Science.gov

Sample records for climate molecular insights

  1. New insights into deglacial climate variability in tropical South America from molecular fossil and isotopic indicators in Lake Titicaca

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Hughen, K. A.; Fornace, K.; Baker, P. A.; Fritz, S. C.

    2010-12-01

    As one of the main centers of tropical convection, the South American Altiplano plays a crucial role in the long-term climate variability of South America. However, both the timing and the drivers of climate variability on orbital to millennial timescales remain poorly understood for this region. New data from molecular fossil (e.g., TEX86) and compound specific hydrogen isotope (D/H) analyses provide new insights into the climate evolution of this region over the last ~50 kyr. TEX86 temperature reconstructions suggest that the Altiplano warmed as early as 19- 21 kyr ago and proceeded rapidly, consistent with published evidence for an early retreat of LGM glaciers at this time at some locations. The early warming signal observed at Lake Titicaca also appears to be synchronous with continental temperature reconstructions at some sites in tropical Africa, but leads tropical SST changes by several thousands of years. Although the initiation of warming coincided with the peak in southern hemisphere summer insolation, subsequent temperature increases were accompanied by decreases in southern hemisphere insolation, suggesting a northern hemisphere driver for temperature changes in tropical South America. Preliminary D/H ratios from leaf waxes appear to support existing data suggesting that wet conditions prevailed until the late glacial/early Holocene and are broadly consistent with local southern hemisphere summer insolation forcing of the summer monsoon. These data suggest that temperature and precipitation changes during the last deglaciation were decoupled and that both local and extratropical drivers are important for controlling climate change in this region on orbital timescales.

  2. Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus

    PubMed Central

    2010-01-01

    Background The dynamic geological and climatic histories of temperate South America have played important roles in shaping the contemporary distributions and genetic diversity of endemic freshwater species. We use mitochondria and nuclear sequence variation to investigate the consequences of mountain barriers and Quaternary glacial cycles for patterns of genetic diversity in the diadromous fish Galaxias maculatus in Patagonia (~300 individuals from 36 locations). Results Contemporary populations of G. maculatus, east and west of the Andes in Patagonia, represent a single monophyletic lineage comprising several well supported groups. Mantel tests using control region data revealed a strong positive relationship when geographic distance was modeled according to a scenario of marine dispersal. (r = 0.69, P = 0.055). By contrast, direct distance between regions was poorly correlated with genetic distance (r = -0.05, P = 0.463). Hierarchical AMOVAs using mtDNA revealed that pooling samples according to historical (pre-LGM) oceanic drainage (Pacific vs. Atlantic) explained approximately four times more variance than pooling them into present-day drainage (15.6% vs. 3.7%). Further post-hoc AMOVA tests revealed additional genetic structure between populations east and west of the Chilean Coastal Cordillera (coastal vs. interior). Overall female effective population size appears to have remained relatively constant until roughly 0.5 Ma when population size rapidly increased several orders of magnitude [100× (60×-190×)] to reach contemporary levels. Maximum likelihood analysis of nuclear alleles revealed a poorly supported gene tree which was paraphyletic with respect to mitochondrial-defined haplogroups. Conclusions First diversifying in the central/north-west region of Patagonia, G. maculatus extended its range into Argentina via the southern coastal regions that join the Pacific and Atlantic oceans. More recent gene flow between northern populations involved the most

  3. Carbohydrate-protein interactions: molecular modeling insights.

    PubMed

    Pérez, Serge; Tvaroška, Igor

    2014-01-01

    The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses. © 2014 Elsevier Inc. All rights reserved.

  4. Molecular insights into a dinoflagellate bloom

    PubMed Central

    Gong, Weida; Browne, Jamie; Hall, Nathan; Schruth, David; Paerl, Hans; Marchetti, Adrian

    2017-01-01

    In coastal waters worldwide, an increase in frequency and intensity of algal blooms has been attributed to eutrophication, with further increases predicted because of climate change. Yet, the cellular-level changes that occur in blooming algae remain largely unknown. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a eutrophied estuary. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of cellular membrane components. In addition, there is a prominence of highly expressed genes involved in the synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes, suggesting processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to elevated nutrient demands and to promote interactions with their surrounding bacterial consortia, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for bloom characterization and management efforts. PMID:27935592

  5. Palaeoclimatic insights into future climate challenges.

    PubMed

    Alley, Richard B

    2003-09-15

    Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.

  6. Insight into the molecular genetics of myopia

    PubMed Central

    Li, Jiali

    2017-01-01

    Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878

  7. Insight into the molecular genetics of myopia.

    PubMed

    Li, Jiali; Zhang, Qingjiong

    2017-01-01

    Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.

  8. Endometriosis: translation of molecular insights to management.

    PubMed

    Langan, K L; Farrell, M E; Keyser, E A; Salyer, B A; Burney, R O

    2014-09-01

    Endometriosis is a debilitating gynecologic disorder causing pelvic pain and infertility and characterized by the implantation of endometrial tissue to extrauterine locations. Though aspects of the condition remain enigmatic, the molecular pathophysiology of endometriosis appears to be clarifying. Estrogen dependence of the disease is a sentinel endocrine feature and reduction of estrogen bioavailability is the therapeutic principle upon which traditional treatment and prevention approaches have been based. Endometriosis is a chronic inflammatory condition associated with lesional neoangiogenesis and attenuated progesterone action at the level of the endometrium. The elucidation of the molecular pathways mediating these observations has revealed new targets for directed medical and surgical treatment. This paper will review current approaches to the management of endometriosis in the context of the molecular pathophysiology.

  9. Molecular Insight into the Slipperiness of Ice.

    PubMed

    Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel

    2018-05-16

    Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.

  10. Molecular insights into melanoma brain metastases.

    PubMed

    Westphal, Dana; Glitza Oliva, Isabella C; Niessner, Heike

    2017-06-01

    Substantial proportions of patients with metastatic melanoma develop brain metastases during the course of their disease, often resulting in significant morbidity and death. Despite recent advances with BRAF/MEK and immune-checkpoint inhibitors in the treatment of patients who have melanoma with extracerebral metastases, patients who have melanoma brain metastases still have poor overall survival, highlighting the need for further therapy options. A deeper understanding of the molecular pathways involved in the development of melanoma brain metastases is required to develop more brain-specific therapies. Here, the authors summarize the currently known preclinical data and describe steps involved in the development of melanoma brain metastases. Only by knowing the molecular background is it possible to design new therapeutic agents that can be used to improve the outcome of patients with melanoma brain metastases. Cancer 2017;123:2163-75. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. Male sex determination: insights into molecular mechanisms

    PubMed Central

    McClelland, Kathryn; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516

  12. Molecular insights into human daily behavior

    PubMed Central

    Brown, Steven A.; Kunz, Dieter; Dumas, Amelie; Westermark, Pål O.; Vanselow, Katja; Tilmann-Wahnschaffe, Amely; Herzel, Hanspeter; Kramer, Achim

    2008-01-01

    Human beings exhibit wide variation in their timing of daily behavior. We and others have suggested previously that such differences might arise because of alterations in the period length of the endogenous human circadian oscillator. Using dermal fibroblast cells from skin biopsies of 28 subjects of early and late chronotype (11 “larks” and 17 “owls”), we have studied the circadian period lengths of these two groups, as well as their ability to phase-shift and entrain to environmental and chemical signals. We find not only period length differences between the two classes, but also significant changes in the amplitude and phase-shifting properties of the circadian oscillator among individuals with identical “normal” period lengths. Mathematical modeling shows that these alterations could also account for the extreme behavioral phenotypes of these subjects. We conclude that human chronotype may be influenced not only by the period length of the circadian oscillator, but also by cellular components that affect its amplitude and phase. In many instances, these changes can be studied at the molecular level in primary dermal cells. PMID:18227513

  13. Helicases as molecular motors: An insight

    NASA Astrophysics Data System (ADS)

    Tuteja, Narendra; Tuteja, Renu

    2006-12-01

    Helicases are one of the smallest motors of biological system, which harness the chemical free energy of ATP hydrolysis to catalyze the opening of energetically stable duplex nucleic acids and thereby are involved in almost all aspect of nucleic acid metabolism including replication, repair, recombination, transcription, translation, and ribosome biogenesis. Basically, they break the hydrogen bonding between the duplex helix and translocate unidirectionally along the bound strand. Mostly all the helicases contain some conserved signature motifs, which act as an engine to power the unwinding. After the discovery of the first prokaryotic DNA helicase from Escherichia coli bacteria in 1976 and the first eukaryotic one from the lily plant in 1978, many more (>100) have been isolated. All the helicases share some common properties, including nucleic acid binding, NTP hydrolysis and unwinding of the duplex. Many helicases have been crystallized and their structures have revealed an underlying common structural fold for their function. The defects in helicases gene have also been reported to be responsible for variety of human genetic disorders, which can lead to cancer, premature aging or mental retardation. Recently, a new role of a helicase in abiotic stress signaling in plant has been discovered. Overall, helicases act as essential molecular tools for cellular machinery and help in maintaining the integrity of genome. Here an overview of helicases has been covered which includes history, biochemical assay, properties, classification, role in human disease and mechanism of unwinding and translocation.

  14. Probing Molecular Insights into Zika Virus⁻Host Interactions.

    PubMed

    Lee, Ina; Bos, Sandra; Li, Ge; Wang, Shusheng; Gadea, Gilles; Desprès, Philippe; Zhao, Richard Y

    2018-05-02

    The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain⁻Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV⁻host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV⁻host Interactions.

  15. Probing Molecular Insights into Zika Virus–Host Interactions

    PubMed Central

    Lee, Ina; Li, Ge; Wang, Shusheng; Desprès, Philippe; Zhao, Richard Y.

    2018-01-01

    The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions. PMID:29724036

  16. Molecular Insights into Arctic Soil Organic Matter Degradation under Warming

    DOE PAGES

    Chen, Hongmei; Yang, Ziming; Chu, Rosalie K.; ...

    2018-03-23

    Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. By using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH 4HCO 3 from both the organic- and mineral-layer soils during incubation at both -2 and 8°C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classesmore » of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.« less

  17. Molecular Insights into Arctic Soil Organic Matter Degradation under Warming

    SciTech Connect

    Chen, Hongmei; Yang, Ziming; Chu, Rosalie K.

    Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. By using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NH 4HCO 3 from both the organic- and mineral-layer soils during incubation at both -2 and 8°C. Based on their O:C and H:C ratios, EDOM molecular formulas were qualitatively grouped into nine biochemical classesmore » of compounds, among which lignin-like compounds dominated both the organic and the mineral soils and were the most stable, whereas amino sugars, peptides, and carbohydrate-like compounds were the most biologically labile. These results corresponded with shifts in EDOM elemental composition in which the ratios of O:C and N:C decreased, while the average C content in EDOM, molecular mass, and aromaticity increased after 122 days of incubation. This research demonstrates that certain EDOM components, such as amino sugars, peptides, and carbohydrate-like compounds, are disproportionately more susceptible to microbial degradation than others in the soil, and these results should be considered in SOC degradation models to improve predictions of Arctic climate feedbacks.« less

  18. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  19. Chemokines and their receptors: insights from molecular modeling and crystallography.

    PubMed

    Kufareva, Irina

    2016-10-01

    Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Molecular electronics: insight from first-principles transport simulations.

    PubMed

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect the electronic transport. Here we describe key computational ingredients and discuss these in relation to simulations for scanning tunneling microscopy (STM) experiments with C60 molecules where the experimental geometry is well characterized. We then show how molecular dynamics simulations may be combined with transport calculations to study more irregular situations, such as the evolution of a nanoscale contact with the mechanically controllable break-junction technique. Finally we discuss calculations of inelastic electron tunnelling spectroscopy as a characterization technique that reveals information about the atomic arrangement and transport channels.

  1. Molecular insight in the multifunctional activities of Withaferin A.

    PubMed

    Vanden Berghe, Wim; Sabbe, Linde; Kaileh, Mary; Haegeman, Guy; Heyninck, Karen

    2012-11-15

    Herbal medicine which involves the use of plants for their medicinal value, dates as far back as the origin of mankind and demonstrates an array of applications including cardiovascular protection and anti-cancer activities, via antioxidant, anti-inflammatory and metabolic activities. Even today the popularity of medicinal herbs is still growing like in traditional medicines such as the Indian medicine, Ayurveda. One of the Ayurvedic medicinal plants is Withania somnifera Dunal, of which the important constituents are the withanolides. Among them, Withaferin A is one of the most bioactive compounds, exerting anti-inflammatory, pro-apoptotic but also anti-invasive and anti-angiogenic effects. In the context of modern pharmacology, a better insight in the underlying mechanism of the broad range of bioactivities exerted by Withaferin A is compulsory. Therefore, a lot of effort was made to explore the intracellular effects of Withaferin A and to characterize its target proteins. This review provides a decisive insight on the molecular basis of the health-promoting potential of Withaferin A. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R.

    2008-03-01

    The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.

  3. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite.

    PubMed

    Pizzarello, Sandra; Huang, Yongsong; Alexandre, Marcelo R

    2008-03-11

    The nonracemic amino acids of meteorites provide the only natural example of molecular asymmetry measured so far outside the biosphere. Because extant life depends on chiral homogeneity for the structure and function of biopolymers, the study of these meteoritic compounds may offer insights into the establishment of prebiotic attributes in chemical evolution as well as the origin of terrestrial homochirality. However, all efforts to understand the origin, distribution, and scope of these amino acids' enantiomeric excesses (ee) have been frustrated by the ready exposure of meteorites to terrestrial contaminants and the ubiquitous homochirality of such contamination. We have analyzed the soluble organic composition of a carbonaceous meteorite from Antarctica that was collected and stored under controlled conditions, largely escaped terrestrial contamination and offers an exceptionally pristine sample of prebiotic material. Analyses of the meteorite diastereomeric amino acids alloisoleucine and isoleucine allowed us to show that their likely precursor molecules, the aldehydes, also carried a sizable molecular asymmetry of up to 14% in the asteroidal parent body. Aldehydes are widespread and abundant interstellar molecules; that they came to be present, survived, and evolved in the solar system carrying ee gives support to the idea that biomolecular traits such as chiral asymmetry could have been seeded in abiotic chemistry ahead of life.

  4. Insights into soil carbon dynamics across climatic gradients from carbon-pool specific radiocarbon analyses

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Eglinton, Timothy Ian

    2017-04-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore understanding the mechanisms and drivers of carbon stabilization is crucial, especially in the framework of climate change. The understanding of the dependence of soil organic turnover in specific carbon pools as related to e.g. climate, soil texture and mineralogy is limited. In this framework, radiocarbon constitutes a uniquely powerful tool that help to unravel carbon dynamics from decadal to millennial timescales. This project combines bulk and pool-specific radiocarbon analyses in the top and deep soil on a wide range of forested soils that span a large climatic gradient (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1). These well-studies sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). This study aims to combine the insights gained from bulk and pool-specific turnover to environmental conditions and molecular composition of soil carbon. The pools investigated span the mineral-associated (occluded and heavy fractions from density fractionation) and potentially water-soluble (free light fractions from density fractionation and water extractable organic carbon) organic carbon fractions. Pool-specific radiocarbon work is augmented by the measurement of abundance of compounds such as alkanes, fatty acids and lignin phenols on a subset of samples. Initial results show disparate patterns depending on soil type and in particular soil texture, which could be indicative of various stabilization mechanisms in different soils. Overall, this study provides new insights into the controls of soil organic matter dynamics as related to environmental conditions, in particular in specific sub-pools of carbon.

  5. Molecular Insights Into a Dinoflagellate Bloom Imply Bacterial Cultivation

    NASA Astrophysics Data System (ADS)

    Gong, W.; Hall, N.; Schruth, D.; Paerl, H. W.; Marchetti, A.

    2016-02-01

    In coastal waters, an increase in frequency and intensity of algal blooms worldwide has recently been observed primarily due to eutrophication, with further increases predicted as a consequence of climate change. In many marine habitats most impacted by human activities, efforts have been made to prevent conditions that promote harmful algal blooms, or HABs, although progress is limited, due in part to our current lack of understanding of the environmental and cellular processes that promote and propagate these blooms. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a highly eutrophied estuarine system. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of nucleic acids and cellular membrane components. In addition, there is a prominence of highly expressed genes involved in synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes that suggests processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to facilitate interactions with their surrounding bacterial consortium, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for HAB detection and remediation efforts.

  6. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the economic risks posed to the United States by six categories of climate change impacts: crop yield, energy demand, coastal storm damage, criminal activity, labor productivity, and mortality [1]. At a national level, measured by impact on gross domestic product, increased mortality and decreased labor productivity pose the large risks, followed by increased energy demand and coastal damages. Changes in crop yield and crime have smaller impacts. The ACP was not intended to conduct a benefit-cost analysis of climate change mitigation. It assessed the economic consequences of future impacts on an economy with a structure equivalent to that of the current economy, not accounting for socio-economic development and adaptation, and did not assess the cost of mitigation. One of its primary goals was to inform adaptation decisions that are conventionally considered 'endogenous' in economic analyses of climate change. Nonetheless, its results provide insight into the potential of mitigation to manage climate risk. Differences between RCP 8.5 (moderately-high business-as-usual emissions), RCP 4.5 (moderate mitigation) and RCP 2.6 (extremely strong mitigation) are not apparent until mid-century and become significant only late in the century. For all impacts except coastal damages, mitigation significantly reduces uncertainty in late-century impact estimates. Nationally, mitigation significantly and monotonically reduces median projected labor productivity losses and violent crime. Switching from RCP 8.5 to RCP 4.5 also significantly reduces median projections of mortality and energy demand, but the domestic value to the U.S. of further mitigation to RCP 2.6 is less clear. The marginal benefits decline in part because some regions of the country (especially the Northwest) may experience increased crop yields, reduced mortality, and reduced energy

  7. Insights from molecular dynamics simulations for computational protein design.

    PubMed

    Childers, Matthew Carter; Daggett, Valerie

    2017-02-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures.

  8. Insights from molecular dynamics simulations for computational protein design

    PubMed Central

    Childers, Matthew Carter; Daggett, Valerie

    2017-01-01

    A grand challenge in the field of structural biology is to design and engineer proteins that exhibit targeted functions. Although much success on this front has been achieved, design success rates remain low, an ever-present reminder of our limited understanding of the relationship between amino acid sequences and the structures they adopt. In addition to experimental techniques and rational design strategies, computational methods have been employed to aid in the design and engineering of proteins. Molecular dynamics (MD) is one such method that simulates the motions of proteins according to classical dynamics. Here, we review how insights into protein dynamics derived from MD simulations have influenced the design of proteins. One of the greatest strengths of MD is its capacity to reveal information beyond what is available in the static structures deposited in the Protein Data Bank. In this regard simulations can be used to directly guide protein design by providing atomistic details of the dynamic molecular interactions contributing to protein stability and function. MD simulations can also be used as a virtual screening tool to rank, select, identify, and assess potential designs. MD is uniquely poised to inform protein design efforts where the application requires realistic models of protein dynamics and atomic level descriptions of the relationship between dynamics and function. Here, we review cases where MD simulations was used to modulate protein stability and protein function by providing information regarding the conformation(s), conformational transitions, interactions, and dynamics that govern stability and function. In addition, we discuss cases where conformations from protein folding/unfolding simulations have been exploited for protein design, yielding novel outcomes that could not be obtained from static structures. PMID:28239489

  9. The climate of early Mars: New insights from climate modeling and geological intercomparisons

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.

    2016-12-01

    Early Mars has abundant evidence for running water 3-4 Ga, but the extent to which it was continuously warm and wet, with a northern ocean, remains a continuing source of controversy. Although large uncertainties remain, advances in orbital and rover observations and climate modeling over the last decade have led to important new insights. Here, the geological evidence for both fluvial and fluvoglacial erosion is first reviewed. A phase space approach is then taken that considers the surface H2O inventory and steady-state mean surface temperature as separate variables. Based on this, it is argued that a fairly cold climate state with limited H2O inventory provides the best fit to the geological observations. In particular, a 'top-down' hydrological cycle where ice deposits form on the south pole, equatorial highlands and Tharsis allows significant fluvial erosion via episodic melting. Importantly, it also avoids the buildup of the thick, wet-based icesheets across the southern hemisphere that would appear following the wet scenario where early Mars had a northern ocean. At the end of the talk, the most likely mechanisms to explain the episodic melting events in the mainly cold, 'icy highlands' state are also discussed.

  10. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    PubMed Central

    Casas, Laura; Saborido-Rey, Fran; Ryu, Taewoo; Michell, Craig; Ravasi, Timothy; Irigoien, Xabier

    2016-01-01

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites. PMID:27748421

  11. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis.

    PubMed

    Casas, Laura; Saborido-Rey, Fran; Ryu, Taewoo; Michell, Craig; Ravasi, Timothy; Irigoien, Xabier

    2016-10-17

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups-rather than just two contrasting conditions- and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  12. Molecular-level insights into aging processes of skin elastin.

    PubMed

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Climate Variability and Wildfires: Insights from Global Earth System Models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J. F.; Wittenberg, A. T.

    2016-12-01

    Better understanding of the relationship between variability in global climate and emissions from wildfires is needed for predictions of fire activity on interannual to multi-decadal timescales. Here we investigate this relationship using the long, preindustrial control simulations and historical ensembles of two Earth System models; CESM1 and the NOAA/GFDL ESM2Mb. There is smaller interannual variability of global fires in both models than in present day inventories, especially in boreal regions where observed fires vary substantially from year to year. Patterns of fire response to climate oscillation indices, including the El Niño / Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Oscillation (AMO) are explored with the model results and compared to the response derived from satellite measurements and proxy observations. Increases in fire emissions in southeast Asia and boreal North America are associated with positive ENSO and PDO, while United States fires and Sahel fires decrease for the same climate conditions. Boreal fire emissions decrease in CESM1 for the warm phase of the AMO, while ESM2Mb did not produce a reliable AMO. CESM1 produces a weak negative trend in global fire emissions for the period 1920 to 2005, while ESM2Mb produces a positive trend over the same period. Both trends are statistically significant at a confidence level of 95% or greater given the variability derived from the respective preindustrial controls. In addition to climate variability impacts on fires, we also explore the impacts of fire emissions on climate variability and atmospheric chemistry. We analyze three long, free-evolving ESM2Mb simulations; one without fire emissions, one with constant year-over-year fire emissions based on a present day inventory, and one with interannually varying fire emissions coupled between the terrestrial and atmospheric components of the model, to gain a better understanding of the role of fire emissions in

  14. Knowledge discovery and nonlinear modeling can complement climate model simulations for predictive insights about climate extremes and their impacts

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Steinbach, M.; Kumar, V.

    2009-12-01

    The IPCC AR4 not only provided conclusive evidence about anticipated global warming at century scales, but also indicated with a high level of certainty that the warming is caused by anthropogenic emissions. However, an outstanding knowledge-gap is to develop credible projections of climate extremes and their impacts. Climate extremes are defined in this context as extreme weather and hydrological events, as well as changes in regional hydro-meteorological patterns, especially at decadal scales. While temperature extremes from climate models have relatively better skills, hydrological variables and their extremes have significant shortcomings. Credible projections about tropical storms, sea level rise, coastal storm surge, land glacier melts, and landslides remain elusive. The next generation of climate models is expected to have higher precision. However, their ability to provide more accurate projections of climate extremes remains to be tested. Projections of observed trends into the future may not be reliable in non-stationary environments like climate change, even though functional relationships derived from physics may hold. On the other hand, assessments of climate change impacts which are useful for stakeholders and policy makers depend critically on regional and decadal scale projections of climate extremes. Thus, climate impacts scientists often need to develop qualitative inferences about the not so-well predicted climate extremes based on insights from observations (e.g., increased hurricane intensity) or conceptual understanding (e.g., relation of wildfires to regional warming or drying and hurricanes to SST). However, neither conceptual understanding nor observed trends may be reliable when extrapolating in a non-stationary environment. These urgent societal priorities offer fertile grounds for nonlinear modeling and knowledge discovery approaches. Thus, qualitative inferences on climate extremes and impacts may be transformed into quantitative

  15. Climate change impacts on Swiss groundwater: insights from historical records

    NASA Astrophysics Data System (ADS)

    Figura, S.; Livingstone, D. M.; Kipfer, R.

    2012-04-01

    Knowledge of the impact of climate change on groundwater is limited mainly by a lack of relevant long-term data that would allow the effects of climatic forcing to be assessed empirically. With the aim of assessing the consequences of climate change on groundwater, we collected and statistically analysed historical groundwater data from Switzerland. While most existing studies have focused on the impact of climate change on groundwater quantity, we focus on groundwater quality. As measures of groundwater quality we chose groundwater temperature and oxygen concentration because of their importance for biogeochemical processes and for reasons of data availability. Our analyses show that in aquifers that are recharged by riverbank infiltration, groundwater temperature has increased by 1°C - 1.5°C over the last 30 years. By contrast, in aquifers that are recharged only by the percolation of precipitation, increases in groundwater temperature are slight or non-existent. A detailed analysis of groundwater temperatures measured in the pumping wells of five aquifers that are recharged by riverbank infiltration revealed that an abrupt temperature increase in the late 1980s, which was also detected in Swiss air temperature and river water temperatures and which is traceable ultimately to a change in the behaviour of the Arctic Oscillation, accounted for a large proportion of the total groundwater warming [1]. Oxygen concentrations were available for four of the five aquifers we investigated. In two of these aquifers the oxygen concentration underwent a strong decrease, in the third a slight decrease, and in the fourth a slight increase. Neither long-term trends in river water oxygen concentration nor altered hydraulic conditions seem to be responsible for the long-term trends in groundwater oxygen concentrations. However, the decreasing oxygen concentrations were accompanied by decreasing DOC concentrations in the groundwater, while DOC concentrations in the river water

  16. Emerging insights into the molecular and cellular basis of glioblastoma

    PubMed Central

    Dunn, Gavin P.; Rinne, Mikael L.; Wykosky, Jill; Genovese, Giannicola; Quayle, Steven N.; Dunn, Ian F.; Agarwalla, Pankaj K.; Chheda, Milan G.; Campos, Benito; Wang, Alan; Brennan, Cameron; Ligon, Keith L.; Furnari, Frank; Cavenee, Webster K.; Depinho, Ronald A.; Chin, Lynda; Hahn, William C.

    2012-01-01

    Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that “glioblastoma” represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions. PMID:22508724

  17. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide

    PubMed Central

    Li, Chun-Yang; Wei, Tian-Di; Zhang, Sheng-Hui; Chen, Xiu-Lan; Gao, Xiang; Wang, Peng; Xie, Bin-Bin; Su, Hai-Nan; Qin, Qi-Long; Zhang, Xi-Ying; Yu, Juan; Zhang, Hong-Hai; Zhou, Bai-Cheng; Yang, Gui-Peng; Zhang, Yu-Zhong

    2014-01-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile DMS through the action of DMSP lyases and is important in the global sulfur and carbon cycles. When released into the atmosphere from the oceans, DMS is oxidized, forming cloud condensation nuclei that may influence weather and climate. Six different DMSP lyase genes are found in taxonomically diverse microorganisms, and dddQ is among the most abundant in marine metagenomes. Here, we examine the molecular mechanism of DMSP cleavage by the DMSP lyase, DddQ, from Ruegeria lacuscaerulensis ITI_1157. The structures of DddQ bound to an inhibitory molecule 2-(N-morpholino)ethanesulfonic acid and of DddQ inactivated by a Tyr131Ala mutation and bound to DMSP were solved. DddQ adopts a β-barrel fold structure and contains a Zn2+ ion and six highly conserved hydrophilic residues (Tyr120, His123, His125, Glu129, Tyr131, and His163) in the active site. Mutational and biochemical analyses indicate that these hydrophilic residues are essential to catalysis. In particular, Tyr131 undergoes a conformational change during catalysis, acting as a base to initiate the β-elimination reaction in DMSP lysis. Moreover, structural analyses and molecular dynamics simulations indicate that two loops over the substrate-binding pocket of DddQ can alternate between “open” and “closed” states, serving as a gate for DMSP entry. We also propose a molecular mechanism for DMS production through DMSP cleavage. Our study provides important insight into the mechanism involved in the conversion of DMSP into DMS, which should lead to a better understanding of this globally important biogeochemical reaction. PMID:24395783

  18. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  19. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

    DOE PAGES

    Zivcec, Marko; Scholte, Florine; Spiropoulou, Christina; ...

    2016-04-21

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  20. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus.

    PubMed

    Zivcec, Marko; Scholte, Florine E M; Spiropoulou, Christina F; Spengler, Jessica R; Bergeron, Éric

    2016-04-21

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  1. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

    SciTech Connect

    Zivcec, Marko; Scholte, Florine; Spiropoulou, Christina

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research.

  2. Cognitive and psychological science insights to improve climate change data visualization

    NASA Astrophysics Data System (ADS)

    Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.

    2016-12-01

    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.

  3. Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation

    PubMed Central

    Gregory, Karen J.

    2015-01-01

    The metabotropic glutamate (mGlu) receptors are a group of eight family C G protein–coupled receptors that are expressed throughout the central nervous system (CNS) and periphery. Within the CNS the different subtypes are found in neurons, both pre- and/or postsynaptically, where they mediate modulatory roles and in glial cells. The mGlu receptor family provides attractive targets for numerous psychiatric and neurologic disorders, with the majority of discovery programs focused on targeting allosteric sites, with allosteric ligands now available for all mGlu receptor subtypes. However, the development of allosteric ligands remains challenging. Biased modulation, probe dependence, and molecular switches all contribute to the complex molecular pharmacology exhibited by mGlu receptor allosteric ligands. In recent years we have made significant progress in our understanding of this molecular complexity coupled with an increased understanding of the structural basis of mGlu allosteric modulation. PMID:25808929

  4. The structure of biodiversity – insights from molecular phylogeography

    PubMed Central

    Hewitt, Godfrey M

    2004-01-01

    DNA techniques, analytical methods and palaeoclimatic studies are greatly advancing our knowledge of the global distribution of genetic diversity, and how it evolved. Such phylogeographic studies are reviewed from Arctic, Temperate and Tropical regions, seeking commonalities of cause in the resulting genetic patterns. The genetic diversity is differently patterned within and among regions and biomes, and is related to their histories of climatic changes. This has major implications for conservation science. PMID:15679920

  5. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Zivcec, Marko; Scholte, Florine E. M.; Spiropoulou, Christina F.; Spengler, Jessica R.; Bergeron, Éric

    2016-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen that causes high morbidity and mortality. Efficacy of vaccines and antivirals to treat human CCHFV infections remains limited and controversial. Research into pathology and underlying molecular mechanisms of CCHFV and other nairoviruses is limited. Significant progress has been made in our understanding of CCHFV replication and pathogenesis in the past decade. Here we review the most recent molecular advances in CCHFV-related research, and provide perspectives on future research. PMID:27110812

  7. A Mouse Ependymoma Model Provides Molecular Insights into Tumor Formation.

    PubMed

    Pajtler, Kristian W; Pfister, Stefan M

    2018-06-26

    Ozawa et al. present a murine tumor model resembling the most frequent molecular group of human supratentorial ependymoma, ST-EPN-RELA. Their model shows RELA-fusion-based de novo ependymoma tumorigenesis in the forebrain derived from neural stem cells. Copyright © 2018. Published by Elsevier Inc.

  8. Molecular and cellular insights into Zika virus-related neuropathies.

    PubMed

    Zhou, Kai; Wang, Long; Yu, Di; Huang, Hesuyuan; Ji, Hong; Mo, Xuming

    2017-06-01

    Zika virus (ZIKV), a relatively elusive Aedes mosquito-transmitted flavivirus, had been brought into spotlight until recent widespread outbreaks accompanied by unexpectedly severe clinical neuropathies, including fetal microcephaly and Guillain-Barré syndrome (GBS) in the adult. In this review, we focus on the underlying cellular and molecular mechanisms by which vertically transmitted microorganisms reach the fetus and trigger neuropathies.

  9. How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016

    PubMed Central

    Astumian, R. D.

    2017-01-01

    The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to “tinker” with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors. PMID:28572896

  10. Molecular insights into the novel aspects of diatom biology.

    PubMed

    Scala, S; Bowler, C

    2001-10-01

    Diatoms are unicellular photosynthetic eukaryotes that are thought to contribute as much as 25% of global primary productivity. In spite of their ecological importance in the worlds oceans, very little information is available at the molecular level about the novel aspects of their biology. Recent advances, such as the development of gene transfer protocols, are now allowing the genetic dissection of diatom biology. Notable examples are advances in understanding the genetic basis for the silica-based bioinorganic pattern formation of their cell walls and for elucidating key aspects of diatom ecophysiology. The potentiation of current research will allow an evaluation of the use of diatoms to construct submicrometre-scale silicon structures for the nanotechnology industry and will reveal the molecular secrets underlying their ecological success.

  11. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms

    PubMed Central

    Hubbard, Stevan R.

    2015-01-01

    The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2. PMID:25824690

  12. Molecular Insight into Gut Microbiota and Rheumatoid Arthritis.

    PubMed

    Wu, Xiaohao; He, Bing; Liu, Jin; Feng, Hui; Ma, Yinghui; Li, Defang; Guo, Baosheng; Liang, Chao; Dang, Lei; Wang, Luyao; Tian, Jing; Zhu, Hailong; Xiao, Lianbo; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-03-22

    Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.

  13. Molecular insights into the biology of Greater Sage-Grouse

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Quinn, Thomas W.

    2011-01-01

    Recent research on Greater Sage-Grouse (Centrocercus urophasianus) genetics has revealed some important findings. First, multiple paternity in broods is more prevalent than previously thought, and leks do not comprise kin groups. Second, the Greater Sage-Grouse is genetically distinct from the congeneric Gunnison sage-grouse (C. minimus). Third, the Lyon-Mono population in the Mono Basin, spanning the border between Nevada and California, has unique genetic characteristics. Fourth, the previous delineation of western (C. u. phaios) and eastern Greater Sage-Grouse (C. u. urophasianus) is not supported genetically. Fifth, two isolated populations in Washington show indications that genetic diversity has been lost due to population declines and isolation. This chapter examines the use of molecular genetics to understand the biology of Greater Sage-Grouse for the conservation and management of this species and put it into the context of avian ecology based on selected molecular studies.

  14. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate

  15. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.

    PubMed

    Li, Cai; Zhang, Yong; Li, Jianwen; Kong, Lesheng; Hu, Haofu; Pan, Hailin; Xu, Luohao; Deng, Yuan; Li, Qiye; Jin, Lijun; Yu, Hao; Chen, Yan; Liu, Binghang; Yang, Linfeng; Liu, Shiping; Zhang, Yan; Lang, Yongshan; Xia, Jinquan; He, Weiming; Shi, Qiong; Subramanian, Sankar; Millar, Craig D; Meader, Stephen; Rands, Chris M; Fujita, Matthew K; Greenwold, Matthew J; Castoe, Todd A; Pollock, David D; Gu, Wanjun; Nam, Kiwoong; Ellegren, Hans; Ho, Simon Yw; Burt, David W; Ponting, Chris P; Jarvis, Erich D; Gilbert, M Thomas P; Yang, Huanming; Wang, Jian; Lambert, David M; Wang, Jun; Zhang, Guojie

    2014-01-01

    Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

  16. The PICS Climate Insights 101 Courses: A Visual Approach to Learning About Climate Science, Mitigation and Adaptation

    NASA Astrophysics Data System (ADS)

    Pedersen, T. F.; Zwiers, F. W.; Breen, C.; Murdock, T. Q.

    2014-12-01

    The Pacific Institute for Climate Solutions (PICS) has now made available online three free, peer-reviewed, unique animated short courses in a series entitled "Climate Insights 101" that respectively address basic climate science, carbon-emissions mitigation approaches and opportunities, and adaptation. The courses are suitable for students of all ages, and use professionally narrated animations designed to hold a viewer's attention. Multiple issues are covered, including complex concerns like the construction of general circulation models, carbon pricing schemes in various countries, and adaptation approaches in the face of extreme weather events. Clips will be shown in the presentation. The first course (Climate Science Basics) has now been seen by over two hundred thousand individuals in over 80 countries, despite being offered in English only. Each course takes about two hours to work through, and in recognizing that that duration might pose an attention barrier to some students, PICS selected a number of short clips from the climate-science course and posted them as independent snippets on YouTube. A companion series of YouTube videos entitled, "Clear The Air", was created to confront the major global-warming denier myths. But a major challenge remains: despite numerous efforts to promote the availability of the free courses and the shorter YouTube pieces, they have yet to become widely known. Strategies to overcome that constraint will be discussed.

  17. Insights from past millennia into climatic impacts on human health and survival

    PubMed Central

    McMichael, Anthony J.

    2012-01-01

    Climate change poses threats to human health, safety, and survival via weather extremes and climatic impacts on food yields, fresh water, infectious diseases, conflict, and displacement. Paradoxically, these risks to health are neither widely nor fully recognized. Historical experiences of diverse societies experiencing climatic changes, spanning multicentury to single-year duration, provide insights into population health vulnerability—even though most climatic changes were considerably less than those anticipated this century and beyond. Historical experience indicates the following. (i) Long-term climate changes have often destabilized civilizations, typically via food shortages, consequent hunger, disease, and unrest. (ii) Medium-term climatic adversity has frequently caused similar health, social, and sometimes political consequences. (iii) Infectious disease epidemics have often occurred in association with briefer episodes of temperature shifts, food shortages, impoverishment, and social disruption. (iv) Societies have often learnt to cope (despite hardship for some groups) with recurring shorter-term (decadal to multiyear) regional climatic cycles (e.g., El Niño Southern Oscillation)—except when extreme phases occur. (v) The drought–famine–starvation nexus has been the main, recurring, serious threat to health. Warming this century is not only likely to greatly exceed the Holocene's natural multidecadal temperature fluctuations but to occur faster. Along with greater climatic variability, models project an increased geographic range and severity of droughts. Modern societies, although larger, better resourced, and more interconnected than past societies, are less flexible, more infrastructure-dependent, densely populated, and hence are vulnerable. Adverse historical climate-related health experiences underscore the case for abating human-induced climate change. PMID:22315419

  18. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Implementation and new insights in molecular diagnostics for HIV infection.

    PubMed

    Tsang, Hin-Fung; Chan, Lawrence Wing-Chi; Tong, Jennifer Chiu-Hung; Wong, Heong-Ting; Lai, Christopher Koon-Chi; Au, Thomas Chi-Chuen; Chan, Amanda Kit-Ching; Ng, Lawrence Po-Wah; Cho, William Chi-Shing; Wong, Sze-Chuen Cesar

    2018-05-01

    Acquired immunodeficiency syndrome (AIDS) is a kind of acquired disease that breaks down the immune system. Human immunodeficiency virus (HIV) is the causative agent of AIDS. By the end of 2016, there were 36.7 million people living with HIV worldwide. Early diagnosis can alert infected individuals to risk behaviors in order to control HIV transmission. Infected individuals are also benefited from proper treatment and management upon early diagnosis. Thanks to the public awareness of the disease, the annual increase of new HIV infections has been slowly declining over the past decades. The advent of molecular diagnostics has allowed early detection and better management of HIV infected patients. Areas covered: In this review, the authors summarized and discussed the current and future technologies in molecular diagnosis as well as the biomarkers developed for HIV infection. Expert Commentary: A simple and rapid detection of viral load is important for patients and doctors to monitor HIV progression and antiretroviral treatment efficiency. In the near future, it is expected that new technologies such as digital PCR and CRISPR-based technology will play more important role in HIV detection and patient management.

  20. DNA triplex structure, thermodynamics, and destabilisation: insight from molecular simulations.

    PubMed

    Boehm, Belinda J; Whidborne, Charles; Button, Alexander L; Pukala, Tara L; Huang, David M

    2018-05-23

    Molecular dynamics simulations are used to elucidate the structure and thermodynamics of DNA triplexes associated with the neurodegenerative disease Friedreich's ataxia (FRDA), as well as complexes of these triplexes with the small molecule netropsin, which is known to destabilise triplexes. The ability of molecular simulations in explicit solvent to accurately capture triplex thermodynamics is verified for the first time, with the free energy to dissociate a 15-base antiparallel purine triplex-forming oligomer (TFO) from the duplex found to be slightly higher than reported experimentally. The presence of netropsin in the minor groove destabilises the triplex as expected, reducing the dissociation free energy by approximately 50%. Netropsin binding is associated with localised narrowing of the minor groove near netropsin, an effect that has previously been under contention. This leads to localised widening of the major groove, weakening hydrogen bonds between the TFO and duplex. Consequently, destabilisation is found to be highly localised, occurring only when netropsin is bound directly opposite the TFO. The simulations also suggest that near saturation of the minor groove with ligand is required for complete triplex dissociation. A structural analysis of the DNA triplexes that can form with the FRDA-related duplex sequence indicates that the triplex with a parallel homopyrimidine TFO is likely to be more stable than the antiparallel homopurine-TFO triplex, which may have implications for disease onset and treatment.

