposits to regressive phases, some to high sea-level stands, and a few to intermediate relative sea-level positions. We interpret the apparent contradictions as indicating the lack of an over-arching concept and the inconsistent usage of sea level-related terms. In this paper we present an integrated morpho-sedimentological concept for a microtidal, mid-latitudinal coast and review existing data from the Levant (East Mediterranean) coast to evaluate the concept and to eliminate nomenclatural confusion. A coastal depositional environment in a semi-arid environment consists of shallow-marine, aeolian and alluvial facies which together form an aeolian beach-ridge complex as a package of strata which respond simultaneously to sea-level change. A transgressive complex forms through reworking or overstepping of the coastal foredune and a regressive complex forms by downstepping. Under transgression the aeolian beach ridge represents the highstand deposit and its adjacent shallow marine sediment is the transgressive deposit. Under regression the complex represents the falling stage and the associated downdip surface marks the lowstand. On the Levant coast we find chronologically well-constrained, offlapping aeolian beach ridges as parts of six downstepping beach ridge complexes formed between ~ 200 ka and 10 ka. The complexes represent the falling stage systems tract (FSST) of a short-lived (5th-order) depositional sequence when the shoreline shifted from a position close to the modern coastline to the shelf or below the shelf edge. Three of these FSSTs and their up dip and down dip super bounding surface together form the 4th order (~ 100 ka) sequence of the last interglacial/glacial cycle. The absence of transgressive, highstand and lowstand systems tract is explained by the poor

  17. Tropical African climate variability during the last glacial/interglacial transition: the molecular record from Lake Malawi

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Werne, J. P.; Johnson, T. C.

    2003-12-01

    In general, information regarding tropical African climate variability is relatively limited, especially in comparison with high-latitude studies. Unlike the high-latitudes where climate change is often expressed by fluctuations in temperature, low-latitude climate change is often expressed as variability in zonal circulation, which can result in hydrological fluctuations. Lake Malawi, situated in low-latitude tropical Africa (9-14° S), contains a continuous and high-resolution sedimentary record of the past 22ka BP and is anoxic below 250m, which enhances preservation of organic matter (OM). For these reasons, L. Malawi is an excellent location to examine the response of low-latitude African climate to global climate change. The climate of Malawi is strongly influenced by the position and seasonal migration of the ITCZ. During the rainy season from November to March, the ITCZ is positioned over L. Malawi (12-13° S) and the dominant winds are weak and northerly. Between April and May the ITCZ moves northward towards the equator and strong southerly winds prevail (Jury & Mwafulirwa, 2002). Previous studies of L. Malawi have shown responses to global climatic events, such as the Younger Dryas. Additionally, studies have demonstrated the response of L. Malawi to local or regional events, such as variability in the ITCZ. Based on BSi MAR, diatom, phosphorus, and trace metal data, Johnson et al. (2002) proposed that at times more frequent or stronger northerly winds promoted upwelling in the northern basin of L. Malawi, and suggested more southerly migrations of the ITCZ (reaching latitudes of >13\\deg S) as the cause of these increased winds. Additionally, a recent study of L. Malawi based on multiple bulk geochemical proxies provides evidence for both southward and northward displacements of the ITCZ during the past 23ka BP (Filippi and Talbot, submitted). In this study the molecular biomarker record of L. Malawi is examined. Previous studies of Lake Malawi have

  18. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    NASA Astrophysics Data System (ADS)

    Yettella, Vineel; Kay, Jennifer E.

    2016-10-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  19. Insights into Ocean Acidification During the Middle Eocene Climatic Optimum from Boron Isotopes at Southern Ocean Site 738

    NASA Astrophysics Data System (ADS)

    Moebius, I.; Hoenisch, B.; Friedrich, O.

    2015-12-01

    The Middle Eocene Climatic Optimum (MECO) is a ~650-kyr interval of global warming, with a brief ~50 ky long peak warming interval, and an abrupt termination. Deep sea and surface ocean temperature evolution across this interval are fairly well constrained, but thus far we have little understanding of the mechanisms responsible for the gradual warming and rapid recovery. Carbonate mass accumulation rates suggest a shoaling of the carbonate compensation depth, and studies on alkenones indicate increasing atmospheric CO2 levels during the MECO. This suggests an increase in surface ocean CO2, and consequently ocean acidification. However, the severity and timing of the proposed ocean acidification with respect to the onset, peak warming and the termination are currently not well resolved. The boron isotopic composition (δ11B) recorded in planktic foraminifer shells offers an opportunity to infer oceanic pH across this interval. We are working on a boron isotope reconstruction from Southern Ocean IODP site 738 and South Atlantic IODP site 1263, covering 42.0 to 38.5 Ma. These sites are characterized by good carbonate preservation and well-defined age models have been established. Additionally, ecology, nutrient content and bottom-water oxygenation have been shown to change significantly across the event towards a more eutrophic, periodically oxygen-depleted environment supporting different biological communities. We selected the planktic foraminifera species Acarinina spinuloinflata for this study because it is symbiont-bearing, suggesting a near-surface habitat and little vertical migration in the water column, and because of its abundance in the samples. δ11B data will be translated to surface ocean pH and atmospheric pCO2 will be approximated to refine knowledge about the carbon cycle during this time. Parallel analysis of two core sites will help to evaluate the tenacity of the data.

  20. Climatic Factors Drive Population Divergence and Demography: Insights Based on the Phylogeography of a Riparian Plant Species Endemic to the Hengduan Mountains and Adjacent Regions

    PubMed Central

    Wang, Zhi-Wei; Chen, Shao-Tian; Nie, Ze-Long; Zhang, Jian-Wen; Zhou, Zhuo; Deng, Tao; Sun, Hang

    2015-01-01

    Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120–140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950–2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4–159.4 ka and 315.8–160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae

  1. Environment and climate of the last 51,000 years - new insights from the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO)

    NASA Astrophysics Data System (ADS)

    Zolitschka, B.; Anselmetti, F.; Ariztegui, D.; Corbella, H.; Francus, P.; Lücke, A.; Maidana, N. I.; Ohlendorf, C.; Schäbitz, F.; Wastegård, S.

    2013-07-01

    In this introductory paper we summarize the history and achievements of the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO), an interdisciplinary project embedded in the International Continental Scientific Drilling Program (ICDP). The stringent multiproxy approach adopted in this research combined with radiocarbon and luminescence dating provided the opportunity to synthesize a large body of hydrologically relevant data from Laguna Potrok Aike (southern Patagonia, Argentina). At this site, lake level was high from 51 ka until the early Holocene when the Southern Hemisphere Westerlies (SHW) were located further to the north. At 9.3 ka cal. BP the SHW moved southward and over the latitude of the study area (52°S) causing a pronounced negative water balance with a lake level decrease of more than 50 m. Two millennia later, the SHW diminished in intensity and lake level rose to a subsequent maximum during the Little Ice Age. Since the 20th century, a strengthening of the SHW increased the evaporative stress resulting in a more negative water balance. A comparison of our data with other hydrological fluctuations at a regional scale in south-eastern Patagonia, provides new insights and also calls for better chronologies and high-resolution records of climate variability.

  2. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate.

    PubMed

    Semenov, Mikhail A; Halford, Nigel G

    2009-01-01

    Global warming is causing changes in temperature at a rate unmatched by any temperature change over the last 50 million years. Crop cultivars have been selected for optimal performance under the current climatic conditions. With global warming, characterized by shifts in weather patterns and increases in frequency and magnitude of extreme weather events, new ideotypes will be required with a different set of physiological traits. Severe pressure has been placed on breeders to produce new crop cultivars for a future, rapidly-changing environment that can only be predicted with a great degree of uncertainty and is not available in the present day for direct experiments or field trials. Mathematical modelling, therefore, in conjunction with crop genetics, represents a powerful tool to assist in the breeding process. In this review, drought and high temperature are considered as key stress factors with a high potential impact on crop yield that are associated with global warming, focusing on their effects on wheat. Modelling techniques are described which can help to quantify future threats to wheat growth under climate change and simple component traits that are amenable to genetic analysis are identified. This approach could be used to support breeding programmes for new wheat cultivars suitable for future environments brought about by the changing climate.