  1. Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations.

    PubMed

    Liao, Chenyi; Esai Selvan, Myvizhi; Zhao, Jun; Slimovitch, Jonathan L; Schneebeli, Severin T; Shelley, Mee; Shelley, John C; Li, Jianing

    2015-08-20

    Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed—for the first time in atomistic detail—that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety.

  2. Recent molecular insights into rickettsial pathogenesis and immunity

    PubMed Central

    Sahni, Sanjeev K; Narra, Hema P; Sahni, Abha; Walker, David H

    2013-01-01

    Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the ‘scourge of armies’, and as a major determinant of significant ‘historical turning points’. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity. PMID:24059918

  3. Molecular insights into primary hyperoxaluria type 1 pathogenesis.

    PubMed

    Cellini, Barbara; Oppici, Elisa; Paiardini, Alessandro; Montioli, Riccardo

    2012-01-01

    Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of glyoxylate metabolism caused by the deficiency of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme. The PH1 pathogenesis is mostly due to single point mutations (more than 150 so far identified) on the AGXT gene, and is characterized by a marked heterogeneity in terms of genotype, enzymatic and clinical phenotypes. This article presents an up to date review of selected aspects of the biochemical properties of the two allelic forms of AGT and of some PH1-causing variants. These recent discoveries highlight the effects at the protein level of the pathogenic mutations, and, together with previous cell biology and clinical data, (i) improve the understanding of the molecular basis of PH1 pathogenesis, and (ii) help to delineate perspectives for predicting the response to pyridoxine treatment or for suggesting new strategies for PH1 patients bearing the analyzed mutations.

  4. New insights on molecular interactions of organophosphorus pesticides with esterases.

    PubMed

    Mangas, Iris; Estevez, Jorge; Vilanova, Eugenio; França, Tanos Celmar Costa

    2017-02-01

    Organophosphorus compounds (OPs) are a large and diverse class of chemicals mainly used as pesticides and chemical weapons. People may be exposed to OPs in several occasions, which can produce several distinct neurotoxic effects depending on the dose, frequency of exposure, type of OP, and the host factors that influence susceptibility and sensitivity. These neurotoxic effects are mainly due to the interaction with enzyme targets involved in toxicological or detoxication pathways. In this work, the toxicological relevance of known OPs targets is reviewed. The main enzyme targets of OPs have been identified among the serine hydrolase protein family, some of them decades ago (e.g. AChE, BuChE, NTE and carboxylesterases), others more recently (e.g. lysophospholipase, arylformidase and KIA1363) and others which are not molecularly identified yet (e.g. phenylvalerate esterases). Members of this family are characterized by displaying serine hydrolase activity, containing a conserved serine hydrolase motif and having an alpha-beta hydrolase fold. Improvement in Xray-crystallography and in silico methods have generated new data of the interactions between OPs and esterases and have established new methods to study new inhibitors and reactivators of cholinesterases. Mass spectrometry for AChE, BChE and APH have characterized the active site serine adducts with OPs being useful to detect biomarkers of OPs exposure and inhibitory and postinhibitory reactions of esterases and OPs. The purpose of this review is focus specifically on the interaction of OP with esterases, mainly with type B-esterases, which are able to hydrolyze carboxylesters but inhibited by OPs by covalent phosphorylation on the serine or tyrosine residue in the active sites. Other related esterases in some cases with no-irreversible effect are also discussed. The understanding of the multiple molecular interactions is the basis we are proposing for a multi-target approach for understanding the

  5. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  6. Insights into channel dysfunction from modelling and molecular dynamics simulations.

    PubMed

    Musgaard, Maria; Paramo, Teresa; Domicevica, Laura; Andersen, Ole Juul; Biggin, Philip C

    2018-04-01

    Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Striped gold nanoparticles: New insights from molecular dynamics simulations

    SciTech Connect

    Velachi, Vasumathi, E-mail: vasuphy@gmail.com; Cordeiro, M. Natália D. S., E-mail: ncordeir@fc.up.pt; Bhandary, Debdip

    Recent simulations have improved our knowledge of the molecular-level structure and hydration properties of mixed self-assembled monolayers (SAMs) with equal and unequal alkyl thiols at three different arrangements, namely, random, patchy, and Janus. In our previous work [V. Vasumathi et al., J. Phys. Chem. C 119, 3199–3209 (2015)], we showed that the bending of longer thiols over shorter ones clearly depends on the thiols’ arrangements and chemical nature of their terminal groups. In addition, such a thiol bending revealed to have a strong impact on the structural and hydration properties of SAMs coated on gold nanoparticles (AuNPs). In this paper,more » we extend our previous atomistic simulation study to investigate the bending of longer thiols by increasing the stripe thickness of mixed SAMs of equal and unequal lengths coated on AuNPs. We study also the effect of stripe thickness on the structural morphology and hydration of the coated SAMs. Our results show that the structural and hydration properties of SAMs are affected by the stripe thickness for mixtures of alkyl thiols with unequal chain length but not for equal length. Hence, the stability of the stripe configuration depends on the alkyl’s chain length, the length difference between the thiol mixtures, and solvent properties.« less

  8. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice

    PubMed Central

    Hansen, James W

    2005-01-01

    Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092

  9. Molecular Ecological Insights into Neotropical Bird–Tick Interactions

    PubMed Central

    Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds’ role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually–sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical–Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically–identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly–discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the

  10. Molecular insights into seed dispersal mutualisms driving plant population recruitment

    NASA Astrophysics Data System (ADS)

    García, Cristina; Grivet, Delphine

    2011-11-01

    Most plant species require mutualistic interactions with animals to fulfil their demographic cycle. In this regard frugivory (i.e., the intake of fruits by animals) enhances natural regeneration by mobilizing a large amount of seeds from source trees to deposition sites across the landscape. By doing so, frugivores move propagules, and the genotypes they harbour creating the spatial, ecological, and genetic environment under which subsequent recruitment proceeds. Recruitment patterns can be envisioned as the result of two density- and distance-dependent processes: seed dispersal and seed/seedling survival (the Janzen-Connell model). Population genetic studies add another layer of complexity for understanding the fate of dispersed propagules: the genetic relatedness among neighbouring seeds within a seed clump, a major outcome of frugivore activity, modifies their chances of germinating and surviving. Yet, we virtually ignore how the spatial distribution of maternal progenies and recruitment patterns relate with each other in frugivore-generated seed rains. Here we focus on the critical role of frugivore-mediated seed dispersal in shaping the spatial distribution of maternal progenies in the seed rain. We first examine which genetic mechanisms underlying recruitment are influenced by the spatial distribution of maternal progenies. Next, we examine those studies depicting the spatial distribution of maternal progenies in a frugivore-generated seed rain. In doing so, we briefly review the most suitable analytical approaches applied to track the contribution of fruiting trees to the seed rain based on molecular data. Then we look more specifically at the role of distinct frugivore guilds in determining maternal genetic correlations and their expected consequences for recruitment patterns. Finally we posit some general conclusions and suggest future research directions that would provide a more comprehensive understanding of the ecological and evolutionary consequences

  11. Polymer Nanocomposites: Insights from Theory and Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Pani, Rakhee

    Advantages of polymer nanocomposites have attracted great industrial attention due to their multifunctionality and innovative technological properties. Addition of small amount of nanoparticle (nanospheres, nanotubes, nanorods, nanoplatelets, or sheets) to polymer matrix cause dramatic improvement in structural and functional properties, which is difficult to attain from those of individual components. The interaction between polymer and nanoparticle create bulk materials dominated by solid state physics at the nanoscale. Furthermore, morphology of nanocomposites depends on structural arrangements of nanoparticles. Thus, for achievement of optimized functionality like electrical, optical, mechanical and thermal properties control over the dispersion of the nanoparticle is essential. However, properties of polymer nanocomposites depend on morphology control and nature of interfacial interactions. In order to control the morphology it is necessary to understand how the processing conditions, shape and size of nanoparticle influence the structure of composite. Molecular simulations can help us to predict the parameters that control the structural changes and we could design polymer nanocomposite entailing their end-use. In this work, we addressed the following research questions: (1) the dependence of nanoparticle ligand corona structure on solvent quality and (2) the role of interfacial energy and interactions on the dispersion of molecules and nanoparticles. Specifically, this research assessed the effect of solvent interactions on the structure of nanoparticles on the example of redox core encapsulating dendrimer and ligand functionalized gold nanoparticles, role of chemical interaction on solubility of glucose in ionic liquids, diffusion of fullerene nanoparticles in polymer matrix and influence of solubility parameters on the compatibility of gold nanoparticles with diblock copolymers. Computational methods allow quantifying the structure and flexibility of the

  12. USDA Climate Hubs - delivering usable information and tools to farmers, ranchers and forest land managers - Communication insights from the Regions

    NASA Astrophysics Data System (ADS)

    Johnson, R.; Steele, R.

    2016-12-01

    The USDA Climate Hubs were established in 2014 to develop and deliver science-based, region-specific information and technologies, with USDA agencies and partners, to agricultural and natural resource managers to enable climate-informed decision-making. In the two and half years of existence, our regional leads have gained insights into communicating with the agricultural and forestry communities throughout the different regions of the country. Perspectives differ somewhat among regions and sectors. This talk will share those various insights.

  13. Improving Public Engagement With Climate Change: Five "Best Practice" Insights From Psychological Science.

    PubMed

    van der Linden, Sander; Maibach, Edward; Leiserowitz, Anthony

    2015-11-01

    Despite being one of the most important societal challenges of the 21st century, public engagement with climate change currently remains low in the United States. Mounting evidence from across the behavioral sciences has found that most people regard climate change as a nonurgent and psychologically distant risk-spatially, temporally, and socially-which has led to deferred public decision making about mitigation and adaptation responses. In this article, we advance five simple but important "best practice" insights from psychological science that can help governments improve public policymaking about climate change. Particularly, instead of a future, distant, global, nonpersonal, and analytical risk that is often framed as an overt loss for society, we argue that policymakers should (a) emphasize climate change as a present, local, and personal risk; (b) facilitate more affective and experiential engagement; (c) leverage relevant social group norms; (d) frame policy solutions in terms of what can be gained from immediate action; and (e) appeal to intrinsically valued long-term environmental goals and outcomes. With practical examples we illustrate how these key psychological principles can be applied to support societal engagement and climate change policymaking. © The Author(s) 2015.

  14. Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities

    NASA Astrophysics Data System (ADS)

    Baztan, Juan; Cordier, Mateo; Huctin, Jean-Michel; Zhu, Zhiwei; Vanderlinden, Jean-Paul

    2017-09-01

    What are the links between mainstream climate science and local community knowledge? This study takes the example of Greenland, considered one of the regions most impacted by climate change, and Inuit people, characterized as being highly adaptive to environmental change, to explore this question. The study is based on 10 years of anthropological participatory research in Uummannaq, Northwest Greenland, along with two fieldwork periods in October 2014 and April 2015, and a quantitative bibliometric analysis of the international literature on sea ice - a central subject of concern identified by Uummannaq community members during the fieldwork periods. Community members' perceptions of currently available scientific climate knowledge were also collected during the fieldwork. This was done to determine if community members consider available scientific knowledge salient and if it covers issues they consider relevant. The bibliometric analysis of the sea ice literature provided additional insight into the degree to which scientific knowledge about climate change provides information relevant for the community. Our results contribute to the ongoing debate on the missing connections between community worldviews, cultural values, livelihood needs, interests and climate science. Our results show that more scientific research efforts should consider local-level needs in order to produce local-scale knowledge that is more salient, credible and legitimate for communities experiencing climate change. In Uummannaq, as in many Inuit communities with similar conditions, more research should be done on sea ice thickness in winter and in areas through which local populations travel. This paper supports the growing evidence that whenever possible, climate change research should focus on environmental features that matter to communities, at temporal and spatial scales relevant to them, in order to foster community adaptations to change. We recommend such research be connected to and

  15. Climate change induced transformations of agricultural systems: insights from a global model

    NASA Astrophysics Data System (ADS)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  16. New insights for the hydrology of the Rhine based on the new generation climate models

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Sperna Weiland, Frederiek; Beersma, Jules; Buiteveld, Hendrik

    2014-05-01

    Decision makers base their choices of adaptation strategies on climate change projections and their associated hydrological consequences. New insights of climate change gained under the new generation of climate models belonging to the IPCC 5th assessment report may influence (the planning of) adaption measures and/or future expectations. In this study, hydrological impacts of climate change as projected under the new generation of climate models for the Rhine were assessed. Hereto we downscaled 31 General Circulation Models (GCMs), which were developed as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), using an advanced Delta Change Method for the Rhine basin. Changes in mean monthly, maximum and minimum flows at Lobith were derived with the semi-distributed hydrological model HBV of the Rhine. The projected changes were compared to changes that were previously obtained in the trans-boundary project Rheinblick using eight CMIP3 GCMs and Regional Climate Models (RCMs) for emission scenario A1B. All eight selected CMIP3 models (scenario A1B) predicted for 2071-2100 a decrease in mean monthly flows between June and October. Similar decreases were found for some of the 31 CMIP5 models for Representative Concentration Pathways (RCPs) 4.5, 6.0 and 8.5. However, under each RCP, there were also models that projected an increase in mean flows between June and October and on average the decrease was smaller than for the eight CMIP3 models. For 2071-2100, also the mean annual minimum 7-days discharge decreased less in the CMIP5 model simulations than was projected in CMIP3. When assessing the response of mean monthly flows of the CMIP5 simulation with the CSIRO-Mk3-6-0 and HadGEM2-ES models with respect to initial conditions and RCPs, it was found that natural variability plays a dominant role in the near future (2021-2050), while changes in mean monthly flows are dominated by the radiative forcing in the far future (2071-2100). According to RCP 8.5 model

  17. Insights from molecular modeling and dynamics simulation of pathogen resistance (R) protein from brinjal.

    PubMed

    Shrivastava, Dipty; Nain, Vikrant; Sahi, Shakti; Verma, Anju; Sharma, Priyanka; Sharma, Prakash Chand; Kumar, Polumetla Ananda

    2011-01-22

    Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes.

  18. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects

    PubMed Central

    Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal

  19. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects.

    PubMed

    Jaramillo, Eduardo; Dugan, Jenifer E; Hubbard, David M; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal

  20. Insights into Penultimate Interglacial-Glacial Climate Change on Vegetation History at Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Pickarski, N.; Litt, T.

    2017-12-01

    -resolution record presents an improved insight into regional vegetation dynamics and climate variability in the eastern Mediterranean region.

  1. Molecular modeling of human neutral sphingomyelinase provides insight into its molecular interactions.

    PubMed

    Dinesh; Goswami, Angshumala; Suresh, Panneer Selvam; Thirunavukkarasu, Chinnasamy; Weiergräber, Oliver H; Kumar, Muthuvel Suresh

    2011-01-01

    The neutral sphingomyelinase (N-SMase) is considered a major candidate for mediating the stress-induced production of ceramide, and it plays an important role in cell-cycle arrest, apoptosis, inflammation, and eukaryotic stress responses. Recent studies have identified a small region at the very N-terminus of the 55 kDa tumour necrosis factor receptor (TNF-R55), designated the neutral sphingomyelinase activating domain (NSD) that is responsible for the TNF-induced activation of N-SMase. There is no direct association between TNF-R55 NSD and N-SMase; instead, a protein named factor associated with N-SMase activation (FAN) has been reported to couple the TNF-R55 NSD to N-SMase. Since the three-dimensional fold of N-SMase is still unknown, we have modeled the structure using the protein fold recognition and threading method. Moreover, we propose models for the TNF-R55 NSD as well as the FAN protein in order to study the structural basis of N-SMase activation and regulation. Protein-protein interaction studies suggest that FAN is crucially involved in mediating TNF-induced activation of the N-SMase pathway, which in turn regulates mitogenic and proinflammatory responses. Inhibition of N-SMase may lead to reduction of ceramide levels and hence may provide a novel therapeutic strategy for inflammation and autoimmune diseases. Molecular dynamics (MD) simulations were performed to check the stability of the predicted model and protein-protein complex; indeed, stable RMS deviations were obtained throughout the simulation. Furthermore, in silico docking of low molecular mass ligands into the active site of N-SMase suggests that His135, Glu48, Asp177, and Asn179 residues play crucial roles in this interaction. Based on our results, these ligands are proposed to be potent and selective N-SMase inhibitors, which may ultimately prove useful as lead compounds for drug development.

  2. Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale.

    PubMed

    Reilly, Charles; Ingber, Donald E

    2017-12-26

    Many have recognized the potential value of facilitating activities that span the art-science interface for the benefit of society; however, there are few examples that demonstrate how pursuit of an artistic agenda can lead to scientific insights. Here, we describe how we set out to produce an entertaining short film depicting the fertilization of the egg by sperm as a parody of a preview for another Star Wars movie to excite the public about science, but ended up developing a simulation tool for multiscale modeling. To produce an aesthetic that communicates mechanical continuity across spatial scales, we developed custom strategies that integrate physics-based animation software from the entertainment industry with molecular dynamics simulation tools, using experimental data from research publications. Using this approach, we were able to depict biological physicality across multiple spatial scales, from how sperm tails move to collective molecular behavior within the axoneme to how the molecular motor, dynein, produces force at the nanometer scale. The dynein simulations, which were validated by replicating results of past simulations and cryo-electron microscopic studies, also predicted a potential mechanism for how ATP hydrolysis drives dynein motion along the microtubule as well as how dynein changes its conformation when it goes through the power stroke. Thus, pursuit of an artistic work led to insights into biology at the nanoscale as well as the development of a highly generalizable modeling and simulation technology that has utility for nanoscience and any other area of scientific investigation that involves analysis of complex multiscale systems.

  3. Thermophysical Properties of Energetic Ionic Liquids/Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations

    DTIC Science & Technology

    2013-01-01

    W L. Physical properties of concentrated nitric acid . UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.) 23 M. Engelmann... Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Rev. 8-98) Prescribed by ANSI Std. 239.18 1     Thermophysical  Properties  of  Energetic  Ionic  Liquids/ Nitric   Acid

  4. A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities

    PubMed Central

    Fielding, Kelly S.; Hornsey, Matthew J.

    2016-01-01

    Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper, we use social identity theory to help describe and explain these processes. We review literature showing, how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories, such as cultural cognition theory, the theory of planned behavior, and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions. PMID:26903924

  5. A Social Identity Analysis of Climate Change and Environmental Attitudes and Behaviors: Insights and Opportunities.

    PubMed

    Fielding, Kelly S; Hornsey, Matthew J

    2016-01-01

    Environmental challenges are often marked by an intergroup dimension. Political conservatives and progressives are divided on their beliefs about climate change, farmers come into conflict with scientists and environmentalists over water allocation or species protection, and communities oppose big business and mining companies that threaten their local environment. These intergroup tensions are reminders of the powerful influence social contexts and group memberships can have on attitudes, beliefs, and actions relating to climate change and the environment more broadly. In this paper, we use social identity theory to help describe and explain these processes. We review literature showing, how conceiving of oneself in terms of a particular social identity influences our environmental attitudes and behaviors, how relations between groups can impact on environmental outcomes, and how the content of social identities can direct group members to act in more or less pro-environmental ways. We discuss the similarities and differences between the social identity approach to these phenomena and related theories, such as cultural cognition theory, the theory of planned behavior, and value-belief-norm theory. Importantly, we also advance social-identity based strategies to foster more sustainable environmental attitudes and behaviors. Although this theoretical approach can provide important insights and potential solutions, more research is needed to build the empirical base, especially in relation to testing social identity solutions.

  6. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    SciTech Connect

    Sidhu, Navdeep S.; University of Göttingen, Tammannstrasse 4, 37077 Göttingen; Schreiber, Kathrin

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However,more » the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.« less

  7. Anesthetics mechanism on a DMPC lipid membrane model: Insights from molecular dynamics simulations.

    PubMed

    Saeedi, Marzieh; Lyubartsev, Alexander P; Jalili, Seifollah

    2017-07-01

    To provide insight into the molecular mechanisms of local anesthetic action, we have carried out an extensive investigation of two amide type local anesthetics, lidocaine and articaine in both charged and uncharged forms, interacting with DMPC lipid membrane. We have applied both standard molecular dynamics simulations and metadynamics simulations to provide a detailed description of the free energy landscape of anesthetics embedded in the lipid bilayer. The global minimum of the free energy surface (equilibrium position of anesthetics in the lipid membrane) occurred around 1nm of the bilayer center. The uncharged anesthetics show more affinity to bind to this region compared to the charged drugs. The binding free energy of uncharged lidocaine in the membrane (-30.3kJ/mol) is higher than uncharged articaine (-24.0kJ/mol), which is in good agreement with higher lipid solubility of lidocaine relative to the articaine. The octanol/water partition coefficient of uncharged drugs was also investigated using expanded ensemble simulations. In addition, complementary standard MD simulations were carried out to study the partitioning behavior of multiple anesthetics inside the lipid bilayer. The results obtained here are in line with previously reported simulations and suggest that the different forms of anesthetics induce different structural modifications in the lipid bilayer, which can provide new insights into their complex membrane translocation phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    PubMed

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  9. Sustainable management for rangelands in a variable climate: evidence and insights from northern Australia.

    PubMed

    O'Reagain, P J; Scanlan, J C

    2013-03-01

    Inter-annual rainfall variability is a major challenge to sustainable and productive grazing management on rangelands. In Australia, rainfall variability is particularly pronounced and failure to manage appropriately leads to major economic loss and environmental degradation. Recommended strategies to manage sustainably include stocking at long-term carrying capacity (LTCC) or varying stock numbers with forage availability. These strategies are conceptually simple but difficult to implement, given the scale and spatial heterogeneity of grazing properties and the uncertainty of the climate. This paper presents learnings and insights from northern Australia gained from research and modelling on managing for rainfall variability. A method to objectively estimate LTCC in large, heterogeneous paddocks is discussed, and guidelines and tools to tactically adjust stocking rates are presented. The possible use of seasonal climate forecasts (SCF) in management is also considered. Results from a 13-year grazing trial in Queensland show that constant stocking at LTCC was far more profitable and largely maintained land condition compared with heavy stocking (HSR). Variable stocking (VAR) with or without the use of SCF was marginally more profitable, but income variability was greater and land condition poorer than constant stocking at LTCC. Two commercial scale trials in the Northern Territory with breeder cows highlighted the practical difficulties of variable stocking and provided evidence that heavier pasture utilisation rates depress reproductive performance. Simulation modelling across a range of regions in northern Australia also showed a decline in resource condition and profitability under heavy stocking rates. Modelling further suggested that the relative value of variable v. constant stocking depends on stocking rate and land condition. Importantly, variable stocking may possibly allow slightly higher stocking rates without pasture degradation. Enterprise

  10. Insight to forcing of late Quaternary climate change from aeolian dust archives in eastern Australia

    NASA Astrophysics Data System (ADS)

    McGowan, H. A.; Marx, S.; Soderholm, J.; Denholm, J.; Petherick, L.

    2010-12-01

    The Australian continent is the largest source of dust in the Southern Hemisphere. Historical dust emissions records display inter-annual variability in response to the El Niño Southern Oscillation (ENSO) phenomenon and inter-decadal variability which has been linked to the Pacific Decadal Oscillation (PDO). These reflect change in hydrometeorology of the continents two major dust source regions, the Murray-Darling Basin and the Lake Eyre Basin. The historical records do not allow longer term variability of ENSO and the PDO and their influence on Australia to be quantified. Importantly, sub-Milankovitch centennial to multi-millennial scale climate cycles and their impacts are not represented in the historical records. In this paper we present summary results from the analysis of two aeolain dust records spanning 7 ka and 45 ka. These were developed from ombrotrophic mire and lacustrine sediment cores collected from the Australian Alps and southeast Queensland. Both sites are located in the southeast Australian dust transport pathway and provide rare insight to forcings of climate variability and its impacts on eastern Australia through the late Quaternary. Age controls for the cores were established using 14C and 210Pb dating [McGowan et al. 2008, 2010]. The cores were sliced into 2 to 5 mm segments with a sub-sample of each segment combusted at 450°C for 12 hrs to destroy organic material and allow recovery of mineral dust. Geochemical fingerprinting of the < 90 µm fraction of the dust was used to determine provenance and to account for contamination by fluvial and/or colluvial sediments [Marx et al. 2005]. Analysis of the dust records, proxy for hydrometeorology, identified tropical ocean teleconnections, variability of solar irradiance and change in ocean deep water circulation as the principal causes of inter-decadal to centennial scale climate cycles and change. Predictions of future climate must consider these forcings so that in water scarce regions of

  11. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications.

    PubMed

    Ocak, S; Sos, M L; Thomas, R K; Massion, P P

    2009-08-01

    During the last decade, high-throughput technologies including genomic, epigenomic, transcriptomic and proteomic have been applied to further our understanding of the molecular pathogenesis of this heterogeneous disease, and to develop strategies that aim to improve the management of patients with lung cancer. Ultimately, these approaches should lead to sensitive, specific and noninvasive methods for early diagnosis, and facilitate the prediction of response to therapy and outcome, as well as the identification of potential novel therapeutic targets. Genomic studies were the first to move this field forward by providing novel insights into the molecular biology of lung cancer and by generating candidate biomarkers of disease progression. Lung carcinogenesis is driven by genetic and epigenetic alterations that cause aberrant gene function; however, the challenge remains to pinpoint the key regulatory control mechanisms and to distinguish driver from passenger alterations that may have a small but additive effect on cancer development. Epigenetic regulation by DNA methylation and histone modifications modulate chromatin structure and, in turn, either activate or silence gene expression. Proteomic approaches critically complement these molecular studies, as the phenotype of a cancer cell is determined by proteins and cannot be predicted by genomics or transcriptomics alone. The present article focuses on the technological platforms available and some proposed clinical applications. We illustrate herein how the "-omics" have revolutionised our approach to lung cancer biology and hold promise for personalised management of lung cancer.

  12. Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.

    PubMed

    Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja

    2014-12-14

    Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.

  13. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data.

    PubMed

    González-Andrade, Martin; Rodríguez-Sotres, Rogelio; Madariaga-Mazón, Abraham; Rivera-Chávez, José; Mata, Rachel; Sosa-Peinado, Alejandro; Del Pozo-Yauner, Luis; Arias-Olguín, Imilla I

    2016-01-01

    In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca(2+)-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the "open" and "closed" conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM's inhibitors correlated well with available experimental data as the r(2) obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca(2+)-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca(2+)-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca(2+)-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.

  14. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides.

    PubMed

    Zhao, Ruisheng; Zhao, Xiang; Gao, Xingfa

    2015-01-12

    Nanocarbon oxides have been proved to possess great peroxidase-like activity, catalyzing the oxidation of many peroxidase substrates, such as 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine dihydrochloride (OPD), accompanied by a significant color change. This chromogenic reaction is widely used to detect glucose and occult blood. The chromogenic reaction was intensively investigated with density functional theory and molecular-level insights into the nature of peroxidase-like activity were gained. A radical mechanism was unraveled and the carboxyl groups of nanocarbon oxides were identified as the reactive sites. Aromatic domains connected with the carboxyl groups were critical to the peroxidase-like activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Crystal Structures of Human and Staphylococcus aureus Pyruvate Carboxylase and Molecular Insights into the Carboxyltransfer Reaction

    SciTech Connect

    Xiang,S.; Tong, L.

    2008-01-01

    Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-Angstroms resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in themore » active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.« less

  16. Molecular and Imaging Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    NASA Astrophysics Data System (ADS)

    Dohnalkova, A.; Tfaily, M.; Smith, A. P.; Chu, R. K.; Crump, A.; Brislawn, C.; Varga, T.; Shi, Z.; Thomashow, L. S.; Harsh, J. B.; Balogh-Brunstad, Z.; Keller, C. K.

    2017-12-01

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is limited. The objective of this study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix. We hypothesized that nutrient limitation would cause formation of microbially-produced C constituents that would contribute to SOM stabilization. We focused on the processes of rhizodeposition in the rhizosphere, and we utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of the microbial community and the newly-formed SOM compounds in the rhizosphere and the bulk soil. We considered implications regarding their degree of long-term stability. The microbes in this controlled, nutrient-limited system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. These findings provide insight into the various degrees of stability of microbial SOM products in ecosystems and evidence that the residual biogenic material associated with mineral matrices may be important components in current carbon cycle models.

  17. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view. PMID:26989626

  18. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

    PubMed Central

    2016-01-01

    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo. PMID:27267364

  19. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30

    PubMed Central

    Louet, Maxime; Labbé, Céline M.; Aono, Cassiano M.; Homem-de-Mello, Paula; Villoutreix, Bruno O.

    2018-01-01

    Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the β turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions. PMID:29746595

  20. Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    SciTech Connect

    Dohnalkova, Alice C.; Tfaily, Malak M.; Smith, A. Peyton

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limitedmore » system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. Here, these findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.« less

  1. Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    DOE PAGES

    Dohnalkova, Alice C.; Tfaily, Malak M.; Smith, A. Peyton; ...

    2017-08-26

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limitedmore » system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. Here, these findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.« less

  2. New insights into the molecular characteristics behind the function of Renilla luciferase.

    PubMed

    Fanaei-Kahrani, Zahra; Ganjalikhany, Mohamad Reza; Rasa, Seyed Mohammad Mahdi; Emamzadeh, Rahman

    2018-02-01

    Renilla Luciferase (RLuc) is a blue light emitter protein which can be applied as a valuable tool in medical diagnosis. But due to lack of the crystal structure of RLuc-ligand complex, the functional motions and catalytic mechanism of this enzyme remain largely unknown. In the present study, the active site properties and the ligand-receptor interactions of the native RLuc and its red-shifted light emitting variant (Super RLuc 8) were investigated using molecular docking approach, molecular dynamics (MD) analysis, and MM-PBSA method. The detailed analysis of the main clusters led to identifying a lid-like structure and its functional motions. Furthermore, an induced-fit mechanism is proposed where ligand-binding induces conformational changes of the active site. Our findings give an insight into the deeper understanding of RLuc conformational changes during binding steps and ligand-receptor pattern. Moreover, our work broaden our understanding of how active site geometry is adjusted to support the catalytic activity and red-shifted light emission in Super RLuc 8. © 2017 Wiley Periodicals, Inc.

  3. Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight

    DOE PAGES

    Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...

    2017-08-23

    Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene- r-propylene) blocks (B), and end-capped by a poly(more » t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. In conclusion, the water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.« less

  4. First insight into the molecular epidemiology of Mycobacterium tuberculosis in Santa Catarina, southern Brazil.

    PubMed

    Nogueira, Christiane Lourenço; Prim, Rodrigo Ivan; Senna, Simone Gonçalves; Rovaris, Darcita Büerger; Maurici, Rosemeri; Rossetti, Maria Lúcia; Couvin, David; Rastogi, Nalin; Bazzo, Maria Luiza

    2016-03-01

    Molecular epidemiology of Mycobacterium tuberculosis is useful for understanding disease transmission dynamics, and to establish strategic measures for TB control and prevention. The aim of this study was to analyze clinical, epidemiological and molecular characteristics of MTBC clinical isolates from Santa Catarina state, southern Brazil. During one-year period, 406 clinical isolates of MTBC were collected from Central Laboratory of Public Health and typed by spoligotyping. Demographic and clinical data were collected from the Brazilian National Mandatory Disease Reporting System. The majority of cases occurred in highest population densities regions and about 50% had some condition associated with TB. Among all isolates, 5.7% were MDR, which showed association with drug addiction. LAM was the most predominant lineage with 47.5%, followed by the T superfamily with 25.9% and Haarlem with 12.3%. The MST showed two major groups: the first was formed mainly by the LAM lineage and the second was mainly formed by the T and Haarlem lineages. Others lineages were distributed in peripheral positions. This study provides the first insight into the population structure of M. tuberculosis in SC State. Spoligotyping and other genotyping analyses are important to establish strategic measures for TB control and prevention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications

    SciTech Connect

    Noridomi, Kaori; Watanabe, Go; Hansen, Melissa N.

    The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been fully elucidated. Here, we present the crystal structure of the nAChR α1 subunit bound by the Fab fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed molecular interactions between MG antibodies and a core region on nAChR α1. These structures suggest a major nAChR-binding mechanismmore » shared by a large number of MG antibodies and the possibility to treat MG by blocking this binding mechanism. Structure-based modeling also provides insights into antibody-mediated nAChR cross-linking known to cause receptor degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic development of MG.« less

  6. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability

    NASA Astrophysics Data System (ADS)

    Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent

    2016-12-01

    Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.

  7. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view.

  8. Insights into Meteoric 10Be Dynamics and Climate Stability along the Hawaiian Kohala Climosequence

    NASA Astrophysics Data System (ADS)

    Dixon, J. L.; Chadwick, O.

    2017-12-01

    We measure meteoric 10Be in soils across a well-studied climate gradient spanning Kohala, Hawaii to provide new understanding of the isotope behavior in soils and constraints on nuclide delivery rates to Earth's surface. Annual rainfall across the Kohala climogradient varies from 16 - 300 cm, with Hawaiian soils reflecting evolution over the past 150 ka, the nominal age of the volcanic parent material. We analyzed a sequence of nine soil profiles for meteoric 10Be and compared with previously measured data on soil chemistry and dust fluxes. In the Kohala system, soil inventories of 10Be span 40-300 x 109 atom/cm2 and generally increase linearly with rainfall, consistent with precipitation-driven fluxes and the high retention of 10Be in clay-rich soil horizons. However, nuclide inventories dramatically decrease for soils at rainfall >140 cm/y. The observed decrease corresponds with other strong changes in weathering intensity across the climate gradient, associated with previously studied and recognized pedogenic thresholds. These thresholds represent abrupt transitions in soil chemistry related to increased throughflow of soil solutions, decreases in base saturation and pH, and the destruction of phyllosilicates and replacement with amorphous oxyhydroxides. Meteoric-derived ages, based on 10Be-flux estimates and measured inventories are uniform for dry soils ( 60ka), but far less than the known substrate age (150ka), indicating that actual delivery rates are lower than predicted from current models in this region. Despite the offset in predicted and substrate ages, the consistency in pattern suggests that the rainfall gradient over the 150 thousand years of soil development has not deviated significantly from its present structure. Furthermore, based on clear 10Be losses in soils with high moisture availability, our results indicate meteoric 10Be may not be a robust tracer of soil age and movement in systems with high rainfall and weathering intensity and low soil

  9. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats.

    PubMed

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R; Cumpston, Amy; McKinney, Walter; Chen, Bean T; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2013-04-01

    Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US

  10. Global and local molecular dynamics of a bacterial carboxylesterase provide insight into its catalytic mechanism

    PubMed Central

    Yu, Xiaozhen; Sigler, Sara C.; Hossain, Delwar; Wierdl, Monika; Gwaltney, Steven R.; Potter, Philip M.; Wadkins, Randy M.

    2013-01-01

    Carboxylesterases (CEs) are ubiquitous enzymes responsible for the detoxification of xenobiotics. In humans, substrates for these enzymes are far-ranging, and include the street drug heroin and the anticancer agent irinotecan. Hence, their ability to bind and metabolize substrates is of broad interest to biomedical science. In this study, we focused our attention on dynamic motions of a CE from B. subtilis (pnbCE), with emphasis on the question of what individual domains of the enzyme might contribute to its catalytic activity. We used a 10 ns all-atom molecular dynamics simulation, normal mode calculations, and enzyme kinetics to understand catalytic consequences of structural changes within this enzyme. Our results shed light on how molecular motions are coupled with catalysis. During molecular dynamics, we observed a distinct C-C bond rotation between two conformations of Glu310. Such a bond rotation would alternately facilitate and impede protonation of the active site His399 and act as a mechanism by which the enzyme alternates between its active and inactive conformation. Our normal mode results demonstrate that the distinct low-frequency motions of two loops in pnbCE, coil_5 and coil_21, are important in substrate conversion and seal the active site. Mutant CEs lacking these external loops show significantly reduced rates of substrate conversion, suggesting this sealing motion prevents escape of substrate. Overall, the results of our studies give new insight into the structure-function relationship of CEs and have implications for the entire family of α/β fold family of hydrolases, of which this CE is a member. PMID:22127613

  11. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food.

    PubMed

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are

  12. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are

  13. Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans.

    PubMed

    Gaye, Amadou; Doumatey, Ayo P; Davis, Sharon K; Rotimi, Charles N; Gibbons, Gary H

    2018-01-01

    Several clinical guidelines have been proposed to distinguish metabolically healthy obesity (MHO) from other subgroups of obesity but the molecular mechanisms by which MHO individuals remain metabolically healthy despite having a high fat mass are yet to be elucidated. We conducted the first whole blood transcriptomic study designed to identify specific sets of genes that might shed novel insights into the molecular mechanisms that protect or delay the occurrence of obesity-related co-morbidities in MHO. The study included 29 African-American obese individuals, 8 MHO and 21 metabolically abnormal obese (MAO). Unbiased transcriptome-wide network analysis was carried out to identify molecular modules of co-expressed genes that are collectively associated with MHO. Network analysis identified a group of 23 co-expressed genes, including ribosomal protein genes (RPs), which were significantly downregulated in MHO subjects. The three pathways enriched in the group of co-expressed genes are EIF2 signaling, regulation of eIF4 and p70S6K signaling, and mTOR signaling. The expression of ten of the RPs collectively predicted MHO status with an area under the curve of 0.81. Triglycerides/HDL (TG/HDL) ratio, an index of insulin resistance, was the best predictor of the expression of genes in the MHO group. The higher TG/HDL values observed in the MAO subjects may underlie the activation of endoplasmic reticulum (ER) and related-stress pathways that lead to a chronic inflammatory state. In summary, these findings suggest that controlling ER stress and/or ribosomal stress by downregulating RPs or controlling TG/HDL ratio may represent effective strategies to prevent or delay the occurrence of metabolic disorders in obese individuals.

  14. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  15. Probing the interaction of anticancer drug temsirolimus with human serum albumin: molecular docking and spectroscopic insight.

    PubMed

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees

    2018-05-01

    The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 10 4  M -1 implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.

  16. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change.

    PubMed

    Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J

    2013-09-10

    Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.

  17. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    PubMed Central

    Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938

  18. Molecular stratigraphy: a new tool for climatic assessment

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.; Eglinton, G.; Marlowe, I. T.; Pflaumann, U.; Sarnthein, M.

    1986-03-01

    Variations in sea-surface temperatures over the past 500,000 years are inferred from the relative abundance behaviour of two organic compounds, C37 alkenones over the upper 8 metres of a sediment core from the eastern equatorial Atlantic. This molecular record, ascribed to contributions from prymnesiophyte algae, correlates well with the variations in the δ18 signal for the calcareous skeletons of certain planktonic foraminifera, thus providing the first demonstration of a new stratigraphical technique, which may be especially valuable where methods based on carbonate δ18 fail.

  19. New molecular insights into the pools and mechanisms of Arctic soil organic matter decomposition under warming

    NASA Astrophysics Data System (ADS)

    Gu, B.

    2017-12-01

    It is estimated that Arctic permafrost soils store approximately half of the global belowground organic carbon, which is susceptible to microbial decomposition under warming climate. Studies have shown that rates of soil organic carbon (SOC) decomposition are controlled not only by temperature but also SOC substrate quality or chemical composition. However, detailed molecular-scale characterization of SOC and its susceptibility to degradation are lacking, due to extremely complex nature of SOC. Here, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was utilized to determine compositional changes of SOC during a microcosm warming experiment using tundra soils that were collected from the Barrow Environmental Observatory in Alaska, USA. Soil microcosm incubation was conducted with both organic and mineral active layer soils at two temperatures (-2°C and 8°C) up to 122 days, and water-extractable SOC was analyzed. Results indicate that peptides, amino sugars, and carbohydrate-like compounds are among the most labile SOC compounds to be degraded, with nitrogen-containing compounds degrading at a much faster rate than those containing no nitrogen. Refractory SOC components are dominated by the lignin- or tannin-like compounds and, to a less extent, the aliphatic compounds. Additionally, elemental ratios of O:C, H:C, and N:C were found to decrease with incubation time, and SOC in the mineral soil exhibited lower O:C and N:C ratios than those of the organic-rich soil. A biodegradation index is proposed to facilitate the incorporation of mass spectrometry data into mechanistic models of SOC degradation and thus improved prediction model of climate feedbacks in the Arctic.

  20. New molecular insights into the pools and mechanisms of Arctic soil organic matter decomposition under warming

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.