  3. Climate adaption and post-fire restoration of a foundational perennial in cold desert: Insights from intraspecific variation in response to weather

    USGS Publications Warehouse

    Brabec, Martha M.; Germino, Matthew; Richardson, Bryce A.

    2017-01-01

    responses among subspecies/cytotypes were not as strong and did not relate to survival patterns. 5.Synthesis and applications. Low temperature responses are a key axis defining climate adaptation in young sagebrush seedlings and vary more with cytotype than with subspecies, which contrasts with the traditional emphases on (i) water limitations to explain establishment in these deserts, and (ii) subspecies in selecting restoration seedings. These important and novel insights on climate adaptation are critical for seed selection and parameterizing seed transfer zones, and were made possible by incorporating weather data with survival statistics. The survival/weather statistics used here could be applied to any restoration planting or seeding to help elucidate factors contributing to success and enable adaptive management.

  4. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae).

    PubMed

    Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y

    2015-01-01

    Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods.

  5. From climate change to molecular response: redox proteomics of ozone-induced responses in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone (O3) causes significant agricultural losses with soybean being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O3 exposure on the total and redox proteomes of soybean. To understand the molecular responses to O3 exposure, soybean grown at the Soybean Free Air C...

  6. Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Upshur, M. A.; Strick, B. F.; McNeill, V. F.; Thomson, R. J.; Geiger, F. M.

    2014-10-01

    Secondary organic aerosol (SOA) particles, formed from gas-phase biogenic volatile organic compounds (BVOCs), contribute large uncertainties to the radiative forcing that is associated with aerosols in the climate system. Reactive uptake of surface-active organic oxidation products of BVOCs at the gas-aerosol interface can potentially decrease the overall aerosol surface tension and therefore influence their propensity to act as cloud condensation nuclei (CCN). Here, we synthesize and measure some climate-relevant physical properties of SOA particle constituents consisting of the isoprene oxidation products α-, δ-, and cis- and trans-β-IEPOX (isoprene epoxide), as well as syn- and anti-2-methyltetraol. Following viscosity measurements, we use octanol-water partition coefficients to quantify the relative hydrophobicity of the oxidation products while dynamic surface tension measurements indicate that aqueous solutions of α- and trans-β-IEPOX exhibit significant surface tension depression. We hypothesize that the surface activity of these compounds may enhance aerosol CCN activity, and that trans-β-IEPOX may be highly relevant for surface chemistry of aerosol particles relative to other IEPOX isomers.

  7. The Fragment Molecular Orbital Method Reveals New Insight into the Chemical Nature of GPCR-Ligand Interactions.

    PubMed

    Heifetz, Alexander; Chudyk, Ewa I; Gleave, Laura; Aldeghi, Matteo; Cherezov, Vadim; Fedorov, Dmitri G; Biggin, Philip C; Bodkin, Mike J

    2016-01-25

    Our interpretation of ligand-protein interactions is often informed by high-resolution structures, which represent the cornerstone of structure-based drug design. However, visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum Mechanics approaches are often too computationally expensive, but one method, Fragment Molecular Orbital (FMO), offers an excellent compromise and has the potential to reveal key interactions that would otherwise be hard to detect. To illustrate this, we have applied the FMO method to 18 Class A GPCR-ligand crystal structures, representing different branches of the GPCR genome. Our work reveals key interactions that are often omitted from structure-based descriptions, including hydrophobic interactions, nonclassical hydrogen bonds, and the involvement of backbone atoms. This approach provides a more comprehensive picture of receptor-ligand interactions than is currently used and should prove useful for evaluation of the chemical nature of ligand binding and to support structure-based drug design.