    2016-12-01

    It is estimated that Arctic permafrost soils store approximately half of the global belowground organic carbon, which is susceptible to microbial decomposition under warming climate. Studies have shown that rates of soil organic carbon (SOC) decomposition are controlled not only by temperature but also SOC substrate quality or chemical composition. However, detailed molecular-scale characterization of SOC and its susceptibility to degradation are lacking, due to extremely complex nature of SOC. Here, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was utilized to determine compositional changes of SOC during a microcosm warming experiment using tundra soils that were collected from the Barrow Environmental Observatory in Alaska, USA. Soil microcosm incubation was conducted with both organic and mineral active layer soils at two temperatures (-2°C and 8°C) up to 122 days, and water-extractable SOC was analyzed. Results indicate that peptides, amino sugars, and carbohydrate-like compounds are among the most labile SOC compounds to be degraded, with nitrogen-containing compounds degrading at a much faster rate than those containing no nitrogen. Refractory SOC components are dominated by the lignin- or tannin-like compounds and, to a less extent, the aliphatic compounds. Additionally, elemental ratios of O:C, H:C, and N:C were found to decrease with incubation time, and SOC in the mineral soil exhibited lower O:C and N:C ratios than those of the organic-rich soil. A biodegradation index is proposed to facilitate the incorporation of mass spectrometry data into mechanistic models of SOC degradation and thus improved prediction model of climate feedbacks in the Arctic.

  1. Molecular Insights Into the Evolutionary Pathway of Vibrio cholerae O1 Atypical El Tor Variants

    PubMed Central

    Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D.; Pape, Jean William; Nair, G. Balakrish; Kim, Dong Wook

    2014-01-01

    Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor. PMID:25233006

  2. The Structural Basis of IKs Ion-Channel Activation: Mechanistic Insights from Molecular Simulations.

    PubMed

    Ramasubramanian, Smiruthi; Rudy, Yoram

    2018-06-05

    Relating ion channel (iCh) structural dynamics to physiological function remains a challenge. Current experimental and computational techniques have limited ability to explore this relationship in atomistic detail over physiological timescales. A framework associating iCh structure to function is necessary for elucidating normal and disease mechanisms. We formulated a modeling schema that overcomes the limitations of current methods through applications of artificial intelligence machine learning. Using this approach, we studied molecular processes that underlie human IKs voltage-mediated gating. IKs malfunction underlies many debilitating and life-threatening diseases. Molecular components of IKs that underlie its electrophysiological function include KCNQ1 (a pore-forming tetramer) and KCNE1 (an auxiliary subunit). Simulations, using the IKs structure-function model, reproduced experimentally recorded saturation of gating-charge displacement at positive membrane voltages, two-step voltage sensor (VS) movement shown by fluorescence, iCh gating statistics, and current-voltage relationship. Mechanistic insights include the following: 1) pore energy profile determines iCh subconductance; 2) the entire protein structure, not limited to the pore, contributes to pore energy and channel subconductance; 3) interactions with KCNE1 result in two distinct VS movements, causing gating-charge saturation at positive membrane voltages and current activation delay; and 4) flexible coupling between VS and pore permits pore opening at lower VS positions, resulting in sequential gating. The new modeling approach is applicable to atomistic scale studies of other proteins on timescales of physiological function. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model.

    PubMed

    Bernard, Valérie; Villa, Chiara; Auguste, Aurélie; Lamothe, Sophie; Guillou, Anne; Martin, Agnès; Caburet, Sandrine; Young, Jacques; Veitia, Reiner A; Binart, Nadine

    2018-01-19

    Lactotroph adenoma, also called prolactinoma, is the most common pituitary tumor but little is known about its pathogenesis. Mouse models of prolactinoma can be useful to better understand molecular mechanisms involved in abnormal lactotroph cell proliferation and secretion. We have previously developed a prolactin receptor deficient ( Prlr -/- ) mouse, which develops prolactinoma. The present study aims to explore the natural history of prolactinoma formation in Prlr -/- mice, using hormonal, radiological, histological and molecular analyses to uncover mechanisms involved in lactotroph adenoma development. Prlr -/- females develop large secreting prolactinomas from 12 months of age, with a penetrance of 100%, mimicking human aggressive densely granulated macroprolactinoma, which is a highly secreting subtype. Mean blood PRL measurements reach 14 902 ng/mL at 24 months in Prlr -/- females while PRL levels were below 15 ng/mL in control mice ( p < 0.01). By comparing pituitary microarray data of Prlr -/- mice and an estrogen-induced prolactinoma model in ACI rats, we pinpointed 218 concordantly differentially expressed (DE) genes involved in cell cycle, mitosis, cell adhesion molecules, dopaminergic synapse and estrogen signaling. Pathway/gene-set enrichment analyses suggest that the transcriptomic dysregulation in both models of prolactinoma might be mediated by a limited set of transcription factors (i.e., STAT5, STAT3, AhR, ESR1, BRD4, CEBPD, YAP, FOXO1) and kinases (i.e., JAK2, AKT1, BRAF, BMPR1A, CDK8, HUNK, ALK, FGFR1, ILK). Our experimental results and their bioinformatic analysis provide insights into early genomic changes in murine models of the most frequent human pituitary tumor.

  4. Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain

    PubMed Central

    Poplawski, Amanda; Hu, Kaifeng; Lee, Woonghee; Natesan, Senthil; Peng, Danni; Carlson, Samuel; Shi, Xiaobing; Balaz, Stefan; Markley, John L.; Glass, Karen C.

    2014-01-01

    The monocytic leukemic zinc-finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, and chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones, and show it preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze H-bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together these data provide insights on how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates. PMID:24333487

  5. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Storm track response to climate change: Insights from simulations using an idealized dry GCM.

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh; Schneider, Tapio

    2013-04-01

    The midlatitude storm tracks, where the most intense extratropical cyclones are found, are an important fixture in the general circulation. They are instrumental in balancing the Earth's heat, momentum, and moisture budgets and are responsible for the weather and climatic patterns over large regions of the Earth's surface. As a result, the midlatitude storm tracks are the subject of a considerable amount of scientific research to understand their response to global warming. This has produced the robust result showing that the storm tracks migrate poleward with global warming. However, the dynamical mechanisms responsible for this migration remain unclear. Our work seeks to broaden understanding of the dynamical mechanisms responsible for storm track migration. Competing mechanisms present in the comprehensive climate models often used to study storm track dynamics make it difficult to determine the primary mechanisms responsible for storm track migration. We are thus prompted to study storm track dynamics from a simplified and idealized framework, which enables the decoupling of mean temperature effects from the effects of static stability and of tropical from extratropical effects. Using a statistically zonally symmetric, dry general circulation model (GCM), we conduct a series of numerical simulations to help understand the storm track response to global mean temperatures and to the tropical convective static stability, which we can vary independently. We define storm tracks as regions of zonally and temporally averaged maxima of barotropic eddy kinetic energy (EKE). This storm track definition also allows us to use previously found scalings between the magnitude of bulk measures of mean available potential energy (MAPE) and EKE, to decompose MAPE, and to obtain some mechanistic understanding of the storm track response in our simulations. These simulations provide several insights, which enable us to extend upon existing theories on the mechanisms driving the

  7. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  8. Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT.

    PubMed

    Chai, Mengya; Liu, Bo; Sun, Fude; Wei, Peng; Chen, Peng; Xu, Lida; Luo, Shi-Zhong

    2017-07-01

    Kit ligand (KITL) plays important roles in cell proliferation, differentiation, and survival via interaction with its receptor Kit. The previous studies demonstrated that KITL formed a noncovalent homodimer through transmembrane (TM) domain; however, the undergoing mechanism of transmembrane association that determines KITL TM dimerization is still not clear. Herein, molecular dynamics (MD) simulation strategy and TOXCAT assay were combined to characterize the dimerization interface and structure of KITL TM in details. KITL TM formed a more energetically favorable noncovalent dimer through a conserved SxxxGxxxG motif in the MD simulation. Furthermore, the TOXCAT results demonstrated that KITL TM self-associated strongly in the bilayer membrane environment. Mutating any one of the small residues Ser11, Gly15 or Gly19 to Ile disrupted KITL TM dimerization dramatically, which further validated our MD simulation results. In addition, our results showed that Tyr22 could help to stabilize the TM interactions via interacting with the phosphoric group in the bilayer membrane. Pro7 did not induce helix kinks or swivel angles in KITL TM, but it was related with the pitch of the turn around this residue so as to affect the dimer formation. Combining the results of computer modeling and experimental mutagenesis studies on the KITL TM provide new insights for the transmembrane helix association of KITL dimerization. Proteins 2017; 85:1362-1370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Thermodynamic Insights into Effects of Water Displacement and Rearrangement upon Ligand Modification using Molecular Dynamics Simulations.

    PubMed

    Wahl, Joel; Smiesko, Martin

    2018-05-04

    Computational methods, namely Molecular Dynamics Simulations (MD simulations) in combination with Inhomogeneous Fluid Solvation Theory (IFST) were used to retrospectively investigate various cases of ligand structure modifications that led to the displacement of binding site water molecules. Our findings are that the water displacement per se is energetically unfavorable in the discussed examples, and that it is merely the fine balance between change in protein-ligand interaction energy, ligand solvation free energies and binding site solvation free energies that determine if water displacement is favorable or not. We furthermore evaluated if we can reproduce experimental binding affinities by a computational approach combining changes in solvation free energies with changes in protein-ligand interaction energies and entropies. In two of the seven cases, this estimation led to large errors, implying that accurate predictions of relative binding free energies based on solvent thermodynamics is challenging. Still, MD simulations can provide insights into which water molecules can be targeted for displacement. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer

    PubMed Central

    Dal Pra, Alan; Locke, Jennifer A.; Borst, Gerben; Supiot, Stephane; Bristow, Robert G.

    2016-01-01

    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa. PMID:26909338

  11. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  12. Molecular Insights into Plant-Microbial Processes and Carbon Storage in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Romero, I. C.; Ziegler, S. E.; Fogel, M.; Jacobson, M.; Fuhrman, J. A.; Capone, D. G.

    2009-12-01

    Mangrove forests, in tropical and subtropical coastal zones, are among the most productive ecosystems, representing a significant global carbon sink. We report new molecular insights into the functional relationship among microorganisms, mangrove trees and sediment geochemistry. The interactions among these elements were studied in peat-based mangrove sediments (Twin Cays, Belize) subjected to a long-term fertilization experiment with N and P, providing an analog for eutrophication. The composition and δ13C of bacterial PLFA showed that bacteria and mangrove trees had similar nutrient limitation patterns (N in the fringe mangrove zone, P in the interior zone), and that fertilization with N or P can affect bacterial metabolic processes and bacterial carbon uptake (from diverse mangrove sources including leaf litter, live and dead roots). PCR amplified nifH genes showed a high diversity (26% nifH novel clones) and a remarkable spatial and temporal variability in N-fixing microbial populations in the rhizosphere, varying primarily with the abundance of dead roots, PO4-3 and H2S concentrations in natural and fertilized environments. Our results indicate that eutrophication of mangrove ecosystems has the potential to alter microbial organic matter remineralization and carbon release with important implications for the coastal carbon budget. In addition, we will present preliminary data from a new study exploring the modern calibration of carbon and hydrogen isotopes of plant leaf waxes as a proxy recorder of past environmental change in mangrove ecosystems.

  13. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    USGS Publications Warehouse

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.

  14. UV photodissociation of proline-containing peptide ions: insights from molecular dynamics.

    PubMed

    Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe

    2015-03-01

    UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S(2) and S(3), lie close to 213 nm. Non-adiabatic MD simulation starting from S(2) and S(3) shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.

  15. UV Photodissociation of Proline-containing Peptide Ions: Insights from Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe

    2015-03-01

    UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S2 and S3, lie close to 213 nm. Non-adiabatic MD simulation starting from S2 and S3 shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.

  16. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    PubMed

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Communicating Climate Change in the Agricultural Sector: Insights from Surveys and Interviews with Agricultural Advisors in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Prokopy, L. S.; Carlton, S.; Dunn, M.

    2014-12-01

    Understanding U.S. agricultural stakeholder views about the existence of climate change and what influences these views is central to developing communication in support of adaptation and mitigation. It has been postulated in the literature that extreme weather events can shape people's climate change beliefs and adaptation attitudes. In this presentation, we use data from pre- and post-extreme event surveys and interviews to examine the effects of the 2012 Midwestern US drought on agricultural advisors' climate change beliefs, adaptation attitudes, and risk perceptions. We found that neither climate change beliefs nor attitudes toward adaptation changed significantly as a result of the drought. Risk perceptions did change, however, with advisors becoming more concerned about risks from drought and pests and less concerned about risks related to flooding and ponding. Qualitative interviews revealed that while advisors readily accept the occurrence of extreme weather as a risk, the irregularity and unpredictability of extreme events for specific localities limits day-to-day consideration in respect to prescribed management advice. Instead, advisors' attention is directed towards planning for short-term changes encompassing weather, pests, and the market, as well as planning for long-term trends related to water availability. These findings provide important insights for communicating climate change in this critical sector while illustrating the importance of social science research in planning and executing communication campaigns.

  18. Cushing's disease: current medical therapies and molecular insights guiding future therapies.

    PubMed

    Lau, Darryl; Rutledge, Caleb; Aghi, Manish K

    2015-02-01

    OBJECT Cushing's disease (CD) can lead to significant morbidity secondary to hormonal sequelae or mass effect from the pituitary tumor. A transsphenoidal approach to resection of the adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma is the first-line treatment. However, in the setting in which patients are unable to undergo surgery, have acute hypercortisolism, or have recurrent disease, medical therapy can play an important role. The authors performed a systematic review to highlight the efficacy of medical treatment of CD and discuss novel molecular insights that could guide the development of future medical treatments of CD. METHODS A search on current medical therapies for CD was performed. After individual medical therapeutic agents for CD were identified, each agent underwent a formal systematic search. The phrase "(name of agent) and Cushing's" was used as a search term in PubMed for all years up to 2014. The abstract of each article was reviewed for studies that evaluated the efficacy of medical treatment of CD. Only studies that enrolled at least 20 patients were included in the review. RESULTS A total of 11 articles on 6 individual agents were included in this review. Specific medical therapies were categorized based on the level of action: pituitary directed (cabergoline and pasireotide), adrenal/steroidogenesis directed (ketoconazole, metyrapone, and mitotane), and end-tissue directed/cortisol receptors (mifepristone). The studies identified consisted of a mix of retrospective reviews and small clinical trials. Only pasireotide and mifepristone have undergone Phase III clinical trials, from which they garnered FDA approval for the treatment of patients with CD. Overall, agents targeting ACTH secretion and steroidogenesis were found to be quite effective in reducing urine free cortisol (UFC) to levels near normal. A significant reduction in UFC was observed in 45%-100% of patients and a majority of patients gained clinical improvement

  19. Migration out of 1930s Rural Eastern Oklahoma: Insights for Climate Change Research

    ERIC Educational Resources Information Center

    McLeman, Robert

    2006-01-01

    The question of how communities and individuals adapt to changing climatic conditions is of pressing concern to scientists and policymakers in light of the growing evidence that human activity has modified the Earth's climate. A number of authors have suggested that widespread changes in human settlement and migration patterns may occur in…

  20. Climate change & livestock health on the U.S. Northern Plains; Actionable economic insights & needs

    USDA-ARS?s Scientific Manuscript database

    Climate change will impact livestock health through numerous direct mechanisms and indirect drivers. Examples of direct mechanisms include climate-driven changes in the biology of pathogens, and the distribution of vectors. Indirect drivers may include changes in environmental factors, land-use, and...

  1. Limitations of Climatic Data for Inferring Species Boundaries: Insights from Speckled Rattlesnakes

    PubMed Central

    Flores-Villela, Oscar; Fujita, Matthew K.

    2015-01-01

    Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the “climatic niche”); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus. PMID:26107178

  2. Limitations of climatic data for inferring species boundaries: insights from speckled rattlesnakes.

    PubMed

    Meik, Jesse M; Streicher, Jeffrey W; Lawing, A Michelle; Flores-Villela, Oscar; Fujita, Matthew K

    2015-01-01

    Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the "climatic niche"); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus.

  3. Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae).

    PubMed

    Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G; González-Martínez, Santiago C

    2015-03-01

    Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. Copyright © 2015 by the Genetics Society of America.

  4. Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)

    PubMed Central

    Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H.; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G.; González-Martínez, Santiago C.

    2015-01-01

    Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP–climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. PMID:25549630

  5. Country, climate change adaptation and colonisation: insights from an Indigenous adaptation planning process, Australia.

    PubMed

    Nursey-Bray, Melissa; Palmer, Robert

    2018-03-01

    Indigenous peoples are going to be disproportionately affected by climate change. Developing tailored, place based, and culturally appropriate solutions will be necessary. Yet finding cultural and institutional 'fit' within and between competing values-based climate and environmental management governance regimes remains an ongoing challenge. This paper reports on a collaborative research project with the Arabana people of central Australia, that resulted in the production of the first Indigenous community-based climate change adaptation strategy in Australia. We aimed to try and understand what conditions are needed to support Indigenous driven adaptation initiatives, if there are any cultural differences that need accounting for and how, once developed they be integrated into existing governance arrangements. Our analysis found that climate change adaptation is based on the centrality of the connection to 'country' (traditional land), it needs to be aligned with cultural values, and focus on the building of adaptive capacity. We find that the development of climate change adaptation initiatives cannot be divorced from the historical context of how the Arabana experienced and collectively remember colonisation. We argue that in developing culturally responsive climate governance for and with Indigenous peoples, that that the history of colonisation and the ongoing dominance of entrenched Western governance regimes needs acknowledging and redressing into contemporary environmental/climate management.

  6. Structural insight of DNA topoisomerases I from camptothecin-producing plants revealed by molecular dynamics simulations.

    PubMed

    Sirikantaramas, Supaart; Meeprasert, Arthitaya; Rungrotmongkol, Thanyada; Fuji, Hideyoshi; Hoshino, Tyuji; Sudo, Hiroshi; Yamazaki, Mami; Saito, Kazuki

    2015-05-01

    DNA topoisomerase I (Top1) catalyzes changes in DNA topology by cleaving and rejoining one strand of the double stranded (ds)DNA. Eukaryotic Top1s are the cellular target of the plant-derived anticancer indole alkaloid camptothecin (CPT), which reversibly stabilizes the Top1-dsDNA complex. However, CPT-producing plants, including Camptotheca acuminata, Ophiorrhiza pumila and Ophiorrhiza liukiuensis, are highly resistant to CPT because they possess point-mutated Top1. Here, the adaptive convergent evolution is reported between CPT production ability and mutations in their Top1, as a universal resistance mechanism found in all tested CPT-producing plants. This includes Nothapodytes nimmoniana, one of the major sources of CPT. To obtain a structural insight of the resistance mechanism, molecular dynamics simulations of CPT- resistant and -sensitive plant Top1s complexed with dsDNA and topotecan (a CPT derivative) were performed, these being compared to that for the CPT-sensitive human Top1. As a result, two mutations, Val617Gly and Asp710Gly, were identified in O. pumila Top1 and C. acuminata Top1, respectively. The substitutions at these two positions, surprisingly, are the same as those found in a CPT derivative-resistant human colon adenocarcinoma cell line. The results also demonstrated an increased linker flexibility of the CPT-resistant Top1, providing an additional explanation for the resistance mechanism found in CPT-producing plants. These mutations could reflect the long evolutionary adaptation of CPT-producing plant Top1s to confer a higher degree of resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. New Insights into the Phylogeny and Molecular Classification of Nicotinamide Mononucleotide Deamidases

    PubMed Central

    Sánchez-Carrón, Guiomar; Martínez-Moñino, Ana Belén; Sola-Carvajal, Agustín; Takami, Hideto; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2013-01-01

    Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD+ by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM-1 s-1. To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases. PMID:24340054

  8. Absolute Molecular Orientation of Isopropanol at Ceria (100) Surfaces: Insight into Catalytic Selectivity from the Interfacial Structure

    DOE PAGES

    Doughty, Benjamin; Goverapet Srinivasan, Sriram; Bryantsev, Vyacheslav S.; ...

    2017-06-12

    The initial mechanistic steps underlying heterogeneous chemical catalysis can be described in a framework where the composition, structure, and orientation of molecules adsorbed to reactive interfaces are known. However, extracting this vital information is the limiting step in most cases due in part to challenges in probing the interfacial monolayer with enough chemical specificity to characterize the surface molecular constituents. These challenges are exacerbated at complex or spatially heterogeneous interfaces where competing processes and a distribution of local environments can uniquely drive chemistry. To address these limitations, this work presents a distinctive combination of materials synthesis, surface specific optical experiments,more » and theory to probe and understand molecular structure at catalytic interfaces. Specifically, isopropanol was adsorbed to surfaces of the model CeO 2 catalyst that were synthesized with only the (100) facet exposed. Vibrational sum-frequency generation was used to probe the molecular monolayer, and with the guidance of density functional theory calculations, was used to extract the structure and absolute molecular orientation of isopropanol at the CeO 2 (100) surface. Our results show that isopropanol is readily deprotonated at the surface, and through the measured absolute molecular orientation of isopropanol, we obtain new insight into the selectivity of the (100) surface to form propylene. Our findings reveal key insight into the chemical and physical phenomena taking place at pristine interfaces thereby pointing to intuitive structural arguments to describe catalytic selectivity in more complex systems.« less

  9. Absolute Molecular Orientation of Isopropanol at Ceria (100) Surfaces: Insight into Catalytic Selectivity from the Interfacial Structure

    SciTech Connect

    Doughty, Benjamin; Goverapet Srinivasan, Sriram; Bryantsev, Vyacheslav S.

    The initial mechanistic steps underlying heterogeneous chemical catalysis can be described in a framework where the composition, structure, and orientation of molecules adsorbed to reactive interfaces are known. However, extracting this vital information is the limiting step in most cases due in part to challenges in probing the interfacial monolayer with enough chemical specificity to characterize the surface molecular constituents. These challenges are exacerbated at complex or spatially heterogeneous interfaces where competing processes and a distribution of local environments can uniquely drive chemistry. To address these limitations, this work presents a distinctive combination of materials synthesis, surface specific optical experiments,more » and theory to probe and understand molecular structure at catalytic interfaces. Specifically, isopropanol was adsorbed to surfaces of the model CeO 2 catalyst that were synthesized with only the (100) facet exposed. Vibrational sum-frequency generation was used to probe the molecular monolayer, and with the guidance of density functional theory calculations, was used to extract the structure and absolute molecular orientation of isopropanol at the CeO 2 (100) surface. Our results show that isopropanol is readily deprotonated at the surface, and through the measured absolute molecular orientation of isopropanol, we obtain new insight into the selectivity of the (100) surface to form propylene. Our findings reveal key insight into the chemical and physical phenomena taking place at pristine interfaces thereby pointing to intuitive structural arguments to describe catalytic selectivity in more complex systems.« less

  10. Postglacial Human resilience and susceptibility to abrupt climate change new insights from Star Carr

    NASA Astrophysics Data System (ADS)

    Blockley, Simon; Abrook, Ashley; Bayliss, Alex; Candy, Ian; Conneller, Chantal; Darvill, Chris; Deeprose, Laura; Kearney, Rebecca; Langdon, Pete; Langdon Langdon, Cath; Lincoln, Paul; Macleod, Alison; Matthews, Ian; Palmer, Adrian; Schreve, Danielle; Taylor, Barry; Milner, Nicky

    2017-04-01

    We know little about the lives of the early humans who lived during the early Postglacial period (the Lateglacial and Early Holocene), a time characterised by abrupt climate change after 16,000, which includes a series of abrupt climatic transitions linked to the reorganisation of the global environment after the glacial maximum and the last major global warming event at the onset of the Holocene. The hunter-gatherers who lived during the early Postglacial have been characterised as highly mobile, dispersed and living within small groups, and there is much debate as to how they adapted to climatic and environmental change: did they move in response to climatic transitions (and if so what was the climatic threshold), or instead adapt their lifeways to the new environmental conditions? A key area for examining these ideas is the British Isles as it sits on the Atlantic fringe of Northwest Europe with a climate that is highly responsive to the wider climate forcing experienced in the northern Hemisphere. Furthermore, in this period, Britain is directly linked to continental Europe due to lowered global sea levels allowing for the ease of human migration in and out of this region. In general the British record has been seen as being dominated by abandonment and reoccupation in the Postglacial during periods of climatic transition with hunter-gatherer mobility being closely linked to the prevailing environment. Recent discoveries at the Early Mesolithic site of Star Carr and surrounding area, linked to local and regional climate records, based on isotopic, chironomid and pollen proxy data and dated at high chronological resolution, offer a new picture. Postglacial human occupation of the area commences at the Pleistocene/Holocene transition but is short lived and appears to end close to the Pre-Boreal Oscillation, However, this is followed by a period where hunter-gatherers occupy Star Carr and settle and invest time and effort into building huts and large scale wooden

  11. Insight into Nucleation Mechanisms of Tetrahedral Materials from Advanced Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bi, Yuanfei

    nucleation, which can be considered to be an entropically driven, kinetic process that proceeds via multiple pathways that have similar free energy profiles. Finally, inspired by our insight gained in studying gas hydrate nucleation, we proposed a novel synthesis route to obtain inert gas silicon clathrate, which has an attractive opto-electronic property for energy application, but remains as an experimental challenge for synthesis. We thoroughly examined this proposal through high-throughput computational studies that show the novel phases of silicon could form spontaneously from liquid silicon in the presence of noble gases under high pressure and high temperature. In particular, our results show that a medium size of noble gas, e.g., Ar, can trigger the nucleation and growth of inert-gas silicon clathrate, whereas a small noble gas such as He is able to induce the formation of an unconventional, inclusion-type compound Si2He. Our findings, along with the gained molecular insights, thus strongly suggest it is viable to experimentally synthesize novel silicon phases with noble gas through high pressure and high temperature. (Abstract shortened by ProQuest.).

  12. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  13. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.

    PubMed

    Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher

    2015-01-15

    Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014

  14. The Psychology of Climate Change Communication - Insights from the Center for Research on Environmental Decisions (CRED) (Invited)

    NASA Astrophysics Data System (ADS)

    Marx, S.

    2010-12-01

    social goals in favor or self interest; early involvement of stakeholders through participatory processes can help identify key concerns and information needs which can then be addressed in a tailored approach; taking advantage of default effects can make it easier for people to choose environmentally and socially beneficial options. Using research into the reactions of groups as disparate as African farmers and conservative U.S. voters, we offer insights on how scientists, educators, journalists and others can effectively connect with wider audiences. The communication principles presented in this talk can be applied beyond climate change and to science communication in general.

  15. Climate controls over ecosystem metabolism: insights from a fifteen-year inductive artificial neural network synthesis for a subalpine forest.

    PubMed

    Albert, Loren P; Keenan, Trevor F; Burns, Sean P; Huxman, Travis E; Monson, Russell K

    2017-05-01

    Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone.

  16. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics.

    PubMed

    Shaw, Ruth G; Etterson, Julie R

    2012-09-01

    Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Migration in the context of vulnerability and adaptation to climate change: insights from analogues

    PubMed Central

    McLeman, Robert A.; Hunter, Lori M.

    2011-01-01

    Migration is one of the variety of ways by which human populations adapt to environmental changes. The study of migration in the context of anthropogenic climate change is often approached using the concept of vulnerability and its key functional elements: exposure, system sensitivity, and adaptive capacity. This article explores the interaction of climate change and vulnerability through review of case studies of dry-season migration in the West African Sahel, hurricane-related population displacements in the Caribbean basin, winter migration of ‘snowbirds’ to the US Sun-belt, and 1930s drought migration on the North American Great Plains. These examples are then used as analogues for identifying general causal, temporal, and spatial dimensions of climate migration, along with potential considerations for policy-making and future research needs. PMID:22022342

  18. Mechanistic insights into the effects of climate change on larval cod.

    PubMed

    Kristiansen, Trond; Stock, Charles; Drinkwater, Kenneth F; Curchitser, Enrique N

    2014-05-01

    Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual-based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM-projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950-1999 and 2050-2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050-2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold-water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large-scale assessment of the impacts of climate change on larval cod in the North Atlantic. © 2013 John

  19. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations.

    PubMed

    Garcia-Castellanos, Daniel; Jiménez-Munt, Ivone

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the

  20. Topographic Evolution and Climate Aridification during Continental Collision: Insights from Computer Simulations

    PubMed Central

    2015-01-01

    How do the feedbacks between tectonics, sediment transport and climate work to shape the topographic evolution of the Earth? This question has been widely addressed via numerical models constrained with thermochronological and geomorphological data at scales ranging from local to orogenic. Here we present a novel numerical model that aims at reproducing the interaction between these processes at the continental scale. For this purpose, we combine in a single computer program: 1) a thin-sheet viscous model of continental deformation; 2) a stream-power surface-transport approach; 3) flexural isostasy allowing for the formation of large sedimentary foreland basins; and 4) an orographic precipitation model that reproduces basic climatic effects such as continentality and rain shadow. We quantify the feedbacks between these processes in a synthetic scenario inspired by the India-Asia collision and the growth of the Tibetan Plateau. We identify a feedback between erosion and crustal thickening leading locally to a <50% increase in deformation rates in places where orographic precipitation is concentrated. This climatically-enhanced deformation takes place preferentially at the upwind flank of the growing plateau, specially at the corners of the indenter (syntaxes). We hypothesize that this may provide clues for better understanding the mechanisms underlying the intriguing tectonic aneurisms documented in the Himalayas. At the continental scale, however, the overall distribution of topographic basins and ranges seems insensitive to climatic factors, despite these do have important, sometimes counterintuitive effects on the amount of sediments trapped within the continent. The dry climatic conditions that naturally develop in the interior of the continent, for example, trigger large intra-continental sediment trapping at basins similar to the Tarim Basin because they determine its endorheic/exorheic drainage. These complex climatic-drainage-tectonic interactions make the

  1. Late Oligocene to Late Miocene Antarctic Climate Reconstructions Using Molecular and Isotopic Biomarker Proxies

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Mckay, R. M.; Bendle, J. A.; Naish, T.; Levy, R. H.; Ventura, G. T.; Moossen, H. M.; Krishnan, S.; Pagani, M.

    2015-12-01

    Major climate and environmental changes occurred during late Oligocene to the late Miocene when atmospheric CO2 ranged between 500 and 300ppm, indicating threshold response of Antarctic ice sheets and climate to relatively modest CO2 variations. This implies that the southern high latitudes are highly sensitive to feedbacks associated with changes in global ice sheet and sea-ice extent, as well as terrestrial and marine ecosystems. This study focuses on two key intervals during the evolution of the Antarctic Ice Sheet: (1) The Late Oligocene and the Oligocene/Miocene boundary, when the East Antarctic Ice Sheet expanded close to present day volume following an extended period of inferred warmth. (2) The Mid-Miocene Climate Optimum (MMCO ~17-15 Ma), a period of global warmth and moderately elevated CO2 (350->500 ppm) which was subsequently followed by rapid cooling at 14-13.5 Ma. Reconstructions of climate and ice sheet variability, and thus an understanding of the various feedbacks that occurred during these intervals, are hampered by a lack of temperature and hydroclimate proxy data from the southern high latitudes. We present proxy climate reconstructions using terrestrial and marine organic biomarkers that provide new insights into Antarctica's climate evolution, using Antarctic drill cores and outcrop samples from a range of depositional settings. Bacterial ether-lipids have been analysed to determine terrestrial mean annual temperatures and soil pH (via the methylation and cyclisation indexes of branched tetraethers - MBT and CBT, respectively). Tetraether-lipids of crenarchaeota found in marine sediments sampled from continental shelves around Antarctica have been used to derive sea surface temperatures using the TEX86 index. Compound specific stable isotopes on n-alkanes sourced from terrestrial plants have been analysed to investigate changes in the hydrological and carbon cycles.

  2. Informing climate change adaptation with insights from famine early warning (Invited)

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Verdin, J. P.

    2010-12-01

    Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the

  3. Global Climate Change: Valuable Insights from Concordant and Discordant Ice Core Histories

    NASA Astrophysics Data System (ADS)

    Mosley-Thompson, E.; Thompson, L. G.; Porter, S. E.; Goodwin, B. P.; Wilson, A. B.

    2014-12-01

    Earth's ice cover is responding to the ongoing large-scale warming driven in part by anthropogenic forces. The highest tropical and subtropical ice fields are dramatically shrinking and/or thinning and unique climate histories archived therein are now threatened, compromised or lost. Many ice fields in higher latitudes are also experiencing and recording climate system changes although these are often manifested in less evident and spectacular ways. The Antarctic Peninsula (AP) has experienced a rapid, widespread and dramatic warming over the last 60 years. Carefully selected ice fields in the AP allow reconstruction of long histories of key climatic variables. As more proxy climate records are recovered it is clear they reflect a combination of expected and unexpected responses to seemingly similar climate forcings. Recently acquired temperature and precipitation histories from the Bruce Plateau are examined within the context provided by other cores recently collected in the AP. Understanding the differences and similarities among these records provides a better understanding of the forces driving climate variability in the AP over the last century. The Arctic is also rapidly warming. The δ18O records from the Bona-Churchill and Mount Logan ice cores from southeast Alaska and southwest Yukon Territory, respectively, do not record this strong warming. The Aleutian Low strongly influences moisture transport to this geographically complex region, yet its interannual variability is preserved differently in these cores located just 110 km apart. Mount Logan is very sensitive to multi-decadal to multi-centennial climate shifts in the tropical Pacific while low frequency variability on Bona-Churchill is more strongly connected to Western Arctic sea ice extent. There is a natural tendency to focus more strongly on commonalities among records, particularly on regional scales. However, it is also important to investigate seemingly poorly correlated records, particularly

  4. Noachian Climate of Mars: Insights from Noachian Stratigraphy and Valley Networks System Formation Times

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2017-12-01

    Noachian climate models have been proposed in order to account for 1) observed fluvial and lacustrine activity, 2) weathering processes producing phyllosilicates, and 3) an unusual impact record including three major impact basins and unusual degradation processes. We adopt a stratigraphic approach in order place these observations in a temporal context. Formation of the major impact basins Hellas, Isidis and Argyre in earlier Noachian profoundly influenced the uplands geology and appears to have occurred concurrently with major phyllosilicate and related surface occurrences/deposits; the immediate aftermath of these basins appears to have created a temporary hot and wet surface environment with significant effect on surface morphology and alteration processes. Formation of Late Noachian-Early Hesperian valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. We examined estimates for the time required to carve channels/deltas and total duration implied by plausible intermittencies. Synthesis of required timescales show that the total time to carve the VN does not exceed 106 years, < 0.25% of the total Noachian. What climate models can account for the VNS? 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. 2) Cold and Icy climate warmed by greenhouse gases or episodic stochastic events: Climate is sustained cold/icy, but greenhouse gases of unspecified nature/amount/duration elevate MAT by several tens of Kelvins, bringing the annual temperature range into the realm where peak seasonal temperatures (PST) exceed 273 K. In this climate environment, analogous to the Antarctic Dry Valleys, seasonal summer temperatures above 273 K are sufficient to melt snow/ice and form fluvial and lacustrine features, but MAT is well below 273 K (253 K); punctuated warming alternatives

  5. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integration from fossil records and molecular analyses

    PubMed Central

    2014-01-01

    Background Given that most species that have ever existed on earth are extinct, it stands to reason that the evolutionary history can be better understood with fossil taxa. Bauhinia is a typical genus of pantropical intercontinental disjunction among the Asian, African, and American continents. Geographic distribution patterns are better recognized when fossil records and molecular sequences are combined in the analyses. Here, we describe a new macrofossil species of Bauhinia from the Upper Miocene Xiaolongtan Formation in Wenshan County, Southeast Yunnan, China, and elucidate the biogeographic significance through the analyses of molecules and fossils. Results Morphometric analysis demonstrates that the leaf shapes of B. acuminata, B. championii, B. chalcophylla, B. purpurea, and B. podopetala closely resemble the leaf shapes of the new finding fossil. Phylogenetic relationships among the Bauhinia species were reconstructed using maximum parsimony and Bayesian inference, which inferred that species in Bauhinia species are well-resolved into three main groups. Divergence times were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method under a relaxed clock, and inferred that the stem diversification time of Bauhinia was ca. 62.7 Ma. The Asian lineage first diverged at ca. 59.8 Ma, followed by divergence of the Africa lineage starting during the late Eocene, whereas that of the neotropical lineage starting during the middle Miocene. Conclusions Hypotheses relying on vicariance or continental history to explain pantropical disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. We suggest that Bauhinia originated in the middle Paleocene in Laurasia, probably in Asia, implying a possible Tethys Seaway origin or an “Out of Tropical Asia”, and dispersal of legumes. Its present pantropical disjunction resulted from disruption of the boreotropical flora by climatic cooling after the Paleocene-Eocene Thermal

  6. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integration from fossil records and molecular analyses.

    PubMed

    Meng, Hong-Hu; Jacques, Frédéric Mb; Su, Tao; Huang, Yong-Jiang; Zhang, Shi-Tao; Ma, Hong-Jie; Zhou, Zhe-Kun

    2014-08-10

    Given that most species that have ever existed on earth are extinct, it stands to reason that the evolutionary history can be better understood with fossil taxa. Bauhinia is a typical genus of pantropical intercontinental disjunction among the Asian, African, and American continents. Geographic distribution patterns are better recognized when fossil records and molecular sequences are combined in the analyses. Here, we describe a new macrofossil species of Bauhinia from the Upper Miocene Xiaolongtan Formation in Wenshan County, Southeast Yunnan, China, and elucidate the biogeographic significance through the analyses of molecules and fossils. Morphometric analysis demonstrates that the leaf shapes of B. acuminata, B. championii, B. chalcophylla, B. purpurea, and B. podopetala closely resemble the leaf shapes of the new finding fossil. Phylogenetic relationships among the Bauhinia species were reconstructed using maximum parsimony and Bayesian inference, which inferred that species in Bauhinia species are well-resolved into three main groups. Divergence times were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method under a relaxed clock, and inferred that the stem diversification time of Bauhinia was ca. 62.7 Ma. The Asian lineage first diverged at ca. 59.8 Ma, followed by divergence of the Africa lineage starting during the late Eocene, whereas that of the neotropical lineage starting during the middle Miocene. Hypotheses relying on vicariance or continental history to explain pantropical disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. We suggest that Bauhinia originated in the middle Paleocene in Laurasia, probably in Asia, implying a possible Tethys Seaway origin or an "Out of Tropical Asia", and dispersal of legumes. Its present pantropical disjunction resulted from disruption of the boreotropical flora by climatic cooling after the Paleocene-Eocene Thermal Maximum (PETM). North Atlantic land

  7. Insights from Modeling the Integrated Climate, Biogeochemical Cycles, Human Activities and Their Interactions in the ACME Earth System Model

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Thornton, P. E.; Riley, W. J.; Calvin, K. V.

    2017-12-01

    Towards the goal of understanding the contributions from natural and managed systems to current and future greenhouse gas fluxes and carbon-climate and carbon-CO2 feedbacks, efforts have been underway to improve representations of the terrestrial, river, and human components of the ACME earth system model. Broadly, our efforts include implementation and comparison of approaches to represent the nutrient cycles and nutrient limitations on ecosystem production, extending the river transport model to represent sediment and riverine biogeochemistry, and coupling of human systems such as irrigation, reservoir operations, and energy and land use with the ACME land and river components. Numerical experiments have been designed to understand how terrestrial carbon, nitrogen, and phosphorus cycles regulate climate system feedbacks and the sensitivity of the feedbacks to different model treatments, examine key processes governing sediment and biogeochemistry in the rivers and their role in the carbon cycle, and exploring the impacts of human systems in perturbing the hydrological and carbon cycles and their interactions. This presentation will briefly introduce the ACME modeling approaches and discuss preliminary results and insights from numerical experiments that lay the foundation for improving understanding of the integrated climate-biogeochemistry-human system.

  8. Forest fire and climate change in western North America: insights from sediment charcoal records.

    Treesearch

    Daniel G Gavin; Douglas J Hallett; Feng Sheng Hu; Kenneth P Lertzman; Susan J Prichard; Kendrick J Brown; Jason A Lynch; Patrick Bartlein; David L. Peterson

    2007-01-01

    Millennial-scale records of forest fire provide important baseline information for ecosystem management, especially in regions with too few recent fires to describe the historical range of variability. Charcoal records from lake sediments and soil profiles are well suited for reconstructing the incidence of past fire and its relationship to changing climate and...

  9. Insights on drought and long-term climatic trends: Retrospective analyses of crop insurance data

    USDA-ARS?s Scientific Manuscript database

    A modern trend among federal agencies, funding streams, and research projects involves the synthesis of existing data to increase the overall collective value and meaning of such knowledge. The creation of the U.S. Department of Agriculture (USDA) Climate Hubs follows this line of thought with infor...

  10. Molecular recognition of avirulence protein (avrxa5) by eukaryotic transcription factor xa5 of rice (Oryza sativa L.): insights from molecular dynamics simulations.