  8. Squamous cell carcinomas of the lung and of the head and neck: new insights on molecular characterization

    PubMed Central

    Polo, Valentina; Pasello, Giulia; Frega, Stefano; Favaretto, Adolfo; Koussis, Haralabos; Conte, Pierfranco; Bonanno, Laura

    2016-01-01

    Squamous cell carcinomas of the lung and of the head and neck district share strong association with smoking habits and are characterized by smoke-related genetic alterations. Driver mutations have been identified in small percentage of lung squamous cell carcinoma. In parallel, squamous head and neck tumors are classified according to the HPV positivity, thus identifying two different clinical and molecular subgroups of disease. This review depicts different molecular portraits and potential clinical application in the field of targeted therapy, immunotherapy and chemotherapy personalization. PMID:26933818

  9. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce.

    PubMed

    Prunier, Julien; Gérardi, Sébastien; Laroche, Jérôme; Beaulieu, Jean; Bousquet, Jean

    2012-09-01

    In response to selective pressure, adaptation may follow different genetic pathways throughout the natural range of a species due to historical differentiation in standing genetic variation. Using 41 populations of black spruce (Picea mariana), the objectives of this study were to identify adaptive genetic polymorphisms related to temperature and precipitation variation across the transcontinental range of the species, and to evaluate the potential influence of historical events on their geographic distribution. Population structure was first inferred using 50 control nuclear markers. Then, 47 candidate gene SNPs identified in previous genome scans were tested for relationship with climatic factors using an F(ST) -based outlier method and regressions between allele frequencies and climatic variations. Two main intraspecific lineages related to glacial vicariance were detected at the transcontinental scale. Within-lineage analyses of allele frequencies allowed the identification of 23 candidate SNPs significantly related to precipitation and/or temperature variation, among which seven were common to both lineages, eight were specific to the eastern lineage and eight were specific to the western lineage. The implication of these candidate SNPs in adaptive processes was further supported by gene functional annotations. Multiple evidences indicated that the occurrence of lineage-specific adaptive SNPs was better explained by selection acting on historically differentiated gene pools rather than differential selection due to heterogeneity of interacting environmental factors and pleiotropic effects. Taken together, these findings suggest that standing genetic variation of potentially adaptive nature has been modified by historical events, hence affecting the outcome of recent selection and leading to different adaptive routes between intraspecific lineages.

  10. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    PubMed

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-02-10

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  11. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception.

    PubMed

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E; Nordmann, Grégory C; Schladt, Moritz; Milenkovic, Vladimir M; Kulkarni, Ashok B; Wetzel, Christian H

    2016-02-23

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.

  12. Technology Insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs

    PubMed Central

    Weber, Wolfgang A; Czernin, Johannes; Phelps, Michael E; Herschman, Harvey R

    2010-01-01

    SUMMARY Targeted drugs hold great promise for the treatment of malignant tumors; however, there are several challenges for efficient evaluation of these drugs in preclinical and clinical studies. These challenges include identifying the ‘correct’, biologically active concentration and dose schedule, selecting the patients likely to benefit from treatment, monitoring inhibition of the target protein or pathway, and assessing the response of the tumor to therapy. Although anatomic imaging will remain important, molecular imaging provides several new opportunities to make the process of drug development more efficient. Various techniques for molecular imaging that enable noninvasive and quantitative imaging are now available in the preclinical and clinical settings, to aid development and evaluation of new drugs for the treatment of cancer. In this Review, we discuss the integration of molecular imaging into the process of drug development and how molecular imaging can address key questions in the preclinical and clinical evaluation of new targeted drugs. Examples include imaging of the expression and inhibition of drug targets, noninvasive tissue pharmacokinetics, and early assessment of the tumor response. PMID:18097456

  13. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception

    PubMed Central

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E.; Nordmann, Grégory C.; Schladt, Moritz; Milenkovic, Vladimir M.; Kulkarni, Ashok B.; Wetzel, Christian H.

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca2+-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  14. Permafrost Meta-Omics and Climate Change

    NASA Astrophysics Data System (ADS)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  15. Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy and Cellular Biology.