    PubMed

    Dehury, Budheswar; Maharana, Jitendra; Sahoo, Bikash Ranjan; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita

    2015-04-01

    The avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein. From the best three binding poses predicted by molecular docking, MD simulations were performed to explore the dynamic binding mechanism of xa5 and avrxa5. Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) techniques were employed to calculate the binding free energy and to uncover the thriving force behind the molecular recognition of avrxa5 by eukaryotic transcription factor xa5. Binding free energy analysis revealed van der Waals term as the most constructive component that favors the xa5 and avrxa5 interaction. In addition, hydrogen bonds (H-bonds) and essential electrostatic interactions analysis highlighted amino acid residues Lys54/Asp870, Lys56/Ala868, Lys56/Ala866, Lys56/Glu871, Ile59/His862, Gly61/Phe858, His62/Arg841, His62/Leu856, Ser101/Ala872 and Ser105/Asp870 plays pivotal role for the energetically stability of the R-Avr complex. Insights gained from the present study are expected to unveil the molecular mechanisms that define the transcriptional activator mediated transcriptome modification in host plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The terrestrial hydro-climate of the Early Eocene: insights from the oxygen and clumped isotope composition of pedogenic siderite

    NASA Astrophysics Data System (ADS)

    van Dijk, J.; Fernandez, A.; Müller, I.; White, T. S.; Bernasconi, S. M.

    2016-12-01

    The Early Eocene (56 Ma) is the youngest period of Earth's history when CO2 concentrations in the atmosphere (600-1500 ppm) reached levels close to those predicted for future emission scenarios. Proxy-based climate reconstructions from this interval can therefore be used to gain insights on effects that anthropogenic emissions might have on the climate system. So far, Early Eocene climatic data is limited to the oceans, where proxies for temperature are abundant and relatively well understood. However, in order to get a complete picture of the Early Eocene climate, temperature and rainfall reconstructions on the continental paleo-surface are needed. Here, we present clumped and stable oxygen isotope measurements of siderite samples collected along a North-South transect in the North American Continent. These siderites formed in kaolinitic soils that developed globally under the extremely wet and warm conditions of the Early Eocene. They provide a record of both soil temperature and the δ18O composition of meteoric water, which can be used to unravel the regional paleo-precipitation rate. Both parameters were estimated using an elaborate in-house calibration constructed with synthetic siderite precipitated in the presence or absence of iron reducing bacteria. Measurements of δD on plant-derived N-alkanes present within the same soils align well with our δ18Owater data, confirming an Early Eocene meteoric water line similar to the present day. We provide an estimate of the meridional temperature gradient during the Early Eocene and offer constraints on the boundary conditions of the Earth's hydrologic cycle under high pCO2.

  12. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking.

    PubMed

    Sixto-López, Yudibeth; Bello, Martiniano; Correa-Basurto, José

    2018-03-06

    Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K + ) in both sites (HDAC1 k ), a second with K + only at site 1 (HDAC1 ks1 ), a third with K + only at site 2 (HDAC1 ks2 ) and a fourth with no K + (HDAC1 wk ). We found that the presence or absence of K + not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.

  13. Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990-2010.

    PubMed

    Huai, Jianjun

    2016-01-01

    In many agricultural countries, development of rural livelihood through increasing capital is a major regional policy to adapt to climate change. However, the role of livelihood capital in reducing climatic vulnerability is uncertain. This study assesses vulnerability and identifies the effects of common capital indicators on it, using Australian wheat as an example. We calculate exposure (a climate index) and sensitivity (a wheat failure index) to measure vulnerability and classify the resilient and sensitive cases, and express adaptive capacity through financial, human, natural, physical, and social capital indicators for 12 regions in the Australian wheat-sheep production zone from 1991-2010. We identify relationships between 12 indicators of five types of capital and vulnerability with t-tests and six logistic models considering the capital indicator itself, its first-order lag and its square as dependent variables to test the hypothesis that a high level of each capital metric results in low vulnerability. Through differing adaptive capacities between resilient and sensitive groups, we found that only four of the 12 (e.g., the access to finance, cash income level, total crop gross revenues, and family share of farm income) relate to vulnerability, which challenges the hypothesis that increasing capital reduces vulnerability. We conclude that further empirical reexaminations are required to test the relationships between capital measures and vulnerability under the sustainable livelihood framework (SLF).

  14. Environmental gradients and grassland trait variation: Insight into the effects of climate change

    NASA Astrophysics Data System (ADS)

    Tardella, Federico M.; Piermarteri, Karina; Malatesta, Luca; Catorci, Andrea

    2016-10-01

    The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.

  15. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change.

    PubMed

    Johnson, Jeremy S; Gaddis, Keith D; Cairns, David M; Konganti, Kranti; Krutovsky, Konstantin V

    2017-03-01

    Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock ( Tsuga mertensiana ) on the Alaskan Kenai Peninsula. We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution. © 2017 Botanical Society of America.

  16. Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010

    PubMed Central

    Huai, Jianjun

    2016-01-01

    In many agricultural countries, development of rural livelihood through increasing capital is a major regional policy to adapt to climate change. However, the role of livelihood capital in reducing climatic vulnerability is uncertain. This study assesses vulnerability and identifies the effects of common capital indicators on it, using Australian wheat as an example. We calculate exposure (a climate index) and sensitivity (a wheat failure index) to measure vulnerability and classify the resilient and sensitive cases, and express adaptive capacity through financial, human, natural, physical, and social capital indicators for 12 regions in the Australian wheat–sheep production zone from 1991–2010. We identify relationships between 12 indicators of five types of capital and vulnerability with t-tests and six logistic models considering the capital indicator itself, its first-order lag and its square as dependent variables to test the hypothesis that a high level of each capital metric results in low vulnerability. Through differing adaptive capacities between resilient and sensitive groups, we found that only four of the 12 (e.g., the access to finance, cash income level, total crop gross revenues, and family share of farm income) relate to vulnerability, which challenges the hypothesis that increasing capital reduces vulnerability. We conclude that further empirical reexaminations are required to test the relationships between capital measures and vulnerability under the sustainable livelihood framework (SLF). PMID:27022910

  17. Using Variation Theory with Metacognitive Monitoring to Develop Insights into How Students Learn from Molecular Visualizations

    ERIC Educational Resources Information Center

    Kelly, Resa M.

    2014-01-01

    Molecular visualizations have been widely endorsed by many chemical educators as an efficient way to convey the dynamic and atomic-level details of chemistry events. Research indicates that students who use molecular visualizations are able to incorporate most of the intended features of the animations into their explanations. However, studies…

  18. An Insight towards Conceptual Understanding: Looking into the Molecular Structures of Compounds

    ERIC Educational Resources Information Center

    Uyulgan, Melis Arzu; Akkuzu, Nalan

    2016-01-01

    The subject of molecular structures is one of the most important and complex subject in chemistry which a majority of the undergraduate students have difficulties to understand its concepts and characteristics correctly. To comprehend the molecular structures and their characteristics the students need to understand related subjects such as Lewis…

  19. Quantitative analysis of oyster larval proteome provides new insights into the effects of multiple climate change stressors.

    PubMed

    Dineshram, Ramadoss; Chandramouli, Kondethimmanahalli; Ko, Ginger Wai Kuen; Zhang, Huoming; Qian, Pei-Yuan; Ravasi, Timothy; Thiyagarajan, Vengatesen

    2016-06-01

    The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs. © 2016 John Wiley & Sons Ltd.

  20. Molecular insight into the counteraction of trehalose on urea-induced protein denaturation using molecular dynamics simulation.

    PubMed

    Zhang, Na; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2012-06-21

    Considerable experimental evidence indicates that trehalose can counteract the denaturing effects of urea on proteins. However, its molecular mechanism remains unknown due to the limitations of current experimental techniques. Herein, molecular dynamics simulations were performed to investigate the counteracting effects of trehalose against urea-induced denaturation of chymotrypsin inhibitor 2. The simulations indicate that the protein unfolds in 8 mol/L urea, but at the same condition the protein retains its native structure in the ternary solution of 8 mol/L urea and 1 mol/L trehalose. It is confirmed that the preferential exclusion of trehalose from the protein surface is the origin of its counteracting effects. It is found that trehalose binds urea via hydrogen bonds, so urea molecules are also expelled from the protein surface along with the preferential exclusion of trehalose. The exclusion of urea from the protein surface leads to the alleviation of the Lennard-Jones interactions between urea and the hydrophobic side chains of the protein in the ternary solution. In contrast, the electrostatic interactions between urea and the protein change little in the presence of trehalose because the decrease in the electrostatic interactions between urea and the protein backbone is canceled by the increase in the electrostatic interactions between urea and the charged side chains of the protein. The results have provided molecular explanations for the counteraction of urea-induced protein denaturation by trehalose.

  1. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    PubMed

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  2. What actually confers adaptive capacity? Insights from agro-climatic vulnerability of Australian wheat.

    PubMed

    Bryan, Brett A; Huai, Jianjun; Connor, Jeff; Gao, Lei; King, Darran; Kandulu, John; Zhao, Gang

    2015-01-01

    Vulnerability assessments have often invoked sustainable livelihoods theory to support the quantification of adaptive capacity based on the availability of capital--social, human, physical, natural, and financial. However, the assumption that increased availability of these capitals confers greater adaptive capacity remains largely untested. We quantified the relationship between commonly used capital indicators and an empirical index of adaptive capacity (ACI) in the context of vulnerability of Australian wheat production to climate variability and change. We calculated ACI by comparing actual yields from farm survey data to climate-driven expected yields estimated by a crop model for 12 regions in Australia's wheat-sheep zone from 1991-2010. We then compiled data for 24 typical indicators used in vulnerability analyses, spanning the five capitals. We analyzed the ACI and used regression techniques to identify related capital indicators. Between regions, mean ACI was not significantly different but variance over time was. ACI was higher in dry years and lower in wet years suggesting that farm adaptive strategies are geared towards mitigating losses rather than capitalizing on opportunity. Only six of the 24 capital indicators were significantly related to adaptive capacity in a way predicted by theory. Another four indicators were significantly related to adaptive capacity but of the opposite sign, countering our theory-driven expectation. We conclude that the deductive, theory-based use of capitals to define adaptive capacity and vulnerability should be more circumspect. Assessments need to be more evidence-based, first testing the relevance and influence of capital metrics on adaptive capacity for the specific system of interest. This will more effectively direct policy and targeting of investment to mitigate agro-climatic vulnerability.

  3. From monsoon to marine productivity in the Arabian Sea: insights from glacial and interglacial climates

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Beaufort, Luc; Bopp, Laurent; Braconnot, Pascale; Kageyama, Masa

    2017-07-01

    The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial-interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20-150° W, 30° S-60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.

  4. What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat

    PubMed Central

    Bryan, Brett A.; Huai, Jianjun; Connor, Jeff; Gao, Lei; King, Darran; Kandulu, John; Zhao, Gang

    2015-01-01

    Vulnerability assessments have often invoked sustainable livelihoods theory to support the quantification of adaptive capacity based on the availability of capital—social, human, physical, natural, and financial. However, the assumption that increased availability of these capitals confers greater adaptive capacity remains largely untested. We quantified the relationship between commonly used capital indicators and an empirical index of adaptive capacity (ACI) in the context of vulnerability of Australian wheat production to climate variability and change. We calculated ACI by comparing actual yields from farm survey data to climate-driven expected yields estimated by a crop model for 12 regions in Australia’s wheat-sheep zone from 1991–2010. We then compiled data for 24 typical indicators used in vulnerability analyses, spanning the five capitals. We analyzed the ACI and used regression techniques to identify related capital indicators. Between regions, mean ACI was not significantly different but variance over time was. ACI was higher in dry years and lower in wet years suggesting that farm adaptive strategies are geared towards mitigating losses rather than capitalizing on opportunity. Only six of the 24 capital indicators were significantly related to adaptive capacity in a way predicted by theory. Another four indicators were significantly related to adaptive capacity but of the opposite sign, countering our theory-driven expectation. We conclude that the deductive, theory-based use of capitals to define adaptive capacity and vulnerability should be more circumspect. Assessments need to be more evidence-based, first testing the relevance and influence of capital metrics on adaptive capacity for the specific system of interest. This will more effectively direct policy and targeting of investment to mitigate agro-climatic vulnerability. PMID:25668192

  5. New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates

    NASA Astrophysics Data System (ADS)

    Santos, João A.; Costa, Ricardo; Fraga, Helder

    2018-03-01

    New decision support tools for Portuguese viticulture are urging under a climate change context. In the present study, heat and chilling accumulation conditions of a collection of 44 grapevine cultivars currently grown in Portugal are assessed at very high spatial resolution ( 1 km) and for 1981-2015. Two bioclimatic indices that incorporate non-linear plant-temperature relationships are selected for this purpose: growing degree hours—GDH (February-October) and chilling portions—CP (October-February). The current thermal growing conditions of each variety are examined and three clusters of grapevine cultivars are identified based on their GDH medians, thus assembling varieties with close heat accumulation requirements and providing more physiologically consistent information when compared to previous studies, as non-linear plant-temperature relationships are herein taken into account. These new clusters are also a complement to previous bioclimatic zoning. Ensemble mean projections under two anthropogenic-driven scenarios (RCP4.5 and RCP8.5, 2041-2070), from four EURO-CORDEX simulations, reveal a widespread increase of GDH and decrease of CP, but with spatial heterogeneities. The spatial variability of these indices throughout Portugal is projected to decrease (strongest increases of GDH in the coolest regions of the northeast) and to increase (strongest decreases of CP in the warmest regions of the south and west), respectively. The typical heat accumulation conditions of each cluster are projected to gradually shift north-eastwards and to higher-elevation areas, whereas insufficient chilling may represent a new challenge in warmer future climates. An unprecedented level of detail for a large collection of grapevine varieties in Portugal is provided, thus promoting a better planning of climate change adaptation measures.

  6. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a

  7. Combining NMR and Molecular Dynamics Studies for Insights into the Allostery of Small GTPase–Protein Interactions

    PubMed Central

    Zhang, Liqun; Bouguet-Bonnet, Sabine; Buck, Matthias

    2014-01-01

    Combinations of experimentally derived data from nuclear magnetic resonance spectroscopy and analyses of molecular dynamics trajectories increasingly allow us to obtain a detailed description of the molecular mechanisms by which proteins function in signal transduction. This chapter provides an introduction into these two methodologies, illustrated by example of a small GTPase–effector interaction. It is increasingly becoming clear that new insights are provided by the combination of experimental and computational methods. Understanding the structural and protein dynamical contributions to allostery will be useful for the engineering of new binding interfaces and protein functions, as well as for the design/in silico screening of chemical agents that can manipulate the function of small GTPase–protein interactions in diseases such as cancer. PMID:22052494

  8. Variability of North African hydroclimate during the last two climatic cycles: New insights from dust flux and provenance

    NASA Astrophysics Data System (ADS)

    Skonieczny, C.; McGee, D.; Bory, A. J. M.; Winckler, G.; Bradtmiller, L.; Bout-Roumazeilles, V.; Perala-Dewey, J.; Delattre, M.; Kinsley, C. W.; Polissar, P. J.; Malaizé, B.

    2016-12-01

    Every year, several hundred teragrams of dust are emitted from the Sahara and Sahel regions. These mineral particles sensitively track variations in atmospheric circulation and continental aridity. Sediments of the Northeastern Tropical Atlantic Ocean (NETAO) are fed by this intense dust supply and comprise unique long-term archives of past Saharan/Sahelian dust emissions. Past modifications of dust characteristics in these sedimentary archives can provide unique insights into changes in environmental conditions in source areas (aridity, weathering), as well as changes in atmospheric transport (wind direction and strength). Here we document changes in sediment supply to the NETAO using marine sediment core MD03-2705 (18°05N; 21°09W; 3085m water depth). This record is strategically located under the influence of seasonal dust plumes, and marine sediments of this area have revealed that past dust inputs were sensitive to global climate changes over the late Quaternary. We will focus our study on the last two climatic cycles (0-240ka), a period orbitally characterized by changes in the amplitude of both precession (MIS6-5 vs. MIS1-2) and ice volume (MIS 7 vs. MIS5). We will present, for the first time in this area, a continuous high-resolution record of dust, opal, carbonate and organic matter fluxes using 230Th-normalization. The constant flux proxy 230Thxs provides flux data that are not substantially affected by lateral advection or age model errors. These fluxes data will be complemented by grain-size, clay mineralogical and geochemical (major elements) analysis. By pairing dust flux measurements with complementary proxy data reflecting changes in aridity, wind strength and dust source, this study will provide a robust, continuous record of the magnitude and pacing of the North African hydroclimate variability through the last two climatic cycles. In particular, this long-term study will offer the opportunity to compare the well-documented North African climate

  9. The role of observational reference data for climate downscaling: Insights from the VALUE COST Action

    NASA Astrophysics Data System (ADS)

    Kotlarski, Sven; Gutiérrez, José M.; Boberg, Fredrik; Bosshard, Thomas; Cardoso, Rita M.; Herrera, Sixto; Maraun, Douglas; Mezghani, Abdelkader; Pagé, Christian; Räty, Olle; Stepanek, Petr; Soares, Pedro M. M.; Szabo, Peter

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research (http://www.value-cost.eu). A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of downscaling methods. Such assessments can be expected to crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling, observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. We here present a comprehensive assessment of the influence of uncertainties in observational reference data and of scale-related issues on several of the above-mentioned aspects. First, temperature and precipitation characteristics as simulated by a set of reanalysis-driven EURO-CORDEX RCM experiments are validated against three different gridded reference data products, namely (1) the EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. The analysis reveals a considerable influence of the choice of the reference data on the evaluation results, especially for precipitation. It is also illustrated how differences between the reference data sets influence the ranking of RCMs according to a comprehensive set of performance measures.

  10. Molecular recognition of malachite green by hemoglobin and their specific interactions: insights from in silico docking and molecular spectroscopy.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Sun, Ying

    2014-01-01

    Malachite green is an organic compound that can be widely used as a dyestuff for various materials; it has also emerged as a controversial agent in aquaculture. Since malachite green is proven to be carcinogenic and mutagenic, it may become a hazard to public health. For this reason, it is urgently required to analyze this controversial dye in more detail. In our current research, the interaction between malachite green and hemoglobin under physiological conditions was investigated by the methods of molecular modeling, fluorescence spectroscopy, circular dichroism (CD) as well as hydrophobic ANS displacement experiments. From the molecular docking, the central cavity of hemoglobin was assigned to possess high-affinity for malachite green, this result was corroborated by time-resolved fluorescence and hydrophobic ANS probe results. The recognition mechanism was found to be of static type, or rather the hemoglobin-malachite green complex formation occurred via noncovalent interactions such as π-π interactions, hydrogen bonds and hydrophobic interactions with an association constant of 10(4) M(-1). Moreover, the results also show that the spatial structure of the biopolymer was changed in the presence of malachite green with a decrease of the α-helix and increase of the β-sheet, turn and random coil suggesting protein damage, as derived from far-UV CD and three-dimensional fluorescence. Results of this work will help to further comprehend the molecular recognition of malachite green by the receptor protein and the possible toxicological profiles of other compounds, which are the metabolites and ramifications of malachite green.

  11. Plant molecular responses to the elevated ambient temperatures expected under global climate change.

    PubMed

    Fei, Qionghui; Li, Jingjing; Luo, Yunhe; Ma, Kun; Niu, Bingtao; Mu, Changjun; Gao, Huanhuan; Li, Xiaofeng

    2018-01-02

    Environmental temperatures affect plant distribution, growth, and development. The Intergovernmental Panel on Climate Change (IPCC) predicts that global temperatures will rise by at least 1.5°C by the end of this century. Global temperature changes have already had a discernable impact on agriculture, phenology, and ecosystems. At the molecular level, extensive literature exists on the mechanism controlling plant responses to high temperature stress. However, few studies have focused on the molecular mechanisms behind plant responses to mild increases in ambient temperature. Previous research has found that moderately higher ambient temperatures can induce hypocotyl elongation and early flowering. Recent evidence demonstrates roles for the phytohormones auxin and ethylene in adaptive growth of plant roots to slightly higher ambient temperatures.

  12. Acinar Cell Carcinoma of the Pancreas: Overview of Clinicopathologic Features and Insights into the Molecular Pathology.

    PubMed

    La Rosa, Stefano; Sessa, Fausto; Capella, Carlo

    2015-01-01

    Acinar cell carcinomas (ACCs) of the pancreas are rare pancreatic neoplasms accounting for about 1-2% of pancreatic tumors in adults and about 15% in pediatric subjects. They show different clinical symptoms at presentation, different morphological features, different outcomes, and different molecular alterations. This heterogeneous clinicopathological spectrum may give rise to difficulties in the clinical and pathological diagnosis with consequential therapeutic and prognostic implications. The molecular mechanisms involved in the onset and progression of ACCs are still not completely understood, although in recent years, several attempts have been made to clarify the molecular mechanisms involved in ACC biology. In this paper, we will review the main clinicopathological and molecular features of pancreatic ACCs of both adult and pediatric subjects to give the reader a comprehensive overview of this rare tumor type.

  13. Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series

    PubMed Central

    Gómez, Giovan F.; Bickersmith, Sara A.; González, Ranulfo; Conn, Jan E.; Correa, Margarita M.

    2015-01-01

    Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI) and nuclear internal transcribed spacer 2 (ITS2) sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs). Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors. PMID:25774795

  14. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development

    NASA Astrophysics Data System (ADS)

    Tallury, Syamal S.; Mineart, Kenneth P.; Woloszczuk, Sebastian; Williams, David N.; Thompson, Russell B.; Pasquinelli, Melissa A.; Banaszak, Michal; Spontak, Richard J.

    2014-09-01

    Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.

  16. Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison

    NASA Astrophysics Data System (ADS)

    Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang

    2017-12-01

    The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.

  17. Molecular insights into early stage aggregation of di-Fmoc-L-lysine in binary mixture of organic solvent and water

    NASA Astrophysics Data System (ADS)

    Huda, Md Masrul; Rai, Neeraj

    Molecular gels are relatively new class of soft materials, which are formed by the supramolecular aggregation of low molecular weight gelators (LMWGs) in organic solvents and/or water. Hierarchical self-assembly of small gelator molecules lead to three-dimensional complex fibrillar networks, which restricts the flow of solvents and results in viscous solid like materials or gels. These gels have drawn significant attentions for their potential applications for drug delivery, tissue engineering, materials for sensors etc. As of now, self-assembly of gelator molecules into one-dimensional fibers is not well understood, although that is very important to design new gelators for desired applications. Here, we present molecular dynamics study that provides molecular level insight into early stage aggregation of selected gelator, di-Fmoc-L-lysine in binary mixture of organic solvent and water. We will present the role of different functional groups of gelator molecule such as aromatic ring, amide, and carboxylic group on aggregation. We will also present the effect of concentrations of gelator and solvent on self-assembly of gelators. This study has captured helical fiber growth and branching of fiber, which is in good agreement with experimental observations.

  18. New insights into the multi-scale climatic drivers of the "Karakoram anomaly"

    NASA Astrophysics Data System (ADS)

    Collier, S.; Moelg, T.; Nicholson, L. I.; Maussion, F.; Scherer, D.; Bush, A. B.

    2012-12-01

    Glacier behaviour in the Karakoram region of the northwestern Himalaya shows strong spatial and temporal heterogeneity and, in some basins, anomalous trends compared with glaciers elsewhere in High Asia. Our knowledge of the mass balance fluctuations of Karakoram glaciers as well as of the important driving factors and interactions between them is limited by a scarcity of in-situ measurements and other studies. Here we employ a novel approach to simulating atmosphere-cryosphere interactions - coupled high-resolution atmospheric and physically-based surface mass balance modelling - to examine the surface energy and mass fluxes of glaciers in this region. We discuss the mesoscale climatic drivers behind surface mass balance fluctuations as well as the influence of local forcing factors, such as debris cover and feedbacks from the glacier surface to the atmosphere. The coupled modelling approach therefore provides an innovative, multi-scale solution to the paucity of information we have to date on the much-debated "Karakoram anomaly."

  19. New Insights on Hydro-Climate Feedback Processes over the Tropical Ocean from TRMM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Li, Xiaofan; Sui, C. H.

    2002-01-01

    In this paper, we study hydro-climate feedback processes over the tropical oceans, by examining the relationships among large scale circulation and Tropical Rainfall Measuring Mission Microwave Imager-Sea Surface Temperature (TMI-SST), and a range of TRMM rain products including rain rate, cloud liquid water, precipitable water, cloud types and areal coverage, and precipitation efficiency. Results show that for a warm event (1998), the 28C threshold of convective precipitation is quite well defined over the tropical oceans. However, for a cold event (1999), the SST threshold is less well defined, especially over the central and eastern Pacific cold tongue, where stratiform rain occurs at much lower than 28 C. Precipitation rates and cloud liquid water are found to be more closely related to the large scale vertical motion than to the underlying SST. While total columnar water vapor is more strongly dependent on SST. For a large domain, over the eastern Pacific, we find that the areal extent of the cloudy region tends to shrink as the SST increases. Examination of the relationship between cloud liquid water and rain rate suggests that the residence time of cloud liquid water tends to be shorter, associated with higher precipitation efficiency in a warmer climate. It is hypothesized that the reduction in cloudy area may be influenced both by the shift in large scale cloud patterns in response to changes in large scale forcings, and possible increase in the cloud liquid water conversion to rain water in a warmer environment. Results of numerical experiments with the Goddard cloud resolving model to test the hypothesis will be discussed.

  20. Coarse-grained modelling of triglyceride crystallisation: a molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe

    2015-12-01

    The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.

  1. Lipid Interaction Sites on Channels, Transporters and Receptors: Recent Insights from Molecular Dynamics Simulations

    PubMed Central

    Hedger, George; Sansom, Mark S. P.

    2017-01-01

    Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244

  2. From genomics to mechanistic insight: a global perspective on molecular deficits induced by environmental agents.

    PubMed

    Ramos, Kenneth S; Steffen, Marlene C; Falahatpisheh, M H; Nanez, Adrian

    2007-06-01

    As the postgenomic era continues to unfold, a new wave of scientific investigation is upon us focusing on the application of genomic technologies to study the meanings encrypted on the DNA code and the responses of living organisms to changes in their environment. Recent functional genomics studies in this laboratory have focused on the role of the aryl hydrocarbon receptor, a ubiquitous transcription factor, in genetic programming during renal development. Also of interest is the application of genomics investigations to the study of chronic medical conditions associated with early life exposures to environmental contaminants. Molecular evidence is discussed in this review within the framework of human molecular medicine.

  3. Preventing iron(ii) precipitation in aqueous systems using polyacrylic acid: some molecular insights.

    PubMed

    Artola, Pierre-Arnaud; Rousseau, Bernard; Clavaguéra, Carine; Roy, Marion; You, Dominique; Plancque, Gabriel

    2018-06-22

    We present molecular dynamics simulations of aqueous iron(ii) systems in the presence of polyacrylic acid (PAA) under the extreme conditions that take place in the secondary coolant circuit of a nuclear power plant. The aim of this work is to understand how the oligomer can prevent iron(ii) deposits, and to provide molecular interpretation. We show how, to this end, not only the complexant ability is necessary, but also the chain length compared to iron(ii) concentration. When the chain is long enough, a hyper-complexation phenomenon occurs that can explain the specific capacity of the polymer to prevent iron(ii) precipitation.

  4. Insight into the binding interactions of CYP450 aromatase inhibitors with their target enzyme: a combined molecular docking and molecular dynamics study.

    PubMed

    Galeazzi, Roberta; Massaccesi, Luca

    2012-03-01

    CYP450 aromatase catalyzes the terminal and rate-determining step in estrogen synthesis, the aromatization of androgens, and its inhibition is an efficient approach to treating estrogen-dependent breast cancer. Insight into the molecular basis of the interaction at the catalytic site between CYP450 aromatase inhibitors and the enzyme itself is required in order to design new and more active compounds. Hence, a combined molecular docking-molecular dynamics study was carried out to obtain the structure of the lowest energy association complexes of aromatase with some third-generation aromatase inhibitors (AIs) and with other novel synthesized letrozole-derived compounds which showed high in vitro activity. The results obtained clearly demonstrate the role of the pharmacophore groups present in the azaheterocyclic inhibitors (NSAIs)-namely the triazolic ring and highly functionalized aromatic moieties carrying H-bond donor or acceptor groups. In particular, it was pointed out that all of them can contribute to inhibition activity by interacting with residues of the catalytic cleft, but the amino acids involved are different for each compound, even if they belong to the same class. Furthermore, the azaheterocyclic group strongly coordinates with the Fe(II) of heme cysteinate in the most active NSAI complexes, while it prefers to adopt another orientation in less active ones.

  5. The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle

    NASA Astrophysics Data System (ADS)

    Buchanan, Pearse J.; Matear, Richard J.; Lenton, Andrew; Phipps, Steven J.; Chase, Zanna; Etheridge, David M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL (Carbon-Ocean-Atmosphere-Land) earth system model to test the contribution of physical and biogeochemical processes to ocean carbon storage. For the LGM simulation, we find a significant global cooling of the surface ocean (3.2 °C) and the expansion of both minimum and maximum sea ice cover broadly consistent with proxy reconstructions. The glacial ocean stores an additional 267 Pg C in the deep ocean relative to the pre-industrial (PI) simulation due to stronger Antarctic Bottom Water formation. However, 889 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration and a global decrease in export production, causing a net loss of carbon relative to the PI ocean. The LGM deep ocean also experiences an oxygenation ( > 100 mmol O2 m-3) and deepening of the calcite saturation horizon (exceeds the ocean bottom) at odds with proxy reconstructions. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content of the glacial ocean can be sufficiently increased (317 Pg C) to explain the reduction in atmospheric and terrestrial carbon at the LGM (194 ± 2 and 330 ± 400 Pg C, respectively). Assuming an LGM-PI difference of 95 ppm pCO2, we find that 55 ppm can be attributed to the biological pump, 28 ppm to circulation changes and the remaining 12 ppm to solubility. The biogeochemical

  6. The simulated climate of the Last Glacial Maximum and insights into the global carbon cycle.

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R.; Lenton, A.; Phipps, S. J.; Chase, Z.; Etheridge, D. M.

    2016-12-01

    The ocean's ability to store large quantities of carbon, combined with the millennial longevity over which this reservoir is overturned, has implicated the ocean as a key driver of glacial-interglacial climates. However, the combination of processes that cause an accumulation of carbon within the ocean during glacial periods is still under debate. Here we present simulations of the Last Glacial Maximum (LGM) using the CSIRO Mk3L-COAL Earth System Model to test the contribution of key biogeochemical processes to ocean carbon storage. For the coupled LGM simulation, we find that significant cooling (3.2 °C), expanded minimum (Northern Hemisphere: 105 %; Southern Hemisphere: 225 %) and maximum (Northern Hemisphere: 145 %; Southern Hemisphere: 120 %) sea ice cover, and a reorganisation of the overturning circulation caused significant changes in ocean biogeochemical fields. The coupled LGM simulation stores an additional 322 Pg C in the deep ocean relative to the Pre-Industrial (PI) simulation. However, 839 Pg C is lost from the upper ocean via equilibration with a lower atmospheric CO2 concentration, causing a net loss of 517 Pg C relative to the PI simulation. The LGM deep ocean also experiences an oxygenation (>100 mmol O2 m-3) and deepening of the aragonite saturation depth (> 2,000 m deeper) at odds with proxy reconstructions. Hence, these physical changes cannot in isolation produce plausible biogeochemistry nor the required drawdown of atmospheric CO2 of 80-100 ppm at the LGM. With modifications to key biogeochemical processes, which include an increased export of organic matter due to a simulated release from iron limitation, a deepening of remineralisation and decreased inorganic carbon export driven by cooler temperatures, we find that the carbon content in the glacial oceanic reservoir can be increased (326 Pg C) to a level that is sufficient to explain the reduction in atmospheric and terrestrial carbon at the LGM (520 ± 400 Pg C). These modifications

  7. Late Triassic tropical climate of Pangea: Carbon isotopic and other insights into the rise of dinosaurs

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Lindström, S.; Irmis, R. B.; Glasspool, I.; Schaller, M. F.; Dunlavey, M.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H.

    2015-12-01

    The rarity and species-poor nature of early dinosaurs and their relatives at low paleolatitudes persisted for 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New environmental reconstructions from stable carbon isotope ratios of preserved organic matter (δ13Corg), atmospheric pCO2 data based on the δ13C of soil carbonate, palynological, and wildfire data from charcoal from early dinosaur-bearing strata at low paleolatitudes in western North America show that variations in δ13Corg and palynomorph ecotypes are tightly correlated, displaying large and high-frequency excursions. These variations occurred within an environment characterized by elevated and increasing atmospheric pCO2, pervasive wildfires, and rapidly fluctuating extreme climatic conditions. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions until the end-Triassic, the large-bodied, fast-growing tachymetabolic dinosaurian herbivores were not. We hypothesize that the greater resources required by the herbivores made it difficult from them to adapt to the unstable conditions at low paleolatitudes in the Late Triassic.

  8. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water.

    PubMed

    Ouyang, Hailong; Hu, Chunxiang

    2017-05-31

    Biocrusts are model ecosystems of global change studies. However, light and non-rainfall water (NRW) were previously few considered. Different biocrust types further aggravated the inconsistence. So carbon-exchange of biocrusts (cyanobacteria crusts-AC1/AC2; cyanolichen crust-LC1; chlorolichen crust-LC2; moss crust-MC) utilizing NRW at various temperatures and light-intensities were determined under simulated and insitu mesocosm experiments. Carbon input of all biocrusts were negatively correlated with experimental temperature under all light-intensity with saturated water and stronger light with equivalent NRW, but positively correlated with temperature under weak light with equivalent NRW. LCPs and R/Pg of AC1 were lowest, followed in turn by AC2, LC2 and MC. Thus AC1 had most opportunities to use NRW, and 2.5 °C warming did cause significant changes of carbon exchange. Structural equation models further revealed that air-temperature was most important for carbon-exchange of ACs, but equally important as NRW for LC2 and MC; positive influence of warming on carbon-input in ACs was much stronger than the latter. Therefore, temperature effect on biocrust carbon-input depends on both moisture and light. Meanwhile, the role of NRW, transitional states between ACs, and obvious carbon-fixation differences between lichen crusts should be fully considered in the future study of biocrusts responding to climate change.

  9. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  10. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans

    PubMed Central

    2013-01-01

    Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss. PMID:23394579

  11. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    SciTech Connect

    Rastogi, Monisha; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in; Materials Research Centre, Indian Institute of Science, Bangalore 560 012

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generatedmore » and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.« less

  12. New insights into molecular diagnostic pathology of primary liver cancer: Advances and challenges.

    PubMed

    Cong, Wen-Ming; Wu, Meng-Chao

    2015-11-01

    Primary liver cancer (PLC) is one of the most common malignancies worldwide with increasing incidence and accounts for the third leading cause of cancer-related mortality. Traditional morphopathology primarily emphasizes qualitative diagnosis of PLC, which is not sufficient to resolve the major concern of increasing the long-term treatment efficacy of PLC in clinical management for the modern era. Since the beginning of the 21st century, molecular pathology has played an active role in the investigation of the evaluation of the metastatic potential of PLC, detection of drug targets, prediction of recurrence risks, analysis of clonal origins, evaluation of the malignancy trend of precancerous lesions, and determination of clinical prognosis. As a result, many new progresses have been obtained, and new strategies of molecular-pathological diagnosis have been formed. Moreover, the new types of pathobiological diagnosis indicator systems for PLC have been preliminarily established. These achievements provide valuable molecular pathology-based guide for clinical formulation of individualized therapy programs for PLC. This review article briefly summarizes some relevant progresses of molecular-pathological diagnosis of PLC from the perspective of clinical translational application other than basic experimental studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme—Catalase

    PubMed Central

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals’ forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  14. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    PubMed Central

    Próchnicki, Tomasz; Mangan, Matthew S.; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation. PMID:27508077

  15. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    PubMed

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  16. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    PubMed Central

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  17. Understanding impacts of climatic extremes on diarrheal disease epidemics: Insights from mechanistic disease propagation models

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2013-12-01

    increased climatic variability, such as acceleration of hydrological cycle, hydroclimatic hazards, etc on diarrheal disease outbreaks.

  18. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    PubMed

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  19. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change

    PubMed Central

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification. PMID:26510159

  20. Relationships between contourite deposition, climate and slope instability: new insights from the Demerara Plateau (French Guyana)

    NASA Astrophysics Data System (ADS)

    Tallobre, C.; Bassetti, M. A.; Loncke, L.; Giresse, P.; Bayon, G.; Buscail, R.

    2015-12-01

    A Contourite Depositional System (CDS) has been described at the Demerara Plateau (DP) based on seismic investigations, but little is known about the mechanisms of associated sediment deposition and its interaction with past deep ocean circulation patterns (e.g. bottom current velocity) and bottom morphology related to ancient event of slope instability. The new seismic and bathymetric data recently acquired allow describing in details the CDS on the DP. Erosional and syn-sedimentary features on the seafloor (comet tail, « longitudinal waves », contourite drifts and moats) have been observed, helping to constrain the sedimentary processes at the origin of the CDS construction. Also, the recovery and multi-proxy analysis of sediment cores allows the characterization of sedimentary environments and possible relation with climate forcing. These sediment cores are characterized by the presence of several beds rich in glauconite grains. Glauconite can form at the sediment/water interface by winnowing effect that prevent sediment deposition and increase the residence time at the seafloor. Under strong winnowing conditions, glauconite grains can develop at several stages of maturity. We observed that the residence time and hence the maturity of glauconite is reflected by the color changes (light to dark green), the presence of crack on grains, the formation of (secondary) glauconite lamellae and decrease of grain porosity. A chronological framework (based on radiocarbon dates and δ18O variations) of contourite sequences at the studied location indicates correlation with grain-size parameters (sortable silt) and allows one to further constrain their dynamics through time. The combination of these proxies allows us to estimate and understand the evolution and the impact of the bottom current on sedimentation on the DP during the last 80 ky. These results show the potentiality of the glauconite study to estimate the relative variation of bottom current velocity at margins.

  1. Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod

    PubMed Central

    Townhill, Bryony L.; Maxwell, David; Engelhard, Georg H.; Simpson, Stephen D.; Pinnegar, John K.

    2015-01-01

    Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond. PMID:26331271

  2. Radiocarbon dating of American pika fecal pellets provides insights into population extirpations and climate refugia.

    PubMed

    Millar, Constance I; Heckman, Katherine; Swanston, Christopher; Schmidt, Karena; Westfall, Robert D; Delany, Diane L

    The American pika (Ochotona princeps) has become a species of concern for its sensitivity to warm temperatures and potential vulnerability to global warming. We explored the value of radiocarbon dating of fecal pellets to address questions of population persistence and timing of site extirpation. Carbon was extracted from pellets collected at 43 locations in the western Great Basin, USA, including three known occupied sites and 40 sites of uncertain status at range margins or where previous studies indicated the species is vulnerable. We resolved calibrated dates with high precision (within several years), most of which fell in the period of the mid-late 20th century bomb curve. The two-sided nature of the bomb curve renders far- and near-side dates of equal probability, which are separated by one to four decades. We document methods for narrowing resolution to one age range, including stratigraphic analysis of vegetation collected from pika haypiles. No evidence was found for biases in atmospheric 14C levels due to fossil-derived or industrial CO2 contamination. Radiocarbon dating indicated that pellets can persist for >59 years; known occupied sites resolved contemporary dates. Using combined evidence from field observations and radiocarbon dating, and the Bodie Mountains as an example, we propose a historical biogeographic scenario for pikas in minor Great Basin mountain ranges adjacent to major cordillera, wherein historical climate variability led to cycles of extirpation and recolonization during alternating cool and warm centuries. Using this model to inform future dynamics for small ranges in biogeographic settings similar to the Bodie Mountains in California, extirpation of pikas appears highly likely under directional warming trends projected for the next century, even while populations in extensive cordillera (e.g., Sierra Nevada, Rocky Mountains, Cascade Range) are likely to remain viable due to extensive, diverse habitat and high connectivity.

  3. Stereoselective binding of agonists to the β2-adrenergic receptor: insights into molecular details and thermodynamics from molecular dynamics simulations.

    PubMed

    Plazinska, Anita; Plazinski, Wojciech

    2017-05-02

    The β 2 -adrenergic receptor (β 2 -AR) is one of the most studied G-protein-coupled receptors. When interacting with ligand molecules, it exhibits a binding characteristic that is strongly dependent on ligand stereoconfiguration. In particular, many experimental and theoretical studies confirmed that stereoisomers of an important β 2 -AR agonist, fenoterol, are associated with diverse mechanisms of binding and activation of β 2 -AR. The objective of the present study was to explore the stereoselective binding of fenoterol to β 2 -AR through the application of an advanced computational methodology based on enhanced-sampling molecular dynamics simulations and potentials of interactions tailored to investigate the stereorecognition effects. The results remain in very good, quantitative agreement with the experimental data (measured in the context of ligand-receptor affinities and their dependence on the temperature), which provides an additional validation for the applied computational protocols. Additionally, our results contribute to the understanding of stereoselective agonist binding by β 2 -AR. Although the significant role of the N293 6.55 residue is confirmed, we additionally show that stereorecognition does not depend solely on the N293-ligand interactions; the stereoselective effects rely on the co-operation of several residues located on both the 6th and 7th transmembrane domains and on extracellular loops. The magnitude and character of the contributions of these residues may be very diverse and result in either enhancing or reducing the stereoselective effects. The same is true when considering the enthalpic and entropic contributions to the binding free energies, which also are dependent on the ligand stereoconfiguration.

  4. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  5. Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes.

    PubMed

    Tomlins, Scott A; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Yousefi, Kasra; Zhao, Shuang; Haddad, Zaid; Den, Robert B; Dicker, Adam P; Trock, Bruce J; DeMarzo, Angelo M; Ross, Ashley E; Schaeffer, Edward M; Klein, Eric A; Magi-Galluzzi, Cristina; Karnes, R Jeffrey; Jenkins, Robert B; Feng, Felix Y

    2015-10-01

    Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests. To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping. We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)). Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves. The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p<0.001). m-ETS(+) tumors were associated with seminal vesicle invasion (p=0.01), while m-SPINK1(+)/triple negative tumors had higher Gleason scores and were more frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly different among subtypes. A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes

  6. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    PubMed

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  7. Molecular insights into the heterogeneous crystal growth of si methane hydrate.

    PubMed

    Vatamanu, Jenel; Kusalik, Peter G

    2006-08-17

    In this paper we report a successful molecular simulation study exploring the heterogeneous crystal growth of sI methane hydrate along its [001] crystallographic face. The molecular modeling of the crystal growth of methane hydrate has proven in the past to be very challenging, and a reasonable framework to overcome the difficulties related to the simulation of such systems is presented. Both the microscopic mechanisms of heterogeneous crystal growth as well as interfacial properties of methane hydrate are probed. In the presence of the appropriate crystal template, a strong tendency for water molecules to organize into cages around methane at the growing interface is observed; the interface also demonstrates a strong affinity for methane molecules. The maximum growth rate measured for a hydrate crystal is about 4 times higher than the value previously determined for ice I in a similar framework (Gulam Razul, M. S.; Hendry, J. G.; Kusalik, P. G. J. Chem. Phys. 2005, 123, 204722).

  8. Environmental controls on denitrifying communities and denitrification rates--Insights from molecular methods

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Myrold, David D.; Firestone, Mary; Voytek, Mary

    2006-01-01

    The advent of molecular techniques has improved our understanding of the microbial communities responsible for denitrification and is beginning to address their role in controlling denitrification processes. There is a large diversity of bacteria, archaea, and fungi capable of denitrification, and their community composition is structured by long-term environmental drivers. The range of temperature and moisture conditions, substrate availability, competition, and disturbances have long-lasting legacies on denitrifier community structure. These communities may differ in physiology, environmental tolerances to pH and O2, growth rate, and enzyme kinetics. Although factors such as O2, pH, C availability, and NO3− pools affect instantaneous rates, these drivers act through the biotic community. This review summarizes the results of molecular investigations of denitrifier communities in natural environments and provides a framework for developing future research for addressing connections between denitrifier community structure and function.

  9. Interaction of vasicine with calf thymus DNA: Molecular docking, spectroscopic and differential scanning calorimetric insights.

    PubMed

    R S, Sai Murali; R S, Sai Siddhardha; D, Rajesh Babu; S, Venketesh; R, Basavaraju; G, Nageswara Rao

    2017-06-05

    The present study brings out the interaction between vasicine, an alkaloid and Adhatoda vasica Nees with double stranded DNA. The physico-chemical interaction between small molecules and nucleic acids is a major area of focus in screening drugs against various cancers. Molecular probing in our study using Molecular Operating Environment (MOE) has revealed interaction of vasicine with DNA double helix. Here we report the interaction of vasicine with Calf thymus DNA. We present for the first time the results obtained from UV-visible, fluorescence spectroscopic and differential scanning calorimetric techniques that suggest a moderate to strong electrostatic, hydrophobic and van der Waals interactions mediating the DNA binding properties of vasicine, leading to disruption of DNA secondary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Insights into H2 formation in space from ab initio molecular dynamics

    PubMed Central

    Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco

    2013-01-01

    Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584

  11. Interaction of vasicine with calf thymus DNA: Molecular docking, spectroscopic and differential scanning calorimetric insights

    NASA Astrophysics Data System (ADS)

    R. S., Sai Murali; R. S., Sai Siddhardha; Rajesh Babu, D.; Venketesh, S.; Basavaraju, R.; Nageswara Rao, G.

    2017-06-01

    The present study brings out the interaction between vasicine, an alkaloid and Adhatoda vasica Nees with double stranded DNA. The physico-chemical interaction between small molecules and nucleic acids is a major area of focus in screening drugs against various cancers. Molecular probing in our study using Molecular Operating Environment (MOE) has revealed interaction of vasicine with DNA double helix. Here we report the interaction of vasicine with Calf thymus DNA. We present for the first time the results obtained from UV-visible, fluorescence spectroscopic and differential scanning calorimetric techniques that suggest a moderate to strong electrostatic, hydrophobic and van der Waals interactions mediating the DNA binding properties of vasicine, leading to disruption of DNA secondary structure.

  12. Aminoglycosides: Molecular Insights on the Recognition of RNA and Aminoglycoside Mimics

    PubMed Central

    Chittapragada, Maruthi; Roberts, Sarah; Ham, Young Wan

    2009-01-01

    RNA is increasingly recognized for its significant functions in biological systems and has recently become an important molecular target for therapeutics development. Aminoglycosides, a large class of clinically significant antibiotics, exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, aminoglycosides are accepted as the single most important model in understanding the principles that govern small molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological efficacy, binding affinity and selectivity, or to circumvent bacterial resistance. PMID:19812740

  13. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach.

    PubMed

    Cheng, Li-Yang; Fang, Min; Bai, Ai-Min; Ouyang, Yu; Hu, Yan-Jun

    2017-08-01

    In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern-Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 10 4  L·mol -1 . Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Molecular insight in gastric cancer induction: an overview of cancer stemness genes.

    PubMed

    Akhavan-Niaki, Haleh; Samadani, Ali Akbar

    2014-04-01

    Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.

  15. New insights into the molecular mechanism of intestinal fatty acid absorption.

    PubMed

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  16. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei

    PubMed Central

    Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes

  17. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  18. Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network.

    PubMed

    Sunakawa, Yu; Lenz, Heinz-Josef

    2015-04-01

    Gastric cancer is a heterogenous cancer, which may be classified into several distinct subtypes based on pathology and epidemiology, each with different initiating pathological processes and each possibly having different tumor biology. A classification of gastric cancer should be important to select patients who can benefit from the targeted therapies or to precisely predict prognosis. The Cancer Genome Atlas (TCGA) study collaborated with previous reports regarding subtyping gastric cancer but also proposed a refined classification based on molecular characteristics. The addition of the new molecular classification strategy to a current classical subtyping may be a promising option, particularly stratification by Epstein-Barr virus (EBV) and microsatellite instability (MSI) statuses. According to TCGA study, EBV gastric cancer patients may benefit the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibodies or phosphoinositide 3-kinase (PI3K) inhibitors which are now being developed. The discoveries of predictive biomarkers should improve patient care and individualized medicine in the management since the targeted therapies may have the potential to change the landscape of gastric cancer treatment, moreover leading to both better understanding of the heterogeneity and better outcomes. Patient enrichment by predictive biomarkers for new treatment strategies will be critical to improve clinical outcomes. Additionally, liquid biopsies will be able to enable us to monitor in real-time molecular escape mechanism, resulting in better treatment strategies.

  19. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection

    PubMed Central

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung. PMID:28912729

  20. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    PubMed

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  1. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum

    PubMed Central

    O’Brien, Connor; Henrich, Philipp P.; Passi, Neha; Fidock, David A.

    2012-01-01

    Purpose of review Artemisinin-based combination therapies (ACTs) have been deployed globally with remarkable success for more than 10 years without having lost their malaria treatment efficacy. However, recent reports from the Thai–Cambodian border reveal evidence of emerging resistance to artemisinins. The latest published clinical and molecular findings are summarized herein. Recent findings Clinical studies have identified delayed parasite clearance time as the most robust marker of artemisinin resistance. Resistance has only been documented from Southeast Asia and has been observed in isolates that show no significant decrease in drug susceptibility in vitro. Genetic investigations have yet to uncover robust molecular markers. In-vitro studies have identified parasite quiescence or dormancy mechanisms that protect early ‘ring-stage’ intra-erythrocytic parasites against short-term artemisinin exposure. This might be achieved by reducing the rate of hemoglobin degradation, important for artemisinin bioactivation. Summary Should ACTs fail, no suitable alternatives exist as first-line treatments of P. falciparum malaria. Intensified efforts are essential to monitor the spread of resistance, define therapeutic and operational strategies to counter its impact, and understand its molecular basis. Success in these areas is critical to ensuring that recent gains in reducing the burden of malaria are not lost. PMID:22001944

  2. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    DOE PAGES

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; ...

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less

  3. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    PubMed

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  4. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    PubMed Central

    Fu, Ting; Min, Hanyi; Xu, Yong; Chen, Jianzhong; Li, Guohui

    2012-01-01

    As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level. PMID:22949826

  5. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.

    PubMed

    Zhu, Wandi; Varga, Zoltan; Silva, Jonathan R

    2016-01-01

    Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest‐like stemness as a target

    PubMed Central

    Panaccione, Alexander; Chang, Michael T.; Ivanov, Sergey V.

    2016-01-01

    Objectives This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest‐like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. Data Sources Articles available on Pubmed or OVID MEDLINE databases and unpublished data. Review Methods Systematic review of articles pertaining to ACC and neural crest‐like stem cells. Results Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest‐like stemness is a major target in this rare tumor. New cell culture techniques and patient‐derived xenografts provide tools for preclinical testing. Conclusion Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest‐like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC. PMID:28894804

  7. New Insight into the Colonization Processes of Common Voles: Inferences from Molecular and Fossil Evidence

    PubMed Central

    Tougard, Christelle; Renvoisé, Elodie; Petitjean, Amélie; Quéré, Jean-Pierre

    2008-01-01

    Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity. PMID:18958287

  8. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  9. Equipartition terms in transition path ensemble: Insights from molecular dynamics simulations of alanine dipeptide.

    PubMed

    Li, Wenjin

    2018-02-28

    Transition path ensemble consists of reactive trajectories and possesses all the information necessary for the understanding of the mechanism and dynamics of important condensed phase processes. However, quantitative description of the properties of the transition path ensemble is far from being established. Here, with numerical calculations on a model system, the equipartition terms defined in thermal equilibrium were for the first time estimated in the transition path ensemble. It was not surprising to observe that the energy was not equally distributed among all the coordinates. However, the energies distributed on a pair of conjugated coordinates remained equal. Higher energies were observed to be distributed on several coordinates, which are highly coupled to the reaction coordinate, while the rest were almost equally distributed. In addition, the ensemble-averaged energy on each coordinate as a function of time was also quantified. These quantitative analyses on energy distributions provided new insights into the transition path ensemble.

  10. Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling

    DOE PAGES

    Vlcek, Lukas; Chialvo, Ariel A.

    2016-01-03

    The importance of single-ion hydration thermodynamic properties for understanding the driving forces of aqueous electrolyte processes, along with the impossibility of their direct experimental measurement, have prompted a large number of experimental, theoretical, and computational studies aimed at separating the cation and anion contributions. Here we provide an overview of historical approaches based on extrathermodynamic assumptions and more recent computational studies of single-ion hydration in order to evaluate the approximations involved in these methods, quantify their accuracy, reliability, and limitations in the light of the latest developments. Finally, we also offer new insights into the factors that influence the accuracymore » of ion–water interaction models and our views on possible ways to fill this substantial knowledge gap in aqueous physical chemistry.« less

  11. Crater palaeolakes in the Tibesti mountains (Central Sahara, North Chad) - New insights into past Saharan climates

    NASA Astrophysics Data System (ADS)

    Kröpelin, Stefan; Dinies, Michèle; Sylvestre, Florence; Hoelzmann, Philipp

    2016-04-01

    For the first time continuous lacustrine sections were sampled from the volcanic Tibesti Mountains (Chad): In the 900 m deep crater of Trou au Natron at Pic Toussidé (3,315 m a.s.l.) and from the 800 m deep Era Kohor, the major sub-caldera of Emi Koussi (3,445 m a.s.l.). The remnant diatomites on their slopes are located 360 m (Trou au Natron) and 125 m (Era Kohor) above the present day bottom of the calderas. These sediments from highly continental positions in the central Sahara are keys for the reconstruction of the last climatic cycles (Kröpelin et al. 2015). We report first results from sedimentary-geochemical (total organic and total inorganic carbon contents; total nitrogen; major elements; mineralogy) and palynological analyses for palaeo-environmental interpretations. The diatomites from the Trou au Natron comprise 330 cm of mostly calcitic sediments with relatively low organic carbon (<2.5 %) and strongly varying aragonite and gypsum contents. Major elements (Ca, Fe, K, Mg, Mn, Na, P, S, Sr), elemental ratios (Sr/Ca, Mg/Ca, Fe/Mn) and the mineralogy are used to interpret the lake's salinity, productivity and ecological conditions. Trilete spores are preserved throughout the sequence, probably reflecting local moss/fern stands. Regional pollen rain-e.g. grasses and wormwood-is scarcely represented. Golden algae dominate in the lower section. The results of the first palynological samples suggest a small sedimentation basin. Two 14C-dated charcoals out of the upper part of the section indicate mid-Holocene ages and a linear extrapolation based on a sediment accumulation rate of 1.4mma-1 would lead to tentative dates of ~8650 cal a BP for basal lacustrine sediments and ~4450 cal a BP for the cessation of this lacustrine sequence. The diatomites from the Era Kohor reflect a suite of sections that in total sum up to 145 cm of mostly silica-based sediments with very low carbon contents (< 2% TC). Calcite dominated sediments are only present in the topmost 15

  12. Insights into the Functions of M-T Hook Structure in HIV Fusion Inhibitor Using Molecular Modeling.

    PubMed

    Tan, Jianjun; Yuan, Hongling; Li, Chunhua; Zhang, Xiaoyi; Wang, Cunxin

    2016-04-01

    HIV-1 membrane fusion plays an important role in the process that HIV-1 entries host cells. As a treatment strategy targeting HIV-1 entry process, fusion inhibitors have been proposed. Nevertheless, development of a short peptide possessing high anti-HIV potency is considered a daunting challenge. He et al. found that two residues, Met626 and Thr627, located the upstream of the C-terminal heptad repeat of the gp41, formed a unique hook-like structure (M-T hook) that can dramatically improve the binding stability and anti-HIV activity of the inhibitors. In this work, we explored the molecular mechanism why M-T hook structure could improve the anti-HIV activity of inhibitors. Firstly, molecular dynamic simulation was used to obtain information on the time evolution between gp41 and ligands. Secondly, based on the simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface area (MM-GBSA) methods were used to calculate the binding free energies. The binding free energy of the ligand with M-T hook was considerably higher than the other without M-T. Further studies showed that the hydrophobic interactions made the dominant contribution to the binding free energy. The numbers of Hydrogen bonds between gp41 and the ligand with M-T hook structure were more than the other. These findings should provide insights into the inhibition mechanism of the short peptide fusion inhibitors and be useful for the rational design of novel fusion inhibitors in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  14. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions.

    PubMed

    Ansell, Brendan R E; Schnyder, Manuela; Deplazes, Peter; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Mangiola, Stefano; Boag, Peter R; Hofmann, Andreas; Sternberg, Paul W; Jex, Aaron R; Gasser, Robin B

    2013-12-01

    Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention. © 2013.

  15. Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-10-01

    The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders' perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.

  16. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte.

    PubMed

    Roth, Zvi

    2017-02-08

    Among the components of the female reproductive tract, the ovarian pool of follicles and their enclosed oocytes are highly sensitive to hyperthermia. Heat-induced alterations in small antral follicles can be expressed later as compromised maturation and developmental capacity of the ovulating oocyte. This review summarizes the most up-to-date information on the effects of heat stress on the oocyte with an emphasis on unclear points and open questions, some of which might involve new research directions, for instance, whether preantral follicles are heat resistant. The review focuses on the follicle-enclosed oocytes, provides new insights into the cellular and molecular responses of the oocyte to elevated temperature, points out the role of the follicle microenvironment, and discusses some mechanisms that might underlie oocyte impairment. Mechanisms include nuclear and cytoplasmic maturation, mitochondrial function, apoptotic pathways, and oxidative stress. Understanding the mechanism by which heat stress compromises fertility might enable development of new strategies to mitigate its effects.

  17. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits

    PubMed Central

    Perilla, Juan R; Schlicksup, Christopher John; Venkatakrishnan, Balasubramanian; Zlotnick, Adam; Schulten, Klaus

    2018-01-01

    The hepatitis B virus capsid represents a promising therapeutic target. Experiments suggest the capsid must be flexible to function; however, capsid structure and dynamics have not been thoroughly characterized in the absence of icosahedral symmetry constraints. Here, all-atom molecular dynamics simulations are leveraged to investigate the capsid without symmetry bias, enabling study of capsid flexibility and its implications for biological function and cryo-EM resolution limits. Simulation results confirm flexibility and reveal a propensity for asymmetric distortion. The capsid’s influence on ionic species suggests a mechanism for modulating the display of cellular signals and implicates the capsid’s triangular pores as the location of signal exposure. A theoretical image reconstruction performed using simulated conformations indicates how capsid flexibility may limit the resolution of cryo-EM. Overall, the present work provides functional insight beyond what is accessible to experimental methods and raises important considerations regarding asymmetry in structural studies of icosahedral virus capsids. PMID:29708495

  18. Molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with cyanide biodegradation by Serratia marcescens.

    PubMed

    Kushwaha, Madhulika; Kumar, Virender; Mahajan, Rishi; Bhalla, Tek Chand; Chatterjee, Subhankar; Akhter, Yusuf

    2018-05-09

    The present study provides molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with degradation of cyanide compounds, using Serratia marcescens RL2b as a model organism. Resting cells harvested after 20 h achieved complete degradation of 12 mmol l - 1 cyanide in approximately 10 h. High-performance liquid chromatography analysis of reaction samples revealed formation of formamide as the only end product, which confirmed the presence of cyanide hydratase activity in S. marcescens RL2b. Comparative structural analysis with the other nitrilase family proteins, which was carried out using a sequence of cyanide hydratase from a phylogenetically related strain S. marcescens WW4, also revealed subtle but significant differences in amino acid residues of the substrate-binding pocket and catalytic triad (Cys-Lys-Glu).

  19. Insight of Transmembrane Processes of Self-Assembling Nanotubes Based on a Cyclic Peptide Using Coarse Grained Molecular Dynamics Simulation.

    PubMed

    Fu, Yankai; Yan, Tingxuan; Xu, Xia

    2017-09-28

    Transmembrane self-assembling cyclic peptide (SCP) nanotubes are promising candidates for delivering specific molecules through cell membranes. The detailed mechanisms behind the transmembrane processes, as well as stabilization factors of transmembrane structures, are difficult to elucidate through experiments. In this study, the effects of peptide sequence and oligomeric state on the transmembrane capabilities of SCP nanotubes and the perturbation of embedded SCP nanotubes acting on the membrane were investigated based on coarse grained molecular dynamics simulation. The simulation results reveal that hydrophilic SCP oligomers result in the elevation of the energy barrier while the oligomerization of hydrophobic SCPs causes the reduction of the energy barrier, further leading to membrane insertion. Once SCP nanotubes are embedded, membrane properties such as density, thickness, ordering state and lateral mobility are adjusted along the radial direction. This study provides insight into the transmembrane strategy of SCP nanotubes and sheds light on designing novel transport systems.

  20. Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase

    PubMed Central

    Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus

    2004-01-01

    F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464

  1. Extending Molecular Signatures of Climatic and Environmental Change to the Mesozoic

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2007-12-01

    The distributions, abundances and isotopic compositions of molecular constituents in sediments depend on their source organisms and the combination of environmental and climatic parameters that constrain or control their biosynthesis. Many such relationships are well documented and understood, thereby providing proxies of proven utility in paleoclimatic reconstructions. Thus, the temperature dependence in the extent of unsaturation in alkenones derived from prymnesiophyte algae, and in the proportion of ring structures in glycerol dibiphytanyl glycerol tetraethers (GDGTs) synthesized by crenarchaeota enables determination of sea surface paleotemperatures from sedimentary records. This molecular approach presumes temporal uniformity in the controlling factors on biosynthesis of these lipids, and their survival in the geological record, notwithstanding the challenge of establishing ancient calibrations for such proxies. Thus, alkenone records from marine sediments document cooling at the Eocene/Oligocene boundary but cannot assess changes in ocean temperatures during the Cretaceous, unlike GDGTs, which record fluctuations in ocean temperatures during the Early Cretaceous, and even survive in Jurassic strata. Other molecular measures offer less precise, yet informative, indications of climate. For example, the occurrence of sterol ethers in Valanginian sediments from the mid-Pacific suggests some cooling at that time, since these compounds are only known to occur elsewhere in cold waters or upwelling systems. Molecular compositions can also attest to levels of oxygenation in marine systems. In particular, the occurrence of 13C-depleted isorenieratane indicates the presence of photosynthetic green sulfur bacteria, and therefore anoxic conditions, albeit perhaps short-lived. Intermittent occurrences of isorenieratane often alternate with the appearance of 2-methylhopanoids, which provide separate distinct evidence for variations in oxygenation, linked to circumstances

  2. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations.

    PubMed

    Jain, Vaibhav; Maiti, Prabal K; Bharatam, Prasad V

    2016-09-28

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH 2 ) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH 2 ) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH 2 ) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  3. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  4. Insight into the novel inhibition mechanism of apigenin to Pneumolysin by molecular modeling

    NASA Astrophysics Data System (ADS)

    Niu, Xiaodi; Yang, Yanan; Song, Meng; Wang, Guizhen; Sun, Lin; Gao, Yawen; Wang, Hongsu

    2017-11-01

    In this study, the mechanism of apigenin inhibition was explored using molecular modelling, binding energy calculation, and mutagenesis assays. Energy decomposition analysis indicated that apigenin binds in the gap between domains 3 and 4 of PLY. Using principal component analysis, we found that binding of apigenin to PLY weakens the motion of domains 3 and 4. Consequently, these domains cannot complete the transition from monomer to oligomer, thereby blocking oligomerisation of PLY and counteracting its haemolytic activity. This inhibitory mechanism was confirmed by haemolysis assays, and these findings will promote the future development of an antimicrobial agent.

  5. Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics.

    PubMed

    Haldar, Susanta; Kührová, Petra; Banáš, Pavel; Spiwok, Vojtěch; Šponer, Jiří; Hobza, Pavel; Otyepka, Michal

    2015-08-11

    RNA hairpins capped by 5'-GNRA-3' or 5'-UNCG-3' tetraloops (TLs) are prominent RNA structural motifs. Despite their small size, a wealth of experimental data, and recent progress in theoretical simulations of their structural dynamics and folding, our understanding of the folding and unfolding processes of these small RNA elements is still limited. Theoretical description of the folding and unfolding processes requires robust sampling, which can be achieved by either an exhaustive time scale in standard molecular dynamics simulations or sophisticated enhanced sampling methods, using temperature acceleration or biasing potentials. Here, we study structural dynamics of 5'-GNRA-3' and 5'-UNCG-3' TLs by 15-μs-long standard simulations and a series of well-tempered metadynamics, attempting to accelerate sampling by bias in a few chosen collective variables (CVs). Both methods provide useful insights. The unfolding and refolding mechanisms of the GNRA TL observed by well-tempered metadynamics agree with the (reverse) folding mechanism suggested by recent replica exchange molecular dynamics simulations. The orientation of the glycosidic bond of the GL4 nucleobase is critical for the UUCG TL folding pathway, and our data strongly support the hypothesis that GL4-anti forms a kinetic trap along the folding pathway. Along with giving useful insight, our study also demonstrates that using only a few CVs apparently does not capture the full folding landscape of the RNA TLs. Despite using several sophisticated selections of the CVs, formation of the loop appears to remain a hidden variable, preventing a full convergence of the metadynamics. Finally, our data suggest that the unfolded state might be overstabilized by the force fields used.

  6. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers.

    PubMed

    Betson, Martha; Sousa-Figueiredo, Jose C; Kabatereine, Narcis B; Stothard, J Russell

    2013-01-01

    Significant numbers of pre-school children are infected with Schistosoma mansoni in sub-Saharan Africa and are likely to play a role in parasite transmission. However, they are currently excluded from control programmes. Molecular phylogenetic studies have provided insights into the evolutionary origins and transmission dynamics of S. mansoni, but there has been no research into schistosome molecular epidemiology in pre-school children. Here, we investigated the genetic diversity and population structure of S. mansoni in pre-school children and mothers living in lakeshore communities in Uganda and monitored for changes over time after praziquantel treatment. Parasites were sampled from children (<6 years) and mothers enrolled in the longitudinal Schistosomiasis Mothers and Infants Study at baseline and at 6-, 12- and 18-month follow-up surveys. 1347 parasites from 35 mothers and 45 children were genotyped by direct sequencing of the cytochrome c oxidase (cox1) gene. The cox1 region was highly diverse with over 230 unique sequences identified. Parasite populations were genetically differentiated between lakes and non-synonymous mutations were more diverse at Lake Victoria than Lake Albert. Surprisingly, parasite populations sampled from children showed a similar genetic diversity to those sampled from mothers, pointing towards a non-linear relationship between duration of exposure and accumulation of parasite diversity. The genetic diversity six months after praziquantel treatment was similar to pre-treatment diversity. Our results confirm the substantial genetic diversity of S. mansoni in East Africa and provide significant insights into transmission dynamics within young children and mothers, important information for schistosomiasis control programmes.

  7. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    PubMed

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  8. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.

    PubMed

    Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis

    2017-01-01

    Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  9. Binding of carbendazim to bovine serum albumin: Insights from experimental and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Zhang, Yulei; Hu, Lin; Kong, Yaling; Jin, Changqing; Xi, Zengzhe

    2017-07-01

    Carbendazim (CBZ) is a widely used benzimidazole fungicide in agriculture to control a wide range of fruit and vegetable pathogens, which may lead to potential health hazards. To evaluate the potential toxicity of CBZ, the binding mechanism of bovine serum albumin (BSA) with CBZ was investigated by the fluorescence quenching technology, UV absorbance spectra, circular dichroism (CD), and molecular modeling. The fluorescence titration and UV absorbance spectra revealed that the fluorescence quenching mechanism of BSA by CBZ was a combined quenching process. In addition, the studies of CD spectra suggested that the binding of CBZ to BSA changed the secondary structure of protein. Furthermore, the thermodynamic functions of enthalpy change (ΔH0) and entropy change (ΔS0) for the reaction were calculated to be 24.87 kJ mol-1 and 162.95 J mol-1 K-1 according to Van't Hoff equation. These data suggested that hydrophobic interaction play a major role in the binding of CBZ to BSA, which was in good agreement with the result of molecular modeling study.

  10. Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models

    PubMed Central

    Datta, Gourab; Fuller, Barry J; Davidson, Brian R

    2013-01-01

    Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery. Understanding the mechanisms of liver ischemia reperfusion injury (IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation, as well as expanding the potential pool of usable donor grafts. The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes, increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis. Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury. IRI involves a complex interplay between neutrophils, natural killer T-cells cells, CD4+ T cell subtypes, cytokines, nitric oxide synthases, haem oxygenase-1, survival kinases such as the signal transducer and activator of transcription, Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways. Transgenic animals, particularly genetic knockout models, have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies. Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein. This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI. PMID:23555157

  11. Insight into a novel p53 single point mutation (G389E) by Molecular Dynamics Simulations.

    PubMed

    Pirolli, Davide; Carelli Alinovi, Cristiana; Capoluongo, Ettore; Satta, Maria Antonia; Concolino, Paola; Giardina, Bruno; De Rosa, Maria Cristina

    2010-12-30

    The majority of inactivating mutations of p53 reside in the central core DNA binding domain of the protein. In this computational study, we investigated the structural effects of a novel p53 mutation (G389E), identified in a patient with congenital adrenal hyperplasia, which is located within the extreme C-terminal domain (CTD) of p53, an unstructured, flexible region (residues 367-393) of major importance for the regulation of the protein. Based on the three-dimensional structure of a carboxyl-terminal peptide of p53 in complex with the S100B protein, which is involved in regulation of the tumor suppressor activity, a model of wild type (WT) and mutant extreme CTD was developed by molecular modeling and molecular dynamics simulation. It was found that the G389E amino acid replacement has negligible effects on free p53 in solution whereas it significantly affects the interactions of p53 with the S100B protein. The results suggest that the observed mutation may interfere with p53 transcription activation and provide useful information for site-directed mutagenesis experiments.

  12. Molecular response of canola to salt stress: insights on tolerance mechanisms.

    PubMed

    Shokri-Gharelo, Reza; Noparvar, Pouya Motie

    2018-01-01

    Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.

  13. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

    PubMed Central

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom

    2011-01-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009

  14. Insights into the toxicological properties of a low molecular weight fraction from Zoanthus sociatus (Cnidaria).

    PubMed

    Domínguez-Pérez, Dany; Diaz-Garcia, Carlos Manlio; García-Delgado, Neivys; Sierra-Gómez, Yusvel; Castañeda, Olga; Antunes, Agostinho

    2013-08-13

    The phylum Cnidaria is an ancient group of venomous animals, specialized in the production and delivery of toxins. Many species belonging to the class Anthozoa have been studied and their venoms often contain a group of peptides, less than 10 kDa, that act upon ion channels. These peptides and their targets interact with high affinity producing neurotoxic and cardiotoxic effects, and even death, depending on the dose and the administration pathway. Zoanthiniaria is an order of the Subclass Hexacorallia, class Anthozoa, and unlike sea anemone (order Actiniaria), neither its diversity of toxins nor the in vivo effects of the venoms has been exhaustively explored. In this study we assessed some toxicological tests on mice with a low molecular weight fraction obtained by gel filtration in Sephadex G-50 from Zoanthus sociatus crude extract. The gel filtration chromatogram at 280 nm revealed two major peaks, the highest absorbance corresponding to the low molecular weight fraction. The toxicological effects seem to be mostly autonomic and cardiotoxic, causing death in a dose dependent manner with a LD50 of 792 μg/kg. Moreover, at a dose of 600 μg/kg the active fraction accelerated the KCl-induced lethality in mice.

  15. Insights into the molecular aspects of neuroprotective Bacoside A and Bacopaside I.

    PubMed

    Sekhar, Vini C; Viswanathan, Gayathri; Baby, Sabulal

    2018-04-19

    Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of the B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Energy transport pathway in proteins: Insights from non-equilibrium molecular dynamics with elastic network model.

    PubMed

    Wang, Wei Bu; Liang, Yu; Zhang, Jing; Wu, Yi Dong; Du, Jian Jun; Li, Qi Ming; Zhu, Jian Zhuo; Su, Ji Guo

    2018-06-22

    Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.

  17. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition

    PubMed Central

    Shieh, Sean R.; Jarrige, Ignace; Wu, Min; Hiraoka, Nozomu; Tse, John S.; Mi, Zhongying; Kaci, Linada; Jiang, Jian-Zhong; Cai, Yong Q.

    2013-01-01

    Knowledge of the high-pressure behavior of carbon dioxide (CO2), an important planetary material found in Venus, Earth, and Mars, is vital to the study of the evolution and dynamics of the planetary interiors as well as to the fundamental understanding of the C–O bonding and interaction between the molecules. Recent studies have revealed a number of crystalline polymorphs (CO2-I to -VII) and an amorphous phase under high pressure–temperature conditions. Nevertheless, the reported phase stability field and transition pressures at room temperature are poorly defined, especially for the amorphous phase. Here we shed light on the successive pressure-induced local structural changes and the molecular-to-nonmolecular transition of CO2 at room temperature by performing an in situ study of the local electronic structure using X-ray Raman scattering, aided by first-principle exciton calculations. We show that the transition from CO2-I to CO2-III was initiated at around 7.4 GPa, and completed at about 17 GPa. The present study also shows that at ∼37 GPa, molecular CO2 starts to polymerize to an extended structure with fourfold coordinated carbon and minor CO3 and CO-like species. The observed pressure is more than 10 GPa below previously reported. The disappearance of the minority species at 63(±3) GPa suggests that a previously unknown phase transition within the nonmolecular phase of CO2 has occurred. PMID:24167283

  18. Dynamics and unfolding pathway of chimeric azurin variants: insights from molecular dynamics simulation.

    PubMed

    Evoli, Stefania; Guzzi, Rita; Rizzuti, Bruno

    2013-10-01

    The spectroscopic, thermal, and functional properties of blue copper proteins can be modulated by mutations in the metal binding loop. Molecular dynamics simulation was used to compare the conformational properties of azurin and two chimeric variants, which were obtained by inserting into the azurin scaffold the copper binding loop of amicyanin and plastocyanin, respectively. Simulations at room temperature show that the proteins retain their overall structure and exhibit concerted motions among specific inner regions, as revealed by principal component analysis. Molecular dynamics at high temperature indicates that the first events in the unfolding pathway are structurally similar in the three proteins and unfolding starts from the region of the α-helix that is far from the metal binding loop. The results provide details of the denaturation process that are consistent with experimental data and in close agreement with other computational approaches, suggesting a distinct mechanism of unfolding of azurin and its chimeric variants. Moreover, differences observed in the dynamics of specific regions in the three proteins correlate with their thermal behavior, contributing to the determination of the basic factors that influence the stability.

  19. Insights into molecular therapy of glioma: current challenges and next generation blueprint

    PubMed Central

    Rajesh, Y; Pal, Ipsita; Banik, Payel; Chakraborty, Sandipan; Borkar, Sachin A; Dey, Goutam; Mukherjee, Ahona; Mandal, Mahitosh

    2017-01-01

    Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma. PMID:28317871

  20. Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.)).

    PubMed

    Tiwari, Apoorv; Avashthi, Himanshu; Jha, Richa; Srivastava, Ambuj; Kumar Garg, Vijay; Wasudev Ramteke, Pramod; Kumar, Anil

    2016-01-01

    Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes.

  1. Insights into the Toxicological Properties of a Low Molecular Weight Fraction from Zoanthus sociatus (Cnidaria)

    PubMed Central

    Domínguez-Pérez, Dany; Diaz-Garcia, Carlos Manlio; García-Delgado, Neivys; Sierra-Gómez, Yusvel; Castañeda, Olga; Antunes, Agostinho

    2013-01-01

    The phylum Cnidaria is an ancient group of venomous animals, specialized in the production and delivery of toxins. Many species belonging to the class Anthozoa have been studied and their venoms often contain a group of peptides, less than 10 kDa, that act upon ion channels. These peptides and their targets interact with high affinity producing neurotoxic and cardiotoxic effects, and even death, depending on the dose and the administration pathway. Zoanthiniaria is an order of the Subclass Hexacorallia, class Anthozoa, and unlike sea anemone (order Actiniaria), neither its diversity of toxins nor the in vivo effects of the venoms has been exhaustively explored. In this study we assessed some toxicological tests on mice with a low molecular weight fraction obtained by gel filtration in Sephadex G-50 from Zoanthus sociatus crude extract. The gel filtration chromatogram at 280 nm revealed two major peaks, the highest absorbance corresponding to the low molecular weight fraction. The toxicological effects seem to be mostly autonomic and cardiotoxic, causing death in a dose dependent manner with a LD50 of 792 μg/kg. Moreover, at a dose of 600 μg/kg the active fraction accelerated the KCl-induced lethality in mice. PMID:23945599

  2. Molecular phylogeny and phylogeography of genus Pseudois (Bovidae, Cetartiodactyla): New insights into the contrasting phylogeographic structure.

    PubMed

    Tan, Shuai; Wang, Zhihong; Jiang, Lichun; Peng, Rui; Zhang, Tao; Peng, Quekun; Zou, Fangdong

    2017-09-01

    Blue sheep, Pseudois nayaur , is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest-elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis . However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois . Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.

  3. Structural disorder within sendai virus nucleoprotein and phosphoprotein: insight into the structural basis of molecular recognition.

    PubMed

    Jensen, Malene Ringkjøbing; Bernadó, Pau; Houben, Klaartje; Blanchard, Laurence; Marion, Dominque; Ruigrok, Rob W H; Blackledge, Martin

    2010-08-01

    Intrinsically disordered regions of significant length are present throughout eukaryotic genomes, and are particularly prevalent in viral proteins. Due to their inherent flexibility, these proteins inhabit a conformational landscape that is too complex to be described by classical structural biology. The elucidation of the role that conformational flexibility plays in molecular function will redefine our understanding of the molecular basis of biological function, and the development of appropriate technology to achieve this aim remains one of the major challenges for the future of structural biology. NMR is the technique of choice for studying intrinsically disordered proteins, providing information about structure, flexibility and interactions at atomic resolution even in completely disordered proteins. In particular residual dipolar couplings (RDCs) are sensitive and powerful tools for determining local and long-range structural behaviour in flexible proteins. Here we describe recent applications of the use of RDCs to quantitatively describe the level of local structure in intrinsically disordered proteins involved in replication and transcription in Sendai virus.

  4. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study.

    PubMed

    Telesco, Shannon E; Radhakrishnan, Ravi

    2009-03-18

    HER2 (ErbB2/Neu) is a receptor tyrosine kinase belonging to the epidermal growth factor receptor (EGFR)/ErbB family and is overexpressed in 20-30% of human breast cancers. Although several crystal structures of ErbB kinases have been solved, the precise mechanism of HER2 activation remains unknown, and it has been suggested that HER2 is unique in its requirement for phosphorylation of Y877, a key tyrosine residue located in the activation loop. To elucidate mechanistic details of kinase domain regulation, we performed molecular dynamics simulations of a homology-modeled HER2 kinase structure in active and inactive conformations. Principal component analysis of the atomistic fluctuations reveals a tight coupling between the activation loop and catalytic loop that may contribute to alignment of residues required for catalysis in the active kinase. The free energy perturbation method is also employed to predict a role for phosphorylated Y877 in stabilizing the kinase conformations. Finally, simulation results are presented for a HER2/EGFR heterodimer and reveal that the dimeric interface induces a rearrangement of the alphaC helix toward the active conformation. Elucidation of the molecular regulatory mechanisms in HER2 will help establish structure-function relationships in the wild-type kinase, as well as predict mutations with a propensity for constitutive activation in HER2-mediated cancers.

  5. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract.

    PubMed

    Holt, William V; Fazeli, Alireza

    2015-06-01

    Most male mammals produce far more spermatozoa on a daily basis than is strictly necessary for reproduction and females have evolved mechanisms that prevent all but a small minority from reaching the vicinity of their oocytes. One potential explanation for the stringent selection is that females have developed these mechanisms as a way of avoiding polyspermy as well as exercising post-copulatory choice over the characteristics of the fertilizing spermatozoon. Relatively little is known about how these processes would operate, but here we use evidence from biochemical, molecular and genetic studies of sperm transport in support of a hypothesis proposing that the female reproductive tract can read and interpret a spermatozoon's 'molecular passport' or genetic signature. Such a signature would permit only a highly selected sperm population to reach and fertilize the oocyte. Moreover, the selection criteria might not only be concerned with successful fertilizing ability, but could also be tailored to suit the genetic qualities of individual females. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs

    PubMed Central

    Wright, Bernice; Spencer, Jeremy P.E.; Lovegrove, Julie A.; Gibbins, Jonathan M.

    2013-01-01

    Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy. PMID:23024269

  7. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy

    PubMed Central

    Sahin, Ibrahim H; Iacobuzio-Donahue, Christine A; O’Reilly, Eileen M

    2016-01-01

    Introduction Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. Areas covered In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. Expert opinion Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a ‘precision medicine’ approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes. PMID:26439702

  8. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders.

    PubMed

    Schubert, D; Martens, G J M; Kolk, S M

    2015-07-01

    The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.

  9. Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis.

    PubMed

    Hudson, Marie; Bernatsky, Sasha; Colmegna, Ines; Lora, Maximilien; Pastinen, Tomi; Klein Oros, Kathleen; Greenwood, Celia M T

    2017-06-03

    We undertook this study to identify DNA methylation signatures of three systemic autoimmune rheumatic diseases (SARDs), namely rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, compared to healthy controls. Using a careful design to minimize confounding, we restricted our study to subjects with incident disease and performed our analyses on purified CD4 + T cells, key effector cells in SARD. We identified differentially methylated (using the Illumina Infinium HumanMethylation450 BeadChip array) and expressed (using the Illumina TruSeq stranded RNA-seq protocol) sites between cases and controls, and investigated the biological significance of this SARD signature using gene annotation databases. We recruited 13 seropositive rheumatoid arthritis, 19 systemic sclerosis, 12 systemic lupus erythematosus subjects, and 8 healthy controls. We identified 33 genes that were both differentially methylated and expressed (26 over- and 7 under-expressed) in SARD cases versus controls. The most highly overexpressed gene was CD1C (log fold change in expression = 1.85, adjusted P value = 0.009). In functional analysis (Ingenuity Pathway Analysis), the top network identified was lipid metabolism, molecular transport, small molecule biochemistry. The top canonical pathways included the mitochondrial L-carnitine shuttle pathway (P = 5E-03) and PTEN signaling (P = 8E-03). The top upstream regulator was HNF4A (P = 3E-05). This novel SARD signature contributes to ongoing work to further our understanding of the molecular mechanisms underlying SARD and provides novel targets of interest.

  10. A Critical Review of the Concept of Transgenic Plants: Insights into Pharmaceutical Biotechnology and Molecular Farming.

    PubMed

    Abiri, Rambod; Valdiani, Alireza; Maziah, Mahmood; Shaharuddin, Noor Azmi; Sahebi, Mahbod; Yusof, Zetty Norhana Balia; Atabaki, Narges; Talei, Daryush

    2016-01-01

    Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.

  11. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues.

    PubMed

    Konar, Arpita; Singh, Padmanabh; Thakur, Mahendra K

    2016-03-01

    Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets.

  12. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.

    PubMed

    Ramya, L; Ramakrishnan, Vigneshwar

    2016-07-01

    Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Introduction to the special issue on molecular spectroscopy, atmospheric composition and climate change

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Sears, Trevor; Coheur, Pierre-François

    2018-06-01

    Changes to the Earth's climate system resulting from modification of the atmosphere caused by both anthropogenic and natural effects are one of the great long-term threats to our society. In order to measure and understand the drivers of these changes, quantitative field measurements combined with precise and accurate laboratory data are needed. The Kyoto Protocol [1], signed in 1997, focused the scientific community on the need for data aimed at developing a better understanding of the physics and chemistry of molecular and aerosol species that lead to long-term climate change. The results have been impressive. Continuous and extensive concentration measurements are now being performed from the ground, e.g. the TCCON network, from balloons and airplanes and, of course, from space (e.g. ACE-Scisat, TANSO-GOSAT, IASI-Metop, OCO-2, Sentinel-5P, …). With the observing system now in place the concentration profiles of a suite of species, including greenhouse gases, aerosol precursors and others are measured with increasing precision over large areas of the Earth, leading to a much more complete understanding of the radiative forcing budget.

  14. Human T-cell lymphotropic virus type 1 subtype C molecular variants among indigenous australians: new insights into the molecular epidemiology of HTLV-1 in Australo-Melanesia.

    PubMed

    Cassar, Olivier; Einsiedel, Lloyd; Afonso, Philippe V; Gessain, Antoine

    2013-01-01

    HTLV-1 infection is endemic among people of Melanesian descent in Papua New Guinea, the Solomon Islands and Vanuatu. Molecular studies reveal that these Melanesian strains belong to the highly divergent HTLV-1c subtype. In Australia, HTLV-1 is also endemic among the Indigenous people of central Australia; however, the molecular epidemiology of HTLV-1 infection in this population remains poorly documented. Studying a series of 23 HTLV-1 strains from Indigenous residents of central Australia, we analyzed coding (gag, pol, env, tax) and non-coding (LTR) genomic proviral regions. Four complete HTLV-1 proviral sequences were also characterized. Phylogenetic analyses implemented with both Neighbor-Joining and Maximum Likelihood methods revealed that all proviral strains belong to the HTLV-1c subtype with a high genetic diversity, which varied with the geographic origin of the infected individuals. Two distinct Australians clades were found, the first including strains derived from most patients whose origins are in the North, and the second comprising a majority of those from the South of central Australia. Time divergence estimation suggests that the speciation of these two Australian clades probably occurred 9,120 years ago (38,000-4,500). The HTLV-1c subtype is endemic to central Australia where the Indigenous population is infected with diverse subtype c variants. At least two Australian clades exist, which cluster according to the geographic origin of the human hosts. These molecular variants are probably of very ancient origin. Further studies could provide new insights into the evolution and modes of dissemination of these retrovirus variants and the associated ancient migration events through which early human settlement of Australia and Melanesia was achieved.

  15. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective

    PubMed Central

    Shankar, Jata; Tiwari, Shraddha; Shishodia, Sonia K.; Gangwar, Manali; Hoda, Shanu; Thakur, Raman; Vijayaraghavan, Pooja

    2018-01-01

    Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers. PMID:29896454

  16. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective.

    PubMed

    Shankar, Jata; Tiwari, Shraddha; Shishodia, Sonia K; Gangwar, Manali; Hoda, Shanu; Thakur, Raman; Vijayaraghavan, Pooja

    2018-01-01

    Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus , and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.

  17. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102

  18. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  19. Molecular insights into the recruitment of TFIIH to sites of DNA damage

    PubMed Central

    Oksenych, Valentyn; de Jesus, Bruno Bernardes; Zhovmer, Alexander; Egly, Jean-Marc; Coin, Frédéric

    2009-01-01

    XPB and XPD subunits of TFIIH are central genome caretakers involved in nucleotide excision repair (NER), although their respective role within this DNA repair pathway remains difficult to delineate. To obtain insight into the function of XPB and XPD, we studied cell lines expressing XPB or XPD ATPase-deficient complexes. We show the involvement of XPB, but not XPD, in the accumulation of TFIIH to sites of DNA damage. Recruitment of TFIIH occurs independently of the helicase activity of XPB, but requires two recently identified motifs, a R-E-D residue loop and a Thumb-like domain. Furthermore, we show that these motifs are specifically involved in the DNA-induced stimulation of the ATPase activity of XPB. Together, our data demonstrate that the recruitment of TFIIH to sites of damage is an active process, under the control of the ATPase motifs of XPB and suggest that this subunit functions as an ATP-driven hook to stabilize the binding of the TFIIH to damaged DNA. PMID:19713942

  20. Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Antidiabetes Drugs

    PubMed Central

    2011-01-01

    The widely employed antidiabetic drug pioglitazone (Actos) is shown to be a specific and reversible inhibitor of human monoamine oxidase B (MAO B). The crystal structure of the enzyme–inhibitor complex shows that the R-enantiomer is bound with the thiazolidinedione ring near the flavin. The molecule occupies both substrate and entrance cavities of the active site, establishing noncovalent interactions with the surrounding amino acids. These binding properties differentiate pioglitazone from the clinically used MAO inhibitors, which act through covalent inhibition mechanisms and do not exhibit a high degree of MAO A versus B selectivity. Rosiglitazone (Avandia) and troglitazone, other members of the glitazone class, are less selective in that they are weaker inhibitors of both MAO A and MAO B. These results suggest that pioglitazone may have utility as a “repurposed” neuroprotectant drug in retarding the progression of disease in Parkinson's patients. They also provide new insights for the development of reversible isoenzyme-specific MAO inhibitors. PMID:22282722

  1. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    PubMed Central

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R.

    2016-01-01

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients. PMID:27725636

  2. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    SciTech Connect

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures revealmore » the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients.« less

  3. Mitochondrial DNA disease—molecular insights and potential routes to a cure

    SciTech Connect

    Russell, Oliver; Turnbull, Doug, E-mail: doug.turnbull@newcastle.ac.uk

    2014-07-01

    Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focussed on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. This review focuses on the molecular effects of mutations, the symptoms they cause and current work focusing on the development of targeted treatments for mitochondrial DNA disease. - Highlights: • We discuss several common disease causing mtDNA mutations. • We highlight recent work linking pathogenicity to deletion size and heteroplasmy. • We discuss recent advancesmore » in the development of targeted mtDNA disease treatments.« less

  4. Insight into the C-F bond mechanism of molecular analogs for antibacterial drug design.

    PubMed

    Liu, Junna; Lv, Biyu; Liu, Huaqing; Li, Xin; Yin, Weiping

    2018-06-01

    The activities of biological molecules usually rely on both of intra-molecular and intermolecular interactions between their function groups. These interactions include interonic attraction theory, Van der Waal's forces and the function of geometry on the individual molecules, whether they are naturally or synthetic. The purpose of this study was to evaluate the antibacterial activity of C-F bond compound using combination of experiments verification and theoretical calculation. We target on the insect natural products from the maggots of Chrysomyis megacephala Fabricius. Based on density functional theory(DFT) and B3LYP method, a theoretical study of the C-F bond on fluoride was designed to explore compounds 2 and 4 antibacterial structure-activity relationship. With the progress in DFT, first-principle calculation based on DFT has gradually become a routine method for drug design, quantum chemistry and other science fields.

  5. Trends in Karyotype Evolution in Astyanax (Teleostei, Characiformes, Characidae): Insights From Molecular Data

    PubMed Central

    Pazza, Rubens; Dergam, Jorge A.; Kavalco, Karine F.

    2018-01-01

    The study of patterns and evolutionary processes in neotropical fish is not always an easy task due the wide distribution of major fish groups in large and extensive river basins. Thus, it is not always possible to detect or correlate possible effects of chromosome rearrangements in the evolution of biodiversity. In the Astyanax genus, chromosome data obtained since the 1970s have shown evidence of cryptic species, karyotypic plasticity, supernumerary chromosomes, triploidies, and minor chromosomal rearrangements. In the present work, we map and discuss the main chromosomal events compatible with the molecular evolution of the genus Astyanax (Characiformes, Characidae) using mitochondrial DNA sequence data, in the search for major chromosome evolutionary trends within this taxon. PMID:29713335

  6. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2007-06-01

    Molecular dynamics simulations, using the AMBER force field, were performed to study Quercetin 2,3-Dioxygenase enzyme (Quercetinase or 2,3QD). We have analyzed the structural modifications of the active site and of the linker region between the native enzyme and the enzyme-substrate complex. New structural informations, such as an allosteric effect in the presence of the substrate, as well as description of the enzyme-substrate interactions and values of binding free energies were brought out. All these results confirm the idea that the linker encloses the substrate in the active site and also enlighten the recognition role of the substrate B-ring by the enzyme. Moreover, a specific interaction scheme has been proposed to explain the relative degradation rate of various flavonoid compounds under the oxygenolysis reaction catalyzed by the Quercetin 2,3-Dioxygenase enzyme. 2007 Wiley-Liss, Inc.

  7. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs

    PubMed Central

    Tatsumi, Norifumi; Kobayashi, Ritsuko; Yano, Tohru; Noda, Masatsugu; Fujimura, Koji; Okada, Norihiro; Okabe, Masataka

    2016-01-01

    The lung is an important organ for air breathing in tetrapods and originated well before the terrestrialization of vertebrates. Therefore, to better understand lung evolution, we investigated lung development in the extant basal actinopterygian fish Senegal bichir (Polypterus senegalus). First, we histologically confirmed that lung development in this species is very similar to that of tetrapods. We also found that the mesenchymal expression patterns of three genes that are known to play important roles in early lung development in tetrapods (Fgf10, Tbx4, and Tbx5) were quite similar to those of tetrapods. Moreover, we found a Tbx4 core lung mesenchyme-specific enhancer (C-LME) in the genomes of bichir and coelacanth (Latimeria chalumnae) and experimentally confirmed that these were functional in tetrapods. These findings provide the first molecular evidence that the developmental program for lung was already established in the common ancestor of actinopterygians and sarcopterygians. PMID:27466206

  8. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  9. Structural insights into the osteopontin-aptamer complex y molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Chelli, Riccardo

    2018-01-01

    Osteopontin is an intrinsically disordered protein involved in tissue remodeling. As a biomarker for pathological hypertrophy and fibrosis, the protein is targeted by an RNA aptamer. In this work, we model the interactions between osteopontin and its aptamer, including mono- (Na+) and divalent (Mg2+) cations. The molecular dynamics simulations suggest that the presence of divalent cations forces the N-terminus of osteopontin to bind the shell of divalent cations adsorbed over the surface of its RNA aptamer, the latter exposing a high negative charge density. The osteopontin plasticity as a function of the local concentration of Mg is discussed in the frame of the proposed strategies for osteopontin targeting as biomarker and in theranostic.

  10. Different inhibitory potency of febuxostat towards mammalian and bacterial xanthine oxidoreductases: insight from molecular dynamics

    PubMed Central

    Kikuchi, Hiroto; Fujisaki, Hiroshi; Furuta, Tadaomi; Okamoto, Ken; Leimkühler, Silke; Nishino, Takeshi

    2012-01-01

    Febuxostat, a drug recently approved in the US, European Union and Japan for treatment of gout, inhibits xanthine oxidoreductase (XOR)-mediated generation of uric acid during purine catabolism. It inhibits bovine milk XOR with a Ki in the picomolar-order, but we found that it is a much weaker inhibitor of Rhodobacter capsulatus XOR, even though the substrate-binding pockets of mammalian and bacterial XOR are well-conserved as regards to catalytically important residues and three-dimensional structure, and both permit the inhibitor to be accommodated in the active site, as indicated by computational docking studies. To clarify the reason for the difference of inhibitory potency towards the two XORs, we performed molecular dynamics simulations. The results indicate that differences in mobility of hydrophobic residues that do not directly interact with the substrate account for the difference in inhibitory potency. PMID:22448318

  11. Collagenolytic Matrix Metalloproteinase Structure-Function Relationships: Insights From Molecular Dynamics Studies.

    PubMed

    Karabencheva-Christova, Tatyana G; Christov, Christo Z; Fields, Gregg B

    2017-01-01

    Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. Experimental data reveal a collaboration between different MMP domains in order to achieve efficient collagenolysis. Molecular dynamics (MD) simulations have been utilized to provide atomistic details of the collagenolytic process. The triple-helical structure of collagen exhibits local regions of flexibility, with modulation of interchain salt bridges and water bridges contributing to accessibility of individual chains by the enzyme. In turn, the hemopexin-like (HPX) domain of the MMP initially binds the triple helix and facilitates the presentation of individual strands to active site in the catalytic (CAT) domain. Extensive positive and negative correlated motions are observed between the CAT and HPX domains when collagen is bound. Ultimately, the MD simulation studies have complemented structural (NMR spectroscopy, X-ray crystallography) and kinetic analyses to provide a more detailed mechanistic view of MMP-catalyzed collagenolysis. © 2017 Elsevier Inc. All rights reserved.

  12. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs.

    PubMed

    Tatsumi, Norifumi; Kobayashi, Ritsuko; Yano, Tohru; Noda, Masatsugu; Fujimura, Koji; Okada, Norihiro; Okabe, Masataka

    2016-07-28

    The lung is an important organ for air breathing in tetrapods and originated well before the terrestrialization of vertebrates. Therefore, to better understand lung evolution, we investigated lung development in the extant basal actinopterygian fish Senegal bichir (Polypterus senegalus). First, we histologically confirmed that lung development in this species is very similar to that of tetrapods. We also found that the mesenchymal expression patterns of three genes that are known to play important roles in early lung development in tetrapods (Fgf10, Tbx4, and Tbx5) were quite similar to those of tetrapods. Moreover, we found a Tbx4 core lung mesenchyme-specific enhancer (C-LME) in the genomes of bichir and coelacanth (Latimeria chalumnae) and experimentally confirmed that these were functional in tetrapods. These findings provide the first molecular evidence that the developmental program for lung was already established in the common ancestor of actinopterygians and sarcopterygians.

  13. Molecular biology of Fanconi anaemia--an old problem, a new insight.

    PubMed

    Ahmad, Shamim I; Hanaoka, Fumio; Kirk, Sandra H

    2002-05-01

    Fanconi anaemia (FA) comprises a group of autosomal recessive disorders resulting from mutations in one of eight genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF and FANCG). Although caused by relatively simple mutations, the disease shows a complex phenotype, with a variety of features including developmental abnormalities and ultimately severe anaemia and/or leukemia leading to death in the mid teens. Since 1992 all but two of the genes have been identified, and molecular analysis of their products has revealed a complex mode of action. Many of the proteins form a nuclear multisubunit complex that appears to be involved in the repair of double-strand DNA breaks. Additionally, at least one of the proteins, FANCC, influences apoptotic pathways in response to oxidative damage. Further analysis of the FANC proteins will provide vital information on normal cell responses to damage and allow therapeutic strategies to be developed that will hopefully supplant bone marrow transplantation. Copyright 2002 Wiley Periodicals, Inc.

  14. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions.

    PubMed

    Wong, Hon Lun; Ahmed-Cox, Aria; Burns, Brendan Paul

    2016-01-05

    Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S'Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems.

  15. Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives

    PubMed Central

    2016-01-01

    Clear cell carcinoma (CCC) of the ovary is known to show poorer sensitivity to chemotherapeutic agents and to be associated with a worse prognosis than the more common serous adenocarcinoma or endometrioid adenocarcinoma. To improve the survival of patients with ovarian CCC, the deeper understanding of the mechanism of CCC carcinogenesis as well as the efforts to develop novel treatment strategies in the setting of both front-line treatment and salvage treatment for recurrent disease are needed. In this presentation, we first summarize the mechanism responsible for carcinogenesis. Then, we highlight the promising therapeutic targets in ovarian CCC and provide information on the novel agents which inhibit these molecular targets. Moreover, we discuss on the cytotoxic anti-cancer agents that can be best combined with targeted agents in the treatment of ovarian CCC. PMID:27029752

  16. Insights using a molecular approach into the life cycle of a tapeworm infecting great white sharks.

    PubMed

    Randhawa, Haseeb S

    2011-04-01

    The great white shark Carcharodon carcharias Linnaeus, 1758 is a versatile and fierce predator (and responsible for many shark attacks on humans). This apex predator feeds on a wide range of organisms including teleosts, other elasmobranchs, cephalopods, pinnipeds, and cetaceans. Although much is known about its diet, no trophic links have been empirically identified as being involved in the transmission of its tapeworm parasites. Recently, the use of molecular tools combined with phylogenetics has proven useful to identify larval and immature stages of marine tapeworms; utilization of the technique has been increasing rapidly. However, the usefulness of this approach remains limited by the availability of molecular data. Here, I employed gene sequence data from the D2 region of the large subunit of ribosomal DNA to link adults of the tapeworm Clistobothrium carcharodoni Dailey and Vogelbein, 1990 (Cestoda: Tetraphyllidea) to larvae for which sequence data for this gene are available. The sequences from the adult tapeworms were genetically identical (0% sequence divergence) to those available on GenBank for "SP" 'small' Scolex pleuronectis recovered from the striped dolphin (Stenella coeruleoalba) and Risso's dolphin (Grampus griseus). This study is the first to provide empirical evidence linking the trophic interaction between great white sharks and cetaceans as a definitive route for the successful transmission of a tetraphyllidean tapeworm. Using the intensity of infection data from this shark and from cetaceans as proxies for the extent of predation, I estimate that this individual shark would have consumed between 9 to 83 G. griseus , fresh, dead, or both, in its lifetime.

  17. Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis

    PubMed Central

    Nalini, Venkatesan; Segu, Ramya; Deepa, Perinkulam Ravi; Khetan, Vikas; Vasudevan, Madavan; Krishnakumar, Subramanian

    2013-01-01

    Purpose Management of Retinoblastoma (RB), a pediatric ocular cancer is limited by drug-resistance and drug-dosage related side effects during chemotherapy. Molecular de-regulation in post-chemotherapy RB tumors was investigated. Materials and Methods cDNA microarray analysis of two post-chemotherapy and one pre-chemotherapy RB tumor tissues was performed, followed by Principle Component Analysis, Gene ontology, Pathway Enrichment analysis and Biological Analysis Network (BAN) modeling. The drug modulation role of two significantly up-regulated genes (p≤0.05) − Ect2 (Epithelial-cell-transforming-sequence-2), and PRAME (preferentially-expressed-Antigen-in-Melanoma) was assessed by qRT-PCR, immunohistochemistry and cell viability assays. Results Differential up-regulation of 1672 genes and down-regulation of 2538 genes was observed in RB tissues (relative to normal adult retina), while 1419 genes were commonly de-regulated between pre-chemotherapy and post- chemotherapy RB. Twenty one key gene ontology categories, pathways, biomarkers and phenotype groups harboring 250 differentially expressed genes were dys-regulated (EZH2, NCoR1, MYBL2, RB1, STAMN1, SYK, JAK1/2, STAT1/2, PLK2/4, BIRC5, LAMN1, Ect2, PRAME and ABCC4). Differential molecular expressions of PRAME and Ect2 in RB tumors with and without chemotherapy were analyzed. There was neither up- regulation of MRP1, nor any significant shift in chemotherapeutic IC50, in PRAME over-expressed versus non-transfected RB cells. Conclusion Cell cycle regulatory genes were dys-regulated post-chemotherapy. Ect2 gene was expressed in response to chemotherapy-induced stress. PRAME does not contribute to drug resistance in RB, yet its nuclear localization and BAN information, points to its possible regulatory role in RB. PMID:24092970

  18. Flavin binding to the deca-heme cytochrome MtrC: Insights from computational molecular simulation

    DOE PAGES

    Breuer, Marian; Rosso, Kevin  M.; Blumberger, Jochen

    2015-12-15

    Here, certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as “extracellular respiration”. Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrCmore » from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (K d) = 490 μM, in good agreement with recent experimental estimates, K d = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration.« less

  19. Molecular phylogeny of the neotropical genus Christensonella (Orchidaceae, Maxillariinae): species delimitation and insights into chromosome evolution.

    PubMed

    Koehler, Samantha; Cabral, Juliano S; Whitten, W Mark; Williams, Norris H; Singer, Rodrigo B; Neubig, Kurt M; Guerra, Marcelo; Souza, Anete P; Amaral, Maria do Carmo E

    2008-10-01

    Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Six of 21 currently accepted species were recovered. The results also support recognition of the 'C. pumila' clade as a single species. Molecular phylogenetic relationships within the 'C. acicularis-C. madida' and 'C. ferdinandiana-C. neowiedii' species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic

  20. Molecular Phylogeny of the Neotropical Genus Christensonella (Orchidaceae, Maxillariinae): Species Delimitation and Insights into Chromosome Evolution

    PubMed Central

    Koehler, Samantha; Cabral, Juliano S.; Whitten, W. Mark; Williams, Norris H.; Singer, Rodrigo B.; Neubig, Kurt M.; Guerra, Marcelo; Souza, Anete P.; Amaral, Maria do Carmo E.

    2008-01-01

    Background and Aims Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Methods Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Key Results Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularis–C. madida’ and ‘C. ferdinandiana–C. neowiedii’ species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. Conclusions The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent

  1. Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq.

    PubMed

    Malan-Müller, Stefanie; Fairbairn, Lorren; Daniels, Willie M U; Dashti, Mahjoubeh Jalali Sefid; Oakeley, Edward J; Altorfer, Marc; Kidd, Martin; Seedat, Soraya; Gamieldien, Junaid; Hemmings, Sîan Megan Joanna

    2016-02-01

    D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.

  2. Insights into the folding pathway of the Engrailed Homeodomain protein using replica exchange molecular dynamics simulations.

    PubMed

    Koulgi, Shruti; Sonavane, Uddhavesh; Joshi, Rajendra

    2010-11-01

    Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 Å. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 Å while HTH motif had an RMSD of 1.81 Å. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Doliroside A from Dolichos falcata Klein suppressing amyloid β-protein 42 fibrillogenesis: An insight at molecular level.

    PubMed

    Li, Dongpu; Yu, Hongfei; Lin, Qinxiong; Liu, Yun

    2017-01-01

    A bioactive chemical constituent, doliroside A, from Chinese traditional herbal medicine Dolichos falcata Klein was isolated, purified and identified by 60% ethanol extraction, thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. Molecular interaction mechanism between doliroside and amyloid β42 protein was evaluated by thioflavin T fluorescence (ThT), circular dichroism (CD), atomic force microscope (AFM), and differential scanning calorimeter (DSC) from the aspects of kinetics, secondary structure, morphology, and thermodynamics, respectively. Results show that the purity of doliroside A is 99.9% by HPLC, and its chemical structure is identified by 1H- and 13C-NMR. Doliroside A is observed to be concentration-dependent inhibiting the fibrillation of Aβ42 with the IC50 value of 26.57 ± 1.6 μM. CD and DSC results imply that doliroside A can bind to the nuclei and oligomers of Aβ42 to form a stable complex and suppress Aβ42 fibrillation. AFM images show that doliroside A, after bound to the nuclei and oligomers, redirect Aβ42 into off-pathway, amorphous oligomers. These findings not only provide a full insight into the molecular interaction mechanisms between Aβ42 and doliroside A, but also facilitate the development of new native anti-AD drug of doliroside A compound.

  4. Ecotypic differentiation under farmers' selection: Molecular insights into the domestication of Pachyrhizus Rich. ex DC. (Fabaceae) in the Peruvian Andes.

    PubMed

    Delêtre, Marc; Soengas, Beatriz; Vidaurre, Prem Jai; Meneses, Rosa Isela; Delgado Vásquez, Octavio; Oré Balbín, Isabel; Santayana, Monica; Heider, Bettina; Sørensen, Marten

    2017-06-01

    Understanding the distribution of crop genetic diversity in relation to environmental factors can give insights into the eco-evolutionary processes involved in plant domestication. Yam beans ( Pachyrhizus Rich. ex DC.) are leguminous crops native to South and Central America that are grown for their tuberous roots but are seed-propagated. Using a landscape genetic approach, we examined correlations between environmental factors and phylogeographic patterns of genetic diversity in Pachyrhizus landrace populations. Molecular analyses based on chloroplast DNA sequencing and a new set of nuclear microsatellite markers revealed two distinct lineages, with strong genetic differentiation between Andean landraces (lineage A) and Amazonian landraces (lineage B). The comparison of different evolutionary scenarios for the diversification history of yam beans in the Andes using approximate Bayesian computation suggests that Pachyrhizus ahipa and Pachyrhizus tuberosus share a progenitor-derivative relationship, with environmental factors playing an important role in driving selection for divergent ecotypes. The new molecular data call for a revision of the taxonomy of Pachyrhizus but are congruent with paleoclimatic and archeological evidence, and suggest that selection for determinate growth was part of ecophysiological adaptations associated with the diversification of the P. tuberosus - P. ahipa complex during the Mid-Holocene.

  5. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals.

    PubMed

    Badoud, Flavia; Perreault, Maude; Zulyniak, Michael A; Mutch, David M

    2015-03-01

    Obesity is a risk factor for the development of type 2 diabetes and cardiovascular disease. However, it is now recognized that a subset of individuals have reduced cardiometabolic risk despite being obese. Paradoxically, a subset of lean individuals is reported to have high risk for cardiometabolic complications. These distinct subgroups of individuals are referred to as metabolically unhealthy normal weight (MUNW) and metabolically healthy obese (MHO). Although the clinical relevance of these subgroups remains debated, evidence shows a critical role for white adipose tissue (WAT) function in the development of these phenotypes. The goal of this review is to provide an overview of our current state of knowledge regarding the molecular and metabolic characteristics of WAT associated with MUNW and MHO. In particular, we discuss the link between different WAT depots, immune cell infiltration, and adipokine production with MUNW and MHO. Furthermore, we also highlight recent molecular insights made with genomic technologies showing that processes such as oxidative phosphorylation, branched-chain amino acid catabolism, and fatty acid β-oxidation differ between these phenotypes. This review provides evidence that WAT function is closely linked with cardiometabolic risk independent of obesity and thus contributes to the development of MUNW and MHO. © FASEB.

  6. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

    PubMed

    Purohit, Rituraj

    2014-01-01

    KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.

  7. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    PubMed

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  8. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    PubMed

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  9. Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome.

    PubMed

    Zhang, Wei; Zhang, Mingyi; Zhu, Xianwen; Cao, Yaping; Sun, Qing; Ma, Guojia; Chao, Shiaoman; Yan, Changhui; Xu, Steven S; Cai, Xiwen

    2018-02-01

    This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.

  10. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    SciTech Connect

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  11. Comparative molecular epidemiology provides new insights into Zucchini yellow mosaic virus occurrence in France.

    PubMed

    Lecoq, H; Wipf-Scheibel, C; Nozeran, K; Millot, P; Desbiez, C

    2014-06-24

    Zucchini yellow mosaic virus (ZYMV, genus Potyvirus) causes important crop losses in cucurbits worldwide. In France, ZYMV epidemics are sporadic but occasionally very severe. This contrasts with Watermelon mosaic virus (WMV, genus Potyvirus) which causes regular and early epidemics. Factors influencing ZYMV epidemiology are still poorly understood. In order to gain new insights on the ecology and epidemiology of this virus, a 5-year multilocation trial was conducted in which ZYMV spread and populations were studied in each of the 20 plot/year combinations and compared with WMV. Search for ZYMV alternative hosts was conducted by testing weeds growing naturally around one plot and also by checking ZYMV natural infections in selected ornamental species. Although similar ZYMV populations were observed occasionally in the same plot in two successive years suggesting the occurrence of overwintering hosts nearby, only two Lamium amplexicaule plants were found to be infected by ZYMV of 3459 weed samples that were tested. The scarcity of ZYMV reservoirs contrasts with the frequent detection of WMV in the same samples. Since ZYMV and WMV have many aphid vectors in common and are transmitted with similar efficiencies, the differences observed in ZYMV and WMV reservoir abundances could be a major explanatory factor for the differences observed in the typology of ZYMV and WMV epidemics in France. Other potential ZYMV alternative hosts have been identified in ornamental species including begonia. Although possible in a few cases, exchanges of populations between different plots located from 500 m to 4 km apart seem uncommon. Therefore, the potential dissemination range of ZYMV by its aphid vectors seems to be rather limited in a fragmented landscape. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE PAGES

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.; ...

    2017-04-03

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  13. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola)

    Treesearch

    Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim

    2009-01-01

    Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...

  14. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase in Mycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy.

    PubMed

    Chaitanya V, Sundeep; Das, Madhusmita; Bhat, Pritesh; Ebenezer, Mannam

    2015-10-01

    The molecular basis for determination of resistance to anti-leprosy drugs is the presence of point mutations within the genes of Mycobacterium leprae (M. leprae) that encode active drug targets. The downstream structural and functional implications of these point mutations on drug targets were scarcely studied. In this study, we utilized computational tools to develop native and mutant protein models for 5 point mutations at codon positions 53 and 55 in 6-hydroxymethyl-7, 8-dihydropteroate synthase (DHPS) of M. leprae, an active target for dapsone encoded by folp1 gene, that confer resistance to dapsone. Molecular docking was performed to identify variations in dapsone interaction with mutant DHPS in terms of hydrogen bonding, hydrophobic interactions, and energy changes. Schrodinger Suite 2014-3 was used to build homology models and in performing molecular docking. An increase in volume of the binding cavities of mutant structures was noted when compared to native form indicating a weakening in interaction (60.7 Å(3) in native vs. 233.6 Å(3) in Thr53Ala, 659.9 Å(3) in Thr53Ile, 400 Å(3) for Thr53Val, 385 Å(3) for Pro55Arg, and 210 Å(3) for Pro55Leu). This was also reflected by changes in hydrogen bonds and decrease in hydrophobic interactions in the mutant models. The total binding energy (ΔG) decreased significantly in mutant forms when compared to the native form (-51.92 Kcal/mol for native vs. -35.64, -35.24, -46.47, -47.69, and -41.36 Kcal/mol for mutations Thr53Ala, Thr53Ile, Thr53Val, Pro55Arg, and Pro55Leu, respectively. In brief, this analysis provided structural and mechanistic insights to the degree of dapsone resistance contributed by each of these DHPS mutants in leprosy. © 2015 Wiley Periodicals, Inc.

  15. Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (Citrus sinensis).

    PubMed

    Lu, Xiaopeng; Cao, Xiongjun; Li, Feifei; Li, Jing; Xiong, Jiang; Long, Guiyou; Cao, Shangyin; Xie, Shenxi

    2016-12-01

    Citrate, the predominant organic acid in citrus, determines the taste of these fruits. However, little is known about the synergic molecular processes regulating citrate accumulation. Using 'Dahongtiancheng' (Citrus sinensis) and 'Bingtangcheng' (C. sinensis) with significant difference in citrate, the objectives of this study were to understand the global mechanisms of high-citrate accumulation in sweet orange. 'Dahongtiancheng' and 'Bingtangcheng' exhibit significantly different patterns in citrate accumulation throughout fruit development, with the largest differences observed at 50-70 days after full bloom (DAFB). Comparative transcriptome profiling was performed for the endocarps of both cultivars at 50 and 70 DAFB. Over 34.5 million clean reads per library were successfully mapped to the reference database and 670-2630 differentially expressed genes (DEGs) were found in four libraries. Among the genes, five transcription factors were ascertained to be the candidates regulating citrate accumulation. Functional assignments of the DEGs indicated that photosynthesis, the citrate cycle and amino acid metabolism were significantly altered in 'Dahongtiancheng'. Physiological and molecular analyses suggested that high photosynthetic efficiency and partial impairment of citrate catabolism were crucial for the high-citrate trait, and amino acid biosynthesis was one of the important directions for citrate flux. The results reveal a global insight into the gene expression changes in a high-citrate compared with a low-citrate sweet orange. High accumulating efficiency and impaired degradation of citrate may be associated with the high-citrate trait of 'Dahongtiancheng'. Findings in this study increase understanding of the molecular processes regulating citrate accumulation in sweet orange. © 2016 Scandinavian Plant Physiology Society.

  16. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

    PubMed

    Garg, Anchal; Agrawal, Lalit; Misra, Rajesh Chandra; Sharma, Shubha; Ghosh, Sumit

    2015-09-02

    Kalmegh (Andrographis paniculata) has been widely exploited in traditional medicine for the treatment of infectious diseases and health disorders. Ent-labdane-related diterpene (ent-LRD) specialized (i.e., secondary) metabolites of kalmegh such as andrographolide, neoandrographolide and 14-deoxy-11,12-didehydroandrographolide, are known for variety of pharmacological activities. However, due to the lack of genomic and transcriptomic information, underlying molecular basis of ent-LRDs biosynthesis has remained largely unknown. To identify candidate genes of the ent-LRD biosynthetic pathway, we performed comparative transcriptome analysis using leaf and root tissues that differentially accumulate ent-LRDs. De novo assembly of Illumina HiSeq2000 platform-generated paired-end sequencing reads resulted into 69,011 leaf and 64,244 root transcripts which were assembled into a total of 84,628 unique transcripts. Annotation of these transcripts to the Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-Active Enzymes (CAZy) databases identified candidate transcripts of the ent-LRD biosynthetic pathway. These included transcripts that encode enzymes of the plastidial 2C-methyl-D-erythritol-4-phosphate pathway which provides C5 isoprenoid precursors for the ent-LRDs biosynthesis, geranylgeranyl diphosphate synthase, class II diterpene synthase (diTPS), cytochrome P450 monooxygenase and glycosyltransferase. Three class II diTPSs (ApCPS1, ApCPS2 and ApCPS3) that showed distinct tissue-specific expression profiles and are phylogenetically related to the dicotyledon ent-copalyl diphosphate synthases, are identified. ApCPS1, ApCPS2 and ApCPS3 encode for 832-, 817- and 797- amino acids proteins of 55-63 % identity, respectively. Spatio-temporal patterns of transcripts and ent-LRDs accumulation are consistent with the involvement of ApCPS1 in general (i.e., primary) metabolism for the biosynthesis of phytohormone gibberellin, ApCPS2 in leaf specialized ent

  17. Molecular insight into systematics, host associations, life cycles and geographic distribution of the nematode family Rhabdiasidae.

    PubMed

    Tkach, Vasyl V; Kuzmin, Yuriy; Snyder, Scott D

    2014-04-01

    Rhabdiasidae Railliet, 1915 is a globally distributed group of up to 100 known species of nematodes parasitic in amphibians and reptiles. This work presents the results of a molecular phylogenetic analysis of 36 species of Rhabdiasidae from reptiles and amphibians from six continents. New DNA sequences encompassing partial 18S rDNA, ITS1, 5.8S rDNA, ITS2 and partial 28S rDNA regions of nuclear ribosomal DNA were obtained from 27 species and pre-existing sequences for nine species were incorporated. The broad taxonomic, host and geographical coverage of the specimens allowed us to address long-standing questions in rhabdiasid systematics, evolution, geographic distribution, and patterns of host association. Our analysis demonstrated that rhabdiasids parasitic in snakes are an independent genus sister to the rest of the Rhabdiasidae, a status supported by life cycle data. Based on the combined evidence of molecular phylogeny, morphology and life cycle characteristics, a new genus Serpentirhabdias gen. nov. with the type species Serpentirhabdias elaphe (Sharpilo, 1976) comb. nov. is established. The phylogeny supports the monophyly of Entomelas Travassos, 1930, Pneumonema Johnston, 1916 and the largest genus of the family, Rhabdias Stiles and Hassall, 1905. DNA sequence comparisons demonstrate the presence of more than one species in the previously monotypic Pneumonema from Australian scincid lizards. The distribution of some morphological characters in the genus Rhabdias shows little consistency within the phylogenetic tree topology, in particular the apical structures widely used in rhabdiasid systematics. Our data suggest that some of the characters, while valuable for species differentiation, are not appropriate for differentiation among higher taxa and are of limited phylogenetic utility. Rhabdias is the only genus with a cosmopolitan distribution, but some of the lineages within Rhabdias are distributed on a single continent or a group of adjacent

  18. Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins.

    PubMed

    Patel, Sunita; Vierling, Elizabeth; Tama, Florence

    2014-06-17

    The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either "open" or "closed" based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone

  19. 800,000 Years of Arctic Climate Variability: Insights from Lake El'gygytgyn, Far East Russia

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Habicht, H.; Patterson, M. O.; Burns, S. J.; Deconto, R. M.; Brigham-Grette, J.

    2017-12-01

    The regional response of the high Arctic to past climate variability is little known prior to 100,000 years ago. In 2009, a 3.6 Ma sediment core was recovered from Lake El'gygytgyn (Russia), the largest and oldest unglaciated Arctic lake basin. These sediments offer a unique opportunity to examine Plio-Pleistocene high-latitude continental climate variability. Determining the magnitude of past Arctic temperature and precipitation variability is especially relevant to understanding the mechanisms and feedbacks contributing to arctic amplification. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the past 800,000 years. We use the methylation and cyclization index of branched tetraethers (MBT'/CBT) to reconstruct past temperature (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014) and ratios of plant leaf waxes to examine vegetation variability within the lake catchment. In addition, algal biomarkers and bulk carbon isotopes provide insights into past changes in primary productivity. Trends noted in the MBT'/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core and reveal a strong response to interglacial-glacial variability as well as local summer insolation. Our temperature reconstructions indicate the terrestrial Arctic experienced both warm interglacials and mild glacial periods during the Mid-Pleistocene but transitioned to more extreme temperature fluctuations in the more recent part of the record. Plant leaf wax average chain lengths suggest that glacial intervals were marked by increased aridity, while interglacial periods were wetter at Lake El'gygytgyn. Time-series analysis of the organic geochemical temperature and vegetation reconstructions records revealed variability at precession and obliquity frequencies, respectively. We also find a signal of the Mid-Brunhes Event (MBE) recorded in numerous Lake El'gygytgyn proxy records. Pre- and

  20. Climate Variability and Surface Processes in Tectonically Active Orogens: Insights From the Southern Central Andes and the Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Strecker, M. R.; Bookhagen, B.

    2008-12-01

    an increase in the fluvial efficiency and connectivity. Farther into the orogen interior, however, the episodically occurring increase in the availability of material may have contributed to the overall long-term reduction of relief due to reduced fluvial connectivity and the inability of rivers to evacuate material to the foreland. Pronounced coeval variations in erosion and depositional processes therefore emphasize the far-reaching impact of climate variability on the surface-process regime and hence provide insights into intensified episodes of landscape evolution in orogens. In addition, the present-day effects of climatic variability on the surface-process system may serve as a model for similar intensified processes that might be expected in a future global change scenario.

  1. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences.

    PubMed

    Barzantny, H; Brune, I; Tauch, A

    2012-02-01

    During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.

    PubMed

    Ilie, Ioana M; Nayar, Divya; den Otter, Wouter K; van der Vegt, Nico F A; Briels, Wim J

    2018-06-12

    Amyloid formation by the intrinsically disordered α-synuclein protein is the hallmark of Parkinson's disease. We present atomistic Molecular Dynamics simulations of the core of α-synuclein using enhanced sampling techniques to describe the conformational and binding free energy landscapes of fragments implicated in fibril stabilization. The theoretical framework is derived to combine the free energy profiles of the fragments into the reaction free energy of a protein binding to a fibril. Our study shows that individual fragments in solution have a propensity toward attaining non-β conformations, indicating that in a fibril β-strands are stabilized by interactions with other strands. We show that most dimers of hydrogen-bonded fragments are unstable in solution, while hydrogen bonding stabilizes the collective binding of five fragments to the end of a fibril. Hydrophobic effects make further contributions to the stability of fibrils. This study is the first of its kind where structural and binding preferences of the five major fragments of the hydrophobic core of α-synuclein have been investigated. This approach improves sampling of intrinsically disordered proteins, provides information on the binding mechanism between the core sequences of α-synuclein, and enables the parametrization of coarse grained models.

  3. The plastoquinol-plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations.

    PubMed

    Zobnina, Veranika; Lambreva, Maya D; Rea, Giuseppina; Campi, Gaetano; Antonacci, Amina; Scognamiglio, Viviana; Giardi, Maria Teresa; Polticelli, Fabio

    2017-01-01

    In the photosystem II (PSII) of oxygenic photosynthetic organisms, the reaction center (RC) core mediates the light-induced electron transfer leading to water splitting and production of reduced plastoquinone molecules. The reduction of plastoquinone to plastoquinol lowers PSII affinity for the latter and leads to its release. However, little is known about the role of protein dynamics in this process. Here, molecular dynamics simulations of the complete PSII complex embedded in a lipid bilayer have been used to investigate the plastoquinol release mechanism. A distinct dynamic behavior of PSII in the presence of plastoquinol is observed which, coupled to changes in charge distribution and electrostatic interactions, causes disruption of the interactions seen in the PSII-plastoquinone complex and leads to the "squeezing out" of plastoquinol from the binding pocket. Displacement of plastoquinol closes the second water channel, recently described in a 2.9 Å resolution PSII structure (Guskov et al. in Nat Struct Mol Biol 16:334-342, 2009), allowing to rule out the proposed "alternating" mechanism of plastoquinol-plastoquinone exchange, while giving support to the "single-channel" one. The performed simulations indicated a pivotal role of D 1 -Ser264 in modulating the dynamics of the plastoquinone binding pocket and plastoquinol-plastoquinone exchange via its interaction with D 1 -His252 residue. The effects of the disruption of this hydrogen bond network on the PSII redox reactions were experimentally assessed in the D 1 site-directed mutant Ser264Lys.

  4. Structural Insights into σ₁ Receptor Interactions with Opioid Ligands by Molecular Dynamics Simulations.

    PubMed

    Kurciński, Mateusz; Jarończyk, Małgorzata; Lipiński, Piotr F J; Dobrowolski, Jan Cz; Sadlej, Joanna

    2018-02-18

    Despite considerable advances over the past years in understanding the mechanisms of action and the role of the σ₁ receptor, several questions regarding this receptor remain unanswered. This receptor has been identified as a useful target for the treatment of a diverse range of diseases, from various central nervous system disorders to cancer. The recently solved issue of the crystal structure of the σ₁ receptor has made elucidating the structure-activity relationship feasible. The interaction of seven representative opioid ligands with the crystal structure of the σ₁ receptor (PDB ID: 5HK1) was simulated for the first time using molecular dynamics (MD). Analysis of the MD trajectories has provided the receptor-ligand interaction fingerprints, combining information on the crucial receptor residues and frequency of the residue-ligand contacts. The contact frequencies and the contact maps suggest that for all studied ligands, the hydrophilic (hydrogen bonding) interactions with Glu172 are an important factor for the ligands' affinities toward the σ₁ receptor. However, the hydrophobic interactions with Tyr120, Val162, Leu105, and Ile124 also significantly contribute to the ligand-receptor interplay and, in particular, differentiate the action of the agonistic morphine from the antagonistic haloperidol.

  5. Interactions of Multimodal Ligands with Proteins: Insights into Selectivity Using Molecular Dynamics Simulations.

    PubMed

    Parimal, Siddharth; Garde, Shekhar; Cramer, Steven M

    2015-07-14

    Fundamental understanding of protein-ligand interactions is important to the development of efficient bioseparations in multimodal chromatography. Here we employ molecular dynamics (MD) simulations to investigate the interactions of three different proteins--ubiquitin, cytochrome C, and α-chymotrypsinogen A, sampling a range of charge from +1e to +9e--with two multimodal chromatographic ligands containing similar chemical moieties--aromatic, carboxyl, and amide--in different structural arrangements. We use a spherical harmonic expansion to analyze ligand and individual moiety density profiles around the proteins. We find that the Capto MMC ligand, which contains an additional aliphatic group, displays stronger interactions than Nuvia CPrime ligand with all three proteins. Studying the ligand densities at the moiety level suggests that hydrophobic interactions play a major role in determining the locations of high ligand densities. Finally, the greater structural flexibility of the Capto MMC ligand compared to that of the Nuvia cPrime ligand allows for stronger structural complementarity and enables stronger hydrophobic interactions. These subtle and not-so-subtle differences in binding affinities and modalities for multimodal ligands can result in significantly different binding behavior towards proteins with important implications for bioprocessing.

  6. Mechanistic Insights from Discrete Molecular Dynamics Simulations of Pesticide-Nanoparticle Interactions.

    PubMed

    Geitner, Nicholas K; Zhao, Weilu; Ding, Feng; Chen, Wei; Wiesner, Mark R

    2017-08-01

    Nanoscale particles have the potential to modulate the transport, lifetimes, and ultimate uptake of pesticides that may otherwise be bound to agricultural soils. Engineered nanoparticles provide a unique platform for studying these interactions. In this study, we utilized discrete molecular dynamics (DMD) as a screening tool for examining nanoparticle-pesticide adsorptive interactions. As a proof-of-concept, we selected a library of 15 pesticides common in the United States and 4 nanomaterials with likely natural or incidental sources, and simulated all possible nanoparticle-pesticide pairs. The resulting adsorption coefficients derived from DMD simulations ranged over several orders of magnitude, and in many cases were significantly stronger than pesticide adsorption on clay surfaces, highlighting the significance of specific nanoscale phases as a preferential media with which pesticides may associate. Binding was found to be significantly enhanced by the capacity to form hydrogen bonds with slightly hydroxylated fullerols, highlighting the importance of considering the precise nature of weathered nanomaterials as opposed to pristine precursors. Results were compared to experimental adsorption studies using selected pesticides, with a Pearson correlation coefficient of 0.97.

  7. Molecular insights into the origin of the Hox-TALE patterning system

    PubMed Central

    Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir

    2014-01-01

    Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410

  8. Molecular insights into the origin of the Hox-TALE patterning system.

    PubMed

    Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir

    2014-03-18

    Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox-TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001.

  9. Molecular Insights on Dissolved Organic Matter Transformation by Supraglacial Microbial Communities.

    PubMed

    Antony, Runa; Willoughby, Amanda S; Grannas, Amanda M; Catanzano, Victoria; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G; Nair, Shanta

    2017-04-18

    Snow overlays the majority of Antarctica and is an important repository of dissolved organic matter (DOM). DOM transformations by supraglacial microbes are not well understood. We use ultrahigh resolution mass spectrometry to elucidate molecular changes in snowpack DOM by in situ microbial processes (up to 55 days) in a coastal Antarctic site. Both autochthonous and allochthonous DOM is highly bioavailable and is transformed by resident microbial communities through parallel processes of degradation and synthesis. DOM thought to be of a more refractory nature, such as dissolved black carbon and carboxylic-rich alicyclic molecules, was also rapidly and extensively reworked. Microbially reworked DOM exhibits an increase in the number and magnitude of N-, S-, and P-containing formulas, is less oxygenated, and more aromatic when compared to the initial DOM. Shifts in the heteroatom composition suggest that microbial processes may be important in the cycling of not only C, but other elements such as N, S, and P. Microbial reworking also produces photoreactive compounds, with potential implications for DOM photochemistry. Refined measurements of supraglacial DOM and their cycling by microbes is critical for improving our understanding of supraglacial DOM cycling and the biogeochemical and ecological impacts of DOM export to downstream environments.

  10. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia.

    PubMed

    Marker, Laurie L; Pearks Wilkerson, Alison J; Sarno, Ronald J; Martenson, Janice; Breitenmoser-Würsten, Christian; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetahs.

  11. Molecular basis of floral petaloidy: insights from androecia of Canna indica

    PubMed Central

    Fu, Qian; Liu, Huanfang; Almeida, Ana M. R.; Kuang, Yanfeng; Zou, Pu; Liao, Jingping

    2014-01-01

    Floral organs that take on the characteristics of petals can occur in all whorls of the monocot order Zingiberales. In Canna indica, the most ornamental or ‘petaloid’ parts of the flowers are of androecial origin and are considered staminodes. However, the precise nature of these petaloid organs is yet to be determined. In order to gain a better understanding of the genetic basis of androecial identity, a molecular investigation of B- and C-class genes was carried out. Two MADS-box genes GLOBOSA (GLO) and AGAMOUS (AG) were isolated from young inflorescences of C. indica by 3′ rapid amplification of cDNA ends polymerase chain reaction (3′-RACE PCR). Sequence characterization and phylogenetic analyses show that CiGLO and CiAG belong to the B- and C-class MADS-box gene family, respectively. CiAG is expressed in petaloid staminodes, the labellum, the fertile stamen and carpels. CiGLO is expressed in petals, petaloid staminodes, the labellum, the fertile stamen and carpels. Expression patterns in mature tissues of CiGLO and CiAG suggest that petaloid staminodes and the labellum are of androecial identity, in agreement with their position within the flower and with described Arabidopsis thaliana expression patterns. Although B- and C-class genes are important components of androecial determination, their expression patterns are not sufficient to explain the distinct morphology observed in staminodes and the fertile stamen in C. indica. PMID:24876297

  12. Insights into the molecular mechanism of tolerance to carboxylic acid amide (CAA) fungicides in Pythium aphanidermatum.

    PubMed

    Blum, Mathias; Gisi, Ulrich

    2012-08-01

    Tolerance to the oomycete-specific carboxylic acid amide (CAA) fungicides is a poorly understood mechanism in Pythium species. The root-rot and damping-off causative agent Pythium aphanidermatum and the CAA fungicide mandipropamid (MPD) were used to investigate the molecular basis of CAA tolerance. Five genes putatively involved in carbohydrate synthesis were identified and characterised: one chitin synthase gene, PaChs, and four cellulose synthase genes PaCesA1 to PaCesA4, of which PaCesA3 encodes the MPD target enzyme. These genes were differentially expressed throughout the life cycle of P. aphanidermatum. Mycelium treated with MPD concentrations slightly affecting mycelial growth did not cause a change in PaCesA3 expression nor a strong upregulation of PaCesA homologues. The high tolerance level of P. aphanidermatum and the lack of PaCesA upregulation imply that MPD tolerance is the result of a specific amino acid configuration in the cellulose synthase 3 (CesA3) target enzyme. Indeed, P. aphanidermatum displays the amino acid L1109 which is also associated with MPD resistance in artificial mutants of Phytophthora species. It is concluded that MPD tolerance in P. aphanidermatum is not caused by compensatory mechanisms but most likely by an inherent target-site configuration in PaCesA3 that hinders MPD binding to the enzyme pocket. Copyright © 2012 Society of Chemical Industry.

  13. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    SciTech Connect

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  14. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations

    DOE PAGES

    Erdmann, Ewa; Labuda, Marta; Aguirre, Nestor F.; ...

    2018-03-15

    We present a complete exploration of the different fragmentation mechanisms of furan (C 4H 4O) operating at low and high energies. Three different theoretical approaches are combined to determine the structure of all possible reaction intermediates, many of them not described in previous studies, and a large number of pathways involving three types of fundamental elementary mechanisms: isomerization, fragmentation, and H/H 2 loss processes (this last one was not yet explored). Our results are compared with the existing experimental and theoretical investigations for furan fragmentation. At low energies the first processes to appear are isomerization, which always implies the breakingmore » of one C–O bond and one or several hydrogen transfers; at intermediate energies the fragmentation of the molecular skeleton becomes the most relevant mechanism; and H/H 2 loss is the dominant processes at high energy. However, the three mechanisms are active in very wide energy ranges and, therefore, at most energies there is a competition among them.« less

  15. Molecular insight into nanoscale water films dewetting on modified silica surfaces.

    PubMed

    Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang

    2015-01-07

    In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

  16. Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature

    SciTech Connect

    Feng, Guang; Li, Song; Atchison, Jennifer S.

    2013-04-12

    Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreementmore » with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density per unit area of electrode surface.« less

  17. Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics

    PubMed Central

    Pickersgill, Barbara

    2007-01-01

    Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas. PMID:17766847

  18. Thermophysical properties of energetic ionic liquids/nitric acid mixtures: Insights from molecular dynamics simulationsa)

    NASA Astrophysics Data System (ADS)

    Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry

    2013-09-01

    Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

  19. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    PubMed

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  20. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    PubMed

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  1. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies

    PubMed Central

    Feuer, S.K.; Camarano, L.; Rinaudo, P.F.

    2013-01-01

    Since the birth of the first IVF-conceived child in 1978, the use of assisted reproductive technologies (ART) has grown dramatically, contributing to the successful birth of 5 million individuals worldwide. However, there are several reported associations of ART with pregnancy complications, such as low birthweight (LBW), preterm birth, birth defects, epigenetic disorders, cancer and poor metabolic health. Whether this is attributed to ART procedures or to the subset of the population seeking ART remains a controversy, but the most relevant question today concerns the potential long-term implications of assisted conception. Recent evidence has emerged suggesting that ART-conceived children have distinct metabolic profiles that may predispose to cardiovascular pathologies in adulthood. Because the eldest IVF individuals are still too young to exhibit components of chronic middle-aged syndromes, the use of animal models has become particularly useful in describing the effects of unusual or stressful preimplantation experiences on adult fitness. Elucidating the molecular mechanisms by which embryos integrate environmental signals into development and metabolic gene expression programs will be essential for optimizing ART procedures such as in vitro culture conditions, embryo selection and transfer. In the future, additional animal studies to identify mechanisms underlying unfavorable ART outcomes, as well as more epidemiological reviews to monitor the long-term health of ART children are required, given that ART procedures have become routine medical practice. PMID:23264495

  2. Merkel Cell Polyomavirus: Molecular Insights into the Most Recently Discovered Human Tumour Virus

    PubMed Central

    Stakaitytė, Gabrielė; Wood, Jennifer J.; Knight, Laura M.; Abdul-Sada, Hussein; Adzahar, Noor Suhana; Nwogu, Nnenna; Macdonald, Andrew; Whitehouse, Adrian

    2014-01-01

    A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC. PMID:24978434

  3. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens

    PubMed Central

    Alkan, Noam; Fortes, Ana M.

    2015-01-01

    Due to post-harvest losses more than 30% of harvested fruits will not reach the consumers’ plate. Fungal pathogens play a key role in those losses, as they cause most of the fruit rots and the customer complaints. Many of the fungal pathogens are already present in the unripe fruit but remain quiescent during fruit growth until a particular phase of fruit ripening and senescence. The pathogens sense the developmental change and switch into the devastating necrotrophic life style that causes fruit rotting. Colonization of unripe fruit by the fungus initiates defensive responses that limit fungal growth and development. However, during fruit ripening several physiological processes occur that correlate with increased fruit susceptibility. In contrast to plant defenses in unripe fruit, the defense posture of ripe fruit entails a different subset of defense responses that will end with fruit rotting and losses. This review will focus on several aspects of molecular and metabolic events associated with fleshy fruit responses induced by post-harvest fungal pathogens during fruit ripening. PMID:26539204

  4. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action

    PubMed Central

    Ahmed, Sarfraz; Sulaiman, Siti Amrah; Baig, Atif Amin; Ibrahim, Muhammad; Liaqat, Sana; Fatima, Saira; Jabeen, Sadia; Shamim, Nighat

    2018-01-01

    Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research. PMID:29492183

  5. Temperature-induced unfolding of epidermal growth factor (EGF): insight from molecular dynamics simulation

    PubMed Central

    Yan, Chunli; Pattani, Varun; Tunnell, James W.; Ren, Pengyu

    2010-01-01

    Thermal disruption of protein structure and function is a potentially powerful therapeutic vehicle. With the emerging nanoparticle-targeting and femtosecond laser technology, it is possible to deliver heating locally to specific molecules. It is therefore important to understand how fast a protein can unfold or lose its function at high temperatures, such as near the water boiling point. In this study, the thermal damage of EGF was investigated by combining the replica exchange (136 replicas) and conventional molecular dynamics simulations. The REMD simulation was employed to rigorously explore the free energy landscape of EGF unfolding. Interestingly, besides the native and unfolded states, we also observed a distinct molten globule (MG) state that retained substantial amount of native contacts. Based on the understanding that which the unfolding of EGF is a three-state process, we have examined the unfolding kinetics of EGF (N→ MG→h multiple 20-ns conventional MD simulations. The Arrhenius prefactors and activation energy barriers determined from the simulation are within the range of previously studied proteins. In contrast to the thermal damage of cells and tissues which take place on the time scale of seconds to hours at relatively low temperatures, the denaturation of proteins occur in nanoseconds when the temperature of heat bath approaches the boiling point. PMID:20466569

  6. Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly.

    PubMed

    O'Neill, Sharon; Mathis, Magalie; Kovačič, Lidija; Zhang, Suisheng; Reinhardt, Jürgen; Scholz, Dimitri; Schopfer, Ulrich; Bouhelal, Rochdi; Knaus, Ulla G

    2018-06-08

    Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22 phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22 phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22 phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques.

    PubMed

    Sengupta, Priti; Sardar, Pinki Saha; Roy, Pritam; Dasgupta, Swagata; Bose, Adity

    2018-06-01

    The binding interaction of Rutin, a flavonoid, with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), were investigated using different spectroscopic techniques, such as fluorescence, time-resolved single photon counting (TCSPC) and circular dichroism (CD) spectroscopy as well as molecular docking method. The emission studies revealed that the fluorescence quenching of BSA/HSA by Rutin occurred through a simultaneous static and dynamic quenching process, and we have evaluated both the quenching constants individually. The binding constants of Rutin-BSA and Rutin-HSA system were found to be 2.14 × 10 6  M -1 and 2.36 × 10 6  M -1 at 298 K respectively, which were quite high. Further, influence of some biologically significant metal ions (Ca 2+ , Zn 2+ and Mg 2+ ) on binding of Rutin to BSA and HSA were also investigated. Thermodynamic parameters justified the involvement of hydrogen bonding and weak van der Waals forces in the interaction of Rutin with both BSA and HSA. Further a site-marker competitive experiment was performed to evaluate Rutin binding site in the albumins. Additionally, the CD spectra of BSA and HSA revealed that the secondary structure of the proteins was perturbed in the presence of Rutin. Finally protein-ligand docking studies have also been performed to determine the probable location of the ligand molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Understanding the microbiome of diabetic foot osteomyelitis: insights from molecular and microscopic approaches.

    PubMed

    Johani, K; Fritz, B G; Bjarnsholt, T; Lipsky, B A; Jensen, S O; Yang, M; Dean, A; Hu, H; Vickery, K; Malone, M

    2018-05-19

    Rigorous visual evidence on whether or not biofilms are involved in diabetic foot osteomyelitis (DFO) is lacking. We employed a suite of molecular and microscopic approaches to investigate the microbiome, and phenotypic state of microorganisms involved in DFO. In 20 consecutive subjects with suspected DFO, we collected intraoperative bone specimens. To explore the microbial diversity present in infected bone we performed next generation DNA sequencing. We used scanning electron microscopy (SEM) and peptide nucleic acid fluorescent in situ hybridization (PNA-FISH) with confocal microscopy to visualize and confirm the presence of biofilms. In 19 of 20 (95%) studied patients presenting with DFO, it was associated with an infected diabetic foot ulcer. By DNA sequencing of infected bone, Corynebacterium sp. was the most commonly identified microorganism, followed by Finegoldia sp., Staphylococcus sp., Streptococcus sp., Porphyromonas sp., and Anaerococcus sp. Six of 20 bone samples (30%) contained only one or two pathogens, while the remaining 14 (70%) had polymicrobial communities. Using a combination of SEM and PNA-FISH, we identified microbial aggregates in biofilms in 16 (80%) bone specimens and found that they were typically coccoid or rod-shaped aggregates. The presence of biofilms in DFO may explain why non-surgical treatment of DFO, relying on systemic antibiotic therapy, may not resolve some chronic infections caused by biofilm-producing strains. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches.

    PubMed

    Clivot, Hugues; Cornut, Julien; Chauvet, Eric; Elger, Arnaud; Poupin, Pascal; Guérold, François; Pagnout, Christophe

    2014-07-01

    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Nephrogenic Diabetes Insipidus: Essential Insights into the Molecular Background and Potential Therapies for Treatment

    PubMed Central

    Rittig, Søren

    2013-01-01

    The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling. PMID:23360744

  11. Climates

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad range of aspen in North America is evidence of its equally broad tolerance of wide variations in climate (Fowells 1965). Given open space for establishment and not too severe competition from other plants, aspen can survive from timberline on the tundra's edge to very warm temperate climates, and from the wet maritime climates of the coasts to very...

  12. Evaluating the Effectiveness of Web-based Climate Resilience Decision Support Tools: Insights from Coastal New Jersey

    NASA Astrophysics Data System (ADS)

    Brady, M.; Lathrop, R.; Auermuller, L. M.; Leichenko, R.

    2016-12-01

    Despite the recent surge of Web-based decision support tools designed to promote resiliency in U.S. coastal communities, to-date there has been no systematic study of their effectiveness. This study demonstrates a method to evaluate important aspects of effectiveness of four Web map tools designed to promote consideration of climate risk information in local decision-making and planning used in coastal New Jersey. In summer 2015, the research team conducted in-depth phone interviews with users of one regulatory and three non-regulatory Web map tools using a semi-structured questionnaire. The interview and analysis design drew from a combination of effectiveness evaluation approaches developed in software and information usability, program evaluation, and management information system (MIS) research. Effectiveness assessment results were further analyzed and discussed in terms of conceptual hierarchy of system objectives defined by respective tool developer and user organizations represented in the study. Insights from the interviews suggest that users rely on Web tools as a supplement to desktop and analog map sources because they provide relevant and up-to-date information in a highly accessible and mobile format. The users also reported relying on multiple information sources and comparison between digital and analog sources for decision support. However, with respect to this decision support benefit, users were constrained by accessibility factors such as lack of awareness and training with some tools, lack of salient information such as planning time horizons associated with future flood scenarios, and environmental factors such as mandates restricting some users to regulatory tools. Perceptions of Web tool credibility seem favorable overall, but factors including system design imperfections and inconsistencies in data and information across platforms limited trust, highlighting a need for better coordination between tools. Contributions of the study include

  13. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    PubMed

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  14. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments

  15. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.

    PubMed

    Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L

    2005-01-01

    The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens

  16. Insight into the molecular mechanism of water evaporation via the finite temperature string method.

    PubMed

    Musolino, Nicholas; Trout, Bernhardt L

    2013-04-07

    The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.

  17. CuCl Complexation in the Vapor Phase: Insights from Ab Initio Molecular Dynamics Simulations

    DOE PAGES

    Mei, Yuan; Liu, Weihua; Migdiov, A. A.; ...

    2018-05-02

    We invesmore » tigated the hydration of the CuCl 0 complex in HCl-bearing water vapor at 350°C and a vapor-like fluid density between 0.02 and 0.09 g/cm 3 using ab initio molecular dynamics (MD) simulations. The simulations reveal that one water molecule is strongly bonded to Cu(I) (first coordination shell), forming a linear [H 2O-Cu-Cl] 0 moiety. The second hydration shell is highly dynamic in nature, and individual configurations have short life-spans in such low-density vapors, resulting in large fluctuations in instantaneous hydration numbers over a timescale of picoseconds. The average hydration number in the second shell (m) increased from ~0.5 to ~3.5 and the calculated number of hydrogen bonds per water molecule increased from 0.09 to 0.25 when fluid density (which is correlated to water activity) increased from 0.02 to 0.09 g/cm 3 ( f H 2O 1.72 to 2.05). These changes of hydration number are qualitatively consistent with previous solubility studies under similar conditions, although the absolute hydration numbers from MD were much lower than the values inferred by correlating experimental Cu fugacity with water fugacity. This could be due to the uncertainties in the MD simulations and uncertainty in the estimation of the fugacity coefficients for these highly nonideal “vapors” in the experiments. Finally, our study provides the first theoretical confirmation that beyond-first-shell hydrated metal complexes play an important role in metal transport in low-density hydrothermal fluids, even if it is highly disordered and dynamic in nature.« less

  18. Molecular Insights into the Ctenophore Genus Beroe in Europe: New Species, Spreading Invaders.

    PubMed

    Johansson, Mattias L; Shiganova, Tamara A; Ringvold, Halldis; Stupnikova, Alexandra N; Heath, Daniel D; MacIsaac, Hugh J

    2018-06-07

    The genus Beroe Browne, 1756 (Ctenophora, Beroidae) occurs worldwide, with 25 currently-described species. Because the genus is poorly studied, the definitive number of species is uncertain. Recently, a possible new Beroe species was suggested based on internal transcribed spacer 1 (ITS1) sequences from samples collected in Svalbard, Norway. Another species, Beroe ovata, was introduced to Europe from North America, initially in the Black Sea and subsequently (and possibly secondarily) into the Mediterranean and Baltic Seas. In areas where ctenophores have been introduced, they have often had significant detrimental ecological effects. The potential for other cryptic and/or undescribed Beroe species, and history of spread of some species in the genus, give reason for additional study. When alive, morphological hallmarks may be challenging to spot and photograph owing to the animals' transparency and near-constant motion. We sampled and analyzed 109 putative Beroe specimens from Europe, using morphological and molecular approaches. DNA analyses were conducted using cytochrome oxidase 1 and internal transcribed spacer sequences, and together with published sequences from GenBank, phylogenetic relationships of the genus were explored. Our study suggests the presence of at least five genetic lineages of Beroe in Europe, of which three could be assigned to known species: Beroe gracilis Künne 1939; Beroe cucumis Fabricius, 1780 and Beroe ovata sensu Mayer, 1912. The other two lineages (here provisionally named Beroe "norvegica" and Beroe "anatoliensis") did not clearly coincide with any known species, and might therefore reflect new species, but confirmation of this requires further study.

  19. Insights into enzyme point mutation effect by molecular simulation: phenylethylamine oxidation catalyzed by monoamine oxidase A.

    PubMed

    Oanca, Gabriel; Purg, Miha; Mavri, Janez; Shih, Jean C; Stare, Jernej

    2016-05-21

    The I335Y point mutation effect on the kinetics of phenylethylamine decomposition catalyzed by monoamine oxidase A was elucidated by means of molecular simulation. The established empirical valence bond methodology was used in conjunction with the free energy perturbation sampling technique and a classical force field representing the state of reactants and products. The methodology allows for the simulation of chemical reactions, in the present case the breaking of the α-C-H bond in a phenylethylamine substrate and the subsequent hydrogen transfer to the flavin cofactor, resulting in the formation of the N-H bond on flavin. The empirical parameters were calibrated against the experimental data for the simulated reaction in a wild type protein and then used for the calculation of the reaction free energy profile in the I335Y mutant. In very good agreement with the measured kinetic data, mutation increases the free energy barrier for the rate limiting step by slightly more than 1 kcal mol(-1) and consequently decreases the rate constant by about an order of magnitude. The magnitude of the computed effect slightly varies with simulation settings, but always remains in reasonable agreement with the experiment. Analysis of trajectories reveals a major change in the interaction between phenyl rings of the substrate and the neighboring Phe352 residue upon the I335Y mutation due to the increased local polarity, leading to an attenuated quadrupole interaction between the rings and destabilization of the transition state. Additionally, the increased local polarity in the mutant allows for a larger number of water molecules to be present near the active site, effectively shielding the catalytic effect of the enzyme and contributing to the increased barrier.

  20. Molecular Dynamics Simulations Provide Atomistic Insight into Hydrogen Exchange Mass Spectrometry Experiments.

    PubMed

    Petruk, Ariel A; Defelipe, Lucas A; Rodríguez Limardo, Ramiro G; Bucci, Hernán; Marti, Marcelo A; Turjanski, Adrian G

    2013-01-08

    It is now clear that proteins are flexible entities that in solution switch between conformations to achieve their function. Hydrogen/Deuterium Exchange Mass Spectrometry (HX/MS) is an invaluable tool to understand dynamic changes in proteins modulated by cofactor binding, post-transductional modifications, or protein-protein interactions. ERK2MAPK, a protein involved in highly conserved signal transduction pathways of paramount importance for normal cellular function, has been extensively studied by HX/MS. Experiments of the ERK2MAPK in the inactive and active states (in the presence or absence of bound ATP) have provided valuable information on the plasticity of the MAPK domain. However, interpretation of the HX/MS data is difficult, and changes are mostly explained in relation to available X-ray structures, precluding a complete atomic picture of protein dynamics. In the present work, we have used all atom Molecular Dynamics simulations (MD) to provide a theoretical framework for the interpretation of HX/MS data. Our results show that detailed analysis of protein-solvent interaction along the MD simulations allows (i) prediction of the number of protons exchanged for each peptide in the HX/MS experiments, (ii) rationalization of the experimentally observed changes in exchange rates in different protein conditions at the residue level, and (iii) that at least for ERK2MAPK, most of the functionally observed differences in protein dynamics are related to what can be considered the native state conformational ensemble. In summary, the combination of HX/MS experiments with all atom MD simulations emerges as a powerful approach to study protein native state dynamics with atomic resolution.

  1. Phylogeny, evolutionary trends and classification of the Spathelia-Ptaeroxylon clade: morphological and molecular insights.

    PubMed

    Appelhans, M S; Smets, E; Razafimandimbison, S G; Haevermans, T; van Marle, E J; Couloux, A; Rabarison, H; Randrianarivelojosia, M; Kessler, P J A

    2011-06-01

    The Spathelia-Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia-Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. A species-level phylogenetic analysis of the Spathelia-Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL-trnF, rps16 and psbA-trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. With the exception of Spathelia, all genera of the Spathelila-Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. The Spathelia-Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal

  2. Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights

    PubMed Central

    da Silva, Bruno Bezerra; Furtado, Gilvan Pessoa; Carneiro, Igor de Sa; Lobo, Marina Duarte Pinto; Guan, Yiwei; Guo, Jingxu; Coker, Alun R.; Lourenzoni, Marcos Roberto; Guedes, Maria Izabel Florindo; Owen, James S.; Abraham, David J.; Monteiro-Moreira, Ana Cristina de Oliveira; Moreira, Renato de Azevedo

    2017-01-01

    Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin (FTP) and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. FTP is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically active recombinant FTP in Escherichia coli BL21, optimizing conditions with the best set yielding >40 mg/l culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/ml of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP–mannose and FTP–glucose crystals were obtained, and they diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Å respectively. The best solution showed four monomers per asymmetric unit. Molecular dynamics (MD) simulation suggested that FTP displays higher affinity for mannose than glucose. Cell studies revealed that FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/ml and was also capable of stimulating cell migration at 50 µg/ml. In conclusion, our optimized expression system allowed high amounts of correctly folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example in wound healing and tissue regeneration. PMID:28684550

  3. Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights.

    PubMed

    de Sousa, Felipe Domingos; da Silva, Bruno Bezerra; Furtado, Gilvan Pessoa; Carneiro, Igor de Sa; Lobo, Marina Duarte Pinto; Guan, Yiwei; Guo, Jingxu; Coker, Alun R; Lourenzoni, Marcos Roberto; Guedes, Maria Izabel Florindo; Owen, James S; Abraham, David J; Monteiro-Moreira, Ana Cristina de Oliveira; Moreira, Renato de Azevedo

    2017-08-31

    Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin (FTP) and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. FTP is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically active recombinant FTP in Escherichia coli BL21, optimizing conditions with the best set yielding >40 mg/l culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/ml of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained, and they diffracted X-rays to a resolution of 1.58 (P2 1 2 1 2 1 ), 1.70 (P3 1 21) and 1.60 (P3 1 21) Å respectively. The best solution showed four monomers per asymmetric unit. Molecular dynamics (MD) simulation suggested that FTP displays higher affinity for mannose than glucose. Cell studies revealed that FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/ml and was also capable of stimulating cell migration at 50 µg/ml. In conclusion, our optimized expression system allowed high amounts of correctly folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example in wound healing and tissue regeneration. © 2017 The Author(s).

  4. Phylogeny, evolutionary trends and classification of the Spathelia–Ptaeroxylon clade: morphological and molecular insights

    PubMed Central

    Appelhans, M. S.; Smets, E.; Razafimandimbison, S. G.; Haevermans, T.; van Marle, E. J.; Couloux, A.; Rabarison, H.; Randrianarivelojosia, M.; Keßler, P. J. A.

    2011-01-01

    Background and Aims The Spathelia–Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia–Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. Methods A species-level phylogenetic analysis of the Spathelia–Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL–trnF, rps16 and psbA–trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. Key Results With the exception of Spathelia, all genera of the Spathelila–Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. Conclusions The Spathelia–Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities

  5. Molecular insights into the colonization and chromosomal diversification of Madeiran house mice.

    PubMed

    Förster, D W; Gündüz, I; Nunes, A C; Gabriel, S; Ramalhinho, M G; Mathias, M L; Britton-Davidian, J; Searle, J B

    2009-11-01

    The colonization history of Madeiran house mice was investigated by analysing the complete mitochondrial (mt) D-loop sequences of 156 mice from the island of Madeira and mainland Portugal, extending on previous studies. The numbers of mtDNA haplotypes from Madeira and mainland Portugal were substantially increased (17 and 14 new haplotypes respectively), and phylogenetic analysis confirmed the previously reported link between the Madeiran archipelago and northern Europe. Sequence analysis revealed the presence of four mtDNA lineages in mainland Portugal, of which one was particularly common and widespread (termed the 'Portugal Main Clade'). There was no support for population bottlenecks during the formation of the six Robertsonian chromosome races on the island of Madeira, and D-loop sequence variation was not found to be structured according to karyotype. The colonization time of the Madeiran archipelago by Mus musculus domesticus was approached using two molecular dating methods (mismatch distribution and Bayesian skyline plot). Time estimates based on D-loop sequence variation at mainland sites (including previously published data from France and Turkey) were evaluated in the context of the zooarchaeological record of M. m. domesticus. A range of values for mutation rate (mu) and number of mouse generations per year was considered in these analyses because of the uncertainty surrounding these two parameters. The colonization of Portugal and Madeira by house mice is discussed in the context of the best-supported parameter values. In keeping with recent studies, our results suggest that mutation rate estimates based on interspecific divergence lead to gross overestimates concerning the timing of recent within-species events.

  6. CuCl Complexation in the Vapor Phase: Insights from Ab Initio Molecular Dynamics Simulations

    SciTech Connect

    Mei, Yuan; Liu, Weihua; Migdiov, A. A.

    We invesmore » tigated the hydration of the CuCl 0 complex in HCl-bearing water vapor at 350°C and a vapor-like fluid density between 0.02 and 0.09 g/cm 3 using ab initio molecular dynamics (MD) simulations. The simulations reveal that one water molecule is strongly bonded to Cu(I) (first coordination shell), forming a linear [H 2O-Cu-Cl] 0 moiety. The second hydration shell is highly dynamic in nature, and individual configurations have short life-spans in such low-density vapors, resulting in large fluctuations in instantaneous hydration numbers over a timescale of picoseconds. The average hydration number in the second shell (m) increased from ~0.5 to ~3.5 and the calculated number of hydrogen bonds per water molecule increased from 0.09 to 0.25 when fluid density (which is correlated to water activity) increased from 0.02 to 0.09 g/cm 3 ( f H 2O 1.72 to 2.05). These changes of hydration number are qualitatively consistent with previous solubility studies under similar conditions, although the absolute hydration numbers from MD were much lower than the values inferred by correlating experimental Cu fugacity with water fugacity. This could be due to the uncertainties in the MD simulations and uncertainty in the estimation of the fugacity coefficients for these highly nonideal “vapors” in the experiments. Finally, our study provides the first theoretical confirmation that beyond-first-shell hydrated metal complexes play an important role in metal transport in low-density hydrothermal fluids, even if it is highly disordered and dynamic in nature.« less

  7. Proton transport behavior through the influenza A M2 channel: insights from molecular simulation.

    PubMed

    Chen, Hanning; Wu, Yujie; Voth, Gregory A

    2007-11-15

    The structural properties of the influenza A virus M2 transmembrane channel in dimyristoylphosphatidylcholine bilayer for each of the four protonation states of the proton-gating His-37 tetrad and their effects on proton transport for this low-pH activated, highly proton-selective channel are studied by classical molecular dynamics with the multistate empirical valence-bond (MS-EVB) methodology. The excess proton permeation free energy profile and maximum ion conductance calculated from the MS-EVB simulation data combined with the Poisson-Nernst-Planck theory indicates that the triply protonated His-37 state is the most likely open state via a significant side-chain conformational change of the His-37 tetrad. This proposed open state of M2 has a calculated proton permeation free energy barrier of 7 kcal/mol and a maximum conductance of 53 pS compared to the experimental value of 6 pS. By contrast, the maximum conductance for Na(+) is calculated to be four orders of magnitude lower, in reasonable agreement with the experimentally observed proton selectivity. The pH value to activate the channel opening is estimated to be 5.5 from dielectric continuum theory, which is also consistent with experimental results. This study further reveals that the Ala-29 residue region is the primary binding site for the antiflu drug amantadine (AMT), probably because that domain is relatively spacious and hydrophobic. The presence of AMT is calculated to reduce the proton conductance by 99.8% due to a significant dehydration penalty of the excess proton in the vicinity of the channel-bound AMT.

  8. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.

    PubMed

    Meher, Biswa Ranjan; Kumar, Mattaparthi Venkata Satish; Bandyopadhyay, Pradipta

    2014-01-01

    The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20 ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.

  9. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism.

    PubMed

    Citterio, Cintia E; Machiavelli, Gloria A; Miras, Mirta B; Gruñeiro-Papendieck, Laura; Lachlan, Katherine; Sobrero, Gabriela; Chiesa, Ana; Walker, Joanna; Muñoz, Liliana; Testa, Graciela; Belforte, Fiorella S; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2013-01-30

    The thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report 13 patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and imaging evaluation. Single-strand conformation polymorphism (SSCP) analysis, endonuclease restriction analysis, sequencing of DNA, genotyping, population screening, and bioinformatics studies were performed. Molecular analyses revealed seven novel inactivating TG mutations: c.378C>A [p.Y107X], c.2359C>T [p.R768X], c.2736delG [p.R893fsX946], c.3842G>A [p.C1262Y], c.5466delA [p.K1803fsX1833], c.6000C>G [p.C1981W] and c.6605C>G [p.P2183R] and three previously reported mutations: c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.7006C>T [p.R2317X]. Six patients from two families were homozygous for p.R277X mutation, four were compound heterozygous mutations (p.Y107X/p.C1262Y, p.R893fsX946/p.A2215D, p.K1803fsX1832/p.R2317X), one carried three identified mutations (p.R277X/p.C1981W-p.P2183R) together with a hypothetical micro deletion and the remaining two siblings from another family with typical phenotype had a single p.R768X mutated allele. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of altered TG folding as a consequency of truncated TG proteins and missense mutations located in ACHE-like domain or that replace cysteine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis

    PubMed Central

    Tingaud-Sequeira, Angèle; Chauvigné, François; Lozano, Juanjo; Agulleiro, María J; Asensio, Esther; Cerdà, Joan

    2009-01-01

    Background The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. Results Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na+-K+-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis

  11. Impact of mutation on proton transfer reactions in ketosteroid isomerase: insights from molecular dynamics simulations.

    PubMed

    Chakravorty, Dhruva K; Hammes-Schiffer, Sharon

    2010-06-02

    The two proton transfer reactions catalyzed by ketosteroid isomerase (KSI) involve a dienolate intermediate stabilized by hydrogen bonds with Tyr14 and Asp99. Molecular dynamics simulations based on an empirical valence bond model are used to examine the impact of mutating these residues on the hydrogen-bonding patterns, conformational changes, and van der Waals and electrostatic interactions during the proton transfer reactions. While the rate constants for the two proton transfer steps are similar for wild-type (WT) KSI, the simulations suggest that the rate constant for the first proton transfer step is smaller in the mutants due to the significantly higher free energy of the dienolate intermediate relative to the reactant. The calculated rate constants for the mutants D99L, Y14F, and Y14F/D99L relative to WT KSI are qualitatively consistent with the kinetic experiments indicating a significant reduction in the catalytic rates along the series of mutants. In the simulations, WT KSI retained two hydrogen-bonding interactions between the substrate and the active site, while the mutants typically retained only one hydrogen-bonding interaction. A new hydrogen-bonding interaction between the substrate and Tyr55 was observed in the double mutant, leading to the prediction that mutation of Tyr55 will have a greater impact on the proton transfer rate constants for the double mutant than for WT KSI. The electrostatic stabilization of the dienolate intermediate relative to the reactant was greater for WT KSI than for the mutants, providing a qualitative explanation for the significantly reduced rates of the mutants. The active site exhibited restricted motion during the proton transfer reactions, but small conformational changes occurred to facilitate the proton transfer reactions by strengthening the hydrogen-bonding interactions and by bringing the proton donor and acceptor closer to each other with the proper orientation for proton transfer. Thus, these calculations

  12. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    PubMed

    Ramírez, Juan C; Torres, Carolina; Curto, María de Los A; Schijman, Alejandro G

    2017-12-01

    Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs), TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA), comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  13. Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level.

    PubMed

    Politis, Sebastian N; Mazurais, David; Servili, Arianna; Zambonino-Infante, Jose-Luis; Miest, Joanna J; Tomkiewicz, Jonna; Butts, Ian A E

    2018-01-01

    European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such

  14. Australasian orchid biogeography at continental scale: molecular phylogenetic insights from the sun orchids (Thelymitra, Orchidaceae).

    PubMed

    Nauheimer, Lars; Schley, Rowan J; Clements, Mark A; Micheneau, Claire; Nargar, Katharina

    2018-06-02

    Australia harbours a rich and highly endemic orchid flora, with c. 90 % of species endemic to the country. Despite that, the biogeographic history of Australasian orchid lineages is only poorly understood. Here we examined evolutionary relationships and the spatio-temporal evolution of the sun orchids (Thelymitra, 119 species), which display disjunct distribution patterns frequently found in Australasian orchid lineages. Phylogenetic analyses were conducted based on one nuclear (ITS) and three plastid markers (matK, psbJ-petA, ycf1) using Maximum Likelihood and Bayesian inference. Divergence time estimations were carried out with a relaxed molecular clock in a Bayesian framework. Ancestral ranges were estimated using the dispersal-extinction-cladogenesis model and an area coding based on major disjunctions. The phylogenetic analyses clarified intergeneric relationships within Thelymitrinae, with Epiblema being sister to Thelymitra plus Calochilus, both of which were well-supported. Within Thelymitra, eight major and several minor clades were retrieved in the nuclear and plastid phylogenetic reconstructions. Five major clades corresponded to species complexes previously recognized based on morphological characters, whereas other previously recognized species groups were found to be paraphyletic. Conflicting signals between the nuclear and plastid phylogenetic reconstructions provided support for hybridization and plastid capture events both in the deeper evolutionary history of the genus and more recently. Divergence time estimation placed the origin of Thelymitra in the late Miocene (c. 10.8 Ma) and the origin of the majority of the main clades within Thelymitra during the late Pliocene and early Pleistocene, with the majority of extant species arising during the Pleistocene. Ancestral range reconstruction revealed that the early diversification of the genus in the late Miocene and Pliocene took place predominantly in southwest Australia, where most species with

  15. Climate-driven tree mortality: insights from the pinon pine die-off in the United States

    Treesearch

    Jeffrey A. Hicke; Melanie J. B. Zeppel

    2013-01-01

    The global climate is changing, and a range of negative effects on plants has already been observed and will likely continue into the future. One of the most apparent consequences of climate change is widespread tree mortality (Fig. 1). Extensive tree die-offs resulting from recent climate change have been documented across a range of forest types on all forested...

  16. Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: A combined spectroscopic and molecular dynamic simulation studies.

    PubMed

    Khan, Shagufta; Khan, Faez Iqbal; Mohammad, Taj; Khan, Parvez; Hasan, Gulam Mustafa; Lobb, Kevin A; Islam, Asimul; Ahmad, Faizan; Imtaiyaz Hassan, Md

    2018-05-01

    Mammalian cell entry protein (Mce4A) is a member of MCE-family, and is being considered as a potential drug target of Mycobacterium tuberculosis infection because it is required for invasion and latent survival of pathogen by utilizing host's cholesterol. In the present study, we performed molecular docking followed by 100 ns MD simulation studies to understand the mechanism of interaction of Mce4A to the cholesterol derivatives and probucol. The selected ligands, cholesterol, 25-hydroxycholesterol, 5-cholesten-3β-ol-7-one and probucol bind to the predicted active site cavity of Mce4A, and complexes remain stable during entire simulation of 100 ns. In silico studies were further validated by fluorescence-binding studies to calculate actual binding affinity and number of binding site(s). The non-toxicity of all ligands was confirmed on human monocytic cell (THP1) by MTT assay. This work provides a deeper insight into the mechanism of interaction of Mce4A to cholesterol derivatives, which may be further exploited to design potential and specific inhibitors to ameliorate the Mycobacterium pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Novel Insights into the Molecular Interaction of a Panduratin A Derivative with the Non Structural Protein (NS3) of Dengue Serotypes: A Molecular Dynamics Study.

    PubMed

    Parida, Pratap; Yadav, Raj Narain Singh; Dehury, Budheswar; Ghosh, Debosree; Mahapatra, Namita; Mitra, Analava; Mohanta, Tapan Kumar

    2017-01-01

    The ligand PKP10 having substitution of Cl- at R2 and R3 positions of ring A of Panduratin A i.e., ((1R,2S,5S)-5-(2,3-dichlorophenyl)-3-methyl-2-(3-methylbut-2-nyl)cyclohex-3- enyl)(2,6-dihydroxy-4-methylphenyl)methanone hydrate) has been observed to block the Nuclear Receptor Binding Protein binding site of Non Structural protein 3 in all dengue serotypes. In continuation with our earlier study, we have reported sixty novel Panduratin A derivatives compounds where substitution was done in positions 2 and 3 position of the benzyl ring A of Panduratin A with various substituents. We selected ((1R,2S,5S)-5-(2,3-dichlorophenyl)-3-methyl-2-(3-methylbut-2-nyl)cyclohex-3- nyl) (2,6-dihydroxy-4-methylphenyl) methanone hydrate) (PKP10) for molecular dynamics (MD) simulations as it constantly produced lowest CDocker interaction energy of among all the sixty five derivatives. The CDocker interaction energy was predicted to be -140.804, -79.807, -78.217 and -84.073 Kcalmol-1 respectively against NS3 protein of dengue serotypes (DENV1-4). To understand the dynamics of the PKP10 with NS3 protein, each complex was subjected to molecular dynamics simulations of 50 ns in aqueous solution. MD (Molecular Dynamics) simulation study revealed that the binding of ligand PKP10 at the active site of NS3 induces a conformational change in all serotypes which was well supported by principal component analysis. To the best of our knowledge, this is first ever study which provided atomistic insights into the interaction of PKP10 with NS3 protein of dengue serotypes. The result from our study along with in vitro studies is expected to open up better avenues to develop inhibitors for dengue virus in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Molecular dynamics studies on troponin (TnI-TnT-TnC) complexes: insight into the regulation of muscle contraction.

    PubMed

    Varughese, Jayson F; Chalovich, Joseph M; Li, Yumin

    2010-10-01

    Mutations of any subunit of the troponin complex may lead to serious disorders. Rational approaches to managing these disorders require knowledge of the complex interactions among the three subunits that are required for proper function. Molecular dynamics (MD) simulations were performed for both skeletal (sTn) and cardiac (cTn) troponin. The interactions and correlated motions among the three components of the troponin complex were analyzed using both Molecular Mechanics-Generalized Born Surface Area (MMGBSA) and cross-correlation techniques. The TnTH2 helix was strongly positively correlated with the two long helices of TnI. The C domain of TnC was positively correlated with TnI and TnT. The N domain of TnC was negatively correlated with TnI and TnT in cTn, but not in sTn. The two C-domain calcium-binding sites of TnC were dynamically correlated. The two regulatory N-domain calcium-binding sites of TnC were dynamically correlated, even though the calcium-binding site I is dysfunctional. The strong interaction residue pairs and the strong dynamically correlated residues pairs among the three components of troponin complexes were identified. These correlated motions are consistent with the idea that there is a high degree of cooperativity among the components of the regulatory complex in response to Ca(2+) and other effectors. This approach may give insight into the mechanism by which mutations of troponin cause disease. It is interesting that some observed disease causing mutations fall within regions of troponin that are strongly correlated or interacted.

  19. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.

    PubMed

    Abhinand, P A; Shaikh, Faraz; Bhakat, Soumendranath; Radadiya, Ashish; Bhaskar, L V K S; Shah, Anamik; Ragunath, P K

    2016-01-01

    Methylenetetrahydrofolate reductase (MTHFR) protein catalyzes the only biochemical reaction which produces methyltetrahydrofolate, the active form of folic acid essential for several molecular functions. The Ala222Val polymorphism of human MTHFR encodes a thermolabile protein associated with increased risk of neural tube defects and cardiovascular disease. Experimental studies have shown that the mutation does not affect the kinetic properties of MTHFR, but inactivates the protein by increasing flavin adenine dinucleotide (FAD) loss. The lack of completely solved crystal structure of MTHFR is an impediment in understanding the structural perturbations caused by the Ala222Val mutation; computational modeling provides a suitable alternative. The three-dimensional structure of human MTHFR protein was obtained through homology modeling, by taking the MTHFR structures from Escherichia coli and Thermus thermophilus as templates. Subsequently, the modeled structure was docked with FAD using Glide, which revealed a very good binding affinity, authenticated by a Glide XP score of -10.3983 (kcal mol(-1)). The MTHFR was mutated by changing Alanine 222 to Valine. The wild-type MTHFR-FAD complex and the Ala222Val mutant MTHFR-FAD complex were subjected to molecular dynamics simulation over 50 ns period. The average difference in backbone root mean square deviation (RMSD) between wild and mutant variant was found to be ~.11 Å. The greater degree of fluctuations in the mutant protein translates to increased conformational stability as a result of mutation. The FAD-binding ability of the mutant MTHFR was also found to be significantly lowered as a result of decreased protein grip caused by increased conformational flexibility. The study provides insights into the Ala222Val mutation of human MTHFR that induces major conformational changes in the tertiary structure, causing a significant reduction in the FAD-binding affinity.

  20. Molecular Insights of p47phox Phosphorylation Dynamics in the Regulation of NADPH Oxidase Activation and Superoxide Production*

    PubMed Central

    Meijles, Daniel N.; Fan, Lampson M.; Howlin, Brendan J.; Li, Jian-Mei

    2014-01-01

    Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2⨪ production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells. PMID:24970888

  1. Exploring the structural insights on human laforin mutation K87A in Lafora disease--a molecular dynamics study.

    PubMed

    Srikumar, P S; Rohini, K

    2013-10-01

    Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.

  2. Molecular evolution of the CPP-like gene family in plants: insights from comparative genomics of Arabidopsis and rice.

    PubMed

    Yang, Zefeng; Gu, Shiliang; Wang, Xuefeng; Li, Wenjuan; Tang, Zaixiang; Xu, Chenwu

    2008-09-01

    CPP-like genes are members of a small family which features the existence of two similar Cys-rich domains termed CXC domains in their protein products and are distributed widely in plants and animals but do not exist in yeast. The members of this family in plants play an important role in development of reproductive tissue and control of cell division. To gain insights into how CPP-like genes evolved in plants, we conducted a comparative phylogenetic and molecular evolutionary analysis of the CPP-like gene family in Arabidopsis and rice. The results of phylogeny revealed that both gene loss and species-specific expansion contributed to the evolution of this family in Arabidopsis and rice. Both intron gain and intron loss were observed through intron/exon structure analysis for duplicated genes. Our results also suggested that positive selection was a major force during the evolution of CPP-like genes in plants, and most amino acid residues under positive selection were disproportionately located in the region outside the CXC domains. Further analysis revealed that two CXC domains and sequences connecting them might have coevolved during the long evolutionary period.

  3. A mechanistic insight into the amyloidogenic structure of hIAPP peptide revealed from sequence analysis and molecular dynamics simulation.

    PubMed

    Chakraborty, Sandipan; Chatterjee, Barnali; Basu, Soumalee

    2012-07-01

    A collective approach of sequence analysis, phylogenetic tree and in silico prediction of amyloidogenecity using bioinformatics tools have been used to correlate the observed species-specific variations in IAPP sequences with the amyloid forming propensity. Observed substitution patterns indicate that probable changes in local hydrophobicity are instrumental in altering the aggregation propensity of the peptide. In particular, residues at 17th, 22nd and 23rd positions of the IAPP peptide are found to be crucial for amyloid formation. Proline25 primarily dictates the observed non-amyloidogenecity in rodents. Furthermore, extensive molecular dynamics simulation of 0.24 μs have been carried out with human IAPP (hIAPP) fragment 19-27, the portion showing maximum sequence variation across different species, to understand the native folding characteristic of this region. Principal component analysis in combination with free energy landscape analysis illustrates a four residue turn spanning from residue 22 to 25. The results provide a structural insight into the intramolecular β-sheet structure of amylin which probably is the template for nucleation of fibril formation and growth, a pathogenic feature of type II diabetes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Insight into the fundamental interactions between LEDGF binding site inhibitors and integrase combining docking and molecular dynamics simulations.

    PubMed

    De Luca, Laura; Morreale, Francesca; Chimirri, Alba

    2012-12-21

    In recent years, HIV-1 integrase (IN) has emerged as an attractive target for novel anti-AIDS agents. In particular, nonactive-site-binding IN inhibitors would display synergy with current strand-transfer-specific IN inhibitors and other antiretroviral drugs in clinical use. An effective allosteric inhibitory approach would be the disruption of protein-protein interaction (PPI) between IN and cellular cofactors, such as LEDGF/p75. To date, several small molecules have been reported to be inhibitors of the PPI between IN and LEDGF/p75. In this study, we investigated the most relevant interactions between five selected PPI inhibitors and IN comparing them to the naturally occurring IN-LEDGF/p75 complex. We calculated the binding free energies by using the method of molecular mechanics-generalized Born surface area (MM-GBSA). Total energy was decomposed on per residue contribution, and hydrogen bond occupancies were monitored throughout the simulations. Considering all these results we obtained a good correlation with experimental activity and useful insights for the development of new inhibitors.

  5. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  6. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study.

    PubMed

    Zhang, Ruiming; Shi, Xiangli; Sun, Yanhui; Zhang, Qingzhu; Wang, Wenxing

    2018-05-17

    The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol -1 , respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB. Copyright © 2018. Published by Elsevier Ltd.

  7. Nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass: Insights from molecular dynamics simulations

    SciTech Connect

    Kilymis, D. A.; Ispas, S., E-mail: simona.ispas-crouzet@umontpellier.fr; Delaye, J.-M.

    2016-07-28

    We have carried out classical molecular dynamics simulations in order to get insight into the atomistic mechanisms of the deformation during nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass. In terms of the glass hardness, we have found that the primary factor affecting the decrease of hardness after irradiation is depolymerization rather than free volume, and we argue that this is a general trend applicable to other borosilicate glasses with similar compositions. We have analyzed the changes of the short- and medium-range structures under deformation and found that the creation of oxygen triclusters is an importantmore » mechanism in order to describe the deformation of highly polymerized borosilicate glasses and is essential in the understanding of the folding of large rings under stress. We have equally found that the less polymerized glasses present a higher amount of relative densification, while the analysis of bond-breaking during the nanoindentation has showed that shear flow is more likely to appear around sodium atoms. The results provided in this study can be proven to be useful in the interpretation of experimental results.« less

  8. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    , these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor. PMID:22403541

  9. Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity

    PubMed Central

    Solomon, Scott E.; Bacci, Mauricio; Martins, Joaquim; Vinha, Giovanna Gonçalves; Mueller, Ulrich G.

    2008-01-01

    The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area. PMID:18648512

  10. Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project

    NASA Astrophysics Data System (ADS)

    Maibach, E.; Roser-Renouf, C.

    2011-12-01

    That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.

  11. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKenna, Amy

    2013-03-01

    events in the FT-ICR experiment. For example, the high density of peaks at each nominal mass unit provides unprecedented insight into how excitation conditions affect ion motion during detection. Aggregated oil (i.e., tar balls, tar mats) that reached the surface exhibits a more than two-fold increase in the total number of detected species, with an increased number of oxygenated species. Principal component analysis (PCA) applied to two possible source oils (contained within the same ship) and weathered samples provide the first application of FT-ICR MS for source identification. Molecular formulae from parent and weathered oil indicate that the lightest petroleum fractions (saturated hydrocarbons) are the most readily oxidized components, and can serve as a template to determine chemical transformations that occur throughout the water column. The ability to differentiate and catalogue compositional changes that occur to oil after its release into the environment relies heavily on gains achieved in nearly all steps in the FT-ICR mass spectral experiment required to accommodate larger ion populations inherent to heavily weathered crude oil. Here, we present the requirement for FT-ICR MS for comprehensive oil spill characterization, and highlight advances made to FT-ICR MS experimental conditions developed from petroleum characterization. Work supported by DMR-06-54118, NSF CHE-10-49753 (RAPID), BP/The Gulf of Mexico Research Initiative, and the State of Florida

  12. A warm or a cold early Earth? New insights from a 3-D climate-carbon model

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.

    2017-09-01

    Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.

  13. Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.).

    PubMed

    Chen, Xia; Zhang, Min; Tan, Jie; Huang, Shuping; Wang, Chunli; Zhang, Hongyuan; Tan, Taiming

    2017-01-01

    Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) eggplant lines were analyzed using RNA-sequencing (RNA-seq) technology. These sequences were assembled into 38925 unigenes, of which 22683 had an annotated function and 3419 were predicted as novel genes or from alternative splicing. 4864 and 1592 unigenes that were identified as DEGs between comparison groups PP05 vs PnP05 and PP05 vs GnP05, respectively. 506 common DEGs were found contained in both comparison groups, including 258 up-regulated and 248 down-regulated genes. Functional enrichment analyses identified many common or specific biological processes and gene set potentially associated with plant development. The most pronounced findings are that differentially regulated genes potentially-related with auxin signaling between parthenocarpic and non-parthenocarpic eggplants, e.g. calcium-binding protein PBP1 and transcription factor E2FB, which mediate the auxin distribution and auxin-dependent cell division, respectively, are up-regulated in the PP05; whereas homologs of GH3.1 and AUX/IAA, which are involved in inactivation of IAA and interference of auxin signaling, respectively, are down-regulated in PP05. Furthermore, gibberellin and cytokinin signaling genes and genes related to flower development were found differentially regulated between these eggplant lines. The present study provides comprehensive transcriptomic profiles of eggplants with or without parthenocarpic capacity. The information will deepen our understanding of the molecular mechanisms of eggplant parthenocarpy. The DEGs, especially these filtered from PP05 vs PnP05 + GnP05, will be valuable for

  14. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  15. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  16. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations.

    PubMed

    McAllister, Robert G; Metwally, Haidy; Sun, Yu; Konermann, Lars

    2015-10-07

    The mechanism whereby gaseous protein ions are released from charged solvent droplets during electrospray ionization (ESI) remains a matter of debate. Also, it is unclear to what extent electrosprayed proteins retain their solution structure. Molecular dynamics (MD) simulations offer insights into the temporal evolution of protein systems. Surprisingly, there have been no all-atom simulations of the protein ESI process to date. The current work closes this gap by investigating the behavior of protein-containing aqueous nanodroplets that carry excess positive charge. We focus on "native ESI", where proteins initially adopt their biologically active solution structures. ESI proceeds while the protein remains entrapped within the droplet. Protein release into the gas phase occurs upon solvent evaporation to dryness. Droplet shrinkage is accompanied by ejection of charge carriers (Na(+) for the conditions chosen here), keeping the droplet at ∼85% of the Rayleigh limit throughout its life cycle. Any remaining charge carriers bind to the protein as the final solvent molecules evaporate. The outcome of these events is largely independent of the initial protein charge and the mode of charge carrier binding. ESI charge states and collision cross sections of the MD structures agree with experimental data. Our results confirm the Rayleigh/charged residue model (CRM). Field emission of excess Na(+) plays an ancillary role by governing the net charge of the shrinking droplet. Models that envision protein ejection from the droplet are not supported. Most nascent CRM ions retain native-like conformations. For unfolded proteins ESI likely proceeds along routes that are different from the native state mechanism explored here.

  17. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma.

    PubMed

    Tremblay, Marie-Pier; Armero, Victoria E S; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin

    2016-08-26

    Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC.

  18. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  19. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics

    NASA Astrophysics Data System (ADS)

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  20. Structural insight into GRIP1-PDZ6 in Alzheimer's disease: study from protein expression data to molecular dynamics simulations.

    PubMed

    Chatterjee, Paulami; Roy, Debjani

    2017-08-01

    Protein-protein interaction domain, PDZ, plays a critical role in efficient synaptic transmission in brain. Dysfunction of synaptic transmission is thought to be the underlying basis of many neuropsychiatric and neurodegenerative disorders including Alzheimer's disease (AD). In this study, Glutamate Receptor Interacting Protein1 (GRIP1) was identified as one of the most important differentially expressed, topologically significant proteins in the protein-protein interaction network. To date, very few studies have analyzed the detailed structural basis of PDZ-mediated protein interaction of GRIP1. In order to gain better understanding of structural and dynamic basis of these interactions, we employed molecular dynamics (MD) simulations of GRIP1-PDZ6 dimer bound with Liprin-alpha and GRIP1-PDZ6 dimer alone each with 100 ns simulations. The analyses of MD simulations of Liprin-alpha bound GRIP1-PDZ6 dimer show considerable conformational differences than that of peptide-free dimer in terms of SASA, hydrogen bonding patterns, and along principal component 1 (PC1). Our study also furnishes insight into the structural attunement of the PDZ6 domains of Liprin-alpha bound GRIP1 that is attributed by significant shift of the Liprin-alpha recognition helix in the simulated peptide-bound dimer compared to the crystal structure and simulated peptide-free dimer. It is evident that PDZ6 domains of peptide-bound dimer show differential movements along PC1 than that of peptide-free dimers. Thus, Liprin-alpha also serves an important role in conferring conformational changes along the dimeric interface of the peptide-bound dimer. Results reported here provide information that may lead to novel therapeutic approaches in AD.

  1. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics.

    PubMed

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  2. Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake.

    PubMed

    Shenkarev, Zakhar O; Melnikova, Daria N; Finkina, Ekaterina I; Sukhanov, Stanislav V; Boldyrev, Ivan A; Gizatullina, Albina K; Mineev, Konstantin S; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2017-03-28

    The lentil lipid transfer protein, designated as Lc-LTP2, was isolated from Lens culinaris seeds. The protein belongs to the LTP1 subfamily and consists of 93 amino acid residues. Its spatial structure includes four α-helices (H1-H4) and a long C-terminal tail. Here, we report the ligand binding properties of Lc-LTP2. The fluorescent 2-p-toluidinonaphthalene-6-sulfonate binding assay revealed that the affinity of Lc-LTP2 for saturated and unsaturated fatty acids was enhanced with a decrease in acyl-chain length. Measurements of boundary potential in planar lipid bilayers and calcein dye leakage in vesicular systems revealed preferential interaction of Lc-LTP2 with the negatively charged membranes. Lc-LTP2 more efficiently transferred anionic dimyristoylphosphatidylglycerol (DMPG) than zwitterionic dimyristoylphosphatidylcholine. Nuclear magnetic resonance experiments confirmed the higher affinity of Lc-LTP2 for anionic lipids and those with smaller volumes of hydrophobic chains. The acyl chains of the bound lysopalmitoylphosphatidylglycerol (LPPG), DMPG, or dihexanoylphosphatidylcholine molecules occupied the internal hydrophobic cavity, while their headgroups protruded into the aqueous environment between helices H1 and H3. The spatial structure and backbone dynamics of the Lc-LTP2-LPPG complex were determined. The internal cavity was expanded from ∼600 to ∼1000 Å 3 upon the ligand binding. Another entrance into the internal cavity, restricted by the H2-H3 interhelical loop and C-terminal tail, appeared to be responsible for the attachment of Lc-LTP2 to the membrane or micelle surface and probably played an important role in the lipid uptake determining the ligand specificity. Our results confirmed the previous assumption regarding the membrane-mediated antimicrobial action of Lc-LTP2 and afforded molecular insight into its biological role in the plant.

  3. Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations.

    PubMed

    Balasco, Nicole; Barone, Daniela; Vitagliano, Luigi

    2015-01-01

    Recent structural investigations have shown that the C-terminal domain (CTD) of the transcription factor RfaH undergoes unique structural modifications that have a profound impact into its functional properties. These modifications cause a complete change in RfaH(CTD) topology that converts from an α-hairpin to a β-barrel fold. To gain insights into the determinants of this major structural conversion, we here performed computational studies (protein structure prediction and molecular dynamics simulations) on RfaH(CTD). Although these analyses, in line with literature data, suggest that the isolated RfaH(CTD) has a strong preference for the β-barrel fold, they also highlight that a specific region of the protein is endowed with a chameleon conformational behavior. In particular, the Leu-rich region (residues 141-145) has a good propensity to adopt both α-helical and β-structured states. Intriguingly, in the RfaH homolog NusG, whose CTD uniquely adopts the β-barrel fold, the corresponding region is rich in residues as Val or Ile that present a strong preference for the β-structure. On this basis, we suggest that the presence of this Leu-rich element in RfaH(CTD) may be responsible for the peculiar structural behavior of the domain. The analysis of the sequences of RfaH family (PfamA code PF02357) unraveled that other members potentially share the structural properties of RfaH(CTD). These observations suggest that the unusual conformational behavior of RfaH(CTD) may be rare but not unique.

  4. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.

    PubMed

    Borisenko, Konstantin B; Reavy, Helen J; Zhao, Qi; Abel, Eric W

    2008-09-15

    Protein-repellent diamond coatings have great potential value for surface coatings on implants and surgical instruments. The design of these coatings relies on a fundamental understanding of the intermolecular interactions involved in the adhesion of proteins to surfaces. To get insight into these interactions, adhesion energies of glycine to pure and Si and N-doped (111) diamond surfaces represented as clusters were calculated in the gas phase, using density functional theory (DFT) at the B3LYP/6-31G* level. The computed adhesion energies indicated that adhesion of glycine to diamond surface may be modified by introducing additional elements into the surface. The adhesion was also found to induce considerable change in the conformation of glycine when compared with the lowest-energy conformer of the free molecule. In the Si and N-substituted diamond clusters, notable changes in the structures involving the substituents atoms when compared with smaller parent molecules, such as 1-methyl-1-silaadamantane and 1-azaadamantane, were detected. Adhesion free energy differences were estimated for a series of representative peptides (hydrophobic Phe-Gly-Phe, amphiphilic Arg-Gly-Phe, and hydrophilic Arg-Gly-Arg) to a (111) diamond surface substituted with different amounts of N, Si, or F, using molecular dynamics simulations in an explicit water environment employing a Dreiding force field. The calculations were in agreement with the DFT results in that adsorption of the studied peptides to diamond surface is influenced by introducing additional elements to the surface. It has been shown that, in general, substitution will enhance electrostatic interactions between a surface and surrounding water, leading to a weaker adhesion of the studied peptides.

  5. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations.

    PubMed

    Svoboda, Martin; Lísal, Martin

    2018-06-14

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  6. Insights into the mechanism and inhibition of fatty acid amide hydrolase from quantum mechanics/molecular mechanics (QM/MM) modelling.

    PubMed

    Lodola, Alessio; Mor, Marco; Sirirak, Jitnapa; Mulholland, Adrian J

    2009-04-01

    FAAH (fatty acid amide hydrolase) is a promising target for the treatment of several central nervous system and peripheral disorders. Combined QM/MM (quantum mechanics/molecular mechanics) calculations have elucidated the role of its unusual catalytic triad in the hydrolysis of oleamide and oleoylmethyl ester substrates, and have identified the productive inhibitor-binding orientation for the carbamoylating compound URB524. These are potentially crucial insights for designing new covalent inhibitors of this drug target.

  7. A 50,000 year insect record from Rancho La Brea, Southern California: Insights into past climate and fossil deposition

    NASA Astrophysics Data System (ADS)

    Holden, Anna R.; Southon, John R.; Will, Kipling; Kirby, Matthew E.; Aalbu, Rolf L.; Markey, Molly J.

    2017-07-01

    Rigorously studied and dated Late Quaternary paleoenvironmental reconstructions from Ranch La Brea (RLB) and the Los Angeles Basin are scarce. Here, we use data from AMS radiocarbon dated insect fragments to infer local climates over the past 50,000 years. Our results indicate: 1) Quaternary insect remains can be located with great accuracy in radiocarbon time, and 2) well-dated and documented climate indicator beetle species are sensitive proxies for environmental change in the Los Angeles Basin. A total of 182 extant RLB ground and darkling beetle species (Coleoptera: Carabidae, Tenebrionidae) were radiocarbon dated. The resulting radiocarbon dates form a semi-continuous range from ∼50 to 28, 16-7.5, and 4 kcal yrs BP to the present. Associated insect climate ranges indicate past conditions consistent with, or very similar to, the current Los Angeles Basin Mediterranean climate. Importantly, these insect data suggest higher temperatures and aridity than inferred previously from other RLB proxies. Furthermore, wider-than-assumed dating spreads for some deposits emphasize the lack of biostratigraphy for RLB, and challenge inferences based on limited sets of radiocarbon dates and assumptions about stratigraphic integrity. Our results demonstrate the necessity to independently radiocarbon date each taxon. The insect paleoclimate interpretations were compared to regional pollen data, primarily from various southern Californian sites including Lake Elsinore and Santa Barbara Basin. These comparisons reveal an important difference in climate interpretations for the last Glacial: the RLB insect data suggest climate similar to the current one, while the regional pollen data have been interpreted as indicating a climate wetter than present.

  8. Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale

    PubMed Central

    Sahoo, Bikash Ranjan; Fujiwara, Toshimichi

    2016-01-01

    The cathelicidin derived bovine antimicrobial peptide BMAP27 exhibits an effective microbicidal activity and moderate cytotoxicity towards erythrocytes. Irrespective of its therapeutic and multidimensional potentiality, the structural studies are still elusive. Moreover, the mechanism of BMAP27 mediated pore formation in heterogeneous lipid membrane systems is poorly explored. Here, we studied the effect of BMAP27 in model cell-membrane systems such as zwitterionic, anionic, thymocytes-like (TLM) and leukemia-like membranes (LLM) by performing molecular dynamics (MD) simulation longer than 100 μs. All-atom MD studies revealed a stable helical conformation in the presence of anionic lipids, however, significant loss of helicity was identified in TLM and zwitterionic systems. A peptide tilt (~45˚) and central kink (at residue F10) was found in anionic and LLM models, respectively, with an average membrane penetration of < 0.5 nm. Coarse-grained (CG) MD analysis on a multi-μs scale shed light on the membrane-dependent peptide and lipid organization. Stable micelle and end-to-end like oligomers were formed in zwitterionic and TLM models, respectively. In contrast, unstable oligomer formation and monomeric BMAP27 penetration were observed in anionic and LLM systems with selective anionic lipid aggregation (in LLM). Peptide penetration up to ~1.5 nm was observed in CG-MD systems with the BMAP27 C-terminal oriented towards the bilayer core. Structural inspection suggested membrane penetration by micelle/end-to-end like peptide oligomers (carpet-model like) in the zwitterionic/TLM systems, and transmembrane-mode (toroidal-pore like) in the anionic/LLM systems, respectively. Structural insights and energetic interpretation in BMAP27 mutant highlighted the role of F10 and hydrophobic residues in mediating a membrane-specific peptide interaction. Free energy profiling showed a favorable (-4.58 kcal mol-1 for LLM) and unfavorable (+0.17 kcal mol-1 for TLM) peptide insertion

  9. Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation.

    PubMed

    Li, Yunzhi; Yang, Zhen; Hu, Na; Zhou, Rongfei; Chen, Xiangshu

    2013-05-14

    The structure and dynamics properties of water molecules at the interface of the charged monolayer-protected Au nanoparticle (MPAN) have been investigated in detail by using classical molecular dynamics simulation. The simulation results demonstrated clearly that a well-defined hydration layer is formed at the interface of MPAN and a stable "ion wall" consisting of terminal NH3 (+) groups and Cl(-) counterions exists at the outmost region of self-assembled monolayer (SAM) where the translational and rotational motions of water molecules slow considerably down compared to those in the bulk owing to the presence of SAM and ion wall. Furthermore, we found that the translational motions of interfacial water molecules display a subdiffusive behavior while their rotational motions exhibit a nonexponential feature. The unique behavior of interfacial water molecules around the MPAN can be attributed to the interfacial hydrogen bond (HB) dynamics. By comparison, the lifetime of NH3 (+)-Cl(-) HBs was found to be the longest, favoring the stability of ion wall. Meanwhile, the lifetime of H2O-H2O HBs shows an obvious increase when the water molecules approach the Au core, suggesting the enhanced H2O-H2O HBs around the charged MPAN, which is contrary to the weaken H2O-H2O HBs around the neutral MPAN. Moreover, the HB lifetimes between water molecules and the ion wall (i.e., the Cl(-)-H2O and NH3 (+)-H2O HBs) are much longer than that of interfacial H2O-H2O HBs, which leads to the increasing rotational relaxation time and residence time of water molecules surrounding the ion wall. In addition, the corresponding binding energies for different HB types obtained from the precise density functional theory are in excellent accordance with above simulation results. The detailed HB dynamics studied in this work provides insights into the unique behavior of water molecules at the interface of charged self-assemblies of nanoparticles as well as proteins.

  10. Combined terrestrial and marine biomarker records from an Icelandic fjord: insights into Holocene climate drivers and marine/ terrestrial responses

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2012-12-01

    Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early

  11. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    NASA Astrophysics Data System (ADS)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  12. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  13. Simple Indices Provide Insight to Climate Attributes Delineating the Geographic Range of Aedes albopictus (Diptera: Culicidae) Prior to Worldwide Invasion.

    PubMed

    Mogi, Motoyoshi; Armbruster, Peter; Tuno, Nobuko; Campos, Raúl; Eritja, Roger

    2015-07-01

    Aedes albopictus (Skuse) has expanded its distribution worldwide during the past decades. Despite attempts to explain and predict its geographic occurrence, analyses of the distribution of Ae. albopictus in the context of broad climatic regions (biomes) has not been performed. We analyzed climate conditions at its distribution sites in the range before the worldwide invasions (from the easternmost Hawaii through westernmost Madagascar) by using thermal and aridity-humidity indices descriptive of major biomes. A significant advantage of this approach is that it uses simple indices clearly related to the population dynamics of Ae. albopictus. Although Ae. albopictus has been regarded as a forest species preferring humid climate, in areas with significant human habitation, the distribution sites extended from the perhumid, rain forest zone to the semiarid, steppe zone. This pattern was common from the tropics through the temperate zone. Across the distribution range, there was no seasonal discordance between temperature and precipitation; at sites where winter prevents Ae. albopictus reproduction (monthly means<10°C), precipitation was concentrated in warm months (>10°C) under the Asian summer monsoon. Absence of the species in northern and eastern coastal Australia and eastern coastal Africa was not attributable solely to climate conditions. However, Asia west of the summer monsoon range was climatically unsuitable because of low precipitation throughout the year or in warm months favorable to reproduction (concentration of precipitation in winter). We hypothesized that Ae. albopictus originated in continental Asia under the monsoon climate with distinct dry seasons and hot, wet summer, enabling rapid population growth. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    NASA Astrophysics Data System (ADS)

    Bakker, J.; Paulissen, E.; Kaniewski, D.; Poblome, J.; De Laet, V.; Verstraeten, G.; Waelkens, M.

    2012-08-01

    Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses, allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show both the regional pollen signal as well as local soil sediment characteristics respond accurately to shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late 3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid 7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid 10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid 12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes in lands use during

  15. Low-Latitude Western North Atlantic Climate Variability During the Past Millennium: Insights from Proxies and Models

    DTIC Science & Technology

    2009-09-01

    simulations indicate extratropical North Atlantic climate can influence the meridional position of the ITCZ [Chiang and Bitz, 2005; Broccoli et al...record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography, 22. Broccoli ...SSTs were not markedly cooler during the LIA suggests that the ITCZ may have responded to extra- tropical cooling. Idealized simulations [ Broccoli et al

  16. Denudational slope processes and slope response to global climate changes and other disturbances: insights from the Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.

  17. Insights on drought and long-term climatic trends: Retrospective analyses of RMA cause of loss data

    USDA-ARS?s Scientific Manuscript database

    A modern trend among federal agencies, funding streams, and research projects involves the synthesis of existing data to increase the overall collective value and meaning of such knowledge. The creation of the U.S. Department of Agriculture (USDA) Climate Hubs follows this line of thought with infor...

  18. Southern African continental climate since the late Pleistocene: Insights from biomarker analyses of Kalahari salt pan sediments

    NASA Astrophysics Data System (ADS)

    Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz

    2016-04-01

    The climate system of sub-tropical southern Africa is mainly controlled by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. This underlines the importance of paleoenvironmental reconstructions in order to estimate regional implications of current global changes. However, the majority of studies on southern African paleoclimate are based on the investigation of marine sedimentary archives and past climate development especially in continental areas is still poorly understood. This emphasizes the necessity of continental proxy-data from this area. Proxy datasets from local geoarchives especially of the southwestern Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. An age model based on 14C dating of total organic carbon (TOC) shows evidence that sedimentation predominates over erosional processes with respect to pan formation. Besides the analyses of basic geochemical bulk parameters including TOC, δ13CTOC, total inorganic carbon, δ13CTIC, δ18OTIC, total nitrogen and δ15N, our paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Results show prominent shifts in n-alkane and n-alkanol distributions and compound specific carbon isotope values, pointing to changes to a more grass dominated environment during Heinrich Stadial 1 (18.5-14.6 ka BP), while hydrogen isotope values suggest wetter phases during Holocene and LGM. This high variability indicates the local vulnerability to global change.

  19. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus

    PubMed Central

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-01-01

    Background Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. Results Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. Conclusion Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared

  20. Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries.

    PubMed

    Moreno, J; Fatela, F; Leorri, E; Moreno, F; Freitas, M C; Valente, T; Araújo, M F; Gómez-Navarro, J J; Guise, L; Blake, W H

    2017-02-15

    This paper aims at providing insight about bromine (Br) cycle in four Portuguese estuaries: Minho, Lima (in the NW coast) and Sado, Mira (in the SW coast). The focus is on their tidal marsh environments, quite distinct with regard to key biophysicochemical attributes. Regardless of the primary bromide (Br - ) common natural source, i.e., seawater, the NW marshes present relatively higher surface soil/sediment Br concentrations than the ones from SW coast. This happens in close connection with organic matter (OM) content, and is controlled by their main climatic contexts. Yet, the anthropogenic impact on Br concentrations cannot be discarded. Regarding [Br] spatial patterns across the marshes, the results show a general increase from tidal flat toward high marsh. Maxima [Br] occur in the upper driftline zone, at transition from highest low marsh to high marsh, recognized as a privileged setting for OM accumulation. Based on the discovery of OM ubiquitous bromination in marine and transitional environments, it is assumed that this Br occurs mainly as organobromine. Analysis of two dated sediment cores indicates that, despite having the same age (AD ~1300), the Caminha salt marsh (Minho estuary) evidences higher Br enrichment than the Casa Branca salt marsh (Mira estuary). This is related to a greater Br storage ability, which is linked to OM build-up and rate dynamics under different climate scenarios. Both cores evidence a fairly similar temporal Br enrichment pattern, and may be interpreted in light of the sun-climate coupling. Thereby, most of the well-known Grand Solar Minima during the Little Ice Age appear to have left an imprint on these marshes, supported by higher [Br] in soils/sediments. Besides climate changes driven by solar activity and impacting marsh Br biogeodynamics, those Br enrichment peaks might also reflect inputs of enhanced volcanic activity covarying with Grand Solar Minima. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    NASA Astrophysics Data System (ADS)

    Bakker, J.; Paulissen, E.; Kaniewski, D.; Poblome, J.; De Laet, V.; Verstraeten, G.; Waelkens, M.

    2013-01-01

    Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well-dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well-dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show changes in both the regional pollen signal as well as local soil sediment characteristics match shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late-3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid-7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid-10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid-12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes in land use during Ottoman

  2. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series.

    PubMed

    Rita, Angelo; Cherubini, Paolo; Leonardi, Stefano; Todaro, Luigi; Borghetti, Marco

    2015-08-01

    The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Insights into soil carbon dynamics across climatic and geologic gradients from time-series and fraction-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim

    2016-04-01

    Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subse