    NASA Astrophysics Data System (ADS)

    Gattuso, Hugo; Duchanois, Thibaut; Besancenot, Vanessa; Barbieux, Claire; Assfeld, Xavier; Becuwe, Philippe; Gros, Philippe; Grandemange, Stephanie; Monari, Antonio

    2015-12-01

    We report the characterization of the interaction between B-DNA and three terpyridin iron II complexes. Relatively long time-scale molecular dynamics is used in order to characterize the stable interaction modes. By means of molecular modeling and UV-vis spectroscopy, we prove that they may lead to stable interactions with the DNA duplex. Furthermore, the presence of larger π-conjugated moieties also leads to the appearance of intercalation binding mode. Non-covalent stabilizing interactions between the iron complexes and the DNA are also characterized and evidenced by the analysis of the gradient of the electronic density. Finally, the structural deformations induced on the DNA in the different binding modes are also evidenced. The synthesis and chemical characterization of the three complexes is reported, as well as their absorption spectra in presence of DNA duplexes to prove the interaction with DNA. Finally, their effects on human cell cultures have also been evidenced to further enlighten their biological effects.

  16. Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints

    PubMed Central

    Hornak, Viktor; Ahuja, Shivani; Eilers, Markus; Goncalves, Joseph A.; Sheves, Mordechai; Reeves, Philip J.; Smith, Steven O.

    2009-01-01

    Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize the structural changes in the light activation of rhodopsin. Since the time scale for the formation of the metarhodopsin II intermediate (> 1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor. PMID:20004206

  17. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of Bacteria Provide Insights into Their Evolutionary Relationships.

    PubMed

    Gupta, Radhey S; Bhandari, Vaibhav; Naushad, Hafiz Sohail

    2012-01-01

    The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia, and Chlamydiae, along with the Lentisphaerae, Poribacteria, and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, six conserved signature indels (CSIs) in the proteins Cyt c oxidase, UvrD helicase, urease, and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase, and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia, and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae, and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms.

  18. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of Bacteria Provide Insights into Their Evolutionary Relationships

    PubMed Central

    Gupta, Radhey S.; Bhandari, Vaibhav; Naushad, Hafiz Sohail

    2012-01-01

    The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia, and Chlamydiae, along with the Lentisphaerae, Poribacteria, and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, six conserved signature indels (CSIs) in the proteins Cyt c oxidase, UvrD helicase, urease, and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase, and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia, and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae, and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms. PMID:23060863

  19. Molecular modeling, mutational analysis and conformational switching in IL27: An in silico structural insight towards AIDS research.

    PubMed

    Banerjee, Arundhati; Ray, Sujay

    2016-01-15

    The advancement in proteomics and bioinformatics provokes to discern the molecular-level probe for HIV inhibitor; human interleukin-27 (IL27). Documentation documents that tyrosine residues in IL27 play a pivotal role for interacting with HIV, causing apoptosis of the HIV+ cells. Primarily, 3D structure of human wild-type (WT) IL27 was built through manifold molecular modeling techniques after the satisfaction of stereo-chemical properties. Its essential tyrosine residues were identified. Two mutant models for IL27 were prepared following the similar protocol by first substituting the tyrosine residues with glycine (MT_G) and then with alanine (MT_A) in the WT protein. Molecular dynamics (MD) simulation was performed to obtain a stable conformation. Conformational alterations in WT, MT_G and MT_A (before and after MD simulation) disclosed that MT_A was the steadiest one with the best secondary structure conformation supported by statistical significances. Though huge RMSD variations were observed on superimposing the MT structures on WT individually, the MTs were examined to share similar SCOP/CATH fold with TM-score=0.8, indicating that they retained their functionality even after mutation. Electrostatic surface potential again unveiled MT_A to be the most stable one. MT_A was thereby revealed to be the potent peptide inhibitor for HIV. This probe presents a pathway to investigate and compare the bio-molecular interaction of WT IL27 and MT_A IL27 (strongest model) with HIV in the future. This is the first report regarding the structural biology of IL27 accompanied by alteration at its genetic level and delving into the unknown residue-level and functional biochemistry for bringing about an annihilation towards AIDS.

  20. Molecular Dynamics Simulations of Voltage-Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation

    PubMed Central

    Delemotte, Lucie; Klein, Michael L.; Tarek, Mounir

    2012-01-01

    Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases. PMID:22654756

  1. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    NASA Astrophysics Data System (ADS)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescenc