Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures
NASA Astrophysics Data System (ADS)
Thompson, T. M.; Selin, N. E.
2011-12-01
Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.
NASA Astrophysics Data System (ADS)
Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.
2017-11-01
Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.
The effect of climate policy on the impacts of climate change on river flows in the UK
NASA Astrophysics Data System (ADS)
Arnell, Nigel W.; Charlton, Matthew B.; Lowe, Jason A.
2014-03-01
This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2 °C temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4 °C by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4 °C pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.
NASA Astrophysics Data System (ADS)
Washington, W. M.
2010-12-01
The development of climate and earth system models has been regarded primarily as the making of scientific tools to study the complex nature of the Earth’s climate. These models have a long history starting with very simple physical models based on fundamental physics in the 1960s and over time they have become much more complex with atmospheric, ocean, sea ice, land/vegetation, biogeochemical, glacial and ecological components. The policy use aspects of these models did not start in the 1960s and 1970s as decision making tools but were used to answer fundamental scientific questions such as what happens when the atmospheric carbon dioxide concentration increases or is doubled. They gave insights into the various interactions and were extensively compared with observations. It was realized that models of the earlier time periods could only give first order answers to many of the fundamental policy questions. As societal concerns about climate change rose, the policy questions of anthropogenic climate change became better defined; they were mostly concerned with the climate impacts of increasing greenhouse gases, aerosols, and land cover change. In the late 1980s, the United Nations set up the Intergovernmental Panel on Climate Change to perform assessments of the published literature. Thus, the development of climate and Earth system models became intimately linked to the need to not only improve our scientific understanding but also answering fundamental policy questions. In order to meet this challenge, the models became more complex and realistic so that they could address these policy oriented science questions such as rising sea level. The presentation will discuss the past and future development of global climate and earth system models for science and policy purposes. Also to be discussed is their interactions with economic integrated assessment models, regional and specialized models such as river transport or ecological components. As an example of one development pathway, the NSF/Department of Energy supported Community Climate System and Earth System Models will be featured in the presentation. Computational challenges will also part of the discussion.
The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector
NASA Astrophysics Data System (ADS)
Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.
2017-12-01
Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.
Model confirmation in climate economics
Millner, Antony; McDermott, Thomas K. J.
2016-01-01
Benefit–cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth—one of its most important economic components—had questionable predictive power over the 20th century. PMID:27432964
The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R
2013-10-01
The following pages represent the status of policy regarding adaptation of the electric grid to climate change and proposed directions for new policy development. While strides are being made to understand the current climate and to predict hazards it may present to human systems, both the science and the policy remain at present in an analytical state. The policy proposed in this document involves first continued computational modeling of outcomes which will produce a portfolio of options to be considered in light of specific region-related risks. It is proposed that the modeling continue not only until reasonable policy at variousmore » levels of jurisdiction can be derived from its outcome but also on a continuing basis so that as improvements in the understanding of the state and trajectory of climate science along with advancements in technology arise, they can be incorporated into an appropriate and evolving policy.« less
A multi-model assessment of the co-benefits of climate mitigation for global air quality
NASA Astrophysics Data System (ADS)
Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.
2016-12-01
We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.
NASA Astrophysics Data System (ADS)
Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh
2016-06-01
Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2-15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.
Valuing Precaution in Climate Change Policy Analysis (Invited)
NASA Astrophysics Data System (ADS)
Howarth, R. B.
2010-12-01
The U.N. Framework Convention on Climate Change calls for stabilizing greenhouse gas concentrations to prevent “dangerous anthropogenic interference” (DAI) with the global environment. This treaty language emphasizes a precautionary approach to climate change policy in a setting characterized by substantial uncertainty regarding the timing, magnitude, and impacts of climate change. In the economics of climate change, however, analysts often work with deterministic models that assign best-guess values to parameters that are highly uncertain. Such models support a “policy ramp” approach in which only limited steps should be taken to reduce the future growth of greenhouse gas emissions. This presentation will explore how uncertainties related to (a) climate sensitivity and (b) climate-change damages can be satisfactorily addressed in a coupled model of climate-economy dynamics. In this model, capping greenhouse gas concentrations at ~450 ppm of carbon dioxide equivalent provides substantial net benefits by reducing the risk of low-probability, catastrophic impacts. This result formalizes the intuition embodied in the DAI criterion in a manner consistent with rational decision-making under uncertainty.
Time to refine key climate policy models
NASA Astrophysics Data System (ADS)
Barron, Alexander R.
2018-05-01
Ambition regarding climate change at the national level is critical but is often calibrated with the projected costs — as estimated by a small suite of energy-economic models. Weaknesses in several key areas in these models will continue to distort policy design unless collectively addressed by a diversity of researchers.
Improving poverty and inequality modelling in climate research
NASA Astrophysics Data System (ADS)
Rao, Narasimha D.; van Ruijven, Bas J.; Riahi, Keywan; Bosetti, Valentina
2017-12-01
As climate change progresses, the risk of adverse impacts on vulnerable populations is growing. As governments seek increased and drastic action, policymakers are likely to seek quantification of climate-change impacts and the consequences of mitigation policies on these populations. Current models used in climate research have a limited ability to represent the poor and vulnerable, or the different dimensions along which they face these risks. Best practices need to be adopted more widely, and new model features that incorporate social heterogeneity and different policy mechanisms need to be developed. Increased collaboration between modellers, economists, and other social scientists could aid these developments.
NASA Astrophysics Data System (ADS)
Sarofim, M. C.
2007-12-01
Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have significant direct effects on global mean temperatures, as do ancillary reductions of greenhouse gases due to the pollution constraints imposed in the economic model. Finally, we show that the economic benefits of coordinating air pollution and climate policies rather than separate implementation are on the order of 20% of the total policy cost.
Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System
NASA Astrophysics Data System (ADS)
Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.
2012-12-01
This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.
Hurlbert, Margot; Gupta, Joyeeta
2016-02-01
As climate change impacts result in more extreme events (such as droughts and floods), the need to understand which policies facilitate effective climate change adaptation becomes crucial. Hence, this article answers the question: How do governments and policymakers frame policy in relation to climate change, droughts, and floods and what governance structures facilitate adaptation? This research interrogates and analyzes through content analysis, supplemented by semi-structured qualitative interviews, the policy response to climate change, drought, and flood in relation to agricultural producers in four case studies in river basins in Chile, Argentina, and Canada. First, an epistemological explanation of risk and uncertainty underscores a brief literature review of adaptive governance, followed by policy framing in relation to risk and uncertainty, and an analytical model is developed. Pertinent findings of the four cases are recounted, followed by a comparative analysis. In conclusion, recommendations are made to improve policies and expand adaptive governance to better account for uncertainty and risk. This article is innovative in that it proposes an expanded model of adaptive governance in relation to "risk" that can help bridge the barrier of uncertainty in science and policy. © 2015 Society for Risk Analysis.
The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.
2015-07-01
Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario,more » there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.« less
Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne
2015-06-02
Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Evaluating Health Co-Benefits of Climate Change Mitigation in Urban Mobility
Wolkinger, Brigitte; Weisz, Ulli; Hutter, Hans-Peter; Delcour, Jennifer; Griebler, Robert; Mittelbach, Bernhard; Maier, Philipp; Reifeltshammer, Raphael
2018-01-01
There is growing recognition that implementation of low-carbon policies in urban passenger transport has near-term health co-benefits through increased physical activity and improved air quality. Nevertheless, co-benefits and related cost reductions are often not taken into account in decision processes, likely because they are not easy to capture. In an interdisciplinary multi-model approach we address this gap, investigating the co-benefits resulting from increased physical activity and improved air quality due to climate mitigation policies for three urban areas. Additionally we take a (macro-)economic perspective, since that is the ultimate interest of policy-makers. Methodologically, we link a transport modelling tool, a transport emission model, an emission dispersion model, a health model and a macroeconomic Computable General Equilibrium (CGE) model to analyze three climate change mitigation scenarios. We show that higher levels of physical exercise and reduced exposure to pollutants due to mitigation measures substantially decrease morbidity and mortality. Expenditures are mainly born by the public sector but are mostly offset by the emerging co-benefits. Our macroeconomic results indicate a strong positive welfare effect, yet with slightly negative GDP and employment effects. We conclude that considering economic co-benefits of climate change mitigation policies in urban mobility can be put forward as a forceful argument for policy makers to take action. PMID:29710784
Evaluating Health Co-Benefits of Climate Change Mitigation in Urban Mobility.
Wolkinger, Brigitte; Haas, Willi; Bachner, Gabriel; Weisz, Ulli; Steininger, Karl; Hutter, Hans-Peter; Delcour, Jennifer; Griebler, Robert; Mittelbach, Bernhard; Maier, Philipp; Reifeltshammer, Raphael
2018-04-28
There is growing recognition that implementation of low-carbon policies in urban passenger transport has near-term health co-benefits through increased physical activity and improved air quality. Nevertheless, co-benefits and related cost reductions are often not taken into account in decision processes, likely because they are not easy to capture. In an interdisciplinary multi-model approach we address this gap, investigating the co-benefits resulting from increased physical activity and improved air quality due to climate mitigation policies for three urban areas. Additionally we take a (macro-)economic perspective, since that is the ultimate interest of policy-makers. Methodologically, we link a transport modelling tool, a transport emission model, an emission dispersion model, a health model and a macroeconomic Computable General Equilibrium (CGE) model to analyze three climate change mitigation scenarios. We show that higher levels of physical exercise and reduced exposure to pollutants due to mitigation measures substantially decrease morbidity and mortality. Expenditures are mainly born by the public sector but are mostly offset by the emerging co-benefits. Our macroeconomic results indicate a strong positive welfare effect, yet with slightly negative GDP and employment effects. We conclude that considering economic co-benefits of climate change mitigation policies in urban mobility can be put forward as a forceful argument for policy makers to take action.
Characterizing the "Time of Emergence" of Air Quality Climate Penalties
NASA Astrophysics Data System (ADS)
Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.
2017-12-01
By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in the frequency and spatial distribution of precipitation play in limiting the accumulation and duration of particulate pollution episodes.
CIM-EARTH: Community Integrated Model of Economic and Resource Trajectories for Humankind
NASA Astrophysics Data System (ADS)
Foster, I.; Elliott, J.; Munson, T.; Judd, K.; Moyer, E. J.; Sanstad, A. H.
2010-12-01
We report here on the development of an open source software framework termed CIM-EARTH that is intended to aid decision-making in climate and energy policy. Numerical modeling in support of evaluating policies to address climate change is difficult not only because of inherent uncertainties but because of the differences in scale and modeling approach required for various subcomponents of the system. Economic and climate models are structured quite differently, and while climate forcing can be assumed to be roughly global, climate impacts and the human response to them occur on small spatial scales. Mitigation policies likewise can be applied on scales ranging from the better part of a continent (e.g. a carbon cap-and-trade program for the entire U.S.) to a few hundred km (e.g. statewide renewable portfolio standards and local gasoline taxes). Both spatial and time resolution requirements can be challenging for global economic models. CIM-EARTH is a modular framework based around dynamic general equilibrium models. It is designed as a community tool that will enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of both mitigation policies and unchecked climate change. Modularity enables both integration of highly resolved component sub-models for energy and other key systems and also user-directed choice of tradeoffs between e.g. spatial, sectoral, and time resolution. This poster describes the framework architecture, the current realized version, and plans for future releases. As with other open-source models familiar to the climate community (e.g. CCSM), deliverables will be made publicly available on a regular schedule, and community input is solicited for development of new features and modules.
Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia
NASA Astrophysics Data System (ADS)
Klavs, G.; Rekis, J.
2016-12-01
The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).
NASA Astrophysics Data System (ADS)
Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.
2014-12-01
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.
NASA Astrophysics Data System (ADS)
Huda, J.; Kauneckis, D. L.
2013-12-01
Climate change adaptation represents a number of unique policy-making challenges. Foremost among these is dealing with the range of future climate impacts to a wide scope of inter-related natural systems, their interaction with social and economic systems, and uncertainty resulting from the variety of downscaled climate model scenarios and climate science projections. These cascades of uncertainty have led to a number of new approaches as well as a reexamination of traditional methods for evaluating risk and uncertainty in policy-making. Policy makers are required to make decisions and formulate policy irrespective of the level of uncertainty involved and while a debate continues regarding the level of scientific certainty required in order to make a decision, incremental change in the climate policy continues at multiple governance levels. This project conducts a comparative analysis of the range of methodological approaches that are evolving to address uncertainty in climate change policy. It defines 'methodologies' to include a variety of quantitative and qualitative approaches involving both top-down and bottom-up policy processes that attempt to enable policymakers to synthesize climate information into the policy process. The analysis examines methodological approaches to decision-making in climate policy based on criteria such as sources of policy choice information, sectors to which the methodology has been applied, sources from which climate projections were derived, quantitative and qualitative methods used to deal with uncertainty, and the benefits and limitations of each. A typology is developed to better categorize the variety of approaches and methods, examine the scope of policy activities they are best suited for, and highlight areas for future research and development.
A multi-model assessment of the co-benefits of climate mitigation for global air quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana
The recent International Panel on Climate change (IPCC) report identifies significant co-benefits from climate policies on near-term ambient air pollution and related human health outcomes [1]. This is increasingly relevant for policy making as the health impacts of air pollution are a major global concern- the Global Burden of Disease (GBD) study identifies outdoor air pollution as the sixth major cause of death globally [2]. Integrated assessment models (IAMs) are an effective tool to evaluate future air pollution outcomes across a wide range of assumptions on socio-economic development and policy regimes. The Representative Concentration Pathways (RCPs) [3] were the firstmore » set of long-term global scenarios developed across multiple integrated assessment models that provided detailed estimates of a number of air pollutants until 2100. However these scenarios were primarily designed to cover a defined range of radiative forcing outcomes and thus did not specifically focus on the interactions of long-term climate goals on near-term air pollution impacts. More recently, [4] used the RCP4.5 scenario to evaluate the co-benefits of global GHG reductions on air quality and human health in 2030. [5-7] have further examined the interactions of more diverse pollution control regimes with climate policies. This paper extends the listed studies in a number of ways. Firstly it uses multiple IAMs to look into the co-benefits of a global climate policy for ambient air pollution under harmonized assumptions on near-term air pollution control. Multi-model frameworks have been extensively used in the analysis of climate change mitigation pathways, and the structural uncertainties regarding the underlying mechanisms (see for example [8-10]. This is to our knowledge the first time that a multi-model evaluation has been specifically designed and applied to analyze the co-benefits of climate change policy on ambient air quality, thus enabling a better understanding of at a detailed sector and region level. A second methodological advancement is a quantification of the co-benefits in terms of the associated atmospheric concentrations of fine particulate matter (PM2.5) and consequent mortality related outcomes across different models. This is made possible by the use of state-of the art simplified atmospheric model that allows for the first time a computationally feasible multi-model evaluation of such outcomes.« less
Impact Assessment of Pine Wilt Disease Using the Species Distribution Model and the CLIMEX Model
NASA Astrophysics Data System (ADS)
KIM, J. U.; Jung, H.
2016-12-01
The plant disease triangle consists of the host plant, pathogen and environment, but their interaction has not been considered in climate change adaptation policy. Our objectives are to predict the changes of a coniferous forest, pine wood nematodes (Bursaphelenchus xylophilus) and pine sawyer beetles (Monochamus spp.), which is a cause of pine wilt disease in the Republic of Korea. We analyzed the impact of pine wilt disease on climate change by using the species distribution model (SDM) and the CLIMEX model. Area of coniferous forest will decline and move to northern and high-altitude area. But pine wood nematodes and pine sawyer beetles are going to spread because they are going to be in a more favorable environment in the future. Coniferous forests are expected to have high vulnerability because of the decrease in area and the increase in the risk of pine wilt disease. Such changes to forest ecosystems will greatly affect climate change in the future. If effective and appropriate prevention and control policies are not implemented, coniferous forests will be severely damaged. An adaptation policy should be created in order to protect coniferous forests from the viewpoint of biodiversity. Thus we need to consider the impact assessment of climate change for establishing an effective adaptation policy. The impact assessment of pine wilt disease using a plant disease triangle drew suitable results to support climate change adaptation policy.
Climate Change, Air Pollution, and the Economics of Health Impacts
NASA Astrophysics Data System (ADS)
Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.
2003-12-01
Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to endogenize air pollution impacts within the EPPA model, allowing us to study potential economic effects and feedbacks. We find strong interaction between air pollution and economies, although precise estimates of the effects require further investigation and refined resolution of the urban scale chemistry model.
Geographic variation in opinions on climate change at state and local scales in the USA
NASA Astrophysics Data System (ADS)
Howe, Peter D.; Mildenberger, Matto; Marlon, Jennifer R.; Leiserowitz, Anthony
2015-06-01
Addressing climate change in the United States requires enactment of national, state and local mitigation and adaptation policies. The success of these initiatives depends on public opinion, policy support and behaviours at appropriate scales. Public opinion, however, is typically measured with national surveys that obscure geographic variability across regions, states and localities. Here we present independently validated high-resolution opinion estimates using a multilevel regression and poststratification model. The model accurately predicts climate change beliefs, risk perceptions and policy preferences at the state, congressional district, metropolitan and county levels, using a concise set of demographic and geographic predictors. The analysis finds substantial variation in public opinion across the nation. Nationally, 63% of Americans believe global warming is happening, but county-level estimates range from 43 to 80%, leading to a diversity of political environments for climate policy. These estimates provide an important new source of information for policymakers, educators and scientists to more effectively address the challenges of climate change.
The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.
U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.
Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E
2015-07-07
We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.
Quantitative Decision Support Requires Quantitative User Guidance
NASA Astrophysics Data System (ADS)
Smith, L. A.
2009-12-01
Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output for a given problem is presented. Based on climate science, meteorology, and the details of the question in hand, this approach identifies necessary (never sufficient) conditions required for the rational use of climate model output in quantitative decision support tools. Inasmuch as climate forecasting is a problem of extrapolation, there will always be harsh limits on our ability to establish where a model is fit for purpose, this does not, however, limit us from identifying model noise as such, and thereby avoiding some cases of the misapplication and over interpretation of model output. It is suggested that failure to clearly communicate the limits of today’s climate model in providing quantitative decision relevant climate information to today’s users of climate information, would risk the credibility of tomorrow’s climate science and science based policy more generally.
Probabilistic Integrated Assessment of ``Dangerous'' Climate Change
NASA Astrophysics Data System (ADS)
Mastrandrea, Michael D.; Schneider, Stephen H.
2004-04-01
Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.
Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States
NASA Astrophysics Data System (ADS)
Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.
2012-12-01
Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.
2014-08-01
Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM atmore » the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.« less
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.
2014-08-01
Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095, particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase, driven by higher water demands for bio-energy crops.
NASA Astrophysics Data System (ADS)
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.
Climate Penalty on Air Quality and Human Health in China and India
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.
2017-12-01
Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health benefits from reduced climate-induced air pollution in China.
Organizational Reward Systems: Implications for Climate.
1982-09-01
4 about here Further, a comparison of hierarchical regression models incorporating the combined sets of perceived climate , attributions and...Moreover, the data question organizational models that over-emphasize a directional flow from organizational policy - perceived climate - job attitudes...113. Reward Climate 34 Mayes, B. T. Some boundary considerations in the application of motivation models . Academy of Management Review, 1978, 3(l
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzepek, K.; Neumann, Jim; Smith, Joel
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less
Strzepek, K.; Neumann, Jim; Smith, Joel; ...
2014-11-29
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus
2015-07-01
The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less
Diagnostic indicators for integrated assessment models of climate policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriegler, Elmar; Petermann, Nils; Krey, Volker
2015-01-01
Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnosticmore » indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.« less
Socio-Hydrology Modelling for an Uncertain Future, with Examples from the USA and Canada (Invited)
NASA Astrophysics Data System (ADS)
White, D. D.; Gober, P.; Sampson, D. A.; Quay, R.; Kirkwood, C.
2013-12-01
Socio-hydrology brings an interest in human values, markets, social organizations and public policy to the traditional emphasis of water science on climate, hydrology, toxicology,and ecology. It also conveys a decision focus in the form of decision support tools, engagement, and new knowledge about the science-policy interface. This paper demonstrates how policy decisions and human behavior can be better integrated into climate and hydrological models to improve their usefulness for support in decision making. Examples from the Southwest USA and Western Canada highlight uncertainties, vulnerabilities, and critical tradeoffs facing water decision makers in the face of rapidly changing environmental and societal conditions. Irreducible uncertainties in downscaled climate and hydrological models limit the usefulness of climate-driven, predict-and-plan methods of water resource planning and management. Thus, it is argued that such methods should be replaced by approaches that use exploratory modelling, scenario planning, and risk assessment in which the emphasis is on managing uncertainty rather than on reducing it.
NASA Astrophysics Data System (ADS)
le page, Y.; Morton, D. C.; Hurtt, G. C.
2013-12-01
Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.
NASA Astrophysics Data System (ADS)
Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.
2016-12-01
Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health benefits from reduced climate-induced air pollution in China.
NASA Astrophysics Data System (ADS)
Sokolov, A. P.; Paltsev, S.; Chen, Y. H. H.; Monier, E.; Libardoni, A. G.; Forest, C. E.
2017-12-01
In December of 2015 during COP21 meeting in Paris almost 200 countries signed an agreement pledging to reduce their anthropogenic greenhouse gas (GHG) emissions. Recently USA announced plans to withdraw from the agreement. In this study, we estimate an impact of this decision on future climate using the MIT Integrated Global System Model, which consists of the human activity model, Economic Projection and Policy Analysis (EPPA) model, and a climate model of intermediate complexity, the MIT Earth System Model (MESM). For comparison, we also estimated impacts of possible withdrawals of China, Europe or India. In addition to the "no climate policy" scenario, we consider five emissions scenarios: Paris, Paris_no_USA, Paris_no_EUR and so on. Climate simulations were carried out from 1861 to 2005 driven by prescribed changes in GHGs and natural forcings and them continued to 2100 driven by GHG emissions produced by EPPA model. Because Paris agreement only cover the period up to 2030, last five scenarios were created assuming that emissions or carbon intensity will continue to decrease after 2030 at the same rate as in the 2020-2030 period. To account for uncertainty in climate system response to external forcing, we carry out 400 member ensembles on climate simulations for each scenario. Probability distributions for climate parameters are obtained by comparing simulated climate for 1861 to 2010 with observations. Our analysis shows that, full implementation of Paris agreement (under above-descried assumptions) will increase probability of surface air temperature in the last decade of this century increasing by less than 3oC relative to pre-industrial form about 20% for "no climate policy" to about 86%. Withdrawal of USA, China, Europe or India will decrease this probability to about 63, 67, 75 and 82%, respectively.
Development and application of earth system models.
Prinn, Ronald G
2013-02-26
The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.
Development and application of earth system models
Prinn, Ronald G.
2013-01-01
The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645
Toward a consistent modeling framework to assess multi-sectoral climate impacts.
Monier, Erwan; Paltsev, Sergey; Sokolov, Andrei; Chen, Y-H Henry; Gao, Xiang; Ejaz, Qudsia; Couzo, Evan; Schlosser, C Adam; Dutkiewicz, Stephanie; Fant, Charles; Scott, Jeffery; Kicklighter, David; Morris, Jennifer; Jacoby, Henry; Prinn, Ronald; Haigh, Martin
2018-02-13
Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.
Divestment prevails over the green paradox when anticipating strong future climate policies
NASA Astrophysics Data System (ADS)
Bauer, Nico; McGlade, Christophe; Hilaire, Jérôme; Ekins, Paul
2018-01-01
Fossil fuel market dynamics will have a significant impact on the effectiveness of climate policies1. Both fossil fuel owners and investors in fossil fuel infrastructure are sensitive to climate policies that threaten their natural resource endowments and production capacities2-4, which will consequently affect their near-term behaviour. Although weak in near-term policy commitments5,6, the Paris Agreement on climate7 signalled strong ambitions in climate change stabilization. Many studies emphasize that the 2 °C target can still be achieved even if strong climate policies are delayed until 20308-10. However, sudden implementation will have severe consequences for fossil fuel markets and beyond and these studies ignore the anticipation effects of owners and investors. Here we use two energy-economy models to study the collective influence of the two central but opposing anticipation arguments, the green paradox11 and the divestment effect12, which have, to date, been discussed only separately. For a wide range of future climate policies, we find that anticipation effects, on balance, reduce CO2 emissions during the implementation lag. This is because of strong divestment in coal power plants starting ten years ahead of policy implementation. The green paradox effect is identified, but is small under reasonable assumptions.
Global Change Assessment Model (GCAM)
The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...
The contribution of future agricultural trends in the US Midwest to global climate change mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong
2014-01-19
Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicatormore » Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.« less
Implications of climate variability for monitoring the effectiveness of global mercury policy
NASA Astrophysics Data System (ADS)
Giang, A.; Monier, E.; Couzo, E. A.; Pike-thackray, C.; Selin, N. E.
2016-12-01
We investigate how climate variability affects ability to detect policy-related anthropogenic changes in mercury emissions in wet deposition monitoring data using earth system and atmospheric chemistry modeling. The Minamata Convention, a multilateral environmental agreement that aims to protect human health and the environment from anthropogenic emissions and releases of mercury, includes provisions for monitoring treaty effectiveness. Because meteorology can affect mercury chemistry and transport, internal variability is an important contributor to uncertainty in how effective policy may be in reducing the amount of mercury entering ecosystems through wet deposition. We simulate mercury chemistry using the GEOS-Chem global transport model to assess the influence of meteorology in the context of other uncertainties in mercury cycling and policy. In these simulations, we find that interannual variability in meteorology may be a dominant contributor to the spatial pattern and magnitude of historical regional wet deposition trends. To further assess the influence of climate variability in the GEOS-Chem mercury simulation, we use a 5-member ensemble of meteorological fields from the MIT Integrated Global System Model under present and future climate. Each member involves randomly initialized 20 year simulations centered around 2000 and 2050 (under a no-policy and a climate stabilization scenario). Building on previous efforts to understand climate-air quality interactions for ground-level O3 and particulate matter, we estimate from the ensemble the range of trends in mercury wet deposition given natural variability, and, to extend our previous results on regions that are sensitive to near-source vs. remote anthropogenic signals, we identify geographic regions where mercury wet deposition is most sensitive to this variability. We discuss how an improved understanding of natural variability can inform the Conference of Parties on monitoring strategy and policy ambition.
Risks posed by climate change to the delivery of Water Framework Directive objectives in the UK.
Wilby, R L; Orr, H G; Hedger, M; Forrow, D; Blackmore, M
2006-12-01
The EU Water Framework Directive (WFD) is novel because it integrates water quality, water resources, physical habitat and, to some extent, flooding for all surface and groundwaters and takes forward river basin management. However, the WFD does not explicitly mention risks posed by climate change to the achievement of its environmental objectives. This is despite the fact that the time scale for the implementation process and achieving particular objectives extends into the 2020s, when climate models project changes in average temperature and precipitation. This paper begins by reviewing the latest UK climate change scenarios and the wider policy and science context of the WFD. We then examine the potential risks of climate change to key phases of the River Basin Management Process that underpin the WFD (such as characterisation of river basins and their water bodies, risk assessments to identify pressures and impacts, programmes of measures (POMs) options appraisal, monitoring and modelling, policy and management activities). Despite these risks the WFD could link new policy and participative mechanisms (being established for the River Basin Management Plans) to the emerging framework of national and regional climate change adaptation policy. The risks are identified with a view to informing policy opportunities, objective setting, adaptation strategies and the research agenda. Key knowledge gaps have already been identified during the implementation of the WFD, such as the links between hydromorphology and ecosystem status, but the overarching importance of linking climate change to these considerations needs to be highlighted. The next generation of (probabilistic) climate change scenarios will present new opportunities and challenges for risk analysis and policy-making.
Primozic, Lauren
2010-05-01
Climate change is one of the most important social, economic, ecological and ethical issues of the 21st century. The effects of climate change on human health are now widely accepted as a genuine threat and the Australian Government has initiated policy and legislative responses. In addition, in the 2009-2010 budget the Australian Government has committed A$64 billion to public health and hospital reform. But will this Commonwealth funding support--and should it support--the government's high-profile climate change policy? Does Commonwealth funding translate to an obligation to support Commonwealth policies? This article explores the role of public hospitals as champions and role models of the Australian Government's climate change policy and how this might be done without detracting from the primary purpose of public hospital funding: improving patient care.
Suggestions for Forest Conservation Policy under Climate Change
NASA Astrophysics Data System (ADS)
Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.
2015-12-01
Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.
J. Wickham; T.G. Wade; K.H. Riitters
2014-01-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that...
Water-Energy Nexus Challenges & Opportunities in the Arabian Peninsula under Climate Change
NASA Astrophysics Data System (ADS)
Flores-Lopez, F.; Yates, D. N.; Galaitsi, S.; Binnington, T.; Dougherty, W.; Vinnaccia, M.; Glavan, J. C.
2016-12-01
Demand for water in the GCC countries relies mainly on fossil groundwater resources and desalination. Satisfying water demand requires a great deal of energy as it treats and moves water along the supply chain from sources, through treatment processes, and ultimately to the consumer. Hence, there is an inherent connection between water and energy and with climate change, the links between water and energy are expected to become even stronger. As part of AGEDI's Local, National, and Regional Climate Change Programme, a study of the water-energy nexus of the countries in the Arabian Peninsula was implemented. For water, WEAP models both water demand - and its main drivers - and water supply, simulating policies, priorities and preferences. For energy, LEAP models both energy supply and demand, and is able to capture the impacts of low carbon development strategies. A coupled WEAP-LEAP model was then used to evaluate the future performance of the energy-water system under climate change and policy scenarios. The coupled models required detailed data, which were obtained through literature reviews and consultations with key stakeholders in the region. As part of this process, the outputs of both models were validated for historic periods using existing data The models examined 5 policy scenarios of different futures of resource management to the year 2060. A future under current management practices with current climate and a climate projection based on the RCP8.5; a High Efficiency scenario where each country gradually implements policies to reduce the consumption of water and electricity; a Natural Resource Protection scenario with resource efficiency and phasing out of groundwater extraction and drastic reduction of fossil fuel usage in favor of solar; and an Integrated Policy scenario that integrates the prior two policy scenarios Water demands can mostly be met in any scenario through supply combinations of groundwater, desalination and wastewater reuse, with some regional fossil groundwater basins draw to extinction by 2060. While the analysis includes both demand and supply oriented scenarios, the results of the analysis strongly suggest that the region will need to simultaneously purse demand and supply side policies to achieve more sustainable uses of water and energy into the second half of the 21st century.
Modeling human-climate interaction
NASA Astrophysics Data System (ADS)
Jacoby, Henry D.
If policymakers and the public are to be adequately informed about the climate change threat, climate modeling needs to include components far outside its conventional boundaries. An integration of climate chemistry and meteorology, oceanography, and terrestrial biology has been achieved over the past few decades. More recently the scope of these studies has been expanded to include the human systems that influence the planet, the social and ecological consequences of potential change, and the political processes that lead to attempts at mitigation and adaptation. For example, key issues—like the relative seriousness of climate change risk, the choice of long-term goals for policy, and the analysis of today's decisions when uncertainty may be reduced tomorrow—cannot be correctly understood without joint application of the natural science of the climate system and social and behavioral science aspects of human response. Though integration efforts have made significant contributions to understanding of the climate issue, daunting intellectual and institutional barriers stand in the way of needed progress. Deciding appropriate policies will be a continuing task over the long term, however, so efforts to extend the boundaries of climate modeling and assessment merit long-term attention as well. Components of the effort include development of a variety of approaches to analysis, the maintenance of a clear a division between close-in decision support and science/policy research, and the development of funding institutions that can sustain integrated research over the long haul.
Chronic disease and climate change: understanding co-benefits and their policy implications.
Capon, Anthony G; Rissel, Chris E
2010-01-01
Chronic disease and climate change are major public policy challenges facing governments around the world. An improved understanding of the relationship between chronic disease and climate change should enable improved policy formulation to support both human health and the health of the planet. Chronic disease and climate change are both unintended consequences of our way of life, and are attributable in part to the ready availability of inexpensive fossil fuel energy. There are co-benefits for health from actions to address climate change. For example, substituting physical activity and a vegetable-rich diet for motor vehicle transport and a meat-rich diet is both good for health and good for the planet. We should encourage ways of living that use less carbon as these can be healthy ways of living, for both individuals and society. Quantitative modelling of co-benefits should inform policy responses.
Barile, John P; Donohue, Dana K; Anthony, Elizabeth R; Baker, Andrew M; Weaver, Scott R; Henrich, Christopher C
2012-03-01
In recent discussions regarding concerns about the academic achievement of US students, educational policy makers have suggested the implementation of certain teacher policies. To address the limited empirical research on the putative educational impact of such policies, this study used multilevel structural equation models to investigate the longitudinal associations between teacher evaluation and reward policies, and student mathematics achievement and dropout with a national sample of students (n = 7,779) attending one of 431 public high schools. The student sample included an equal number of boys and girls averaging 16 years of age, and included a White (53%) majority. This study examined whether associations between teacher policies and student achievement were mediated by the teacher-student relationship climate. Results of this study were threefold. First, teacher evaluation policies that allowed students to evaluate their teachers were associated with more positive student reports of the classroom teaching climate. Second, schools with teacher reward policies that included assigning higher performing teachers with higher performing students had a negative association with student perceptions of the teaching climate. Lastly, schools with better student perceptions of the teaching climate were associated with lower student dropout rates by students' senior year. These findings are discussed in light of their educational policy implications.
NASA Astrophysics Data System (ADS)
Gilmore, E.; Cui, Y. R.; Waldhoff, S.
2015-12-01
Beyond 2015, eradicating hunger will remain a critical part of the global development agenda through the Sustainable Development Goals (SDG). Efforts to limit climate change through both mitigation of greenhouse gas emissions and land use policies may interact with food availability and accessibility in complex and unanticipated ways. Here, we develop projections of regional food accessibility to 2050 under the alternative futures outlined by the Shared Socioeconomic Pathways (SSPs) and under different climate policy targets and structures. We use the Global Change Assessment Model (GCAM), an integrated assessment model (IAM), for our projections. We calculate food access as the weighted average of consumption of five staples and the portion of income spend on those commodities and extend the GCAM calculated universal global producer price to regional consumer prices drawing on historical relationships of these prices. Along the SSPs, food access depends largely on expectations of increases in population and economic status. Under a more optimistic scenario, the pressures on food access from increasing demand and rising prices can be counterbalanced by faster economic development. Stringent climate policies that increase commodity prices, however, may hinder vulnerable regions, namely Sub-Saharan Africa, from achieving greater food accessibility.
The impact of climate change on surface level ozone is examined through a multi-scale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the Relative Response Factor (RRFE), which es...
Co-benefits of air quality and climate change policies on air quality of the Mediterranean
NASA Astrophysics Data System (ADS)
Pozzoli, Luca; Mert Gokturk, Ozan; Unal, Alper; Kindap, Tayfun; Janssens-Maenhout, Greet
2015-04-01
The Mediterranean basin is one of the regions of the world where significant impacts due to climate changes are predicted to occur in the future. Observations and model simulations are used to provide to the policy makers scientifically based estimates of the necessity to adjust national emission reductions needed to achieve air quality objectives in the context of a changing climate, which is not only driven by GHGs, but also by short lived climate pollutants, such as tropospheric ozone and aerosols. There is an increasing interest and need to design cost-benefit emission reduction strategies, which could improve both regional air quality and global climate change. In this study we used the WRF-CMAQ air quality modelling system to quantify the contribution of anthropogenic emissions to ozone and particulate matter concentrations in Europe and the Eastern Mediterranean and to understand how this contribution could change in different future scenarios. We have investigated four different future scenarios for year 2050 defined during the European Project CIRCE: a "business as usual" scenario (BAU) where no or just actual measures are taken into account; an "air quality" scenario (BAP) which implements the National Emission Ceiling directive 2001/81/EC member states of the European Union (EU-27); a "climate change" scenario (CC) which implements global climate policies decoupled from air pollution policies; and an "integrated air quality and climate policy" scenario (CAP) which explores the co-benefit of global climate and EU-27 air pollution policies. The BAP scenario largely decreases summer ozone concentrations over almost the entire continent, while the CC and CAP scenarios similarly determine lower decreases in summer ozone but extending all over the Mediterranean, the Middle East countries and Russia. Similar patterns are found for winter PM concentrations; BAP scenario improves pollution levels only in the Western EU countries, and the CAP scenario determines the largest PM reductions over the entire continent and the Mediterranean basin.
Climate mitigation and the future of tropical landscapes.
Thomson, Allison M; Calvin, Katherine V; Chini, Louise P; Hurtt, George; Edmonds, James A; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A; Janetos, Anthony C
2010-11-16
Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.
Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...
2015-04-01
Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less
Economic development, climate and values: making policy.
Stern, Nicholas
2015-08-07
The two defining challenges of this century are overcoming poverty and managing the risks of climate change. Over the past 10 years, we have learned much about how to tackle them together from ideas on economic development and public policy. My own work in these areas over four decades as an academic and as a policy adviser in universities and international financial institutions has focused on how the investment environment and the empowerment of people can change lives and livelihoods. The application of insights from economic development and public policy to climate change requires rigorous analysis of issues such as discounting, modelling the risks of unmanaged climate change, climate policy targets and estimates of the costs of mitigation. The latest research and results show that the case for avoiding the risks of dangerous climate change through the transition to low-carbon economic development and growth is still stronger than when the Stern Review was published. This is partly because of evidence that some of the impacts of climate change are happening more quickly than originally expected, and because of remarkable advances in technologies, such as solar power. Nevertheless, significant hurdles remain in securing the international cooperation required to avoid dangerous climate change, not least because of disagreements and misunderstandings about key issues, such as ethics and equity. © 2015 The Author(s).
Economic development, climate and values: making policy
Stern, Nicholas
2015-01-01
The two defining challenges of this century are overcoming poverty and managing the risks of climate change. Over the past 10 years, we have learned much about how to tackle them together from ideas on economic development and public policy. My own work in these areas over four decades as an academic and as a policy adviser in universities and international financial institutions has focused on how the investment environment and the empowerment of people can change lives and livelihoods. The application of insights from economic development and public policy to climate change requires rigorous analysis of issues such as discounting, modelling the risks of unmanaged climate change, climate policy targets and estimates of the costs of mitigation. The latest research and results show that the case for avoiding the risks of dangerous climate change through the transition to low-carbon economic development and growth is still stronger than when the Stern Review was published. This is partly because of evidence that some of the impacts of climate change are happening more quickly than originally expected, and because of remarkable advances in technologies, such as solar power. Nevertheless, significant hurdles remain in securing the international cooperation required to avoid dangerous climate change, not least because of disagreements and misunderstandings about key issues, such as ethics and equity. PMID:26203007
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.
2006-12-01
Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.
Building-related health impacts in European and Chinese cities: a scalable assessment method.
Tuomisto, Jouni T; Niittynen, Marjo; Pärjälä, Erkki; Asikainen, Arja; Perez, Laura; Trüeb, Stephan; Jantunen, Matti; Künzli, Nino; Sabel, Clive E
2015-12-14
Public health is often affected by societal decisions that are not primarily about health. Climate change mitigation requires intensive actions to minimise greenhouse gas emissions in the future. Many of these actions take place in cities due to their traffic, buildings, and energy consumption. Active climate mitigation policies will also, aside of their long term global impacts, have short term local impacts, both positive and negative, on public health. Our main objective was to develop a generic open impact model to estimate health impacts of emissions due to heat and power consumption of buildings. In addition, the model should be usable for policy comparisons by non-health experts on city level with city-specific data, it should give guidance on the particular climate mitigation questions but at the same time increase understanding on the related health impacts and the model should follow the building stock in time, make comparisons between scenarios, propagate uncertainties, and scale to different levels of detail. We tested The functionalities of the model in two case cities, namely Kuopio and Basel. We estimated the health and climate impacts of two actual policies planned or implemented in the cities. The assessed policies were replacement of peat with wood chips in co-generation of district heat and power, and improved energy efficiency of buildings achieved by renovations. Health impacts were not large in the two cities, but also clear differences in implementation and predictability between the two tested policies were seen. Renovation policies can improve the energy efficiency of buildings and reduce greenhouse gas emissions significantly, but this requires systematic policy sustained for decades. In contrast, fuel changes in large district heating facilities may have rapid and large impacts on emissions. However, the life cycle impacts of different fuels is somewhat an open question. In conclusion, we were able to develop a practical model for city-level assessments promoting evidence-based policy in general and health aspects in particular. Although all data and code is freely available, implementation of the current model version in a new city requires some modelling skills.
Timing and Prediction of Climate Change and Hydrological Impacts: Periodicity in Natural Variations
Hydrological impacts from climate change are of principal interest to water resource policy-makers and practicing engineers, and predictive climatic models have been extensively investigated to quantify the impacts. In palaeoclmatic investigations, climate proxy evidence has une...
Air quality co-benefits of carbon pricing in China
NASA Astrophysics Data System (ADS)
Li, Mingwei; Zhang, Da; Li, Chiao-Ting; Mulvaney, Kathleen M.; Selin, Noelle E.; Karplus, Valerie J.
2018-05-01
Climate policies targeting energy-related CO2 emissions, which act on a global scale over long time horizons, can result in localized, near-term reductions in both air pollution and adverse human health impacts. Focusing on China, the largest energy-using and CO2-emitting nation, we develop a cross-scale modelling approach to quantify these air quality co-benefits, and compare them to the economic costs of climate policy. We simulate the effects of an illustrative climate policy, a price on CO2 emissions. In a policy scenario consistent with China's recent pledge to reach a peak in CO2 emissions by 2030, we project that national health co-benefits from improved air quality would partially or fully offset policy costs depending on chosen health valuation. Net health co-benefits are found to rise with increasing policy stringency.
This paper quantifies and monetizes climate change impacts on carbon stored in terrestrial vegetation and wildfire incidence in the contiguous United States to assess the benefits of alternative mitigation policies. The MC-1 dynamic global vegetation model was used to develop int...
Temperature impacts on economic growth warrant stringent mitigation policy
NASA Astrophysics Data System (ADS)
Moore, Frances C.; Diaz, Delavane B.
2015-02-01
Integrated assessment models compare the costs of greenhouse gas mitigation with damages from climate change to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained gross domestic product (GDP) growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth rates in the DICE model through two pathways, total factor productivity growth and capital depreciation. This damage specification, even under optimistic adaptation assumptions, substantially slows GDP growth in poor regions but has more modest effects in rich countries. Optimal climate policy in this model stabilizes global temperature change below 2 °C by eliminating emissions in the near future and implies a social cost of carbon several times larger than previous estimates. A sensitivity analysis shows that the magnitude of climate change impacts on economic growth, the rate of adaptation, and the dynamic interaction between damages and GDP are three critical uncertainties requiring further research. In particular, optimal mitigation rates are much lower if countries become less sensitive to climate change impacts as they develop, making this a major source of uncertainty and an important subject for future research.
Code modernization and modularization of APEX and SWAT watershed simulation models
USDA-ARS?s Scientific Manuscript database
SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...
Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.
Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha
2017-01-01
This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.
NASA Astrophysics Data System (ADS)
Iglesias, A.; Quiroga, S.; Garrote, L.; Cunningham, R.
2012-04-01
This paper provides monetary estimates of the effects of agricultural adaptation to climate change in Europe. The model computes spatial crop productivity changes as a response to climate change linking biophysical and socioeconomic components. It combines available data sets of crop productivity changes under climate change (Iglesias et al 2011, Ciscar et al 2011), statistical functions of productivity response to water and nitrogen inputs, catchment level water availability, and environmental policy scenarios. Future global change scenarios are derived from several socio-economic futures of representative concentration pathways and regional climate models. The economic valuation is conducted by using GTAP general equilibrium model. The marginal productivity changes has been used as an input for the economic general equilibrium model in order to analyse the economic impact of the agricultural changes induced by climate change in the world. The study also includes the analysis of an adaptive capacity index computed by using the socio-economic results of GTAP. The results are combined to prioritize agricultural adaptation policy needs in Europe.
Economic impacts of climate change on agriculture: the AgMIP approach
NASA Astrophysics Data System (ADS)
Delincé, Jacques; Ciaian, Pavel; Witzke, Heinz-Peter
2015-01-01
The current paper investigates the long-term global impacts on crop productivity under different climate scenarios using the AgMIP approach (Agricultural Model Intercomparison and Improvement Project). The paper provides horizontal model intercomparison from 11 economic models as well as a more detailed analysis of the simulated effects from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically compare its performance with other AgMIP models and specifically for the Chinese agriculture. CAPRI is a comparative static partial equilibrium model extensively used for medium and long-term economic and environmental policy impact applications. The results indicate that, at the global level, the climate change will cause an agricultural productivity decrease (between -2% and -15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in general, close to the median across all AgMIP models. Model intercomparison analyses reveal consistency in terms of direction of change to climate change but relatively strong heterogeneity in the magnitude of the effects between models.
Modeling Two Types of Adaptation to Climate Change
Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-live...
Variance decomposition shows the importance of human-climate feedbacks in the Earth system
NASA Astrophysics Data System (ADS)
Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.
2017-12-01
The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.
Evaluation of co-benefits from combined climate change and air pollution reduction strategies
NASA Astrophysics Data System (ADS)
Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa
2014-05-01
The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined climate and air pollution strategies assessed. The TM5-FASST tool allows for a fast screening of emission scenario variants and the resulting impacts can be investigated by source country, source sector level or by precursor. Developed at JRC, this model is a linearized version derived from the full chemical transport model TM5-CTM, taking as input pollutants emissions from 56 source regions with global coverage. The resulting pollutant concentrations are determined and their associated effect on human health (from PM2.5 and O3), the yield loss of damaged crops (from O3), and CO2eq of short lived climate forcers are quantified. The analysis of the LIMITS scenarios allows for impact assessment of alternate air pollution control assumptions on pollutant emission trajectories out to 2030 and 2050. The results show that stringent climate policies provide a significant air quality benefit compared to current legislation air quality policy. The identified benefits and trade-offs provide a strong incentive for the implementation of combined national policy focusing both on climate change and air pollution.
Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC
NASA Astrophysics Data System (ADS)
Drouet, L.; Bosetti, V.; Tavoni, M.
2015-10-01
Strategies for dealing with climate change must incorporate and quantify all the relevant uncertainties, and be designed to manage the resulting risks. Here we employ the best available knowledge so far, summarized by the three working groups of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5; refs , , ), to quantify the uncertainty of mitigation costs, climate change dynamics, and economic damage for alternative carbon budgets. We rank climate policies according to different decision-making criteria concerning uncertainty, risk aversion and intertemporal preferences. Our findings show that preferences over uncertainties are as important as the choice of the widely discussed time discount factor. Climate policies consistent with limiting warming to 2 °C above preindustrial levels are compatible with a subset of decision-making criteria and some model parametrizations, but not with the commonly adopted expected utility framework.
Understanding climate policy data needs
NASA Astrophysics Data System (ADS)
Brown, Molly E.; Macauley, Molly
2012-08-01
NASA Carbon Monitoring System: Characterizing Flux Uncertainty; Washington, D. C, 11 January 2012 Climate policy in the United States is currently guided by public-private partnerships and actions at the local and state levels that focus on energy efficiency, renewable energy, agricultural practices, and implementation of technologies to reduce greenhouse gases. How will policy makers know if these strategies are working, particularly at the scales at which they are being implemented? The NASA Carbon Monitoring System (CMS) will provide information on carbon dioxide (CO2) fluxes derived from observations of Earth's land, ocean, and atmosphere used in state-of-the-art models describing their interactions. This new modeling system could be used to assess the impact of specific policy interventions on reductions of atmospheric CO2 concentrations, enabling an iterative, results-oriented policy process.
Stringent Mitigation Policy Implied By Temperature Impacts on Economic Growth
NASA Astrophysics Data System (ADS)
Moore, F.; Turner, D.
2014-12-01
Integrated assessment models (IAMs) compare the costs of greenhouse gas mitigation with damages from climate change in order to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained GDP growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth-rates in the Dynamic Integrated Climate and Economy (DICE) model via two pathways, total factor productivity (TFP) growth and capital depreciation. Even under optimistic adaptation assumptions, this damage specification implies that optimal climate policy involves the elimination of emissions in the near future, the stabilization of global temperature change below 2°C, and a social cost of carbon (SCC) an order of magnitude larger than previous estimates. A sensitivity analysis shows that the magnitude of growth effects, the rate of adaptation, and the dynamic interaction between damages from warming and GDP are three critical uncertainties and an important focus for future research.
Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric
2015-01-01
Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.
NASA Astrophysics Data System (ADS)
Augustin, C. M.
2015-12-01
As the 2015 Paris climate talks near, policy discussions are focused on "intended nationally determined contributions" (INDCs) submitted in advance of the discussions. As the major global emitters - specifically the United States and China - have already submitted their INDCs, we have a point of comparison for evaluating the relative potential impacts of the proposed targets. By applying integrated assessment models to robust, publicly available data sets,we aim to evaluate the interplay between climate change and economic development, comment on emissions reduction scenarios in cooperative and non-cooperative situations, and assess the dynamic risks of multiple regional emissions scenarios. We use both the RICE model and the C-ROADS model to examine alternative regional outcomes for emissions, climate change, and damages,under different reduction scenarios, including a scenario where geo-engineering plays a prominent role. These simulators allow us to vary emissions, population, and economic levels in China and the United States specifically to comment on the international climate risk impact of actors working jointly - or not - toward a global climate goal. In a complementary piece of analysis we seek to understand the value judgments, trade-offs, and regional policies that would lead to favorable climate finance flows. To reach an international sample of industry decision-makers, we propose a novel application of a standard discrete-choice survey methodology. A conjoint analysis requires a participant to chose between combinations of attributes and identify trade-offs while allowing the researcher to determine the relative importance of each individual attribute by mathematically assessing the impact each attribute could have on total item utility. As climate policy negotiations will consist of allocation of scarce resources and rejection of certain attributes, a conjoint analysis is an ideal tool for evaluating policy outcomes. This research program seeks to provide a commentary useful to policy makers on the most desirable outcomes of the negotiations and other international cooperation.
Water Planning in Phoenix: Managing Risk in the Face of Climatic Uncertainty
NASA Astrophysics Data System (ADS)
Gober, P.
2009-12-01
The Decision Center for a Desert City (DCDC) was founded in 2004 to develop scientifically-credible support tools to improve water management decisions in the face of growing climatic uncertainty and rapid urbanization in metropolitan Phoenix. At the center of DCDC's effort is WaterSim, a model that integrates information about water supply from groundwater, the Colorado River, and upstream watersheds and water demand from land use change and population growth. Decision levers enable users to manipulate model outcomes in response to climate change scenarios, drought conditions, population growth rates, technology innovations, lifestyle changes, and policy decisions. WaterSim allows users to examine the risks of water shortage from global climate change, the tradeoffs between groundwater sustainability and lifestyle choices, the effects of various policy decisions, and the consequences of delaying policy for the exposure to risk. WaterSim is an important point of contact for DCDC’s relationships with local decision makers. Knowledge, tools, and visualizations are co-produced—by scientists and policy makers, and the Center’s social scientists mine this co-production process for new insights about model development and application. WaterSim is less a static scientific product and more a dynamic process of engagement between decision makers and scientists.
NASA Astrophysics Data System (ADS)
Lontzek, Thomas S.; Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.
2015-05-01
Perhaps the most `dangerous’ aspect of future climate change is the possibility that human activities will push parts of the climate system past tipping points, leading to irreversible impacts. The likelihood of such large-scale singular events is expected to increase with global warming, but is fundamentally uncertain. A key question is how should the uncertainty surrounding tipping events affect climate policy? We address this using a stochastic integrated assessment model, based on the widely used deterministic DICE model. The temperature-dependent likelihood of tipping is calibrated using expert opinions, which we find to be internally consistent. The irreversible impacts of tipping events are assumed to accumulate steadily over time (rather than instantaneously), consistent with scientific understanding. Even with conservative assumptions about the rate and impacts of a stochastic tipping event, today’s optimal carbon tax is increased by ~50%. For a plausibly rapid, high-impact tipping event, today’s optimal carbon tax is increased by >200%. The additional carbon tax to delay climate tipping grows at only about half the rate of the baseline carbon tax. This implies that the effective discount rate for the costs of stochastic climate tipping is much lower than the discount rate for deterministic climate damages. Our results support recent suggestions that the costs of carbon emission used to inform policy are being underestimated, and that uncertain future climate damages should be discounted at a low rate.
Climate Science: How Earth System Models are Reshaping the Science Policy Interface.
NASA Technical Reports Server (NTRS)
Ruane, Alex
2015-01-01
This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.
NASA Astrophysics Data System (ADS)
Chavez, E.
2015-12-01
Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.
Agricultural climate impacts assessment for economic modeling and decision support
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.
2013-12-01
A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.
NASA Astrophysics Data System (ADS)
Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di
2016-09-01
Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.
NASA Astrophysics Data System (ADS)
Culley, Sam; Noble, Stephanie; Timbs, Michael; Yates, Adam; Giuliani, Matteo; Castelletti, Andrea; Maier, Holger; Westra, Seth
2015-04-01
Water resource system infrastructure and operating policies are commonly designed on the assumption that the statistics of future rainfall, temperature and other hydrometeorological variables are equal to those of the historical record. There is now substantial evidence demonstrating that this assumption is no longer valid, and that climate change will significantly impact water resources systems worldwide. Under different climatic inputs, the performance of these systems may degrade to a point where they become unable to meet the primary objectives for which they were built. In such a changing context, using existing infrastructure more efficiently - rather than planning additional infrastructure - becomes key to restore the system's performance at acceptable levels and minimize financial investments and associated risk. The traditional top-down approach for assessing climate change impacts relies on the use of a cascade of models from the global to the local scale. However, it is often difficult to utilize this top-down approach in a decision-making procedure, as there is disparity amongst various climate projections, arising from incomplete scientific understanding of the complicated processes and feedbacks within the climate system, and model limitations in reproducing those relationships. In contrast with this top-down approach, this study contributes a framework to identify the adaptive capacity of water resource systems under changing climatic conditions adopting a bottom-up, vulnerability-based approach. The performance of the current system management is first assessed for a comprehensive range of climatic conditions, which are independent of climate model forecasts. The adaptive capacity of the system is then estimated by re-evaluating the performance of a set of adaptive operating policies, which are optimized for each climatic condition under which the system is simulated. The proposed framework reverses the perspective by identifying water system vulnerability drivers and by enhancing the adaptive capacity of the system to respond to unforeseen events, in order to design robust and resilient adaptation measures. The approach is demonstrated on the multipurpose operation of the Lake Como system, located in Northern Italy, accounting for flood protection and irrigation supply. Numerical results show that our framework successfully identified the failure boundary based on current system management policies, which is demonstrated as being particularly sensitive to decreases in both precipitation and temperature. To estimate the likelihood of the climate being in states causing system failures and to provide a time frame for reaching such states, we consider 22 climate model projections; these projections suggest that the current management policies will lead to a high chance of failure over the next 40 years. The adaptive capacity of the re-optimized operating policies exhibits the potential for partially mitigating adverse climate change impacts and for extending the life of the system.
Uncertainty and the Social Cost of Methane Using Bayesian Constrained Climate Models
NASA Astrophysics Data System (ADS)
Errickson, F. C.; Anthoff, D.; Keller, K.
2016-12-01
Social cost estimates of greenhouse gases are important for the design of sound climate policies and are also plagued by uncertainty. One major source of uncertainty stems from the simplified representation of the climate system used in the integrated assessment models that provide these social cost estimates. We explore how uncertainty over the social cost of methane varies with the way physical processes and feedbacks in the methane cycle are modeled by (i) coupling three different methane models to a simple climate model, (ii) using MCMC to perform a Bayesian calibration of the three coupled climate models that simulates direct sampling from the joint posterior probability density function (pdf) of model parameters, and (iii) producing probabilistic climate projections that are then used to calculate the Social Cost of Methane (SCM) with the DICE and FUND integrated assessment models. We find that including a temperature feedback in the methane cycle acts as an additional constraint during the calibration process and results in a correlation between the tropospheric lifetime of methane and several climate model parameters. This correlation is not seen in the models lacking this feedback. Several of the estimated marginal pdfs of the model parameters also exhibit different distributional shapes and expected values depending on the methane model used. As a result, probabilistic projections of the climate system out to the year 2300 exhibit different levels of uncertainty and magnitudes of warming for each of the three models under an RCP8.5 scenario. We find these differences in climate projections result in differences in the distributions and expected values for our estimates of the SCM. We also examine uncertainty about the SCM by performing a Monte Carlo analysis using a distribution for the climate sensitivity while holding all other climate model parameters constant. Our SCM estimates using the Bayesian calibration are lower and exhibit less uncertainty about extremely high values in the right tail of the distribution compared to the Monte Carlo approach. This finding has important climate policy implications and suggests previous work that accounts for climate model uncertainty by only varying the climate sensitivity parameter may overestimate the SCM.
Environmental tipping points significantly affect the cost-benefit assessment of climate policies.
Cai, Yongyang; Judd, Kenneth L; Lenton, Timothy M; Lontzek, Thomas S; Narita, Daiju
2015-04-14
Most current cost-benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost-benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost-benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost-benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change.
Environmental tipping points significantly affect the cost−benefit assessment of climate policies
Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.; Lontzek, Thomas S.; Narita, Daiju
2015-01-01
Most current cost−benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost−benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost−benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost−benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change. PMID:25825719
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Lennon, T.; Mead, C.; Anbar, A. D.
2017-12-01
Climate change is a problem that involves science, economics, and politics. Particularly in the United States, political resistance to addressing climate change has been exacerbated by a concerted misinformation campaign against the basic science, a negative response to how the proposed solutions to climate change intersect with values. Scientists often propose more climate science education as a solution to the problem, but preliminary studies indicate that more science education does not necessarily reduce polarization on the topic (Kahan et al. 2012). Is there a way that we can better engage non-science students in topics related to climate change that improve their comprehension of the problem and its implications, overcoming polarization? In an existing political science course, "Do You Want to Build a Nation?", we are testing a new digital world-building model based on resource development and consequent environmental and societal impacts. Students spend half the class building their nations based on their assigned ideology (i.e., socialist, absolute monarchy, libertarian) and the second half of the class negotiating with other nations to resolve global issues while remaining true to their ideologies. The course instructor, co-author Lennon, and ASU's Center for Education Through eXploration have collaborated to design a digital world model based on resources linked to an adaptive decision-making environment that translates student policies into modifications to the digital world. The model tracks students' exploration and justification of their nation's policy choices. In the Fall 2017 offering of the course, we will investigate how this digital world model and scenarios built around it affect student learning outcomes. Specifically, we anticipate improved understanding of the policy trade-offs related to energy development, better understanding of the ways that different ideologies approach solutions to climate change, and that both will result in more realistic diplomatic negotiations in the latter half of the course. We will report on the technical details of how the digital world model and scenarios are constructed as well as how students responded to the scenario.
Salvini, G; Ligtenberg, A; van Paassen, A; Bregt, A K; Avitabile, V; Herold, M
2016-05-01
Finding land use strategies that merge land-based climate change mitigation measures and adaptation strategies is still an open issue in climate discourse. This article explores synergies and trade-offs between REDD+, a scheme that focuses mainly on mitigation through forest conservation, with "Climate Smart Agriculture", an approach that emphasizes adaptive agriculture. We introduce a framework for ex-ante assessment of the impact of land management policies and interventions and for quantifying their impacts on land-based mitigation and adaptation goals. The framework includes a companion modelling (ComMod) process informed by interviews with policymakers, local experts and local farmers. The ComMod process consists of a Role-Playing Game with local farmers and an Agent Based Model. The game provided a participatory means to develop policy and climate change scenarios. These scenarios were then used as inputs to the Agent Based Model, a spatially explicit model to simulate landscape dynamics and the associated carbon emissions over decades. We applied the framework using as case study a community in central Vietnam, characterized by deforestation for subsistence agriculture and cultivation of acacias as a cash crop. The main findings show that the framework is useful in guiding consideration of local stakeholders' goals, needs and constraints. Additionally the framework provided beneficial information to policymakers, pointing to ways that policies might be re-designed to make them better tailored to local circumstances and therefore more effective in addressing synergistically climate change mitigation and adaptation objectives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of climate change on electricity systems and markets
NASA Astrophysics Data System (ADS)
Chandramowli, Shankar N.
Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan (Section 111 (d)) rules for the U.S. Northeast region. This dissertation applies an analytical model and an optimization model to investigate the implications of co-implementing an emission cap and an RPS policy for this region. A simplified analytical model of LP-CEM is specified and the first order optimality conditions are derived. The results from this analytical model are corroborated by running LP-CEM simulations under different carbon cap and RPS policy assumptions. A combination of these policies is shown to have a long-term beneficial effect for the final ratepayers in the region. This research conceptually explores the future implications of climate change and extreme weather events on the regional electricity market framework. The significant findings from this research and future policy considerations are discussed in the conclusion chapter.
SECOND GENERATION MODEL | Science Inventory | US ...
One of the environmental and economic models that the U.S. EPA uses to assess climate change policies is the Second Generation Model (SGM). SGM is a 13 region, 24 sector computable general equilibrium (CGE) model of the world that can be used to estimate the domestic and international economic impacts of policies designed to reduce greenhouse gas emissions. SGM was developed by Jae Edmonds and others at the Joint Global Change Research Institute (JGCRI) of Pacific Northwest National Laboratory (PNNL) and the University of Maryland. One of SGM's primary purposes is to provide an integrated assessment of a portfolio of greenhouse gas mitigation strategies. The SGM projects economic activity, energy transformation and consumption, and greenhouse gas emissions for each region of the globe in five-year time steps from 1990 through 2050. The model has been used extensively over the last decade to assess U.S. policy options to achieve greenhouse gas mitigation goals. The SGM is one of EPA's primary tools for analyses of climate change policies. It was used extensively by the the U.S. government to analyze the impact of the Kyoto Protocol. Moreover, the SGM has been used by EPA during the current Administration for analyses of the climate components of various multi-emissions bills.
NASA Astrophysics Data System (ADS)
Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.
2014-12-01
Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The Line' scenarios. Statistical analysis of the scenario-based variations in impacts to private and public resources can help guide future adaptation policy implementation and support Oregon's coastal communities for years to come.
The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals
NASA Astrophysics Data System (ADS)
Zhang, Runsen; Fujimori, Shinichiro; Hanaoka, Tatsuya
2018-05-01
The transport sector contributes around a quarter of global CO2 emissions; thus, low-carbon transport policies are required to achieve the 2 °C and 1.5 °C targets. In this paper, representative transport policy scenarios are structured with the aim of achieving a better understanding of the interaction between the transport sector and the macroeconomy. To accomplish this, the Asia–Pacific Integrated Model/Transport (AIM/Transport) model, coupled with a computable general equilibrium model (AIM/CGE), is used to simulate the potential for different transport policy interventions to reduce emissions and cost over the period 2005–2100. The results show that deep decarbonization in the transport sector can be achieved by implementing transport policies such as energy efficiency improvements, vehicle technology innovations particularly the deployment of electric vehicles, public transport developments, and increasing the car occupancy rate. Technological transformations such as vehicle technological innovations and energy efficiency improvements provide the most significant reduction potential. The key finding is that low-carbon transport policies can reduce the carbon price, gross domestic product loss rate, and welfare loss rate generated by climate mitigation policies to limit global warming to 2 °C and 1.5 °C. Interestingly, the contribution of transport policies is more effective for stringent climate change targets in the 1.5 °C scenario, which implies that the stronger the mitigation intensity, the more transport specific policy is required. The transport sector requires attention to achieve the goal of stringent climate change mitigation.
NASA Astrophysics Data System (ADS)
Felzer, B. S.; Reilly, J. M.; Melillo, J. M.; Kicklighter, D. W.; Wang, C.; Prinn, R.; Sarofim, M. C.; Zhuang, Q.
2003-12-01
Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The damaging effects of tropospheric ozone vary spatially because human activities responsible for the emissions of ozone precursors are highly concentrated in urban and industrial centers. We developed scenarios of ozone-precursor emissions and the resultant ozone concentrations using the MIT Integrated Global Systems Model (IGSM) through the year 2100 and explored the consequent effects on terrestrial ecosystems using the Terrestrial Ecosystem Model (TEM). We then used the Emissions Prediction and Policy Analysis (EPPA) model, a component of the IGSM, to evaluate the cost of increased mitigation efforts required to offset lost carbon sequestration. We considered both a global climate policy that limits future greenhouse gas (GHG) emissions and an air quality policy that limits pollutant emissions to their 1995 levels in the developed countries. We also considered agricultural management that includes optimal irrigation and fertilization and no irrigation and fertilization for croplands. We found that the loss of carbon sequestration in the U.S. at the end of the 21st century due to ozone pollution ranged from negligible to as much as 0.3 PgC yr-1 depending upon the policy options pursued. We valued these reductions in terms of the change in the net present value of the cost to the U.S. through 2100 of a global carbon policy designed to approximately stabilize atmospheric CO2 levels at 550 ppm. For the U.S., failure to consider ozone damages to vegetation would by itself raise the costs over the next century of stabilizing atmospheric concentrations of CO2 by 11 to 19% (\\0.3 to \\0.6 trillion) because emissions from fossil fuels will need to be reduced more to compensate for the reduced carbon sequestration by terrestrial ecosystems. With a pollution cap, damages are reduced to 6 to 12% (\\0.2 to \\0.3 trillion) of the total cost. However, climate policy that reduces fossil fuel use and methane emissions would also reduce the emissions of the ozone precursors and therefore, ozone concentrations and ozone damages. The savings in reduced carbon emissions reductions costs are estimated to be between 1 and 17% (\\0.09 to \\0.3 trillion) of the cost of the climate policy. The cost estimates are sensitive to the assumed 5% discount rate and the details of the climate policy and how the burden is allocated among countries. Tropospheric ozone effects on terrestrial ecosystems produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.
Economics of nuclear power and climate change mitigation policies.
Bauer, Nico; Brecha, Robert J; Luderer, Gunnar
2012-10-16
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.
Economics of nuclear power and climate change mitigation policies
Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar
2012-01-01
The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963
GLIMPSE: a rapid decision framework for energy and environmental policy.
Akhtar, Farhan H; Pinder, Robert W; Loughlin, Daniel H; Henze, Daven K
2013-01-01
Over the coming decades, new energy production technologies and the policies that oversee them will affect human health, the vitality of our ecosystems, and the stability of the global climate. The GLIMPSE decision model framework provides insights about the implications of technology and policy decisions on these outcomes. Using GLIMPSE, decision makers can identify alternative techno-policy futures, examining their air quality, health, and short- and long-term climate impacts. Ultimately, GLIMPSE will support the identification of cost-effective strategies for simultaneously achieving performance goals for these metrics. Here, we demonstrate the utility of GLIMPSE by analyzing several future energy scenarios under existing air quality regulations and potential CO2 emission reduction policies. We find opportunities for substantial cobenefits in setting both climate change mitigation and health-benefit based air quality improvement targets. Though current policies which prioritize public health protection increase near-term warming, establishing policies that also reduce greenhouse gas emissions may offset warming in the near-term and lead to significant reductions in long-term warming.
Linking Climate Risk, Policy Networks and Adaptation Planning in Public Lands
NASA Astrophysics Data System (ADS)
Lubell, M.; Schwartz, M.; Peters, C.
2014-12-01
Federal public land management agencies in the United States have engaged a variety of planning efforts to address climate adaptation. A major goal of these efforts is to build policy networks that enable land managers to access information and expertise needed for responding to local climate risks. This paper investigates whether the perceived and modeled climate risk faced by different land managers is leading to larger networks or more participating in climate adaptation. In theory, the benefits of climate planning networks are larger when land managers are facing more potential changes. The basic hypothesis is tested with a survey of public land managers from hundreds of local and regional public lands management units in the Southwestern United States, as well as other stakeholders involved with climate adaptation planning. All survey respondents report their perceptions of climate risk along a variety of dimensions, as well as their participation in climate adaptation planning and information sharing networks. For a subset of respondents, we have spatially explicity GIS data about their location, which will be linked with downscaled climate model data. With the focus on climate change, the analysis is a subset of the overall idea of linking social and ecological systems.
The futures of climate engineering
NASA Astrophysics Data System (ADS)
Low, Sean
2017-01-01
This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with science and technology studies work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.
Structural Model Error and Decision Relevancy
NASA Astrophysics Data System (ADS)
Goldsby, M.; Lusk, G.
2017-12-01
The extent to which climate models can underwrite specific climate policies has long been a contentious issue. Skeptics frequently deny that climate models are trustworthy in an attempt to undermine climate action, whereas policy makers often desire information that exceeds the capabilities of extant models. While not skeptics, a group of mathematicians and philosophers [Frigg et al. (2014)] recently argued that even tiny differences between the structure of a complex dynamical model and its target system can lead to dramatic predictive errors, possibly resulting in disastrous consequences when policy decisions are based upon those predictions. They call this result the Hawkmoth effect (HME), and seemingly use it to rebuke rightwing proposals to forgo mitigation in favor of adaptation. However, a vigorous debate has emerged between Frigg et al. on one side and another philosopher-mathematician pair [Winsberg and Goodwin (2016)] on the other. On one hand, Frigg et al. argue that their result shifts the burden to climate scientists to demonstrate that their models do not fall prey to the HME. On the other hand, Winsberg and Goodwin suggest that arguments like those asserted by Frigg et al. can be, if taken seriously, "dangerous": they fail to consider the variety of purposes for which models can be used, and thus too hastily undermine large swaths of climate science. They put the burden back on Frigg et al. to show their result has any effect on climate science. This paper seeks to attenuate this debate by establishing an irenic middle position; we find that there is more agreement between sides than it first seems. We distinguish a `decision standard' from a `burden of proof', which helps clarify the contributions to the debate from both sides. In making this distinction, we argue that scientists bear the burden of assessing the consequences of HME, but that the standard Frigg et al. adopt for decision relevancy is too strict.
Research on climate impacts and agriculture over the past two decades has applied simulation models at a range of scales and future climate scenarios, finding that crop growth and yield responds to changing climate conditions, and that the impacts are regional and highly depende...
Climate change air toxic co-reduction in the context of macroeconomic modelling.
Crawford-Brown, Douglas; Chen, Pi-Cheng; Shi, Hsiu-Ching; Chao, Chia-Wei
2013-08-15
This paper examines the health implications of global PM reduction accompanying greenhouse gas emissions reductions in the 180 national economies of the global macroeconomy. A human health effects module based on empirical data on GHG emissions, PM emissions, background PM concentrations, source apportionment and human health risk coefficients is used to estimate reductions in morbidity and mortality from PM exposures globally as co-reduction of GHG reductions. These results are compared against the "fuzzy bright line" that often underlies regulatory decisions for environmental toxics, and demonstrate that the risk reduction through PM reduction would usually be considered justified in traditional risk-based decisions for environmental toxics. It is shown that this risk reduction can be on the order of more than 4 × 10(-3) excess lifetime mortality risk, with global annual cost savings of slightly more than $10B, when uniform GHG reduction measures across all sectors of the economy form the basis for climate policy ($2.2B if only Annex I nations reduce). Consideration of co-reduction of PM-10 within a climate policy framework harmonized with other environmental policies can therefore be an effective driver of climate policy. An error analysis comparing results of the current model against those of significantly more spatially resolved models at city and national scales indicates errors caused by the low spatial resolution of the global model used here may be on the order of a factor of 2. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Daeha; Eum, Hyung-Il
2017-04-01
With growing concerns of the uncertain climate change, investments in water infrastructures are considered as adaptation policies for water managers and stakeholders despite their negative impacts on the environment. Particularly in regions with limited water availability or conflicting demands, building reservoirs and/or augmenting their storage capacity were already adopted for alleviating influences of the climate change. This study provides a probabilistic assessment of climate change impacts on water scarcity in a river system regulated by an agricultural reservoir in South Korea, which already increased its storage capacity for water supply. For the assessment, we developed the climate response functions (CRFs) defined as relationships between bi-decadal system performance indicators (reservoir reliability and vulnerability) and corresponding climatic conditions, using hydrological models with 10,000-year long stochastic generation of daily precipitation and temperatures. The climate change impacts were assessed by plotting 52 downscaled climate projections of general circulation models (GCMs) on the CRFs. Results indicated that augmented reservoir capacity makes the reservoir system more sensitive to changes in long-term averages of precipitation and temperatures despite improved system performances. Increasing reservoir capacity is unlikely to be "no regret" adaptation policy for the river system. On the other hand, converting the planting strategy from transplanting to direct sowing (i.e., a demand control) could be a more robust to bi-decadal climatic changes based on CRFs and thus could be good to be a no-regret policy.
Post-2020 climate agreements in the major economies assessed in the light of global models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavoni, Massimo; Kriegler, Elmar; Riahi, Keywan
2014-12-15
Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2°C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity.
Nevada Infrastructure for Climate Change Science, Education, and Outreach
NASA Astrophysics Data System (ADS)
Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.
2009-12-01
The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane
2014-04-01
The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climatemore » policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.« less
Addressing the limits to adaptation across four damage--response systems
Our ability to adapt to climate change is not boundless, and previous modeling shows that capacity limited adaptation will play a policy-significant role in future decisions about climate change. These limits are delineated by capacity thresholds, after which climate damages beg...
NASA Astrophysics Data System (ADS)
Graham, N. T.; Hejazi, M. I.; Davies, E. G.; Calvin, K. V.; Kim, S. H.; Miralles-Wilhelm, F.
2017-12-01
The Shared Socioeconomic Pathways (SSPs) represent the next generation of future global change scenarios and their inclusion in the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios reinforces the importance of a complete understanding of the SSPs. This study uses the Global Change Assessment Model (GCAM) to investigate the effects of limited water supplies on future withdrawals at regional and water basin scales across all SSPs in combination with various climate mitigation scenarios. Water supply is calculated using a global hydrologic model and water data from five ISI-MIP models across the four RCP scenarios. When water constraints are incorporated, our results show that water withdrawals are reduced by as much as 40% across all SSP scenarios without climate policies. As climate policies are imposed and become more stringent, water withdrawals increase in regions already affected by water stress in order to allow for greater biomass production. The results of this research show the importance of including water resource constraints within the SSP scenarios for establishing water withdrawal scenarios under a wide range of scenarios including different climate policies. The results will also provide data products - such as gridded land use and water demand estimates - of potential interest to the impact, adaptation, and vulnerability community following the SSP scenarios.
A multi-model study of energy supply investments in Latin America under climate control policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kober, Tom; Falzon, James; van der Zwaan, Bob
In this article we investigate energy supply investment requirements in Latin America until 2050 through a multi-model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO 2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. However, investment costs as a share of GDP decline overmore » time in the business-as-usual scenario, as well as the climate policy scenarios, due to the fast economic growth in that region. Business-as-usual cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in energy supply, and increase when additional climate policies are introduced: under a carbon tax of 50 $/tCO 2e in 2020 increasing with a rate of 4% per year, an additional 0.6 trillion US$ (+45%) investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily wind, solar, and CCS applied to fossil fuels and biomass. Our analysis suggests that compared to the business-as-usual case an average additional 21 billion US$ per year of electricity supply investments is required in Latin America until 2050 under a climate policy aiming at 2°C climate stabilization. Conversely, there is a disinvestment in fossil fuels. For oil production, a growth from 58 billion US$ to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario: ambitious climate policy reduces this to 28 billion US$. Finally, mobilizing necessary additional investment capital, in particular for low-carbon technologies, will be a challenge, and suitable frameworks and enabling environments for a scale-up in public and private investment will be critical to help reach required levels. The economic case for such a transition still remains to be articulated.« less
A multi-model study of energy supply investments in Latin America under climate control policy
Kober, Tom; Falzon, James; van der Zwaan, Bob; ...
2016-05-01
In this article we investigate energy supply investment requirements in Latin America until 2050 through a multi-model approach as jointly applied in the CLIMACAP-LAMP research project. We compare a business-as-usual scenario needed to satisfy anticipated future energy demand with a set of scenarios that aim to significantly reduce CO 2 emissions in the region. We find that more than a doubling of annual investments, in absolute terms, occurs in the business-as-usual scenario between 2010 and 2050, while investments may treble over the same time horizon when climate policies are introduced. However, investment costs as a share of GDP decline overmore » time in the business-as-usual scenario, as well as the climate policy scenarios, due to the fast economic growth in that region. Business-as-usual cumulative investments of 1.4 trillion US$ are anticipated between 2010 and 2050 in energy supply, and increase when additional climate policies are introduced: under a carbon tax of 50 $/tCO 2e in 2020 increasing with a rate of 4% per year, an additional 0.6 trillion US$ (+45%) investment is needed. Climate control measures lead to increased investment in low-carbon electricity technologies, primarily wind, solar, and CCS applied to fossil fuels and biomass. Our analysis suggests that compared to the business-as-usual case an average additional 21 billion US$ per year of electricity supply investments is required in Latin America until 2050 under a climate policy aiming at 2°C climate stabilization. Conversely, there is a disinvestment in fossil fuels. For oil production, a growth from 58 billion US$ to 130 billion US$ annual investment by 2050 is anticipated in a business-as-usual scenario: ambitious climate policy reduces this to 28 billion US$. Finally, mobilizing necessary additional investment capital, in particular for low-carbon technologies, will be a challenge, and suitable frameworks and enabling environments for a scale-up in public and private investment will be critical to help reach required levels. The economic case for such a transition still remains to be articulated.« less
Computational data sciences for assessment and prediction of climate extremes
NASA Astrophysics Data System (ADS)
Ganguly, A. R.
2011-12-01
Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.
On our rapidly shrinking capacity to comply with the planetary boundaries on climate change.
Mathias, Jean-Denis; Anderies, John M; Janssen, Marco A
2017-02-07
The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO 2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO 2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
On our rapidly shrinking capacity to comply with the planetary boundaries on climate change
Mathias, Jean-Denis; Anderies, John M.; Janssen, Marco A.
2017-01-01
The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design. PMID:28169336
On our rapidly shrinking capacity to comply with the planetary boundaries on climate change
NASA Astrophysics Data System (ADS)
Mathias, Jean-Denis; Anderies, John M.; Janssen, Marco A.
2017-02-01
The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.
2013-03-01
We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.
Climate Change: Integrating Science and Economics
NASA Astrophysics Data System (ADS)
Prinn, R. G.
2008-12-01
The world is facing an ever-growing conflict between environment and development. Climate change is a century-scale threat requiring a century-long effort in science, technology and policy analysis, and institutions that can sustain this effort over generations. To inform policy development and implementation there is urgent need for better integration of the diverse components of the problem. Motivated by this challenge, we have developed the Integrated Global System Model (IGSM) at MIT. It comprises coupled sub- models of economic development, atmospheric chemistry, climate dynamics and ecosystems. The results of a recent uncertainty analysis involving hundreds of runs of the IGSM imply that, without mitigation policies, the global average surface temperature may rise much faster than previously estimated. Polar temperatures are projected to rise even faster than the average rate with obvious great risks for high latitude ecosystems and ice sheets at the high end of this range. Analysis of policies for climate mitigation, show that the greatest effect of these policies is to lower the probability of extreme changes as opposed to lowering the medians. Faced with the above estimated impacts, the long lifetimes of most greenhouse gases in the atmosphere, the long delay in ultimate warming due to ocean heat uptake, and the capital-intensive global energy infrastructure, the case is strong for concerted action now. Results of runs of the IGSM indicate the need for transformation of the global energy industry on a very large scale to mitigate climate change. Carbon sequestration, renewable energy sources, and nuclear present new economic, technological, and environmental challenges when implemented at the needed scales. Economic analyses using the IGSM indicate that global implementation of efficient policies could allow the needed transformations at bearable costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.
2013-01-01
We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are comparedmore » to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.« less
City scale climate change policies: Do they matter for wellbeing?
Hiscock, Rosemary; Asikainen, Arja; Tuomisto, Jouni; Jantunen, Matti; Pärjälä, Erkki; Sabel, Clive E
2017-06-01
Climate change mitigation policies aim to reduce climate change through reducing greenhouse gas (GHG) emissions whereas adaption policies seek to enable humans to live in a world with increasingly variable and more extreme climatic conditions. It is increasingly realised that enacting such policies will have unintended implications for public health, but there has been less focus on their implications for wellbeing. Wellbeing can be defined as a positive mental state which is influenced by living conditions. As part of URGENCHE, an EU funded project to identify health and wellbeing outcomes of city greenhouse gas emission reduction policies, a survey designed to measure these living conditions and levels of wellbeing in Kuopio, Finland was collected in December 2013. Kuopio was the northmost among seven cities in Europe and China studied. Generalised estimating equation modelling was used to determine which living conditions were associated with subjective wellbeing (measured through the WHO-5 Scale). Local greenspace and spending time in nature were associated with higher levels of wellbeing whereas cold housing and poor quality indoor air were associated with lower levels of wellbeing. Thus adaption policies to increase greenspace might, in addition to reducing heat island effects, have the co-benefit of increasing wellbeing and improving housing insulation.
Quevauviller, Philippe; Barceló, Damia; Beniston, Martin; Djordjevic, Slobodan; Harding, Richard J; Iglesias, Ana; Ludwig, Ralf; Navarra, Antonio; Navarro Ortega, Alícia; Mark, Ole; Roson, Roberto; Sempere, Daniel; Stoffel, Markus; van Lanen, Henny A J; Werner, Micha
2012-12-01
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.
Documenting Climate Models and Simulations: the ES-DOC Ecosystem in Support of CMIP
NASA Astrophysics Data System (ADS)
Pascoe, C. L.; Guilyardi, E.
2017-12-01
The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now non-specialists such as government officials, policy-makers, and the general public, all have an increasing need to access climate model output and understand its implications. For this host of users, accurate and complete metadata (i.e., information about how and why the data were produced) is required to document the climate modeling results. Here we describe the ES-DOC community-govern project to collect and make available documentation of climate models and their simulations for the internationally coordinated modeling activity CMIP6 (Coupled Model Intercomparison Project, Phase 6). An overview of the underlying standards, key properties and features, the evolution from CMIP5, the underlying tools and workflows as well as what modelling groups should expect and how they should engage with the documentation of their contribution to CMIP6 is also presented.
Linking models of human behaviour and climate alters projected climate change
Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; ...
2018-01-01
Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less
Linking models of human behaviour and climate alters projected climate change
NASA Astrophysics Data System (ADS)
Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.
2018-01-01
Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.
Linking models of human behaviour and climate alters projected climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckage, Brian; Gross, Louis J.; Lacasse, Katherine
Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less
1997-11-08
Most public-health assessments of climate-control policies have focused on long-term impacts of global change. Our interdisciplinary working group assesses likely short-term impacts on public health. We combined models of energy consumption, carbon emissions, and associated atmospheric particulate-matter (PM) concentration under two different forecasts: business-as-usual (BAU); and a hypothetical climate-policy scenario, where developed and developing countries undertake significant reductions in carbon emissions. We predict that by 2020, 700,000 avoidable deaths (90% CI 385,000-1,034,000) will occur annually as a result of additional PM exposure under the BAU forecasts when compared with the climate-policy scenario. From 2000 to 2020, the cumulative impact on public health related to the difference in PM exposure could total 8 million deaths globally (90% CI 4.4-11.9 million). In the USA alone, the avoidable number of annual deaths from PM exposure in 2020 (without climate-change-control policy) would equal in magnitude deaths associated with human immunodeficiency diseases or all liver diseases in 1995. The mortality estimates are indicative of the magnitude of the likely health benefits of the climate-policy scenario examined and are not precise predictions of avoidable deaths. While characterized by considerable uncertainty, the short-term public-health impacts of reduced PM exposures associated with greenhouse-gas reductions are likely to be substantial even under the most conservative set of assumptions.
ERIC Educational Resources Information Center
Piscatelli, Jennifer; Lee, Chiqueena
2011-01-01
The National School Climate Center (NSCC) completed a 50-state policy scan on state school climate and anti-bullying policies to better understand the current state policy infrastructure supporting the development of positive school climates. This policy brief examines the current status of school climate and anti-bullying policies in each state,…
Inequality, climate impacts on the future poor, and carbon prices.
Dennig, Francis; Budolfson, Mark B; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H
2015-12-29
Integrated assessment models of climate and the economy provide estimates of the social cost of carbon and inform climate policy. We create a variant of the Regional Integrated model of Climate and the Economy (RICE)-a regionally disaggregated version of the Dynamic Integrated model of Climate and the Economy (DICE)-in which we introduce a more fine-grained representation of economic inequalities within the model's regions. This allows us to model the common observation that climate change impacts are not evenly distributed within regions and that poorer people are more vulnerable than the rest of the population. Our results suggest that this is important to the social cost of carbon-as significant, potentially, for the optimal carbon price as the debate between Stern and Nordhaus on discounting.
Linking Physical Climate Research and Economic Assessments of Mitigation Policies
NASA Astrophysics Data System (ADS)
Stainforth, David; Calel, Raphael
2017-04-01
Evaluating climate change policies requires economic assessments which balance the costs and benefits of climate action. A certain class of Integrated Assessment Models (IAMS) are widely used for this type of analysis; DICE, PAGE and FUND are three of the most influential. In the economics community there has been much discussion and debate about the economic assumptions implemented within these models. Two aspects in particular have gained much attention: i) the costs of damages resulting from climate change - the so-called damage function, and ii) the choice of discount rate applied to future costs and benefits. There has, however, been rather little attention given to the consequences of the choices made in the physical climate models within these IAMS. Here we discuss the practical aspects of the implementation of the physical models in these IAMS, as well as the implications of choices made in these physical science components for economic assessments[1]. We present a simple breakdown of how these IAMS differently represent the climate system as a consequence of differing underlying physical models, different parametric assumptions (for parameters representing, for instance, feedbacks and ocean heat uptake) and different numerical approaches to solving the models. We present the physical and economic consequences of these differences and reflect on how we might better incorporate the latest physical science understanding in economic models of this type. [1] Calel, R. and Stainforth D.A., "On the Physics of Three Integrated Assessment Models", Bulletin of the American Meteorological Society, in press.
A top-down approach to projecting market impacts of climate change
NASA Astrophysics Data System (ADS)
Lemoine, Derek; Kapnick, Sarah
2016-01-01
To evaluate policies to reduce greenhouse-gas emissions, economic models require estimates of how future climate change will affect well-being. So far, nearly all estimates of the economic impacts of future warming have been developed by combining estimates of impacts in individual sectors of the economy. Recent work has used variation in warming over time and space to produce top-down estimates of how past climate and weather shocks have affected economic output. Here we propose a statistical framework for converting these top-down estimates of past economic costs of regional warming into projections of the economic cost of future global warming. Combining the latest physical climate models, socioeconomic projections, and economic estimates of past impacts, we find that future warming could raise the expected rate of economic growth in richer countries, reduce the expected rate of economic growth in poorer countries, and increase the variability of growth by increasing the climate's variability. This study suggests we should rethink the focus on global impacts and the use of deterministic frameworks for modelling impacts and policy.
The Urban Leaders Adaptation Initiative: Climate Resilient Local Governments
NASA Astrophysics Data System (ADS)
Foster, J. G.
2008-12-01
Local governments, the first responders to public health, safety and environmental hazards, must act now to lessen vulnerabilities to climate change. They must plan for and invest in "adapting" to inevitable impacts such as flood, fire, and draught that will occur notwithstanding best efforts to mitigate climate change. CCAP's Urban Leaders Adaptation Initiative is developing a framework for informed decision making on climate adaptation. Looking ahead to projected climate impacts and 'back casting' can identify what is needed now to both reduce greenhouse gas emissions and build local resiliency to climate change. CCAP's partnership with King County (WA), Chicago, Los Angeles, Miami-Dade County (FL), Milwaukee, Nassau County (NY), Phoenix, San Francisco, and Toronto is advancing policy discussions to ensure that state and local governments consider climate change when making decisions about infrastructure, transportation, land use, and resource management. Through the Initiative, local leaders will incorporate climate change into daily urban management and planning activities, proactively engage city and county managers and the public in developing solutions, and build community resilience. One goal is to change both institutional and public attitudes and behaviors. Determining appropriate adaptation strategies for each jurisdiction requires Asking the Climate Question: "How does what we are doing increase our resilience to climate change?" Over the next three years, the Initiative will design and implement specific adaptation plans, policies and 'catalytic' projects, collect and disseminate "best practices," and participate in framing national climate policy discussions. In the coming years, policy-makers will have to consider climate change in major infrastructure development decisions. If they are to be successful and have the resources they need, national climate change policy and emerging legislation will have to support these communities. The Urban Leaders Adaptation Initiative will equip CCAP partners with the knowledge and tools to get started on planning and implementing adaptation measures. Drawing on the best and brightest state, local and national policy experts, it will recommend a comprehensive set of actions that will enable the federal government to support local resiliency efforts. Toward that end, CCAP has identified three core principles for national climate adaptation policy: 1. National climate policy should support state and local adaptation planning and implementation, such as through use of cap-and-trade allowance auction proceeds; 2. Federal agencies should provide adaptation assistance to state and local governments, including regional impact assessments, downscaled climate model data, updated flood maps, planning tools, drought early warning, and implementation guidance; and 3. A national climate service and extension network needs to be established to aid local governments implementing resilience measures in collaboration with universities, companies and technical experts around the country.
Carbon emissions from U.S. ethylene production under climate change policies.
Ruth, Matthias; Amato, Anthony D; Davidsdottir, Brynhildur
2002-01-15
This paper presents the results from a dynamic computer model of U.S. ethylene production, designed to explore implications of alternative climate change policies for the industry's energy use and carbon emissions profiles. The model applies to the aggregate ethylene industry but distinguishes its main cracker types, fuels used as feedstocks and for process energy, as well as the industry's capital vintage structure and vintage-specific efficiencies. Results indicate that policies which increase the cost of carbon of process energy-such as carbon taxes or carbon permit systems-are relatively blunt instruments for cutting carbon emissions from ethylene production. In contrast, policies directly affecting the relative efficiencies of new to old capital-such as R&D stimuli or accelerated depreciation schedules-may be more effective in leveraging the industry's potential for carbon emissions reductions.
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Macauley, Molly
2012-01-01
Climate policy in the United States is currently guided by public-private partnerships and actions at the local and state levels. This mitigation strategy is made up of programs that focus on energy efficiency, renewable energy, agricultural practices and implementation of technologies to reduce greenhouse gases. How will policy makers know if these strategies are working, particularly at the scales at which they are being implemented? The NASA Carbon Monitoring System (CMS) will provide information on carbon dioxide fluxes derived from observations of earth's land, ocean and atmosphere used in state of the art models describing their interactions. This new modeling system could be used to assess the impact of specific policy interventions on CO2 reductions, enabling an iterative, results-oriented policy process. In January of 2012, the CMS team held a meeting with carbon policy and decision makers in Washington DC to describe the developing modeling system to policy makers. The NASA CMS will develop pilot studies to provide information across a range of spatial scales, consider carbon storage in biomass, and improve measures of the atmospheric distribution of carbon dioxide. The pilot involves multiple institutions (four NASA centers as well as several universities) and over 20 scientists in its work. This pilot study will generate CO2 flux maps for two years using observational constraints in NASA's state-of -the-art models. Bottom-up surface flux estimates will be computed using data-constrained land and ocean models; comparison of the different techniques will provide some knowledge of uncertainty in these estimates. Ensembles of atmospheric carbon distributions will be computed using an atmospheric general circulation model (GEOS-5), with perturbations to the surface fluxes and to transport. Top-down flux estimates will be computed from observed atmospheric CO2 distributions (ACOS/GOSAT retrievals) alongside the forward-model fields, in conjunction with an inverse approach based on the CO2 model of GEOS ]Chem. The forward model ensembles will be used to build understanding of relationships among surface flux perturbations, transport uncertainty and atmospheric carbon concentration. This will help construct uncertainty estimates and information on the true spatial resolution of the top-down flux calculations. The relationship between the top-down and bottom-up flux distributions will be documented. Because the goal of NASA CMS is to be policy relevant, the scientists involved in the flux modeling pilot need to understand and be focused on the needs of the climate policy and decision making community. If policy makers are to use CMS products, they must be aware of the modeling effort and begin to design policies that can be evaluated with information. Improving estimates of carbon sequestered in forests, for example, will require information on the spatial variability of forest biomass that is far more explicit than is presently possible using only ground observations. Carbon mitigation policies being implemented by cities around the United States could be designed with the CMS data in mind, enabling sequential evaluation and subsequent improvements in incentives, structures and programs. The success of climate mitigation programs being implemented in the United States today will hang on the depth of the relationship between scientists and their policy and decision making counterparts. Ensuring that there is two-way communication between data providers and users is important for the success both of the policies and the scientific products meant to support them..
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.
The Climate Disruption Challenge for Water Security in a Growing World
NASA Astrophysics Data System (ADS)
Paxton, L. J.; Nix, M.; Ihde, A.; MacDonald, L. H.; Parker, C.; Schaefer, R. K.; Weiss, M.; Babin, S. M.; Swartz, W. H.; Schloman, J.
2012-12-01
Climate disruption, the increasingly large and erratic departures of weather and climate from the benign conditions of the last one hundred years, is the greatest challenge to the long-term stability of world governments. Population growth, food and water security, energy supplies, and economic factors are, to some degree, within the control of governance and policy and all of these are impacted by climate disruption. Climate disruption, on the other hand, is not amenable to direct modification on the short timescales that commonly dictate governmental policy and human response. Global average temperatures will continue to increase even if there were immediate, profound changes in emission scenarios. Policy makers are faced with the very practical and immediate problem of determining what can one reasonably do to ameliorate the impact of climate disruption. The issue from a policy viewpoint is: how does one make effective policy when faced with a situation in which there are varied viewpoints in competition. How does one establish a consensus for action? What information "speaks" to policy makers? Water security is one such issue and provides an important, immediate, and tangible device to use when we examine how one can determine what policies can be effectively pursued. The Global Assimilation of Information for Action (GAIA) project creates a support environment to address the impact of climate disruption on global, national, regional, and/or local interests. The basic research community is concerned with the scientific aspects of predicting climate change in terms of environmental parameters such as rainfall, temperature and humidity while decision makers must deal with planning for a world that may be very different from the one we have grown accustomed to. Decision makers must deal with the long-term impacts on public health, agriculture, economic productivity, security, extreme weather, etc in an environment that has come to focus on short-term issues. To complicate matters, the information available from the climate studies community is couched in terms of model projections with "uncertainties" and a choice of emission scenarios that are often expressed in terms of the results of computer simulations and model output. GAIA develops actionable information and explores the interactions of policy and practice. Part of this framework is the development of "games". These realistic games include the elements of both agent-based and role simulation games in which subject matter experts interact in a realistic scenario to explore courses of action and their outcomes based on realistic, projected environments. We will present examples of some of the past work done at APL and examples of collaborative or competitive games that could be used to explore climate disruption in terms of social, political, and economic impacts. These games provide immediate, "tactile" experience of the implications of a choice of policy. In this talk we will suggest how this tool can be applied to problems like the Colorado River Basin or the Brahmaputra.
Bridging the Gap between Climate Research and Policy
NASA Astrophysics Data System (ADS)
Weiss, M.; Lambert, K. F.; Buonocore, J.; Driscoll, C. T.
2016-12-01
The weak link between science and policy jeopardizes the wellbeing of people and the planet. Climate change is a pressing example of this disconnect. Policies are not keeping pace with the best of our knowledge from climate change research. We are working to bridge the science-policy divide and advance climate solutions by focusing on the positive health, ecosystem, and economic benefits of policy action. In 2013, we brought together an interdisciplinary team to estimate the co-benefits of U.S. power plant carbon standards for air quality and health, plus the economic value of the benefits. The results demonstrate that strong carbon standards with flexible compliance options can change the power sector, yielding substantial air quality and health benefits nationwide. The results also show that the economic value of these benefits outweighs the costs nationally and regionally. We advanced the policy applications of this research through a strategic campaign with three key elements: media communication, targeted outreach, and information for policymakers. Our strategy was to build widespread awareness of the research outcomes via media engagement, amplify our message via targeted outreach to citizens groups, and inform policy solutions by sharing research results with decision makers. The research was reported in more than 600 unique news stories in mainstream media outlets and received social media posts by members of Congress and senior White House officials. We amplified the messages via 14 webinars for citizens groups. We also held 16 briefings for policymakers and the public, in addition to meetings with relevant policy staff. Regional, state and federal policy leaders have used the research to understand air quality and health benefits of power plant carbon standards. This model of pairing research with media communication, targeted outreach, and information for policymakers is effective for bridging the gap between climate research and policy, and can be applied to other climate research projects.
Global land-use and market interactions between climate and bioenergy policies
NASA Astrophysics Data System (ADS)
Golub, A.; Hertel, T. W.; Rose, S. K.
2011-12-01
Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.
Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less
Liu, Miaomiao; Huang, Yining; Hiscock, Rosemary; Li, Qin; Bi, Jun; Kinney, Patrick L.; Sabel, Clive E.
2016-01-01
As public expectations for health rise, health measurements broaden from a focus on death, disease, and disability to wellbeing. However, wellbeing hasn’t been incorporated into the framework of climate change policy decision-making in Chinese cities. Based on survey data (n = 763) from Suzhou, this study used Generalized Estimation Equation approach to model external conditions associated with wellbeing. Then, semi-quantitative analyses were conducted to provide a first indication to whether local climate change policies promote or conflict with wellbeing through altering these conditions. Our findings suggested: (i) Socio-demographic (age, job satisfaction, health), psychosocial (satisfaction with social life, ontological security/resilience) and environmental conditions (distance to busy road, noise annoyance and range hoods in the kitchen) were significantly associated with wellbeing; (ii) None of existing climate change strategies in Suzhou conflict with wellbeing. Three mitigation policies (promotion of tertiary and high–tech industry, increased renewable energy in buildings, and restrictions on car use) and one adaption policy (increasing resilience) brought positive co–benefits for wellbeing, through the availability of high-satisfied jobs, reduced dependence on range hoods, noise reduction, and valuing citizens, respectively. This study also provided implications for other similar Chinese cities that potential consequences of climate change interventions for wellbeing should be considered. PMID:27007389
Liu, Miaomiao; Huang, Yining; Hiscock, Rosemary; Li, Qin; Bi, Jun; Kinney, Patrick L; Sabel, Clive E
2016-03-21
As public expectations for health rise, health measurements broaden from a focus on death, disease, and disability to wellbeing. However, wellbeing hasn't been incorporated into the framework of climate change policy decision-making in Chinese cities. Based on survey data (n = 763) from Suzhou, this study used Generalized Estimation Equation approach to model external conditions associated with wellbeing. Then, semi-quantitative analyses were conducted to provide a first indication to whether local climate change policies promote or conflict with wellbeing through altering these conditions. Our findings suggested: (i) Socio-demographic (age, job satisfaction, health), psychosocial (satisfaction with social life, ontological security/resilience) and environmental conditions (distance to busy road, noise annoyance and range hoods in the kitchen) were significantly associated with wellbeing; (ii) None of existing climate change strategies in Suzhou conflict with wellbeing. Three mitigation policies (promotion of tertiary and high-tech industry, increased renewable energy in buildings, and restrictions on car use) and one adaption policy (increasing resilience) brought positive co-benefits for wellbeing, through the availability of high-satisfied jobs, reduced dependence on range hoods, noise reduction, and valuing citizens, respectively. This study also provided implications for other similar Chinese cities that potential consequences of climate change interventions for wellbeing should be considered.
Key challenges and priorities for modelling European grasslands under climate change.
Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni
2016-10-01
Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research directions and collaborative opportunities, and 2) for policy-makers involved in shaping the research agenda for European grassland modelling under climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carlson, C.
2014-12-01
To enact effective policies to address climate change, decision makers need both scientific and political support. One major barrier to U.S. climate policy enactment has been the opposition of private sector actors to proposed policies and to climate science itself. Increasingly, the public and investors are holding companies accountable for their actions around climate change—including political activies, affiliations with trade groups, and involvement with climate science. However, this accountability is inhibited by the prominent role that trade associations have played in climate policy debates in recent years. The opaque nature of such groups is problematic, as it inhibits the public from understanding who is obstructing progress on addressing climate change, and in some cases, impedes the public's climate literacy. Voluntary climate reporting can yield some information on companies' climate engagement and demonstrates the need for greater transparency in corporate political activities around climate change. We analyze CDP climate reporting data from 1,824 companies to assess the degree to which corporate actors disclosed their political influence on climate policies through their trade associations. Results demonstrate the limitations of voluntary reporting and the extent to which companies utilize their trade associations to influence climate change policy debates without being held accountable for these positions. Notably, many companies failed to acknowledge their board seat on trade groups with significant climate policy engagement. Of those that did acknowledge their board membership, some claimed not to agree with their trade associations' positions on climate change. These results raise questions about who trade groups are representing when they challenge the science or obstruct policies to address climate change. Recommendations for overcoming this barrier to informed decision making to address climate change will be discussed.
Mechanistic hypoxia models for the northern Gulf of Mexico are being used to guide policy goals for Mississippi River nutrient loading reductions. However, to date, these models have not examined the effects of both nutrient loads and future climate. Here, we simulate a future c...
Adapting California’s ecosystems to a changing climate
Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart
2017-01-01
Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.
NASA Astrophysics Data System (ADS)
Fujisawa, Mariko; Kanamaru, Hideki
2016-04-01
Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.
Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*
Castruccio, Stefano; McInerney, David J.; Stein, Michael L.; ...
2014-02-24
The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO 2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as patternmore » scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. In conclusion, it may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.« less
Inequality, climate impacts on the future poor, and carbon prices
Dennig, Francis; Budolfson, Mark B.; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H.
2015-01-01
Integrated assessment models of climate and the economy provide estimates of the social cost of carbon and inform climate policy. We create a variant of the Regional Integrated model of Climate and the Economy (RICE)—a regionally disaggregated version of the Dynamic Integrated model of Climate and the Economy (DICE)—in which we introduce a more fine-grained representation of economic inequalities within the model’s regions. This allows us to model the common observation that climate change impacts are not evenly distributed within regions and that poorer people are more vulnerable than the rest of the population. Our results suggest that this is important to the social cost of carbon—as significant, potentially, for the optimal carbon price as the debate between Stern and Nordhaus on discounting. PMID:26644560
Atmospheric Aerosol Properties and Climate Impacts
NASA Technical Reports Server (NTRS)
Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip;
2009-01-01
This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.
Climate change mitigation through livestock system transitions.
Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An
2014-03-11
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.
Climate change mitigation through livestock system transitions
Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An
2014-01-01
Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375
Documenting Climate Models and Their Simulations
Guilyardi, Eric; Balaji, V.; Lawrence, Bryan; ...
2013-05-01
The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now nonspecialists such as government officials, policy makers, and the general public all have an increasing need to access climate model output and understand its implications. For this host of users, accurate and complete metadata (i.e., information about how and why the data were produced) is required to document the climate modeling results. We describe a pilot community initiative to collect and make available documentation of climatemore » models and their simulations. In an initial application, a metadata repository is being established to provide information of this kind for a major internationally coordinated modeling activity known as CMIP5 (Coupled Model Intercomparison Project, Phase 5). We expected that for a wide range of stakeholders, this and similar community-managed metadata repositories will spur development of analysis tools that facilitate discovery and exploitation of Earth system simulations.« less
NASA Astrophysics Data System (ADS)
Rosenzweig, B.; Vorosmarty, C. J.; Stewart, R. J.; Miara, A.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Wollheim, W. M.; Melillo, J. M.; Fekete, B. M.; Dilekli, N.; Duchin, F.; Gross, B.; Bhatt, V.
2014-12-01
'Megaregions' have been identified as an important new scale of geography for policy decision-making in the United States. These regions extend beyond local boundaries (ie. cities, states) to incorporate areas with linked economies, infrastructure and land-use patterns and shared climate and environmental systems, such as watersheds. The corridor of densely connected metropolitan areas and surrounding hinterlands along the U.S. east coast from Maine to Virginia is the archetype of this type of unit: The Northeast Megaregion. The Northeast faces a unique set of policy challenges including: projections of a wetter, more extreme climate, aging and underfunded infrastructure and economically distressed rural areas. Megaregion-scale policy efforts such as the Regional Greenhouse Gas Initiative (RGGI) and support for a regional food system have been recognized as strategic tools for climate change mitigation and adaptation, but decision-makers have limited information on the potential consequences of these strategies on the complex natural-human system of the Northeast, under various scenarios of global climate change. We have developed a Northeast Regional Earth System Model (NE-RESM) as a framework to provide this type of information. We integrate terrestrial ecosystem, hydrologic, energy system and economic models to investigate scenarios of paired regional socioeconomic pathways and global climate projections. Our initial results suggest that megaregion-scale strategic decisions in the Northeast may have important consequences for both local water management and global climate change mitigation.
Ethiopia's Grand Renaissance Dam: Implications for Downstream Riparian Countries
NASA Astrophysics Data System (ADS)
Zhang, Y.; Block, P. J.; Hammond, M.; King, A.
2013-12-01
Ethiopia has begun seriously developing their significant hydropower potential by launching construction of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile River to facilitate local and regional growth. Although this has required substantial planning on Ethiopia's part, no policy dictating the reservoir filling rate strategy has been publicly issued. This filling stage will have clear implications on downstream flows in Sudan and Egypt, complicated by evaporative losses, climate variability, and climate change. In this study, various filling policies and future climate states are simultaneously explored to infer potential streamflow reductions at Lake Nasser, providing regional decision-makers with a set of plausible, justifiable, and comparable outcomes. Schematic of the model framework Box plots of 2017-2032 percent change in annual average streamflow at Lake Nasser for each filling policy constructed from the 100 time-series and weighted precipitation changes. All values are relative to the no dam policy and no changes to future precipitation.
Changes in land-uses and ecosystem services under multi-scenarios simulation.
Liu, Jingya; Li, Jing; Qin, Keyu; Zhou, Zixiang; Yang, Xiaonan; Li, Ting
2017-05-15
Social economy of China has been rapidly developing for more than 30years with efficient reforms and policies being issued. Societal developments have resulted in a greater use of many natural resources to the extent that the ecosystem can no longer self-regulate, thus severely damaging the balance of the ecosystem itself. This in turn has led to a deterioration in people's living environments. Our research is based on a combination of climate scenarios presented in the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and policy scenarios, including the one-child policy and carbon tax policy. We adopted Land Change Modeler of IDRISI software to simulate and analyze land-use change under 16 future scenarios in 2050. Carbon sequestration, soil conservation and water yields were quantified, based on those land-use maps and different ecosystem models. We also analyzed trade-offs and synergy among each ecosystem service and discussed why those interactions happened. The results show that: (1) Global climate change has a strong influence on future changes in land-use. (2) Carbon sequestration, water yield and soil conservation have a mutual relationship in the Guanzhong-Tianshui economic region. (3) Climate change and implementation of policy have a conspicuous impact on the changes in ecosystem services in the Guanzhong-Tianshui economic region. This paper can be used as a reference for further related research, and provide a reliable basis for achieving the sustainable development of the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
Nevada Infrastructure for Climate Change Science, Education, and Outreach
NASA Astrophysics Data System (ADS)
Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.
2008-12-01
The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.
[Energy policy rather than climate policy].
Kroonenberg, Salomon B
2009-01-01
Energy policy and climate policy are two different issues and should not be treated as if they were the same. Whether the climate gets warmer or colder, saving energy and developing sustainable forms of energy production remain of paramount importance because fossil hydrocarbons are likely to be exhausted soon. But climate policy is a fallacy: it is human arrogance to think we can control the climate by reducing emissions and by storing CO2 underground. In spite of rising CO2 levels, the climate has cooled down slightly over the past decade. Since the International Panel on Climate Change (IPCC) did not predict this, it is questionable whether they can reliably predict warming. Other factors such as solar activity are probably more important for climate than greenhouse gases. The danger of coupling energy policy to climate policy is evident: if the climate cools down, people will lose belief in the greenhouse effect and therefore also lose interest in saving energy.
NASA Astrophysics Data System (ADS)
Fujisawa, Mariko; Kanamaru, Hideki
2016-04-01
Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio-economic perspective). In our presentation we will show the cases of Peru and the Philippines, and discuss the implications for agriculture policies and risk management.
Climate change: challenges and opportunities for global health.
Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew
2014-10-15
Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be associated with reductions in fossil fuel combustion. For example, greenhouse gas emission policies may yield net economic benefit, with health benefits from air quality improvements potentially offsetting the cost of US and international carbon policies. Evidence over the past 20 years indicates that climate change can be associated with adverse health outcomes. Health care professionals have an important role in understanding and communicating the related potential health concerns and the cobenefits from policies to reduce greenhouse gas emissions.
NASA Astrophysics Data System (ADS)
Zhuang, Q.; Yu, T.; Qu, Y.; Kicklighter, D. W.; Melillo, J. M.; Sokolov, A. P.; Reilly, J. M.; Monier, E.
2017-12-01
The largest increase of surface air temperature and related climate extremes has occurred in Northern Eurasia in recent decades, and is projected to continue during the 21st century. The changing climate will affect the fate of the large reservoir of organic matter stored in the region. Given a large amount of carbon-based gases CO2 and CH4 is exchanged between the atmosphere and land ecosystems, we hypothesize that the emissions of another potent greenhouse gas N2O are not small. This study used a process-based biogeochemistry model to estimate soil N2O emissions in Northern Eurasia for the latter half of the 20th century and the 21st century. We find that, in the latter half of the 20th century, there was a slight decreasing trend for the regional N2O emissions from 1.4 Tg N yr-1 to 1.17 Tg N yr-1. Boreal forests are the largest source due to their large area and high flux density. Two contrasting climate scenarios with no-policy and policy for future greenhouse gas emissions and with different climate sensitivities (high, medium and low) of a global climate model are used to drive the biogeochemistry model for the 21st century. Simulations indicate that there will be an increasing trend of N2O emissions under the no-policy climate scenario. By 2100, the emissions are 1.28, 1.40 and 1.73 Tg N yr-1 under climate conditions projected considering low, intermediate, and high level of climate sensitivity, respectively. In contrast, under the policy climate scenarios, there will be a decreasing trend and the emissions are 0.89, 1.02, and 1.06 Tg N yr-1 by 2100, respectively. This study suggests that the large increase of air temperature will enhance regional N2O emissions. Future changes in precipitation and depleting organic nitrogen pools also play a role in affecting future emission strengths in Northern Eurasia. In this presentation, we will also present ensemble simulations of carbon budget for the Dry Latitudinal Belt of Northern Eurasia under various future climate conditions.
Accounting for health in climate change policies: a case study of Fiji.
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.
Understanding and managing trust at the climate science-policy interface
NASA Astrophysics Data System (ADS)
Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.
2018-01-01
Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.
A coupled human-natural systems analysis of irrigated agriculture under changing climate
NASA Astrophysics Data System (ADS)
Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.
2016-09-01
Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.
NASA Astrophysics Data System (ADS)
Molina-Perez, Edmundo
It is widely recognized that international environmental technological change is key to reduce the rapidly rising greenhouse gas emissions of emerging nations. In 2010, the United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties (COP) agreed to the creation of the Green Climate Fund (GCF). This new multilateral organization has been created with the collective contributions of COP members, and has been tasked with directing over USD 100 billion per year towards investments that can enhance the development and diffusion of clean energy technologies in both advanced and emerging nations (Helm and Pichler, 2015). The landmark agreement arrived at the COP 21 has reaffirmed the key role that the GCF plays in enabling climate mitigation as it is now necessary to align large scale climate financing efforts with the long-term goals agreed at Paris 2015. This study argues that because of the incomplete understanding of the mechanics of international technological change, the multiplicity of policy options and ultimately the presence of climate and technological change deep uncertainty, climate financing institutions such as the GCF, require new analytical methods for designing long-term robust investment plans. Motivated by these challenges, this dissertation shows that the application of new analytical methods, such as Robust Decision Making (RDM) and Exploratory Modeling (Lempert, Popper and Bankes, 2003) to the study of international technological change and climate policy provides useful insights that can be used for designing a robust architecture of international technological cooperation for climate change mitigation. For this study I developed an exploratory dynamic integrated assessment model (EDIAM) which is used as the scenario generator in a large computational experiment. The scope of the experimental design considers an ample set of climate and technological scenarios. These scenarios combine five sources of uncertainty: climate change, elasticity of substitution between renewable and fossil energy and three different sources of technological uncertainty (i.e. R&D returns, innovation propensity and technological transferability). The performance of eight different GCF and non-GCF based policy regimes is evaluated in light of various end-of-century climate policy targets. Then I combine traditional scenario discovery data mining methods (Bryant and Lempert, 2010) with high dimensional stacking methods (Suzuki, Stem and Manzocchi, 2015; Taylor et al., 2006; LeBlanc, Ward and Wittels, 1990) to quantitatively characterize the conditions under which it is possible to stabilize greenhouse gas emissions and keep temperature rise below 2°C before the end of the century. Finally, I describe a method by which it is possible to combine the results of scenario discovery with high-dimensional stacking to construct a dynamic architecture of low cost technological cooperation. This dynamic architecture consists of adaptive pathways (Kwakkel, Haasnoot and Walker, 2014; Haasnoot et al., 2013) which begin with carbon taxation across both regions as a critical near term action. Then in subsequent phases different forms of cooperation are triggered depending on the unfolding climate and technological conditions. I show that there is no single policy regime that dominates over the entire uncertainty space. Instead I find that it is possible to combine these different architectures into a dynamic framework for technological cooperation across regions that can be adapted to unfolding climate and technological conditions which can lead to a greater rate of success and to lower costs in meeting the end-of-century climate change objectives agreed at the 2015 Paris Conference of the Parties. Keywords: international technological change, emerging nations, climate change, technological uncertainties, Green Climate Fund.
The World Grain Economy and Climate Change to the Year 2000: Implications for Policy
1983-01-01
THE WORLD GRAIN ECONOMY AND CUMATE CHANGE TO THE YEAR 2000: IMPUCATIONS FOR POUCY REPORT ON THE FINAL PHASE OF A CLIMATE IMPACT ASSESSMENT CONDUCTED...MODEL...................................... 37 APPENDIX B-A SUMMARY OF CROP YIELDS AND CLIMATE CHANGE TOTHE YR00............33 CONTENTS LIST OF FIGURES...114. PROJECTED BASE 2000 YIELDS .................. 1S LIST OF TABLES 1. CLIMATE PARAMETERS BY LATITUDINAL ZONES .. S 2. SOURCES OF CLIMATE CHANGE
NASA Astrophysics Data System (ADS)
White, D.; Trainor, S.; Walsh, J.; Gerlach, C.
2008-12-01
The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and resource managers to document traditional ecological knowledge (TEK) and integrate this knowledge with Western science for crafting adaptation response to climate impacts in rural Native Alaska.
Complementing carbon prices with technology policies to keep climate targets within reach
NASA Astrophysics Data System (ADS)
Bertram, Christoph; Luderer, Gunnar; Pietzcker, Robert C.; Schmid, Eva; Kriegler, Elmar; Edenhofer, Ottmar
2015-03-01
Economic theory suggests that comprehensive carbon pricing is most efficient to reach ambitious climate targets, and previous studies indicated that the carbon price required for limiting global mean warming to 2 °C is between US$16 and US$73 per tonne of CO2 in 2015 (ref. ). Yet, a global implementation of such high carbon prices is unlikely to be politically feasible in the short term. Instead, most climate policies enacted so far are technology policies or fragmented and moderate carbon pricing schemes. This paper shows that ambitious climate targets can be kept within reach until 2030 despite a sub-optimal policy mix. With a state-of-the-art energy-economy model we quantify the interactions and unique effects of three major policy components: (1) a carbon price starting at US$7 per tonne of CO2 in 2015 to incentivize economy-wide mitigation, flanked by (2) support for low-carbon energy technologies to pave the way for future decarbonization, and (3) a moratorium on new coal-fired power plants to limit stranded assets. We find that such a mix limits the efficiency losses compared with the optimal policy, and at the same time lowers distributional impacts. Therefore, we argue that this instrument mix might be a politically more feasible alternative to the optimal policy based on a comprehensive carbon price alone.
NASA Astrophysics Data System (ADS)
Prinn, R. G.
2013-12-01
The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that we need to evaluate policies based on their ability to lower risk, and to re-evaluate decisions over time as new knowledge is gained. Reference: R. G. Prinn, Development and Application of Earth System Models, Proceedings, National Academy of Science, June 15, 2012, http://www.pnas.org/cgi/doi/10.1073/pnas.1107470109.
Public attention to science and political news and support for climate change mitigation
NASA Astrophysics Data System (ADS)
Hart, P. Sol; Nisbet, Erik C.; Myers, Teresa A.
2015-06-01
We examine how attention to science and political news may influence public knowledge, perceived harm, and support for climate mitigation policies. Previous research examining these relationships has not fully accounted for how political ideology shapes the mental processes through which the public interprets media discourses about climate change. We incorporate political ideology and the concept of motivated cognition into our analysis to compare and contrast two prominent models of opinion formation, the scientific literacy model, which posits that disseminating scientific information will move public opinion towards the scientific consensus, and the motivated reasoning model, which posits that individuals will interpret information in a biased manner. Our analysis finds support for both models of opinion formation with key differences across ideological groups. Attention to science news was associated with greater perceptions of harm and knowledge for conservatives, but only additional knowledge for liberals. Supporting the literacy model, greater knowledge was associated with more support for climate mitigation for liberals. In contrast, consistent with motivated reasoning, more knowledgeable conservatives were less supportive of mitigation policy. In addition, attention to political news had a negative association with perceived harm for conservatives but not for liberals.
Aligning climate policy with finance ministers' G20 agenda
NASA Astrophysics Data System (ADS)
Edenhofer, Ottmar; Knopf, Brigitte; Bak, Céline; Bhattacharya, Amar
2017-07-01
There is no longer a choice between climate policy and no climate policy. G20 finance ministers have to play a key role in implementing smart climate policies like carbon pricing. Yet they remain reluctant to take advantage of the merits of carbon pricing for sound fiscal policy.
NASA Astrophysics Data System (ADS)
Hokamp, Sascha; Khabbazan, Mohammad Mohammadi
2017-04-01
In 2015, the Conference of the Parties (COP 21) reaffirmed to targeting the global mean temperature rise below 2 °C in 2100 while finding no consent on decarbonizing the global economy, and instead, the final agreement called for enhanced scientific investigation of low carbon emission scenarios (UNFCC, 2015). In addition, the Climate Action Network International (CAN) proposes Special Reports to address decarbonization and low carbon development including 1.5 °C scenarios (IPCC, 2016). In response to these developments, we investigate whether the carbon emission cuts, in accordance with the recent climate policy proposals, may reach the climate target. To tackle this research question, we employ the coupled climate-energy-economy integrated assessment Model of INvestment and endogenous technological Development (MIND, cf. Edenhofer et al., 2005, Neubersch et al. 2014). Extending MIND's climate module to the two-box version used in the Dynamic Integrated model of Climate and the Economy (DICE, cf. Nordhaus and Sztorc, 2013, Nordhaus 2014), we perform a cost-effectiveness analysis with constraints on anthropogenic carbon emissions. We show that a climate policy scenario with early decarbonization complies with the 2° C climate target, even without Carbon Capturing and Storage (CCS) or negative emissions (see van Vuuren et al., 2013, for negative emissions). However, using emission inertia of 3.7 percent annually, reflecting the inflexibility on transforming the energy sector, we find a climate policy with moderately low emissions from 2100 onwards at a cost in terms of Balanced Growth Equivalents (BGE, cf. Anthoff and Tol, 2009) of 0.764 % that requires an early (2035 vs. 2120) peak of investments in renewable energy production compared to a business-as-usual scenario. Hence, decarbonizing the global economy and achieving the 2 °C target might still be possible before 2100, but the window of opportunity is beginning to close. References: Anthoff, D., and Tol, R. S. J. (2009), "The Impact of Climate Change on the Balanced Growth Equivalent: An Application to FUND", Environmental and Resource Economics, 43 (3), 351-367. Edenhofer, O., Bauer, N., and Kriegler, E. (2005), "The Impact of Technological Change on Climate Protection and Welfare: Insights from the Model MIND", Ecological Economics, 54, 277-292. Neubersch, D., Held, H., and Otto, A., (2014), "Operationalizing Climate Targets under Learning: An Application of Cost-Risk Analysis", Climatic Change, 126, 305-318. Nordhaus, W. D., and Sztorc, P., (2013), DICE2013R: Introduction and User's Manual Nordhaus, W. D. (2014), "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches", Journal of the Association of Environmental and Resource Economists, 1 (1/2, Spring/Summer, 2014), 273-312. IPCC (2016), Sixth Assessment Report (AR6) Products, IPCC-XLIII/INF.7. UNFCCC (2015), Adoption of the Paris Agreement van Vuuren, D. P., Deetman, S., van Vliet, J., van den Berg, M. , van Ruijven, B.J., and Koelbl, B. (2013): "The Role of Negative CO2 Emissions for Reaching 2 °C - Insights from Integrated Assessment Modelling", Climatic Change, 118, 15-27.
Current practices and future opportunities for policy on climate change and invasive species.
Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela
2008-06-01
Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.
Development of a station based climate database for SWAT and APEX assessments in the U.S.
USDA-ARS?s Scientific Manuscript database
Water quality simulation models such as the Soil and Water Assessment Tool (SWAT) and Agricultural Policy EXtender (APEX) are widely used in the U.S. These models require large amounts of spatial and tabular data to simulate the natural world. Accurate and seamless daily climatic data are critical...
Shih, Hsiu-Ching; Crawford-Brown, Douglas; Ma, Hwong-wen
2015-03-15
Assessment of the ability of climate policies to produce desired improvements in public health through co-benefits of air pollution reduction can consume resources in both time and research funds. These resources increase significantly as the spatial resolution of models increases. In addition, the level of spatial detail available in macroeconomic models at the heart of climate policy assessments is much lower than that available in traditional human health risk modeling. It is therefore important to determine whether increasing spatial resolution considerably affects risk-based decisions; which kinds of decisions might be affected; and under what conditions they will be affected. Human health risk co-benefits from carbon emissions reductions that bring about concurrent reductions in Particulate Matter (PM10) emissions is therefore examined here at four levels of spatial resolution (Uniform Nation, Uniform Region, Uniform County/city, Health Risk Assessment) in a case study of Taiwan as one of the geographic regions of a global macroeceonomic model, with results that are representative of small, industrialized nations within that global model. A metric of human health risk mortality (YOLL, years of life lost in life expectancy) is compared under assessments ranging from a "uniform simulation" in which there is no spatial resolution of changes in ambient air concentration under a policy to a "highly spatially resolved simulation" (called here Health Risk Assessment). PM10 is chosen in this study as the indicator of air pollution for which risks are assessed due to its significance as a co-benefit of carbon emissions reductions within climate mitigation policy. For the policy examined, the four estimates of mortality in the entirety of Taiwan are 747 YOLL, 834 YOLL, 984 YOLL and 916 YOLL, under Uniform Taiwan, Uniform Region, Uniform County and Health Risk Assessment respectively; or differences of 18%, 9%, 7% if the HRA methodology is taken as the baseline. While these differences are small compared to uncertainties in health risk assessment more generally, the ranks of different regions and of emissions categories as the focus of regulatory efforts estimated at these four levels of spatial resolution are quite different. The results suggest that issues of risk equity within a nation might be missed by the lower levels of spatial resolution, suggesting that low resolution models are suited to calculating national cost-benefit ratios but not as suited to assessing co-benefits of climate policies reflecting intersubject variability in risk, or in identifying sub-national regions and emissions sectors on which to focus attention (although even here, the errors introduced by low spatial resolution are generally less than 40%). Copyright © 2014 Elsevier Ltd. All rights reserved.
Agriculture, forestry, and other land-use emissions in Latin America
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo; ...
2016-04-07
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Agriculture, forestry, and other land-use emissions in Latin America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Katherine V.; Beach, Robert; Gurgel, Angelo
Nearly 40% of greenhouse gas (GHG) emissions in Latin America were from agriculture, forestry, and other land use (AFOLU) in 2008, more than double the global fraction of AFOLU emissions. In this paper, we investigate the future trajectory of AFOLU GHG emissions in Latin America, with and without efforts to mitigate, using a multi-model comparison approach. We find significant uncertainty in future emissions with and without climate policy. This uncertainty is due to differences in a variety of assumptions including (1) the role of bioenergy, (2) where and how bioenergy is produced, (3) the availability of afforestation options in climatemore » mitigation policy, and (4) N 2O and CH 4 emissions intensity. With climate policy, these differences in assumptions can lead to significant variance in mitigation potential, with three models indicating reductions in AFOLU GHG emissions and one model indicating modest increases in AFOLU GHG emissions.« less
Remote Sensing for Climate and Environmental Change
NASA Technical Reports Server (NTRS)
Evans, Diane
2011-01-01
Remote sensing is being used more and more for decision-making and policy development. Specific examples are: (1) Providing constraints on climate models used in IPCC assessments (2) Framing discussions about greenhouse gas monitoring (3) Providing support for hazard assessment and recovery.
NASA Astrophysics Data System (ADS)
De Cian, E.; Hof, A. F.; Marangoni, G.; Tavoni, M.; van Vuuren, D. P.
2016-07-01
Equity considerations play an important role in international climate negotiations. While policy analysis has often focused on equity as it relates to mitigation costs, there are large regional differences in adaptation costs and the level of residual damage. This paper illustrates the relevance of including adaptation and residual damage in equity considerations by determining how the allocation of emission allowances would change to counteract regional differences in total climate costs, defined as the costs of mitigation, adaptation, and residual damage. We compare emission levels resulting from a global carbon tax with two allocations of emission allowances under a global cap-and-trade system: one equating mitigation costs and one equating total climate costs as share of GDP. To account for uncertainties in both mitigation and adaptation, we use a model-comparison approach employing two alternative modeling frameworks with different damage, adaptation cost, and mitigation cost estimates, and look at two different climate goals. Despite the identified model uncertainties, we derive unambiguous results on the change in emission allowance allocation that could lessen the unequal distribution of adaptation costs and residual damages through the financial transfers associated with emission trading.
Accounting for health in climate change policies: a case study of Fiji
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442
NASA Astrophysics Data System (ADS)
Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.
2012-12-01
We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total renewable freshwater available in two GCAM regions, the Middle East and India. Additionally, 20% and 27% of the global population in years 2050 and 2095, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of renewable water available in a year (i.e., WSI > 1.0). We also investigate the effects of emission mitigation policies on water demand and compare them to the contribution of socioeconomic drivers both globally and regionally. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095, under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. With more stringent climate mitigation targets, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.
NASA Astrophysics Data System (ADS)
Rasheva, E. A.
2015-12-01
For decades, role-play and simulation exercises have been utilized for learning and policy decision making. While the power of Model UN simulations in building first-person experience and understanding of complex international issues is well known, the effectiveness of simulations for inspiring citizen engagement in scientific public-policy issues is little studied. My work hypothesizes that climate-change negotiation simulations can enhance students' scientific literacy and policy advocacy. It aims to determine how age and gender influence the responsiveness of students to such simulations. During the 2015 fall semester, I am conducting World Climate exercises for fellow graduate and undergraduate students at San Francisco State University. At the end of the exercise, I will have collected the responses to an anonymous questionnaire in which the participants indicate age and gender. The questionnaire asks participants to describe their hopes and fears for the future and to propose public and personal actions for achieving a strong climate change agreement. I am tracking differences to determine whether participants' age and gender correlate with particular patterns of feeling and thinking. My future research will aim to determine whether and how strongly the World Climate Exercise has affected participants' actual policy engagement. This work will also reflect on my experiences as a World Climate facilitator. I will describe the facilitation process and then discuss some of my observations from the sessions. I will specify the challenges I have encountered and suggest strategies that can strengthen the learning process. World Climate is a computer-simulation-based climate change negotiations role-playing exercise developed by Climate Interactive in partnership with the System Dynamics Group at the MIT Sloan School of Management.
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
NASA Astrophysics Data System (ADS)
Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; Bony, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Cheruy, F.; Codron, F.; Cozic, A.; Cugnet, D.; de Noblet, N.; Duvel, J.-P.; Ethé, C.; Fairhead, L.; Fichefet, T.; Flavoni, S.; Friedlingstein, P.; Grandpeix, J.-Y.; Guez, L.; Guilyardi, E.; Hauglustaine, D.; Hourdin, F.; Idelkadi, A.; Ghattas, J.; Joussaume, S.; Kageyama, M.; Krinner, G.; Labetoulle, S.; Lahellec, A.; Lefebvre, M.-P.; Lefevre, F.; Levy, C.; Li, Z. X.; Lloyd, J.; Lott, F.; Madec, G.; Mancip, M.; Marchand, M.; Masson, S.; Meurdesoif, Y.; Mignot, J.; Musat, I.; Parouty, S.; Polcher, J.; Rio, C.; Schulz, M.; Swingedouw, D.; Szopa, S.; Talandier, C.; Terray, P.; Viovy, N.; Vuichard, N.
2013-05-01
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.
Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske
2015-01-01
Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...
Future energy system challenges for Africa: Insights from Integrated Assessment Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Paul; Nielsen, Jens; Calvin, Katherine V.
Although Africa’s share in the global energy system is only small today, the ongoing population growth and economic development imply that this can change significantly. In this paper, we discuss long-term energy developments in Africa using the results of the LIMITS model inter-comparison study. The analysis focusses on the position of Africa in the wider global energy system and climate mitigation. The results show a considerable spread in model outcomes. Without specific climate policy, Africa’s share in global CO 2 emissions is projected to increase from around 1-4% today to 3-23% by 2100. In all models, emissions only start tomore » become really significant on a global scale after 2050. Furthermore, by 2030 still around 50% of total household energy use is supplied through traditional bio-energy, in contrast to existing ambitions from international organisations to provide access to modern energy for all. After 2050, the energy mix is projected to converge towards a global average energy mix with high shares of fossil fuels and electricity use. Finally, although the continent is now a large net exporter of oil and gas, towards 2050 it most likely needs most of its resources to meet its rapidly growing domestic demand. With respect to climate policy, the rapid expansion of the industrial and the power sector also create large mitigation potential and thereby the possibility to align the investment peak in the energy system with climate policy and potential revenues from international carbon trading.« less
NASA Astrophysics Data System (ADS)
Malard, J. J.; Baig, A. I.; Carrera, J.; Mellini, L.; Pineda, P.; Monterroso, O.; Melgar-Quiñonez, H.; Adamowski, J. F.; Halbe, J.; Monardes, H.; Gálvez, J.
2014-12-01
The design of effective management policies for socioenvironmental systems requires the development of comprehensive, yet sufficiently simple, decision support systems (DSS) for policy makers. Guatemala is a particularly complex case, combining an enormous diversity of climates, geographies, and agroecosystems within a very small geographical scale. Although food insecurity levels are very high, indicating a generally inadequate management of the varied agroecosystems of the country, different regions have shown vastly different trends in food insecurity over the past decade, including between regions with similar geophysical and climatic characteristics and/or governmental programmes (e.g., agricultural support). These observations suggest two important points: firstly, that not merely environmental conditions but rather socio-environmental interactions play a crucial role in the successful management of human-environmental systems, and, secondly, that differences in the geophysical and climatic environments between the diverse regions significantly impact the success or failure of policies. This research uses participatory systems dynamic modelling (SDM) to build a DSS that allows local decision-makers to (1) determine the impact of current and potential policies on agroecosystem management and food security, and (2) design sustainable and resilient policies for the future. The use of participatory SDM offers several benefits, including the active involvement of the end recipients in the development of the model, greatly increasing its acceptability; the integration of physical (e.g., precipitation, crop yield) and social components in one model; adequacy for modelling long-term trends in response to particular policy decisions; and the inclusion of local stakeholder knowledge on system structure and trends through the participatory process. Preliminary results suggest that there is a set of common variables explaining the generally high levels of food insecurity in Guatemala (e.g., agricultural productivity), while others (e.g., land dynamics and access to water resources) are restricted to certain regions and have a relatively important weight in determining the success or failure of policies in these regions.
Applied Dynamic Analysis of the Global Economy (ADAGE)
ADAGE is a dynamic computable general equilibrium (CGE) model capable of examining many types of economic, energy, environmental, climate change mitigation, and trade policies at the international, national, U.S. regional, and U.S. state levels. To investigate proposed policy eff...
Resource Letter: GW-1: Global warming
NASA Astrophysics Data System (ADS)
Firor, John W.
1994-06-01
This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.
Assessment of the Effect of Climate Change on Grain Yields in China
NASA Astrophysics Data System (ADS)
Chou, J.
2006-12-01
The paper elaborates the social background and research background; makes clear what the key scientific issues need to be resolved and where the difficulties are. In the research area of parasailing the grain yield change caused by climate change, massive works have been done both in the domestic and in the foreign. It is our upcoming work to evaluate how our countrywide climate change information provided by this pattern influence our economic and social development; and how to make related policies and countermeasures. the main idea in this paper is that the grain yield change is by no means the linear composition of social economy function effect and the climatic change function effect. This paper identifies the economic evaluation object, proposes one new concept - climate change output. The grain yields change affected by the social factors and the climatic change working together. Climate change influences the grain yields by the non ¨C linear function from both climate change and social factor changes, not only by climate change itself. Therefore, in my paper, the appraisal object is defined as: The social factors change based on actual social changing situations; under the two kinds of climate change situation, the invariable climate change situation and variable climate change situation; the difference of grain yield outputs is called " climate change output ", In order to solve this problem, we propose a method to analyze and imitate on the historical materials. Giving the condition that the climate is invariable, the social economic factor changes cause the grain yield change. However, this grain yield change is a tentative quantity index, not an actual quantity number. So we use the existing historical materials to exam the climate change output, based on the characteristic that social factor changes greater in year than in age, but the climate factor changes greater in age than in year. The paper proposes and establishes one economy - climate model (C-D-C model) to appraise the grain yield change caused by the climatic change. Also the preliminary test on this model has been done. In selection of the appraisal methods, we take the C-D production function model, which has been proved more mature in the economic research, as our fundamental model. Then, we introduce climate index (arid index) to the C-D model to develop one new model. This new model utilizes the climatic change factor in the economical model to appraise how the climatic change influence the grain yield change. The new way of appraise should have the better application prospect. The economy - climate model (The C-D-C model) has been applied on the eight Chinese regions that we divide; it has been proved satisfactory in its feasibility, rationality and the application prospect. So we can provide the theoretical fundamentals for policy-making under the more complex and uncertain climate change. Therefore, we open a new possible channel for the global climate change research moving toward the actual social, economic life.
2 °C and SDGs: united they stand, divided they fall?
NASA Astrophysics Data System (ADS)
von Stechow, Christoph; Minx, Jan C.; Riahi, Keywan; Jewell, Jessica; McCollum, David L.; Callaghan, Max W.; Bertram, Christoph; Luderer, Gunnar; Baiocchi, Giovanni
2016-03-01
The adoption of the Sustainable Development Goals (SDGs) and the new international climate treaty could put 2015 into the history books as a defining year for setting human development on a more sustainable pathway. The global climate policy and SDG agendas are highly interconnected: the way that the climate problem is addressed strongly affects the prospects of meeting numerous other SDGs and vice versa. Drawing on existing scenario results from a recent energy-economy-climate model inter-comparison project, this letter analyses these synergies and (risk) trade-offs of alternative 2 °C pathways across indicators relevant for energy-related SDGs and sustainable energy objectives. We find that limiting the availability of key mitigation technologies yields some co-benefits and decreases risks specific to these technologies but greatly increases many others. Fewer synergies and substantial trade-offs across SDGs are locked into the system for weak short-term climate policies that are broadly in line with current Intended Nationally Determined Contributions (INDCs), particularly when combined with constraints on technologies. Lowering energy demand growth is key to managing these trade-offs and creating synergies across multiple energy-related SD dimensions. We argue that SD considerations are central for choosing socially acceptable 2 °C pathways: the prospects of meeting other SDGs need not dwindle and can even be enhanced for some goals if appropriate climate policy choices are made. Progress on the climate policy and SDG agendas should therefore be tracked within a unified framework.
Burden Sharing with Climate Change Impacts
NASA Astrophysics Data System (ADS)
Tavoni, M.; van Vuuren, D.; De Cian, E.; Marangoni, G.; Hof, A.
2014-12-01
Efficiency and equity have been at the center of the climate change policy making since the very first international environmental agreements on climate change, though over time how to implement these principles has taken different forms. Studies based on Integrated Assessment Models have also shown that the economic effort of achieving a 2 degree target in a cost-effective way would differ widely across regions (Tavoni et al. 2013) because of diverse economic and energy structure, baseline emissions, energy and carbon intensity. Policy instruments, such as a fully-fledged, global emission trading schemes can be used to pursuing efficiency and equity at the same time but the literature has analyzed the compensations required to redistribute only mitigation costs. However, most of these studies have neglected the potential impacts of climate change. In this paper we use two integrated assessment models -FAIR and WITCH- to explore the 2°C policy space when accounting for climate change impacts. Impacts are represented via two different reduced forms equations, which despite their simplicity allows us exploring the key sensitivities- Our results show that in a 2 degree stabilization scenarios residual damages remain significant (see Figure 1) and that if you would like to compensate those as part of an equal effort scheme - this would lead to a different allocation than focusing on a mitigation based perspective only. The residual damages and adaptation costs are not equally distributed - and while we do not cover the full uncertainty space - with 2 different models and 2 sets of damage curves we are still able to show quite similar results in terms of vulnerable regions and the relative position of the different scenarios. Therefore, accounting for the residual damages and the associated adaptation costs on top of the mitigation burden increases and redistributes the full burden of total climate change.
Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...
NASA Astrophysics Data System (ADS)
Wickham, J.; Wade, T. G.; Riitters, K. H.
2014-09-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.
Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts
NASA Astrophysics Data System (ADS)
Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.
2015-12-01
The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.
2014-04-01
This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels withmore » CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.« less
NASA Astrophysics Data System (ADS)
Haer, Toon; Botzen, W. J. Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M.; Ward, Philip J.
2018-06-01
Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3
NASA Technical Reports Server (NTRS)
Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.
2015-01-01
Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).
NASA Astrophysics Data System (ADS)
Dessens, Olivier
2016-04-01
Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of analysing GCMs with the step-experiments. Acknowledgments: This work is supported by the FP7 HELIX project (www.helixclimate.eu) References: Anandarajah, G., Pye, S., Usher, W., Kesicki, F., & Mcglade, C. (2011). TIAM-UCL Global model documentation. https://www.ucl.ac.uk/energy-models/models/tiam-ucl/tiam-ucl-manual Good, P., Gregory, J. M., Lowe, J. A., & Andrews, T. (2013). Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dynamics, 40(3-4), 1041-1053.
Assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.
2010-04-01
Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-modelmore » ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.« less
NASA Astrophysics Data System (ADS)
Winsemius, Hessel; Jongman, Brenden; Veldkamp, Ted; Hallegatte, Stéphane; Bangalore, Mook; Ward, Philip
2016-04-01
Prior to the COP21 conference in Paris this year, the World Bank published a report called "Shockwaves - Managing the Impacts of Climate Change on Poverty". The report flagged that ending poverty and stabilizing climate change should be jointly tackled and that without a good joint policy, a further 100 million people could become trapped in poverty by 2050. As part of the "Shockwaves" report, we investigated whether low-income households are disproportionately overrepresented in hazard-prone areas compared to households with higher income. Furthermore, the hazardous conditions under which poor households are exposed to now may become worse due to climate change with resulting increases in intensity and frequency of floods and droughts. We also show how the amount of affected people to these natural hazards change in the future if nothing is done. We use recent advances in the global spatial modeling of flood and drought hazard and a large sample of household surveys containing asset and income data to explore the relationships.
USDA-ARS?s Scientific Manuscript database
Long-term hydrologic data sets are required to quantify the impacts of management, and climate on runoff at the field scale where management practices are applied. This study was conducted to evaluate the impacts of long-term management and climate on runoff from a small watershed managed with no-ti...
Streamflow response to climate and landuse changes in a coastal watershed in North Carolina
S. Qi; G. Sun; Y. Wang; S.G. McNulty; J.A. Moore Myers
2009-01-01
It is essential to examine the sensitivity of hydrologic responses to climate and landuse change across different physiographic regions in order to formulate sound water management policies for local response to projected global change. This study used the a simulation model to examine the potential impacts of climate and landuse changes on streamflow of the...
Kathleen A. Farley; Christina Tague; Gordon E. Grant
2011-01-01
Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling...
Multi-scale model of the U.S. transportation energy market for policy assessment.
DOT National Transportation Integrated Search
2013-06-01
Across the globe, issues related to energy, its sources, uses, and impacts on climate change are at the forefront : of political and environmental debates (e.g., the 2012 United Nations Climate Change Conference at Doha, : http://unfccc.int). Current...
NASA Astrophysics Data System (ADS)
Trautvetter, Helen; Schoenhart, Martin; Parajaka, Juraj; Schmid, Erwin; Zessner, Matthias
2017-04-01
Climate change is one of the major challenges of our time and adds considerable stress to the human society and environment. A change in climate will not only shift general weather patterns, but might also increase the recurrence of extreme weather events such as drought and heavy rainfall. These changes in climatic conditions will affect the quality and quantity of water resources both directly as well as indirectly through autonomous adaptation by farmers (e.g. cultivar choices, fertilization intensity or soil management). This will influence the compliance with the good ecological and chemical status according to the EU Water Framework Directive. We present results from an integrated impact modelling framework (IIMF) to tackle those direct and indirect impacts and analyze policy options for planned adaptation in agricultural land use and sustainable management of land and water resources until 2040. The IIMF is the result of an interdisciplinary collaboration among economists, agronomists, and hydrologists. It consists of the bio-physical process model EPIC, the regional land use optimization model PASMA[grid], the quantitative precipitation/runoff TUWmodel and the surface water emission model MONERIS. Scenarios have been developed and parameterized in collaboration with stakeholders in order to facilitate multi-actor knowledge transfer. The set of climate change scenarios until 2040 includes three scenarios with equal temperature changes but varying precipitation patterns. They are combined with potential socio-economic and policy development. The latter include water protection measures on fertilization management, soil management, or crop rotation choices. We will presented the development of interfaces among the research, the definition of scenarios and major scenario results for Austria. We will focus on nutrient emissions to surface waters, which are the major link between the different models. The results, available at watershed level indicate the significant impact on future precipitation development on the risk of not achieving nutrient criteria of the good ecological water quality status of surface waters. Policy measures show relatively low impacts for nitrogen, while they may highly affect the phosphorus emissions and hence the compliance with environmental quality standards for phosphate phosphorus.
Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic
NASA Astrophysics Data System (ADS)
Bigras, S. C.
2009-12-01
It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for participation of indigenous peoples in the development and management process. The effective application of accumulated climate change knowledge requires development of a policy framework that can address cumulative effects and take into account various stakeholders, multi-jurisdictional regulations and interests, environmental impacts and other concerns specific to the Arctic. Fundamental to such a framework are responsible economic development, sustainable communities, the commitment to achieving consensus between parties, and the use of traditional knowledge. One way to facilitate collaborative policy making is to increase international co-operation between Northerners, indigenous peoples, scientists, politicians and policy makers. The International Polar Year (IPY) 2007-2008 proved a solid stepping-stone for multinational collaborations. Clear communication with politicians and policy-makers is challenging but essential, despite the lingering uncertainties in climate-change science. Public awareness helps considerably in getting messages to politicians, and it is therefore important that scientists and researchers share their results not only with colleagues but also with the general public.
An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources
NASA Astrophysics Data System (ADS)
Ryu, D.; Malano, H. M.; Davidson, B.; George, B.
2014-12-01
Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture, urban, industrial) on a spatially distributed basis. The resulting combinations of climate scenarios and adaptation responses were subjected to a combined hydro-economic assessment based on the degree of water security together with its cost-effectiveness against the Business-as-usual scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loulou, Richard; Waaub, Jean-Philippe; Zaccour, Georges
2005-07-01
This volume on energy and environmental modeling describes a broad variety of modeling methodologies. It includes chapters covering: The Sustainability of Economic Growth by Cabo, Martin-Herran & Martinez-Garcia; Abatement Scenarios in the Swiss Housing Sector by L. Drouet and others; Support and Planning for Off-Site Emergency Management, by Geldermann and others; Hybrid Energy-Economy Models, by Jaccard; The World-MARKAL Model and Its Application, by Kanudia and others; Methodology for Evaluating a Market of Tradable CO{sub 2}-Permits, by Kunsch and Springael; MERGE - A Model for Global Climate Change, by Manne and Richels; A Linear Programming Model for Capacity Expansion in anmore » Autonomous Power Generation System, by Mavrotas and Diakoulaki; Transport and Climate Policy Modeling in the Transport Sector, by Paltsev and others; Analysis of Ontario Electricity Capacity Requirements and Emissions, by Pineau and Schott; Environmental Damage in Energy/Environmental Policy Evaluation, by Van Regemorter. 71 figs.« less
Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume
2014-05-01
Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.
Syphard, Alexandra D.; Keeley, Jon E.; Pfaff, Anne Hopkins; Ferschweiler, Ken
2017-01-01
Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.
A paradigm shift toward a consistent modeling framework to assess climate impacts
NASA Astrophysics Data System (ADS)
Monier, E.; Paltsev, S.; Sokolov, A. P.; Fant, C.; Chen, H.; Gao, X.; Schlosser, C. A.; Scott, J. R.; Dutkiewicz, S.; Ejaz, Q.; Couzo, E. A.; Prinn, R. G.; Haigh, M.
2017-12-01
Estimates of physical and economic impacts of future climate change are subject to substantial challenges. To enrich the currently popular approaches of assessing climate impacts by evaluating a damage function or by multi-model comparisons based on the Representative Concentration Pathways (RCPs), we focus here on integrating impacts into a self-consistent coupled human and Earth system modeling framework that includes modules that represent multiple physical impacts. In a sample application we show that this framework is capable of investigating the physical impacts of climate change and socio-economic stressors. The projected climate impacts vary dramatically across the globe in a set of scenarios with global mean warming ranging between 2.4°C and 3.6°C above pre-industrial by 2100. Unabated emissions lead to substantial sea level rise, acidification that impacts the base of the oceanic food chain, air pollution that exceeds health standards by tenfold, water stress that impacts an additional 1 to 2 billion people globally and agricultural productivity that decreases substantially in many parts of the world. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C, which results in much smaller impacts. It is challenging for large internationally coordinated exercises to respond quickly to new policy targets. We propose that a paradigm shift toward a self-consistent modeling framework to assess climate impacts is needed to produce information relevant to evolving global climate policy and mitigation strategies in a timely way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Zwaan, Bob; Kober, Tom; Calderon, Silvia
In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO 2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO 2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, theymore » play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO 2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of the challenges this CO 2 abatement technology experiences. The extent to which different mitigation options can be used in practice varies greatly between countries within Latin America, depending on factors such as resource potentials, economic performance, environmental impacts, and availability of technical expertise. We provide concise assessments of possible deployment opportunities for some low-carbon energy options, for the region at large and with occasional country-level detail in specific cases.« less
Data Integration Plans for the NOAA National Climate Model Portal (NCMP) (Invited)
NASA Astrophysics Data System (ADS)
Rutledge, G. K.; Williams, D. N.; Deluca, C.; Hankin, S. C.; Compo, G. P.
2010-12-01
NOAA’s National Climatic Data Center (NCDC) and its collaborators have initiated a five-year development and implementation of an operational access capability for the next generation weather and climate model datasets. The NOAA National Climate Model Portal (NCMP) is being designed using format neutral open web based standards and tools where users at all levels of expertise can gain access and understanding to many of NOAA’s climate and weather model products. NCMP will closely coordinate with and reside under the emerging NOAA Climate Services Portal (NCSP). To carry out its mission, NOAA must be able to successfully integrate model output and other data and information from all of its discipline specific areas to understand and address the complexity of many environmental problems. The NCMP will be an initial access point for the emerging NOAA Climate Services Portal (NCSP), which is the basis for unified access to NOAA climate products and services. NCMP is currently collaborating with the emerging Environmental Projection Center (EPC) expected to be developed at the Earth System Research Laboratory in Boulder CO. Specifically, NCMP is being designed to: - Enable policy makers and resource managers to make informed national and global policy decisions using integrated climate and weather model outputs, observations, information, products, and other services for the scientist and the non-scientist; - Identify model to observational interoperability requirements for climate and weather system analysis and diagnostics; - Promote the coordination of an international reanalysis observational clearinghouse (i.e.., Reanalysis.org) spanning the worlds numerical processing Center’s for an “Ongoing Analysis of the Climate System”. NCMP will initially provide access capabilities to 3 of NOAA’s high volume Reanalysis data sets of the weather and climate systems: 1) NCEP’s Climate Forecast System Reanalysis (CFS-R); 2) NOAA’s Climate Diagnostics Center/ Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis Project data set (20CR, G. Compo, et al.), a historical reanalysis that will provide climate information dating back to 1850 to the present; and 3) the CPC’s Upper Air Reanlaysis. NCMP will advance the highly successful NOAA National Operational Model Archive and Distribution System (NOMADS, Rutledge, BAMS 2006), and standards already in use including Unidata’s THREDDS (TDS), PMEL’s Live Access Server (LAS) and the GrADS Data Server (GDS) from COLA; the Department of Energy (DOE) Earth System Grid (ESG) and the associated IPCC Climate model archive located at the Program for Climate Model Diagnostics and Inter-comparison (PCMDI) through the ESG; and NOAA’s Unified Access Framework (UAF) effort; and core standards developed by Open Geospatial Consortium (OGC). The format neutral OPeNDAP protocol as used in the NOMADS system will also be a key aspect of the design of NCMP.
NASA Technical Reports Server (NTRS)
Keith, Bruce; Ford, David N.; Horton, Radley M.
2016-01-01
The purpose of this study is to evaluate simulated fill rate scenarios for the Grand Ethiopian Renaissance Dam while taking into account plausible climate change outcomes for the Nile River Basin. The region lacks a comprehensive equitable water resource management strategy, which creates regional security concerns and future possible conflicts. We employ climate estimates from 33 general circulation models within a system dynamics model as a step in moving toward a feasible regional water resource management strategy. We find that annual reservoir fill rates of 8-15% are capable of building hydroelectric capacity in Ethiopia while concurrently ensuring a minimum level of stream flow disruption into Egypt before 2039. Insofar as climate change estimates suggest a modest average increase in stream flow into the Aswan, climate changes through 2039 are unlikely to affect the fill rate policies. However, larger fill rates will have a more detrimental effect on stream flow into the Aswan, particularly beyond a policy of 15%. While this study demonstrates that a technical solution for reservoir fill rates is feasible, the corresponding policy challenge is political. Implementation of water resource management strategies in the Nile River Basin specifically and Africa generally will necessitate a national and regional willingness to cooperate.
GLIMPSE: a rapid decision framework for energy and environmental policy
Over the coming decades, new energy production technologies and the policies that oversee them will affect human health, the vitality of our ecosystems, and the stability of the global climate. The GLIMPSE decision model framework provides insights about the implications of techn...
Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.
2017-12-01
The carbon and water intensity of US electricity generation has recently decreased due to the natural gas revolution and deployment of renewable technologies. Yet, power plants that require water for cooling still provide 80% of electricity generation and projected climate-water conditions may limit their power output and affect reliability. Understanding the connections and tradeoffs across water, electricity and climate systems is timely, as the nation tries to mitigate and adapt to a changing climate. Electricity expansion models are used to provide insight on power sector pathways given certain policy goals and economic conditions, but do not typically account for productivity limitations due to physical climate-water constraints. Here, we account for such constraints by coupling an electricity expansion model (Regional Energy Deployment System - ReEDS) with the combined Water Balance and Thermoelectric Power and Thermal Pollution Models (WBM-TP2M), which calculate the available capacity at power plants as a function of hydrologic flows, climate conditions, power plant technology and environmental regulations. To fully capture and incorporate climate-water impacts into ReEDS, a specific rule-set was designed for the temporal and spatial downscaling and up-scaling of ReEDS results into WBM-TP2M inputs and visa versa - required to achieve a modeling `loop' that will enable convergence on a feasible solution in the context of economic and geophysical constraints and opportunities. This novel modeling approach is the next phase of research for understanding electricity system vulnerabilities and adaptation measures using energy-water-climate modeling, which to-date has been limited by a focus on individual generators without analyzing power generation as a collective regional system. This study considers four energy policy/economic pathways under future climate-water resource conditions, designed under the National Energy Water System assessment framework. Results highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.
Informing Public Perceptions About Climate Change: A 'Mental Models' Approach.
Wong-Parodi, Gabrielle; Bruine de Bruin, Wändi
2017-10-01
As the specter of climate change looms on the horizon, people will face complex decisions about whether to support climate change policies and how to cope with climate change impacts on their lives. Without some grasp of the relevant science, they may find it hard to make informed decisions. Climate experts therefore face the ethical need to effectively communicate to non-expert audiences. Unfortunately, climate experts may inadvertently violate the maxims of effective communication, which require sharing communications that are truthful, brief, relevant, clear, and tested for effectiveness. Here, we discuss the 'mental models' approach towards developing communications, which aims to help experts to meet the maxims of effective communications, and to better inform the judgments and decisions of non-expert audiences.
Climate responses to anthropogenic emissions of short-lived climate pollutants
NASA Astrophysics Data System (ADS)
Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.
2015-07-01
Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealized, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all models showing an increase in surface temperature focussed in the Northern Hemisphere mid and (especially) high latitudes, and showing a corresponding increase in global mean precipitation. Changes in precipitation patterns are driven mostly by a northward shift in the ITCZ (Intertropical Convergence Zone), consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker response, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.
Climate responses to anthropogenic emissions of short-lived climate pollutants
NASA Astrophysics Data System (ADS)
Baker, L. H.; Collins, W. J.; Olivié, D. J. L.; Cherian, R.; Hodnebrog, Ø.; Myhre, G.; Quaas, J.; Samset, B. H.
2015-02-01
Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.
Economic Impacts from PM2.5 Pollution-Related Health Effects: A Case Study in Shanghai.
Wu, Rui; Dai, Hancheng; Geng, Yong; Xie, Yang; Masui, Toshihiko; Liu, Zhiqing; Qian, Yiying
2017-05-02
PM 2.5 pollution-related diseases cause additional medical expenses and work time loss, leading to macroeconomic impact in high PM 2.5 concentration areas. Previous economic impact assessments of air pollution focused on benefits from environmental regulations while ignoring climate policies. In this study, we examine the health and economic impacts from PM 2.5 pollution under various air pollution control strategies and climate policies scenarios in the megacity of Shanghai. The estimation adopts an integrated model combining a Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, exposure-response functions (ERFs), and a computable general equilibrium (CGE) model. The results show that without control measures, Shanghai's mortality caused by PM 2.5 pollution are estimated to be 192 400 cases in 2030 and the work time loss to be 72.1 h/cap annually. The corresponding GDP values and welfare losses would be approximately 2.26% and 3.14%, respectively. With an estimated control cost of 0.76% of local GDP, Shanghai would gain approximately 1.01% of local GDP through local air pollution control measures and climate policies. Furthermore, the application of multiregional integrated control strategies in neighboring provinces would be the most effective in reducing PM 2.5 concentration in Shanghai, leading to only 0.34% of GDP loss. At the sectoral level, labor-intensive sectors suffer more output loss from PM 2.5 pollution. Sectors with the highest control costs include power generation, iron and steel, and transport. The results indicate that the combination of multiregional integrated air pollution control strategies and climate policies would be cost-beneficial for Shanghai.
Personal Vehicles Evaluated against Climate Change Mitigation Targets.
Miotti, Marco; Supran, Geoffrey J; Kim, Ella J; Trancik, Jessika E
2016-10-18
Meeting global climate change mitigation goals will likely require that transportation-related greenhouse gas emissions begin to decline within the next two decades and then continue to fall. A variety of vehicle technologies and fuels are commercially available to consumers today that can reduce the emissions of the transportation sector. Yet what are the best options, and do any suffice to meet climate policy targets? Here, we examine the costs and carbon intensities of 125 light-duty vehicle models on the U.S. market today and evaluate these models against U.S. emission-reduction targets for 2030, 2040, and 2050 that are compatible with the goal of limiting mean global temperature rise to 2 °C above preindustrial levels. Our results show that consumers are not required to pay more for a low-carbon-emitting vehicle. Across the diverse set of vehicle models and powertrain technologies examined, a clean vehicle is usually a low-cost vehicle. Although the average carbon intensity of vehicles sold in 2014 exceeds the climate target for 2030 by more than 50%, we find that most hybrid and battery electric vehicles available today meet this target. By 2050, only electric vehicles supplied with almost completely carbon-free electric power are expected to meet climate-policy targets.
Toby Thaler; Gwen Griffith; Nancy Gilliam
2014-01-01
Forest-based ecosystem services are at risk from human-caused stressors, including climate change. Improving governance and management of forests to reduce impacts and increase community resilience to all stressors is the objective of forest-related climate change adaptation. The Model Forest Policy Program (MFPP) has applied one method designed to meet this objective...
This project will provide an unprecedented and much-needed identification and ranking of the sources of uncertainty in BC, its effects on climate, and the impacts of policy actions to reduce its impact on air quality and climate. The estimates of process and emissions uncertai...
Adapting silviculture to a changing climate in the southern United States
James M. Guldin
2014-01-01
Questions about how forests might respond to climate change are often addressed through planning, prediction, and modeling at the landscape scale. A recent synthesis of climate-change impacts on forest management and policy found that the earth is warmer than it has been in the recent past, and that 11 of the last 12 years rank among the 12 warmest since 1850 (Solomon...
The Data Platform for Climate Research and Action: Introducing Climate Watch
NASA Astrophysics Data System (ADS)
Hennig, R. J.; Ge, M.; Friedrich, J.; Lebling, K.; Carlock, G.; Arcipowska, A.; Mangan, E.; Biru, H.; Tankou, A.; Chaudhury, M.
2017-12-01
The Paris Agreement, adopted through Decision 1/CP.21, brings all nations together to take on ambitious efforts to combat climate change. Open access to climate data supporting climate research, advancing knowledge, and informing decision making is key to encourage and strengthen efforts of stakeholders at all levels to address and respond to effects of climate change. Climate Watch is a robust online data platform developed in response to the urgent needs of knowledge and tools to empower climate research and action, including those of researchers, policy makers, the private sector, civil society, and all other non-state actors. Building on the rapid growing technology of open data and information sharing, Climate Watch is equipped with extensive amount of climate data, informative visualizations, concise yet efficient user interface, and connection to resources users need to gather insightful information on national and global progress towards delivering on the objective of the Convention and the Paris Agreement. Climate Watch brings together hundreds of quantitative and qualitative indicators for easy explore, visualize, compare, download at global, national, and sectoral levels: Greenhouse gas (GHG) emissions for more than 190 countries over the1850-2014 time period, covering all seven Kyoto Gases following IPCC source/sink categories; Structured information on over 150 NDCs facilitating the clarity, understanding and transparency of countries' contributions to address climate change; Over 6500 identified linkages between climate actions in NDCs across the 169 targets of the sustainable development goals (SDG); Over 200 indicators describing low carbon pathways from models and scenarios by integrated assessment models (IAMs) and national sources; and Data on vulnerability and risk, policies, finance, and many more. Climate Watch platform is developed as part of the broader efforts within the World Resources Institute, the NDC Partnership, and in collaboration with GIZ, UNFCCC, World Bank, and Climate Analytics.
Developing research about extreme events and impacts to support international climate policy
NASA Astrophysics Data System (ADS)
Otto, Friederike; James, Rachel; Parker, Hannah; Boyd, Emily; Jones, Richard; Allen, Myles; Mitchell, Daniel; Cornforth, Rosalind
2015-04-01
Climate change is expected to have some of its most significant impacts through changes in the frequency and severity of extreme events. There is a pressing need for policy to support adaptation to changing climate risks, and to deal with residual loss and damage from climate change. In 2013, the Warsaw International Mechanism was established by the United Nations Framework Convention on Climate Change (UNFCCC) to address loss and damage in developing countries. Strategies to help vulnerable regions cope with losses from extreme events will presumably require information about the influence of anthropogenic forcing on extreme weather. But what kind of scientific evidence will be most useful for the Warsaw Mechanism? And how can the scientific communities working on extreme events and impacts develop their research to support the advance of this important policy? As climate scientists conducting probabilistic event attribution studies, we have been working with social scientists to investigate these questions. Our own research seeks to examine the role of external drivers, including greenhouse gas emissions, on the risk of extreme weather events such as heatwaves, flooding, and drought. We use large ensembles of climate models to compute the probability of occurrence of extreme events under current conditions and in a world which might have been without anthropogenic interference. In cases where the models are able to simulate extreme weather, the analysis allows for conclusions about the extent to which climate change may have increased, decreased, or made no change to the risk of the event occurring. These results could thus have relevance for the UNFCCC negotiations on loss and damage, and we have been communicating with policymakers and observers to the policy process to better understand how we can develop our research to support their work; by attending policy meetings, conducting interviews, and using a participatory game developed with the Red Cross/Red Crescent Climate Centre. This presentation is an opportunity to share some of our findings from this stakeholder engagement with a wider community of scientists working on extreme events. Discussing the use of scientific evidence in UNFCCC loss and damage policy has not been straightforward, since this is a very controversial topic. However, the UNFCCC has now approved a workplan for the next two years and there will be windows of opportunity for interaction between scientists and policymakers. Currently it is not clear what kind of evidence of loss and damage will be required for the Warsaw Mechanism, and in fact, there has been no official discussion under the UNFCCC about what defines loss and damage. One possibility would be to attempt to define loss and damage from climate change from a scientific perspective, and to identify the research gaps which might be addressed to support this. In the presentation we will make a proposal for future research directions, including the development of an inventory of impacts from climate change.
Climate Change and Implications for Prevention. California's Efforts to Provide Leadership.
Balmes, John R
2018-04-01
The atmospheric concentration of carbon dioxide (CO 2 ) and the temperature of the earth's surface have been rising in parallel for decades, with the former recently reaching 400 parts per million, consistent with a 1.5°C increase in global warming. Climate change models predict that a "business as usual" approach, that is, no effort to control CO 2 emissions from combustion of fossil fuels, will result in a more than 2°C increase in annual average surface temperature by approximately 2034. With atmospheric warming comes increased air pollution. The concept of a "climate gap" in air quality control captures the decreased effectiveness of regulatory policies to reduce pollution with a hotter climate. Sources of greenhouse gases and climate-forcing aerosols ("black carbon") are the same sources of air pollutants that harm health. California has adopted robust climate change mitigation policies that are also designed to achieve public health cobenefits by improving air quality. These policies include advanced clean car standards, renewable energy, a sustainable communities strategy to limit suburban sprawl, a low carbon fuel standard, and energy efficiency. A market-based mechanism to put a price on CO 2 emissions is the cap-and-trade program that allows capped facilities to trade state-issued greenhouse gas emissions allowances. The "cap" limits total greenhouse gas emissions from all covered sources, and declines over time to progressively reduce emissions. An alternative approach is a carbon tax. California's leadership on air quality and climate change mitigation is increasingly important, given the efforts to slow or even reverse implementation of such policies at the U.S. national level.
We analyzed the potential physical and economic impacts of climate change on freshwater fisheries and coral reefs in the United States, examining a reference scenario and two policy scenarios that limit global greenhouse gas (GHG) emissions. We modeled shifts in suitable habitat ...
NASA Astrophysics Data System (ADS)
Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Beltran, Angelica Mendoza; van Vliet, Jasper
2013-11-01
The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control policies will be implemented. In this study, we explore how different assumptions on future air pollution policy and climate policy lead to different concentrations of air pollutants for a set of RCP-like scenarios developed using the IMAGE model. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W m-2 and 6.0 W m-2. Simulations using the global atmospheric chemistry and transport model TM5 for the present-day climate show that both climate mitigation and air pollution control policies have large-scale effects on pollutant concentrations, often of similar magnitude. If no further air pollution policies would be implemented, pollution levels could be considerably higher than in the RCPs, especially in Asia. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate by 2020, and in the longer term contribute to enhanced warming by methane. These effects tend to cancel each other on a global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W m-2 in the 6.0 W m-2 scenario and -0.16 W m-2 in the 2.6 W m-2 scenario.
Randalls, Samuel
2011-01-01
Historical accounts of climate change science and policy have reflected rather infrequently upon the debates, discussions, and policy advice proffered by economists in the 1980s. While there are many forms of economic analysis, this article focuses upon cost-benefit analysis, especially as adopted in the work of William Nordhaus. The article addresses the way in which climate change economics subtly altered debates about climate policy from the late 1970s through the 1990s. These debates are often technical and complex, but the argument in this article is that the development of a philosophy of climate change as an issue for cost-benefit analysis has had consequences for how climate policy is made today.
Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project
NASA Astrophysics Data System (ADS)
Keener, V. W.; Brewington, L.; Finucane, M.
2015-12-01
For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.
NASA Astrophysics Data System (ADS)
Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.
2003-04-01
Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000 variants per set of fixed input parameters. The shape and coefficients of CCRAF equations are derived from regression analyses of historic data and expert assessments. There are two types of random components in CCRAF - one reflects a year-to-year fluctuations around the expected value of a given variable (e.g., standard error of the annual GDP growth) and another is fixed within each CCRAF variant and represents some essential constants within a "world" represented by that variant (e.g., the value of climate sensitivity). Both types of random components are drawn from pre-defined probability distributions functions developed based on historic data or expert assessments. Preliminary CCRAF results emphasize the relative importance of uncertainties associated with the conversion of GHG and particulate emissions into radiative forcing and quantifying climate change effects at the regional level. A separates analysis involves an "adaptive decision-making", which optimizes the expected future policy effects given the estimated probabilistic uncertainties. As uncertainty for some variables evolve over the time steps, the decisions also adapt. This modeling approach is feasible only with explicit modeling of uncertainties.
Essays on the Economics of Climate Change, Biofuel and Food Prices
NASA Astrophysics Data System (ADS)
Seguin, Charles
Climate change is likely to be the most important global pollution problem that humanity has had to face so far. In this dissertation, I tackle issues directly and indirectly related to climate change, bringing my modest contribution to the body of human creativity trying to deal with climate change. First, I look at the impact of non-convex feedbacks on the optimal climate policy. Second, I try to derive the optimal biofuel policy acknowledging the potential negative impacts that biofuel production might have on food supply. Finally, I test empirically for the presence of loss aversion in food purchases, which might play a role in the consumer response to food price changes brought about by biofuel production. Non-convexities in feedback processes are increasingly found to be important in the climate system. To evaluate their impact on the optimal greenhouse gas (GHG) abate- ment policy, I introduce non-convex feedbacks in a stochastic pollution control model. I numerically calibrate the model to represent the mitigation of greenhouse gas (GHG) emissions contributing to global climate change. This approach makes two contributions to the literature. First, it develops a framework to tackle stochastic non-convex pollu- tion management problems. Second, it applies this framework to the problem of climate change. This approach is in contrast to most of the economic literature on climate change that focuses either on linear feedbacks or environmental thresholds. I find that non-convex feedbacks lead to a decision threshold in the optimal mitigation policy, and I characterize how this threshold depends on feedback parameters and stochasticity. There is great hope that biofuel can help reduce greenhouse gas emissions from fossil fuel. However, there are some concerns that biofuel would increase food prices. In an optimal control model, a co-author and I look at the optimal biofuel production when it competes for land with food production. In addition oil is not exhaustible and output is subject to climate change induced damages. We find that the competitive outcome does not necessarily yield an underproduction of biofuels, but when it does, second best policies like subsidies and mandates can improve welfare. In marketing, there has been extensive empirical research to ascertain whether there is evidence of loss aversion as predicted by several reference price preference theories. Most of that literature finds that there is indeed evidence of loss aversion for many different goods. I argue that it is possible that some of that evidence seemingly supporting loss aversion arises because price endogeneity is not properly taken into account. Using scanner data I study four product categories: bread, chicken, corn and tortilla chips, and pasta. Taking prices as exogenous, I find evidence of loss aversion for bread and corn and tortilla chips. However, when instrumenting prices, the "loss aversion evidence" disappears.
NASA Astrophysics Data System (ADS)
Klein, J.; Hopping, K. A.; Yeh, E.; Nyima, Y.; Galvin, K.; Boone, R.; Dorje, T.; Ojima, D. S.
2012-12-01
Pastoralists and ecosystems on the Tibetan Plateau are facing a suite of novel stresses. Temperatures are increasing several times more than the global average. The frequency and severity of severe snowstorms, which lead to critical losses of livestock, are also increasing. Pastoralists are also experiencing changes to their livelihood activities, including reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that integrate results from a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events (snow disasters) within the context of changing natural resource management policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika) that are being affected by current policy. We established the experiment in 2008 within the Tibet Autonomous Region. We are monitoring microclimate, vegetation, nutrient availability, ecosystem carbon fluxes and stable isotope signatures of select plant species. Through this experiment, we are investigating the sensitivity of the system, whether it can cross critical thresholds, and how resilient this system may be to predicted future climate and land use changes. Semi-structured, in-depth interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climate and ecological change and their drivers and are also conducting interviews on vulnerability to snow disasters across a three site, 300-500mm precipitation gradient. We are using remote sensing to identify biophysical landscape change over time. To integrate our ecological and social findings, we are coupling the Savanna ecosystem model to the DECUMA agent-based pastoral household model. Our results to date from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant plant species and the primary grazing resource, is vulnerable to warming. Moreover, several lines of evidence suggest that warming is causing delayed spring phenology, with important ecosystem and livelihood implications. Herders are observing climatic and ecological changes, knowledge which is important for adaptation, but people whose livelihoods are most directly derived from the rangelands, those situated at higher elevations, and those who are more mobile across the landscape are most attuned to these changes. These results suggest that rangeland degradation and delayed spring phenology are occurring, and that climate warming may be responsible for these changes. While additional snow may improve ecological conditions, the warming-induced degradation may make the social-ecological system more vulnerable to large snowstorm events. Our findings suggest that climate adaptation strategies should address the effects of both climate warming and the changing nature of extreme weather events and should also encourage land use policies that will maintain these systems under change. Moreover, policies that encourage mobility and rangeland-based livelihoods will enhance adaptation to climate change.
Climate Adaptation and Policy-Induced Inflation of Coastal Property Value
McNamara, Dylan E.; Gopalakrishnan, Sathya; Smith, Martin D.; Murray, A. Brad
2015-01-01
Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities. PMID:25806944
Climate adaptation and policy-induced inflation of coastal property value.
McNamara, Dylan E; Gopalakrishnan, Sathya; Smith, Martin D; Murray, A Brad
2015-01-01
Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities.
NASA Astrophysics Data System (ADS)
Matthews, B.
2003-04-01
To reach an effective global agreement to help avoid "dangerous anthropogenic interference in the climate system" (UNFCCC article 2) we must balance many complex interacting issues, and also inspire the active engagement of citizens around the world. So we have to transfer understanding back from computers and experts, into the ultimate "integrated assessment model" which remains the global network of human heads. The Java Climate Model (JCM) tries to help provide a quantitative framework for this global dialogue, by enabling anybody to explore many mitigation policy options and scientific uncertainties simply by adjusting parameter controls with a mouse in a web browser. The instant response on linked plots helps to demonstrate cause and effect, and the sensitivity to various assumptions, risk and value judgements. JCM implements the same simple models and formulae as used by IPCC for the TAR projections, in efficient modular structure, including carbon cycle and atmospheric chemistry, radiative forcing, changes in temperature and sealevel, including some feedbacks. As well as explore the SRES scenarios, the user can create a wide variety of inverse scenarios for stabilising CO2, forcing, or temperature. People ask how local emissions which they can control, may influence the vast global natural and human systems, and change local climate impacts which affect them directly. JCM includes regional emissions and socioeconomic data, and scaled climate impact maps. However to complete this loop in a fast interactive model is a challenge! For transparency and accessibility, pop-up information is provided in ten languages, and documentation ranges from key cross-cutting questions, to them details of the model formulae, including all source code.
Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A
2012-12-01
Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area. Copyright © 2012 Elsevier B.V. All rights reserved.
Global CLEWs model - A novel application of OSeMOSYS
NASA Astrophysics Data System (ADS)
Avgerinopoulos, Georgios; Pereira Ramos, Eunice; Howells, Mark
2017-04-01
Over the past years, studies that analyse Nexus issues from a holistic point of view and not energy, land or water separately have been gaining momentum. This project aims at giving insights into global issues through the application and the analysis of a global scale OSeMOSYS model. The latter -which is based on a fully open and amendable code- has been used successfully in the latest years as it has been the producing fully accessible energy models suitable for capacity building and policy making suggestions. This study develops a CLEWs (climate, land, energy and water) model with the objective of interrogating global challenges (e.g. increasing food demand) and international trade features, with policy priorities on food security, resource efficiency, low-carbon energy and climate change mitigation, water availability and vulnerability to water stress and floods, water quality, biodiversity and ecosystem services. It will for instance assess (i) the impact of water constraints on food security and human development (clean water for human use; industrial and energy water demands), as well as (ii) the impact of climate change on aggravating or relieving water problems.
Low order climate models as a tool for cross-disciplinary collaboration
NASA Astrophysics Data System (ADS)
Newton, R.; Pfirman, S. L.; Tremblay, B.; Schlosser, P.
2014-12-01
Human impacts on climate are pervasive and significant and project future states cannot be projected without taking human influence into account. We recently helped convene a meeting of climatologists, policy analysts, lawyers and social scientists to discuss the dramatic loss in Arctic summer sea ice. A dialogue emerged around distinct time scales in the integrated human/natural climate system. Climate scientists tended to discuss engineering solutions as though they could be implemented immediately, whereas lags of 2 or more decades were estimated by social scientists for societal shifts and similar lags were cited for deployment by the engineers. Social scientists tended to project new climate states virtually overnight, while climatologists described time scales of decades to centuries for the system to respond to changes in forcing functions. For the conversation to develop, the group had to come to grips with an increasingly complex set of transient effect time scales and lags between decisions, changes in forcing, and system outputs. We use several low-order dynamical system models to explore mismatched timescales, ranges of lags, and uncertainty in cost estimates on climate outcomes, focusing on Arctic-specific issues. In addition to lessons regarding what is/isn't feasible from a policy and engineering perspective, these models provide a useful tool to concretize cross-disciplinary thinking. They are fast and easy to iterate through a large region of the problem space, while including surprising complexity in their evolution. Thus they are appropriate for investigating the implications of policy in an efficient, but not unrealistic physical setting. (Earth System Models, by contrast, can be too resource- and time-intensive for iteratively testing "what if" scenarios in cross-disciplinary collaborations.) Our runs indicate, for example, that the combined social, engineering and climate physics lags make it extremely unlikely that an ice-free summer ecology in the Arctic can be avoided. Further, if prospective remediation strategies are successful, a return to perennial ice conditions between one and two centuries from now is entirely likely, with interesting and large impacts on Northern economies.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Finucane, M.; Brewington, L.
2014-12-01
For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.
Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil
2018-06-01
Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies-and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers-motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
Füssel, Hans-Martin
2008-02-01
Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.
Haer, Toon; Botzen, W J Wouter; van Roomen, Vincent; Connor, Harry; Zavala-Hidalgo, Jorge; Eilander, Dirk M; Ward, Philip J
2018-06-13
Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost-benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).
Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; ...
2015-01-01
This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem
This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less
Modeling technical change in climate analysis: evidence from agricultural crop damages.
Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem
2017-05-01
This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.
Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison
Dowsett, Harry J.; Foley, Kevin M.; Stoll, Danielle K.; Chandler, Mark A.; Sohl, Linda E.; Bentsen, Mats; Otto-Bliesner, Bette L.; Bragg, Fran J.; Chan, Wing-Le; Contoux, Camille; Dolan, Aisling M.; Haywood, Alan M.; Jonas, Jeff A.; Jost, Anne; Kamae, Youichi; Lohmann, Gerrit; Lunt, Daniel J.; Nisancioglu, Kerim H.; Abe-Ouchi, Ayako; Ramstein, Gilles; Riesselman, Christina R.; Robinson, Marci M.; Rosenbloom, Nan A.; Salzmann, Ulrich; Stepanek, Christian; Strother, Stephanie L.; Ueda, Hiroaki; Yan, Qing; Zhang, Zhongshi
2013-01-01
The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. PMID:23774736
NASA Astrophysics Data System (ADS)
Swinscoe, T. H. A.; Knoeri, C.; Fleskens, L.; Barrett, J.
2014-12-01
Freshwater is a vital natural resource for multiple needs, such as drinking water for the public, industrial processes, hydropower for energy companies, and irrigation for agriculture. In the UK, crop production is the largest in East Anglia, while at the same time the region is also the driest, with average annual rainfall between 560 and 720 mm (1971 to 2000). Many water catchments of East Anglia are reported as over licensed or over abstracted. Therefore, freshwater available for agricultural irrigation abstraction in this region is becoming both increasingly scarce due to competing demands, and increasingly variable and uncertain due to climate and policy changes. It is vital for water users and policy makers to understand how these factors will affect individual abstractors and water resource management at the system level. We present first results of an Agent-based Model that captures the complexity of this system as individual abstractors interact, learn and adapt to these internal and external changes. The purpose of this model is to simulate what patterns of water resource management emerge on the system level based on local interactions, adaptations and behaviours, and what policies lead to a sustainable water resource management system. The model is based on an irrigation abstractor typology derived from a survey in the study area, to capture individual behavioural intentions under a range of water availability scenarios, in addition to farm attributes, and demographics. Regional climate change scenarios, current and new abstraction licence reforms by the UK regulator, such as water trading and water shares, and estimated demand increases from other sectors were used as additional input data. Findings from the integrated model provide new understanding of the patterns of water resource management likely to emerge at the system level.
Integrated Assessment of Carbon Dioxide Removal
NASA Astrophysics Data System (ADS)
Rickels, W.; Reith, F.; Keller, D.; Oschlies, A.; Quaas, M. F.
2018-03-01
To maintain the chance of keeping the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2°C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.
Drivers of Variability in Public-Supply Water Use Across the Contiguous United States
NASA Astrophysics Data System (ADS)
Worland, Scott C.; Steinschneider, Scott; Hornberger, George M.
2018-03-01
This study explores the relationship between municipal water use and an array of climate, economic, behavioral, and policy variables across the contiguous U.S. The relationship is explored using Bayesian-hierarchical regression models for over 2,500 counties, 18 covariates, and three higher-level grouping variables. Additionally, a second analysis is included for 83 cities where water price and water conservation policy information is available. A hierarchical model using the nine climate regions (product of National Oceanic and Atmospheric Administration) as the higher-level groups results in the best out-of-sample performance, as estimated by the Widely Available Information Criterion, compared to counties grouped by urban continuum classification or primary economic activity. The regression coefficients indicate that the controls on water use are not uniform across the nation: e.g., counties in the Northeast and Northwest climate regions are more sensitive to social variables, whereas counties in the Southwest and East North Central climate regions are more sensitive to environmental variables. For the national city-level model, it appears that arid cities with a high cost of living and relatively low water bills sell more water per customer, but as with the county-level model, the effect of each variable depends heavily on where a city is located.
NASA Astrophysics Data System (ADS)
Al-Amin, S.
2015-12-01
Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.
Climate mitigation and the future of tropical landscapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons
2010-11-16
Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less
NASA Astrophysics Data System (ADS)
Rooney-varga, J. N.; Franck, T.; Jones, A.; Sterman, J.; Sawin, E.
2013-12-01
To meet international goals for climate change mitigation and adaptation, as well as energy access and equity, there is an urgent need to explore and define energy policy paths forward. Despite this need, students, citizens, and decision-makers often hold deeply flawed mental models of the energy and climate systems. Here we describe a simulation role-playing game, World Energy, that provides an immersive learning experience in which participants can create their own path forward for global energy policy and learn about the impact of their policy choices on carbon dioxide emissions, temperature rise, energy supply mix, energy prices, and energy demand. The game puts players in the decision-making roles of advisors to the United Nations Sustainable Energy for All Initiative (drawn from international leaders from industry, governments, intergovernmental organizations, and citizens groups) and, using a state-of-the-art decision-support simulator, asks them to negotiate a plan for global energy policy. We use the En-ROADS (Energy Rapid Overview and Decision Support) simulator, which runs on a laptop computer in <0.1 sec. En-ROADS enables users to specify many factors, including R&D-driven cost reductions in fossil fuel-based, renewable, or carbon-neutral energy technologies; taxes and subsidies for different energy sources; performance standards and energy efficiency; emissions prices; policies to address other greenhouse gas emissions (e.g., methane, nitrous oxide, chlorofluorocarbons, etc.); and assumptions about GDP and population. In World Energy, participants must balance climate change mitigation goals with equity, prices and access to energy, and the political feasibility of policies. Initial results indicate participants gain insights into the dynamics of the energy and climate systems and greater understanding of the potential impacts policies.
NASA Astrophysics Data System (ADS)
Aistrup, Joseph A.; Bulatewicz, Tom; Kulcsar, Laszlo J.; Peterson, Jeffrey M.; Welch, Stephen M.; Steward, David R.
2017-12-01
The impact of water policy on conserving the Ogallala Aquifer in Groundwater Management District 3 (GMD3) in southwestern Kansas is analyzed using a system-level theoretical approach integrating agricultural water and land use patterns, changing climate, economic trends, and population dynamics. In so doing, we (1) model the current hyper-extractive coupled natural-human (CNH) system, (2) forecast outcomes of policy scenarios transitioning the current groundwater-based economic system toward more sustainable paths for the social, economic, and natural components of the integrated system, and (3) develop public policy options for enhanced conservation while minimizing the economic costs for the region's communities. The findings corroborate previous studies showing that conservation often leads initially to an expansion of irrigation activities. However, we also find that the expanded presence of irrigated acreage reduces the impact of an increasingly drier climate on the region's economy and creates greater long-term stability in the farming sector along with increased employment and population in the region. On the negative side, conservation lowers the net present value of farmers' current investments and there is not a policy scenario that achieves a truly sustainable solution as defined by Peter H. Gleick. This study reinforces the salience of interdisciplinary linked CNH models to provide policy prescriptions to untangle and address significant environmental policy issues.
NASA Astrophysics Data System (ADS)
Grifo, F.
2012-12-01
Inappropriate corporate influence in science-based policy has been a persistent problem in the United States across multiple issue areas and through many administrations. Interference in climate change policy has been especially pervasive in recent years, with tremendous levels of corporate resources being utilized to spread misinformation on climate science and reduce and postpone regulatory action. Much of the influence exerted by these forces is concealed from public view. Better corporate disclosure laws would reveal who is influencing climate policy to policy makers, investors, and the public. Greater transparency in the political activity of corporate actors is needed to shed light on who is responsible for the misinformation campaigns clouding the discussion around climate change in the United States. Such transparency will empower diverse stakeholders to hold corporations accountable. Specific federal policy reforms can be made in order to guide the nation down a path of greater corporate accountability in climate change policy efforts.
NASA Astrophysics Data System (ADS)
Dieye, Amadou M.
Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project LCLU change is of considerable interest for mitigation and adaptation measures in response to climate change. A combination of remote sensing analyses, qualitative social survey techniques, and biogeochemical modeling was used to study the relationships between climate change, LCLU change and soil organic carbon in the semi-arid rural zone of Senegal between 1960 and 2050. For this purpose, four research hypotheses were addressed. This research aims to contribute to an understanding of future land cover land use change in the semi-arid West African Sahel with respect to climate variability and human activities. Its findings may provide insights to enable policy makers at local to national levels to formulate environmentally and economically adapted policy decisions. This dissertation research has to date resulted in two published and one submitted paper.
Climate impacts on palm oil yields in the Nigerian Niger Delta
NASA Astrophysics Data System (ADS)
Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil
2016-04-01
Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.
NASA Astrophysics Data System (ADS)
Ranabhat, Sunita; Ghate, Rucha; Bhatta, Laxmi Dutt; Agrawal, Nand Kishor; Tankha, Sunil
2018-06-01
Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies—and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers—motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
Exploring Water Management Options with SIWA: A Simple, Coupled Human-Water-Climate Model
NASA Astrophysics Data System (ADS)
Motesharrei, S.; Gustafson, K. C.; Zhao, F.; Rivas, J.; Zeng, N.; Miralles-Wilhelm, F.; Kalnay, E.
2013-12-01
Water is, and has always been, a critical resource for survival of civilizations and a key to prosperity of societies. Over the past several decades, demand for freshwater has increased significantly due to growth of both population and consumption. Such soaring demands have put serious strain on freshwater sources at many regions of the world, and climate change can only worsen the uncertainty in availability of needed freshwater. Therefore, it is essential to study the water system in conjunction with the Earth system and the Human system. Most importantly, we need to understand effectiveness of various managerial decisions on the water system, since efficient policy making is the only viable solution for sustaining water sources and supply (reservoir) at any water-scarce region of the world. We have developed a SImple WAter model (SIWA) that is integrated with the human system and the earth system through bidirectional feedbacks. Policies are introduced as drivers of the model so that the effect of each policy on the system can be measured as we change its level. We have applied our model to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The latter receives plenty of precipitation while the former is rather dry. Model is trained with the data from 1900-2010, and then projections are made for the next several decades. Historical data were recovered from the records at the US National Archives. We have also used remotely sensed satellite data in conjunction with data from local municipalities. Response of the system to six different short and long term policies are presented under three different climate scenarios. We show that it is possible to guarantee the freshwater supply and sustain the freshwater sources through a proper set of policy choices for any specific region.
Where the Rubber Hits the Road: The Politics and Science of Climate Change in Congress
NASA Astrophysics Data System (ADS)
Koppes, M.
2004-12-01
Scientific understanding of the magnitude and rate of global and regional climate change is being actively communicated to Capitol Hill, however this information is being framed within the political debate that has brought climate change policy in the U.S. to a practical standstill. Efforts by scientists to communicate to Congress advances in the understanding of climate change have been obscured by policy-makers, lobbyists and some scientists themselves, into two polarized camps: those that who claim that current climate change is insignificant and/or of non-anthropogenic origin, and those who predict irreversible climate change in the near future and advocate a precautionary approach to anthropogenic contributions. As a science policy advisor to a Member of Congress active in the climate policy debate over the past year, I have observed firsthand most of the scientific information on climate change presented to Congress being partitioned into these camps. The political debate surrounding climate change policy has centered on the policymakers' understanding of scientific uncertainty. Communication by researchers of the definition of risk and uncertainty in climate science, in the language and framework of the legislative debate, is of utmost importance in order for policymakers to effectively understand and utilize science in the decision-making process. A comparison with the recent white paper on climate change policy developed by the UK Science and Technology council and currently adopted by UK policymakers demonstrates the importance of a general public understanding of the existing magnitude of climate change, uncertainties in the rate of future climate variability and its associated economic and social costs. Communication of research results on climate change has been most effective in the policy debate when framed within the context of economic or security risks in the short term. Other effective methods include communicating local and regional climate scenarios and associated probabilities to individual policy-makers, as is currently being utilized to promote sponsorship of the Climate Stewardship Act in Congress.
Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G
2015-04-01
In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.
Adapting to and coping with the threat and impacts of climate change.
Reser, Joseph P; Swim, Janet K
2011-01-01
This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to adequately communicate and explain how a more psychological framing of the human dimensions of global environmental change can greatly inform and enhance effective and collaborative climate change adaptation and mitigation policies and research. An integrative framework is provided that identifies and considers important mediating and moderating parameters and processes relating to climate change adaptation, with particular emphasis given to environmental stress and stress and coping perspectives. This psychological perspective on climate change adaptation highlights crucial aspects of adaptation that have been neglected in the arena of climate change science. Of particular importance are intra-individual and social "psychological adaptation" processes that powerfully mediate public risk perceptions and understandings, effective coping responses and resilience, overt behavioral adjustment and change, and psychological and social impacts. This psychological window on climate change adaptation is arguably indispensable to genuinely multidisciplinary and interdisciplinary research and policy initiatives addressing the impacts of climate change.
Landin, Rubens; Giatti, Leandro Luiz
2014-10-01
São Paulo is today an unsustainable city in which social and environmental vulnerabilities are obliged to tackle the uncertainties of climate change. To face up to this situation, in 2009 the city unveiled its Climate Change Policy. The scope of this paper is to analyze how the health sector is preparing to contribute to the implementation of this policy by 2012. Content analysis was the method adopted by examining official documents and conducting semi-structured interviews. In a context of social transformation affected by environmental degradation and socio-environmental consequences there is a need for the cessation of inertia and a demand for new knowledge systems. The outcomes of the study showed a positive intersectorial dialectic relationship, since the research hypothesis was that the health sector would be called upon to back actions on air quality monitoring. Its verification showed a broad scope introducing health promotion and preventive actions as the determinant focus, especially influencing other public policies. Thus, the process under scrutiny acquired reflexivity when evolving with interactive measures breaking with the traditional sectorial and reductionist policy model. It shows an intersectorial perspective based on the importance of issues related to local public health.
NASA Astrophysics Data System (ADS)
Warren, R. F.; Price, J. T.; Goswami, S.
2010-12-01
Successful communication of knowledge to climate change policy makers requires the careful integration of scientific knowledge in an integrated assessment that can be clearly communicated to stakeholders, and which encapsulates the uncertainties in the analysis and conveys the need for using a risk assessment approach. It is important that (i) the system is co-designed with the users (ii) relevant disciplines are included (iii) assumptions made are clear (iv) the robustness of outputs to uncertainties is demonstrated (v) the system is flexible so that it can keep up with changing stakeholder needs and (vi) the results are communicated clearly and are readily accessible. The “Community Integrated Assessment System” (CIAS) is a unique multi-institutional, modular, and flexible integrated assessment system for modeling climate change which fulfils the above six criteria. It differs from other integrated models in being a flexible system allowing various combinations of component modules, to be connected together into alternative integrated assessment models. These modules may be written at different institutions in different computer languages and/or based on different operating systems. Scientists are able determine which particular CIAS coupled model they wish to use through a web portal. This includes the facility to implement Latin hypercube experimental design facilitating formal uncertainty analysis. Further exploration of robustness is possible through the ability to select, for example, alternative hyrdrological or climate models to address the same questions. It has been applied to study future scenarios of climate change mitigation, through for example the AVOIDing dangerous climate change project for DEFRA, in which the avoided impacts (benefits) of alternative climate policies were compared to no-policy baselines. These highlight the potential for mitigation to remove a substantial fraction of the climate change impacts that would otherwise occur; but also show that is not possible to avoid all the impacts, and hence that adaptation will still be required. For example, this has been shown for projections of future European drought. CIAS has also been used for analyses used in the IPCC 4AR and the Stern review. Recent applications include a study of the role of avoided deforestation in climate mitigation, and a study of the impacts of climate change on biodiversity. A second web portal, CLIMASCOPE, is being developed for use by stakeholders, currently focusing on the needs of adaptation planners. This will benefit communication by allowing a wide range of users free access to regional climate change projections in simple manner, yet one which encourages risk assessment through encapsulation of the uncertainties in climate change projection. Examples of CLIMASCOPE output that is being made available to stakeholders will be shown.
NASA Technical Reports Server (NTRS)
Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.
2016-01-01
The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.
Climate Observing Systems: Where are we and where do we need to be in the future
NASA Astrophysics Data System (ADS)
Baker, B.; Diamond, H. J.
2017-12-01
Climate research and monitoring requires an observational strategy that blends long-term, carefully calibrated measurements as well as short-term, focused process studies. The operation and implementation of operational climate observing networks and the provision of related climate services, both have a significant role to play in assisting the development of national climate adaptation policies and in facilitating national economic development. Climate observing systems will require a strong research element for a long time to come. This requires improved observations of the state variables and the ability to set them in a coherent physical (as well as a chemical and biological) framework with models. Climate research and monitoring requires an integrated strategy of land/ocean/atmosphere observations, including both in situ and remote sensing platforms, and modeling and analysis. It is clear that we still need more research and analysis on climate processes, sampling strategies, and processing algorithms.
Climate: Policy, Modeling, and Federal Priorities (Invited)
NASA Astrophysics Data System (ADS)
Koonin, S.; Department Of Energy Office Of The Under SecretaryScience
2010-12-01
The Administration has set ambitious national goals to reduce our dependence on fossil fuels and reduce anthropogenic greenhouse gas (GHG) emissions. The US and other countries involved in the U.N. Framework Convention on Climate Change continue to work toward a goal of establishing a viable treaty that would encompass limits on emissions and codify actions that nations would take to reduce emissions. These negotiations are informed by the science of climate change and by our understanding of how changes in technology and the economy might affect the overall climate in the future. I will describe the present efforts within the U.S. Department of Energy, and the federal government more generally, to address issues related to climate change. These include state-of-the-art climate modeling and uncertainty assessment, economic and climate scenario planning based on best estimates of different technology trajectories, adaption strategies for climate change, and monitoring and reporting for treaty verification.
Gustafson, Eric J; De Bruijn, Arjan M G; Pangle, Robert E; Limousin, Jean-Marc; McDowell, Nate G; Pockman, William T; Sturtevant, Brian R; Muss, Jordan D; Kubiske, Mark E
2015-02-01
Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Hellwinckel, C. M.; West, T. O.; de La Torre Ugarte, D.; Perlack, R.
2010-12-01
In the coming decades agriculture will be asked to play a significant role in reducing carbon emissions and reducing our use of foreign oil. The Renewable Fuels Standard combined with possible climate legislation will alter the economic landscape effecting agricultural land use decisions. The joint implementation of these two policies could potentially work against one another. We have integrated biogeophysical data into the POLYSYS economic model to analyze the effects of climate change and bioenergy legislation upon regional land-use change, soil carbon, carbon emissions, biofuel production, and agricultural income. The purpose of the analysis was to use the integrated model to identify carbon and bioenergy policies that could act synergistically to meet Renewable Fuel Standard goals, reduce net emissions of carbon, and increase agricultural incomes. The heterogeneous nature of soils, crop yields, and management practices presented challenges to the modeling process. Regional variation in physical data can significantly affect economic land use decisions and patterns. For this reason, we disaggregated the economic component of the model to the county level, with sub-county soils and land-use data informing the county level decisions. Modeling carbon offset dynamics presented unique challenges, as the physical responses of local soils impact the economic incentives offered, and conversely, the resulting land-use changes impact characteristics of local soils. Additionally, using data from different resolution levels led to questions of appropriate scale of analysis. This presentation will describe the integrated model, present some significant results from our analysis, and discuss appropriate steps forward given what we learned.
Climate change impacts on dryland cropping systems in the central Great Plains, USA
USDA-ARS?s Scientific Manuscript database
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...
Social Media Correlates of Organizational Climate
ERIC Educational Resources Information Center
Smith, Daniel Crane
2009-01-01
This research (1) gathered data from a sample of employees on their social media practices and the social media policies of their employers and (2) investigated how blogging and other social media added to a model of organizational climate that promotes (a) knowledge sharing and cooperation, and (b) trust in peers and management. The research…
Arctic sea ice at 1.5 and 2 °C
NASA Astrophysics Data System (ADS)
Screen, James A.
2018-05-01
In the Paris Agreement, nations committed to a more ambitious climate policy target, aiming to limit global warming to 1.5 °C rather than 2 °C above pre-industrial levels. Climate models now show that achieving the 1.5 °C goal would make a big difference for Arctic sea ice.
Impacts of Considering Climate Variability on Investment Decisions in Ethiopia
NASA Astrophysics Data System (ADS)
Strzepek, K.; Block, P.; Rosegrant, M.; Diao, X.
2005-12-01
In Ethiopia, climate extremes, inducing droughts or floods, are not unusual. Monitoring the effects of these extremes, and climate variability in general, is critical for economic prediction and assessment of the country's future welfare. The focus of this study involves adding climate variability to a deterministic, mean climate-driven agro-economic model, in an attempt to understand its effects and degree of influence on general economic prediction indicators for Ethiopia. Four simulations are examined, including a baseline simulation and three investment strategies: simulations of irrigation investment, roads investment, and a combination investment of both irrigation and roads. The deterministic model is transformed into a stochastic model by dynamically adding year-to-year climate variability through climate-yield factors. Nine sets of actual, historic, variable climate data are individually assembled and implemented into the 12-year stochastic model simulation, producing an ensemble of economic prediction indicators. This ensemble allows for a probabilistic approach to planning and policy making, allowing decision makers to consider risk. The economic indicators from the deterministic and stochastic approaches, including rates of return to investments, are significantly different. The predictions of the deterministic model appreciably overestimate the future welfare of Ethiopia; the predictions of the stochastic model, utilizing actual climate data, tend to give a better semblance of what may be expected. Inclusion of climate variability is vital for proper analysis of the predictor values from this agro-economic model.
Shin, Yong Seung
2012-01-01
Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities. PMID:23256088
Shin, Yong Seung; Ha, Jongsik
2012-01-01
Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua B.; Ramaswami, Anu
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Sperling, Joshua B.; Ramaswami, Anu
2017-11-03
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Climate Change, Public Health, and Policy: A California Case Study.
Ganesh, Chandrakala; Smith, Jason A
2018-04-01
Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California's progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Shindell, D. T.; Faluvegi, G.; Pinder, R. W.
2015-11-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration), and other US emissions and the rest of the world emissions are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in the future but result in positive radiative forcing. Surface PM2.5 is reduced by ~ 2 μg m-3 on average over the US, and surface ozone by ~ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the US, mainly due to the PM2.5 reduction (~ 74 200 lives saved). The air quality regulations reduces the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading a strong positive radiative forcing (RF) by both aerosols direct and indirect forcing: total RF is ~ 0.04 W m-2 over the globe; ~ 0.8 W m-2 over the US. Under the hypothetical climate policy, future US energy relies less on coal and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it leads to climate dis-benefits over the US. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multi-national efforts to reduce GHGs emissions and (2) to target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio
2017-04-01
As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here, we discuss the most recent advances on the application of soil mapping and modeling to support climate change mitigation and adaptation strategies; and These strategies are a key component of the implementation of sustainable land management policies need to be integrated are critical to. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. Muñoz-Rojas, M., Pereira, P., Brevic, E., Cerda, A., Jordan, A. (2017) Soil mapping and processes models for sustainable land management applied to modern challenges. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006
Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities.
Bright, Ryan M; Zhao, Kaiguang; Jackson, Robert B; Cherubini, Francesco
2015-09-01
By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region. © 2015 John Wiley & Sons Ltd.
Introduction to the Special Issue on Climate Ethics: Uncertainty, Values and Policy.
Roeser, Sabine
2017-10-01
Climate change is a pressing phenomenon with huge potential ethical, legal and social policy implications. Climate change gives rise to intricate moral and policy issues as it involves contested science, uncertainty and risk. In order to come to scientifically and morally justified, as well as feasible, policies, targeting climate change requires an interdisciplinary approach. This special issue will identify the main challenges that climate change poses from social, economic, methodological and ethical perspectives by focusing on the complex interrelations between uncertainty, values and policy in this context. This special issue brings together scholars from economics, social sciences and philosophy in order to address these challenges.
Ralph J. Alig; Darius M. Adams; Bruce McCarl; J.M. Callaway; Steven Winnett
1997-01-01
A model of product and land markets in U.S. forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a "least social cost" fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets: land use...
Adaptation to Climatic Hazards in the Savannah Ecosystem: Improving Adaptation Policy and Action
NASA Astrophysics Data System (ADS)
Yiran, Gerald A. B.; Stringer, Lindsay C.
2017-10-01
People in Ghana's savannah ecosystem have historically experienced a range of climatic hazards that have affected their livelihoods. In view of current climate variability and change, and projected increases in extreme events, adaptation to climate risks is vital. Policies have been put in place to enhance adaptation across sub-Saharan Africa in accordance with international agreements. At the same time, local people, through experience, have learned to adapt. This paper examines current policy actions and their implementation alongside an assessment of barriers to local adaptation. In doing so it links adaptation policy and practice. Policy documents were analysed that covered key livelihood sectors, which were identified as climate sensitive. These included agriculture, water, housing and health policies, as well as the National Climate Change Policy. In-depth interviews and focus group discussions were also held with key stakeholders in the Upper East Region of Ghana. Analyses were carried using thematic content analysis. Although policies and actions complement each other, their integration is weak. Financial, institutional, social, and technological barriers hinder successful local implementation of some policy actions, while lack of local involvement in policy formulation also hinders adaptation practice. Integration of local perspectives into policy needs to be strengthened in order to enhance adaptation. Coupled with this is a need to consider adaptation to climate change in development policies and to pursue efforts to reduce or remove the key barriers to implementation at the local level.
The Unified Plant Growth Model (UPGM): software framework overview and model application
USDA-ARS?s Scientific Manuscript database
Since the Environmental Policy Integrated Climate (EPIC) model was developed in 1989, the EPIC plant growth component has been incorporated into other erosion and crop management models (e.g., WEPS, WEPP, SWAT, ALMANAC, and APEX) and modified to meet model developer research objectives. This has re...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Sonia; Yang, Christopher; Gibbs, Michael
California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low- or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs),more » demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. Here, this paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Lastly, even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales.« less
Climate implications of including albedo effects in terrestrial carbon policy
NASA Astrophysics Data System (ADS)
Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.
2012-12-01
Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo change, 2) an increase in CO2 concentrations that exactly balances the forcing from land use change at the global level, and 3) a simulation combining the first two effects, resulting in net zero global-mean forcing as would occur in an idealized carbon cap-and-trade scheme that accounts for the albedo effect of land use change. The pattern of land use change that we examine is derived from an integrated assessment model that accounts for population, demographic, technological, and policy changes over the 21st century. We find significant differences in the pattern of climate change associated with each of these forcing scenarios, demonstrating the non-additivity of radiative forcing from land-use change and greenhouse gases in the context of a hypothetical scenario of future land use change. These results have implications for the development of land use and climate policies.
The role of non-CO2 mitigation within the dairy sector in pursuing climate goals
NASA Astrophysics Data System (ADS)
Rolph, K.; Forest, C. E.
2017-12-01
Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.
Energy Policy Case Study - California: Renewables and Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homer, Juliet S.; Bender, Sadie R.; Weimar, Mark R.
2016-09-19
The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Majormore » challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.« less
The role of ENSO in understanding changes in Colombia's annual malaria burden by region, 1960–2006
Mantilla, Gilma; Oliveros, Hugo; Barnston, Anthony G
2009-01-01
Background Malaria remains a serious problem in Colombia. The number of malaria cases is governed by multiple climatic and non-climatic factors. Malaria control policies, and climate controls such as rainfall and temperature variations associated with the El Niño/Southern Oscillation (ENSO), have been associated with malaria case numbers. Using historical climate data and annual malaria case number data from 1960 to 2006, statistical models are developed to isolate the effects of climate in each of Colombia's five contrasting geographical regions. Methods Because year to year climate variability associated with ENSO causes interannual variability in malaria case numbers, while changes in population and institutional control policy result in more gradual trends, the chosen predictors in the models are annual indices of the ENSO state (sea surface temperature [SST] in the tropical Pacific Ocean) and time reference indices keyed to two major malaria trends during the study period. Two models were used: a Poisson and a Negative Binomial regression model. Two ENSO indices, two time reference indices, and one dummy variable are chosen as candidate predictors. The analysis was conducted using the five geographical regions to match the similar aggregation used by the National Institute of Health for its official reports. Results The Negative Binomial regression model is found better suited to the malaria cases in Colombia. Both the trend variables and the ENSO measures are significant predictors of malaria case numbers in Colombia as a whole, and in two of the five regions. A one degree Celsius change in SST (indicating a weak to moderate ENSO event) is seen to translate to an approximate 20% increase in malaria cases, holding other variables constant. Conclusion Regional differentiation in the role of ENSO in understanding changes in Colombia's annual malaria burden during 1960–2006 was found, constituting a new approach to use ENSO as a significant predictor of the malaria cases in Colombia. These results naturally point to additional needed work: (1) refining the regional and seasonal dependence of climate on the ENSO state, and of malaria on the climate variables; (2) incorporating ENSO-related climate variability into dynamic malaria models. PMID:19133152
Li, Sen; Juhász-Horváth, Linda; Pintér, László; Rounsevell, Mark D A; Harrison, Paula A
2018-05-01
Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural land systems under environmental change. Copyright © 2017 Elsevier B.V. All rights reserved.
Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, D.A.; Jensen, T.G.
1995-10-01
Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less
NASA Astrophysics Data System (ADS)
Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng
2018-06-01
Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.
NASA Astrophysics Data System (ADS)
Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng
2017-07-01
Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.
A Data Driven Framework for Integrating Regional Climate Models
NASA Astrophysics Data System (ADS)
Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.
2012-12-01
There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high resolution data that can represent the climate, geography, economy, energy supply, and demand of a region under study; an integrated data management framework that captures information about models, model couplings (workflows), observational and derived data sets, numerical experiments, and the provenance metadata connecting them; and a collaborative environment that enables scientific users to explore the datasets, register models and codes, launch workflows, retrieve provenance, and analyze results. In this presentation we address the challenges of coupling heterogeneous codes and handling large data sets. We describe our integration approach, which is based on a loosely coupled software architecture that supports experimentation and evolution of models on different datasets. We present our software prototype and show the scalability of our approach to handle a large number ( > 17,000) of model runs and a significant quantity of data in the order of terabytes. The resulting environment is now used by domain scientists and has proven useful to improve productivity in the evolving development of iRESM model coupling.
Climate Change and the Canadian Higher Education System: An Institutional Policy Analysis
ERIC Educational Resources Information Center
Henderson, Joseph; Bieler, Andrew; McKenzie, Marcia
2017-01-01
Climate change is a pressing concern. Higher education can address the challenge, but systematic analyses of climate change in education policy are sparse. This paper addresses this gap in the literature by reporting on how Canadian postsecondary educational institutions have engaged with climate change through policy actions. We used descriptive…
The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change
NASA Astrophysics Data System (ADS)
Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.
2011-12-01
The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.
NASA Astrophysics Data System (ADS)
Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.
2016-12-01
Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with limited technical background.
The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda.
Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J; Karoly, David J; Wiseman, John
2018-04-04
A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda.
The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda
Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J.; Karoly, David J.; Wiseman, John
2018-01-01
A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda. PMID:29617317
Making work safer: testing a model of social exchange and safety management.
DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G
2010-04-01
This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun
2016-05-01
Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.
Kibue, Grace Wanjiru; Liu, Xiaoyu; Zheng, Jufeng; Zhang, Xuhui; Pan, Genxing; Li, Lianqing; Han, Xiaojun
2016-05-01
Impacts of climate variability and climate change are on the rise in China posing great threat to agriculture and rural livelihoods. Consequently, China is undertaking research to find solutions of confronting climate change and variability. However, most studies of climate change and variability in China largely fail to address farmers' perceptions of climate variability and adaptation. Yet, without an understanding of farmers' perceptions, strategies are unlikely to be effective. We conducted questionnaire surveys of farmers in two farming regions, Yifeng, Jiangsu and Qinxi, Anhui achieving 280 and 293 responses, respectively. Additionally, we used climatological data to corroborate the farmers' perceptions of climate variability. We found that farmers' were aware of climate variability such that were consistent with climate records. However, perceived impacts of climate variability differed between the two regions and were influenced by farmers' characteristics. In addition, the vast majorities of farmers were yet to make adjustments in their farming practices as a result of numerous challenges. These challenges included socioeconomic and socio-cultural barriers. Results of logit modeling showed that farmers are more likely to adapt to climate variability if contact with extension services, frequency of seeking information, household heads' education, and climate variability perceptions are improved. These results suggest the need for policy makers to understand farmers' perceptions of climate variability and change in order to formulate policies that foster adaptation, and ultimately protect China's agricultural assets.
NASA Astrophysics Data System (ADS)
Tonitto, C.; Gurwick, N. P.
2012-12-01
Policy initiatives to reduce greenhouse gas emissions (GHG) have promoted the development of agricultural management protocols to increase SOC storage and reduce GHG emissions. We review approaches for quantifying N2O flux from agricultural landscapes. We summarize the temporal and spatial extent of observations across representative soil classes, climate zones, cropping systems, and management scenarios. We review applications of simulation and empirical modeling approaches and compare validation outcomes across modeling tools. Subsequently, we review current model application in agricultural management protocols. In particular, we compare approaches adapted for compliance with the California Global Warming Solutions Act, the Alberta Climate Change and Emissions Management Act, and by the American Carbon Registry. In the absence of regional data to drive model development, policies that require GHG quantification often use simple empirical models based on highly aggregated data of N2O flux as a function of applied N - Tier 1 models according to IPCC categorization. As participants in development of protocols that could be used in carbon offset markets, we observed that stakeholders outside of the biogeochemistry community favored outcomes from simulation modeling (Tier 3) rather than empirical modeling (Tier 2). In contrast, scientific advisors were more accepting of outcomes based on statistical approaches that rely on local observations, and their views sometimes swayed policy practitioners over the course of policy development. Both Tier 2 and Tier 3 approaches have been implemented in current policy development, and it is important that the strengths and limitations of both approaches, in the face of available data, be well-understood by those drafting and adopting policies and protocols. The reliability of all models is contingent on sufficient observations for model development and validation. Simulation models applied without site-calibration generally result in poor validation results, and this point particularly needs to be emphasized during policy development. For cases where sufficient calibration data are available, simulation models have demonstrated the ability to capture seasonal patterns of N2O flux. The reliability of statistical models likewise depends on data availability. Because soil moisture is a significant driver of N2O flux, the best outcomes occur when empirical models are applied to systems with relevant soil classification and climate. The structure of current carbon offset protocols is not well-aligned with a budgetary approach to GHG accounting. Current protocols credit field-scale reduction in N2O flux as a result of reduced fertilizer use. Protocols do not award farmers credit for reductions in CO2 emissions resulting from reduced production of synthetic N fertilizer. To achieve the greatest GHG emission reductions through reduced synthetic N production and reduced landscape N saturation requires a re-envisioning of the agricultural landscape to include cropping systems with legume and manure N sources. The current focus on on-farm GHG sources focuses credits on simple reductions of N applied in conventional systems rather than on developing cropping systems which promote higher recycling and retention of N.
Climate Change, Public Health, and Policy: A California Case Study
Smith, Jason A.
2018-01-01
Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California’s progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions. PMID:29072936
Climate change, resource use and food security in midcentury under a range of plausible scenarios
NASA Astrophysics Data System (ADS)
Wiebe, K.
2016-12-01
Achieving and maintaining food security at local, national and global scales is challenged by changes in population, income and climate, among other socioeconomic and biophysical drivers. Assessing these challenges and possible solutions over the coming decades requires a systematic and multidisciplinary approach. The Global Futures and Strategic Foresight program, a CGIAR initiative led by the International Food Policy Research Institute in collaboration with the 14 other CGIAR research centers, is working to improve tools and conduct ex ante assessments of promising technologies, investments and policies under alternative global futures to inform decision making in the CGIAR and its partners. Alternative socioeconomic and climate scenarios are explored using an integrated system of climate, water, crop and economic models. This presentation will share findings from recent projections of food production and prices to 2050 at global and regional scales, together with their potential implications for land and water use, food security, nutrition and health.
Global Climate Change Adaptation Priorities for Biodiversity and Food Security
Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.
2013-01-01
International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125
Global climate change adaptation priorities for biodiversity and food security.
Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R
2013-01-01
International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.
Nhamo, Godwell
2016-01-01
The Rio+20 outcomes document, the Future We Want, enshrines green economy as one of the platforms to attain sustainable development and calls for measures that seek to address climate change and biodiversity management. This paper audits climate change policies from selected east and southern African countries to determine the extent to which climate change legislation mainstreams biodiversity and wildlife management. A scan of international, continental, regional and national climate change policies was conducted to assess whether they include biodiversity and/or wildlife management issues. The key finding is that many climate change policy–related documents, particularly the National Adaptation Programme of Actions (NAPAs), address threats to biodiversity and wildlife resources. However, international policies like the United Nations Framework Convention on Climate Change and Kyoto Protocol do not address the matter under deliberation. Regional climate change policies such as the East African Community, Common Market for Eastern and Southern Africa and African Union address biodiversity and/or wildlife issues whilst the Southern African Development Community region does not have a stand-alone policy for climate change. Progressive countries like Rwanda, Uganda, Tanzania and Zambia have recently put in place detailed NAPAs which are mainstream responsive strategies intended to address climate change adaptation in the wildlife sector.
Climate policy to defeat the green paradox.
Fölster, Stefan; Nyström, Johan
2010-05-01
Carbon dioxide emissions have accelerated since the signing of the Kyoto Protocol. This discouraging development may partly be blamed on accelerating world growth and on lags in policy instruments. However, it also raises serious question concerning whether policies to reduce CO2 emissions are as effective as generally assumed. In recent years, a considerable number of studies have identified various feedback mechanisms of climate policies that often erode, and occasionally reinforce, their effectiveness. These studies generally focus on a few feedback mechanisms at a time, without capturing the entire effect. Partial accounting of policy feedbacks is common in many climate scenarios. The IPCC, for example, only accounts for direct leakage and rebound effects. This article attempts to map the aggregate effects of different types of climate policy feedback mechanisms in a cohesive framework. Controlling feedback effects is essential if the policy measures are to make any difference on a global level. A general conclusion is that aggregate policy feedback mechanisms tend to make current climate policies much less effective than is generally assumed. In fact, various policy measures involve a definite risk of 'backfiring' and actually increasing CO2 emissions. This risk is particularly pronounced once effects of climate policies on the pace of innovation in climate technology are considered. To stand any chance of controlling carbon emissions, it is imperative that feedback mechanisms are integrated into emission scenarios, targets for emission reduction and implementation of climate policy. In many cases, this will reduce the scope for subsidies to renewable energy sources, but increase the scope for other measures such as schemes to return carbon dioxide to the ground and to mitigate emissions of greenhouse gases from wetlands and oceans. A framework that incorporates policy feedback effects necessitates rethinking the design of the national and regional emission targets. This leads us to a new way of formulating emission targets that include feedback effects, the global impact target. Once the full climate policy feedback mechanisms are accounted for, there are probably only three main routes in climate policy that stand a chance of mitigating global warming: (a) returning carbon to the ground, (b) technological leaps in zero-emission energy technology that make it profitable to leave much carbon in the ground even in Annex II countries and (c) international agreements that make it more profitable to leave carbon in the ground or in forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Bremond, Ariane; Engle, Nathan L.
2014-01-30
Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in themore » realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.« less
Rosa, Isabel M D; Ahmed, Sadia E; Ewers, Robert M
2014-06-01
Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the discipline. © 2014 John Wiley & Sons Ltd.
Unified Plant Growth Model (UPGM). 1. Background, objectives, and vision.
USDA-ARS?s Scientific Manuscript database
Since the development of the Environmental Policy Integrated Climate (EPIC) model in 1988, the EPIC-based plant growth code has been incorporated and modified into many agro-ecosystem models. The goals of the Unified Plant Growth Model (UPGM) project are: 1) integrating into one platform the enhance...
Agent-based Model for the Coupled Human-Climate System
NASA Astrophysics Data System (ADS)
Zvoleff, A.; Werner, B.
2006-12-01
Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.
Perez, L; Trüeb, S; Cowie, H; Keuken, M P; Mudu, P; Ragettli, M S; Sarigiannis, D A; Tobollik, M; Tuomisto, J; Vienneau, D; Sabel, C; Künzli, N
2015-12-01
Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. We modelled change in mortality and morbidity for the year 2020 based on several locally relevant transport scenarios including all decided transport policies up to 2020, additional realistic and hypothesized traffic reductions, as well as ambitious diffusion levels of electric cars. The scenarios were compared to the reference condition in 2010 assumed as status quo. The changes in non-climatic population exposure included ambient air pollution, physical activity, and noise. As secondary outcome, changes in Disability-Adjusted Life Years (DALYs) were put into perspective with predicted changes of CO2 emissions and fuel consumption. Under the scenario that assumed a strict particle emissions standard in diesel cars and all planned transport measures, 3% of premature deaths could be prevented from projected PM2.5 exposure reduction. A traffic reduction scenario assuming more active trips provided only minor added health benefits for any of the changes in exposure considered. A hypothetical strong support to electric vehicles diffusion would have the largest health effectiveness given that the energy production in Basel comes from renewable sources. The planned local transport related GHG emission reduction policies in Basel are sensible for mitigating climate change and improving public health. In this context, the most effective policy remains increasing zero-emission vehicles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluating Water Demand Using Agent-Based Modeling
NASA Astrophysics Data System (ADS)
Lowry, T. S.
2004-12-01
The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage based on its own condition and the condition of the world around it. For example, residential agents can make decisions to convert to or from xeriscaping and/or low-flow appliances based on policy implementation, economic status, weather, and climatic conditions. Agricultural agents may vary their usage by making decisions on crop distribution and irrigation design. Preliminary results show that water usage can be highly irrational under certain conditions. Results also identify sub-sectors within each group that have the highest influence on ensemble group behavior, providing a means for policy makers to target their efforts. Finally, the model is able to predict the impact of low-probability, high-impact events such as catastrophic denial of service due to natural and/or man-made events.
Impact of population growth and population ethics on climate change mitigation policy
Scovronick, Noah; Budolfson, Mark B.; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H.; Spears, Dean; Wagner, Fabian
2017-01-01
Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period’s discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing—rather than merely cost savings—again depends on the ethical approach to valuing population. PMID:29087298
Impact of population growth and population ethics on climate change mitigation policy.
Scovronick, Noah; Budolfson, Mark B; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H; Spears, Dean; Wagner, Fabian
2017-11-14
Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period's discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing-rather than merely cost savings-again depends on the ethical approach to valuing population. Copyright © 2017 the Author(s). Published by PNAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.
Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and landmore » use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.« less
Assessing Future Hydrological Changes in the Tana River Basin, Kenya
NASA Astrophysics Data System (ADS)
Jenkins, Rhosanna
2017-04-01
Changes in precipitation will be one of the most significant factors in determining the overall impact of global climate change but are also one of the most uncertain and difficult to project. The reliability of global climate models (GCMs) for predicting changes in rainfall is particularly concerning for East Africa. This research focuses on Kenya's Tana River Basin and aims to project the impacts of climate change upon the hydrology in order to inform national climate change adaptation plans. The Tana basin has been identified as crucial for Kenya's development, with increased irrigated agriculture and additional dams planned. The area is also important for biodiversity and contains already-threatened ecosystems and endemic species. Kenya is already a water-scarce country and demand for water is expected to increase in the future as the country develops. Therefore, examining changes to precipitation with climate change is vital. The WaterWorld Policy Support System (http://www.policysupport.org/waterworld), a physically-based hydrological model, has been used to determine annual and monthly changes in hydrology. WaterWorld utilises the WorldClim (Hijmans et al., 2005) climate projections for the latest generation of climate models from the Coupled Model Intercomparison Project, phase 5 (CMIP5) to characterise the temperature and precipitation changes. In order to better understand the high uncertainties in projections of climate change, the full range of latest emissions scenarios (the representative concentration pathways or RCPs) were used to force the WaterWorld model. The WorldClim baseline values were evaluated by comparing them to observations and were found to correctly represent the annual cycle of precipitation. In addition, the CRU TS3.22 data (Harris et al., 2014) have also been examined and provide a valuable comparison to the WorldClim dataset. These simulations encompass a broad range of climate projections, but show a general trend towards increased precipitation in the Tana River Basin. Overall, the multi-model ensemble mean for all RCPs suggests that there will be increases in precipitation by the 2050s, with the annual basin-average rainfall increasing between 112% (RCP2.6) and 149% (RCP8.5). As the precipitation in East Africa is highly seasonal, examining monthly changes is also important. Drying is projected in some months, whereas wetter conditions are projected in others. Average precipitation changes do not vary greatly between the RCPs, but there are large discrepancies between individual GCMs, with some models even disagreeing on the sign of precipitation change (i.e. positive or negative relative to the baseline). Between-model differences in the magnitude of precipitation change are also substantial. This large variation in anomalies of projected precipitation demonstrates the uncertainty in CMIP5 GCM outputs for the area and has important implications for water resources management and policy. Robust management decisions will need to be made in the face of this considerable uncertainty. Policies that allow for adaptability and a wide range of possible future outcomes are paramount.
NASA Astrophysics Data System (ADS)
Kahil, Mohamed Taher; Dinar, Ariel; Albiac, Jose
2015-03-01
Growing water extractions combined with emerging demands for environment protection increase competition for scarce water resources worldwide, especially in arid and semiarid regions. In those regions, climate change is projected to exacerbate water scarcity and increase the recurrence and intensity of droughts. These circumstances call for methodologies that can support the design of sustainable water management. This paper presents a hydro-economic model that links a reduced form hydrological component, with economic and environmental components. The model is applied to an arid and semiarid basin in Southeastern Spain to analyze the effects of droughts and to assess alternative adaptation policies. Results indicate that drought events have large impacts on social welfare, with the main adjustments sustained by irrigation and the environment. The water market policy seems to be a suitable option to overcome the negative economic effects of droughts, although the environmental effects may weaken its advantages for society. The environmental water market policy, where water is acquired for the environment, is an appealing policy to reap the private benefits of markets while protecting ecosystems. The current water management approach in Spain, based on stakeholders' cooperation, achieves almost the same economic outcomes and better environmental outcomes compared to a pure water market. These findings call for a reconsideration of the current management in arid and semiarid basins around the world. The paper illustrates the potential of hydro-economic modeling for integrating the multiple dimensions of water resources, becoming a valuable tool in the advancement of sustainable water management policies.
Communicating Urban Climate Change
NASA Astrophysics Data System (ADS)
Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership
2011-12-01
While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of models for community programming and this session will present early results of these efforts while engaging participants in exploring approaches to connecting urban communities and their local concerns to the issues of global climate change.
Preparing the Dutch delta for future droughts: model based support in the national Delta Programme
NASA Astrophysics Data System (ADS)
ter Maat, Judith; Haasnoot, Marjolijn; van der Vat, Marnix; Hunink, Joachim; Prinsen, Geert; Visser, Martijn
2014-05-01
Keywords: uncertainty, policymaking, adaptive policies, fresh water management, droughts, Netherlands, Dutch Deltaprogramme, physically-based complex model, theory-motivated meta-model To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, is established to assess impacts of climate scenarios and socio-economic developments and to explore policy options. The results should contribute to a national adaptive plan that is able to adapt to future uncertain conditions, if necessary. For this purpose, we followed a model-based step-wise approach, wherein both physically-based complex models and theory-motivated meta-models were used. First step (2010-2011) was to make a quantitative problem description. This involved a sensitivity analysis of the water system for drought situations under current and future conditions. The comprehensive Dutch national hydrological instrument was used for this purpose and further developed. Secondly (2011-2012) our main focus was on making an inventory of potential actions together with stakeholders. We assessed efficacy, sell-by date of actions, and reassessed vulnerabilities and opportunities for the future water supply system if actions were (not) taken. A rapid assessment meta-model was made based on the complex model. The effects of all potential measures were included in the tool. Thirdly (2012-2013), with support of the rapid assessment model, we assessed the efficacy of policy actions over time for an ensemble of possible futures including sea level rise and climate and land use change. Last step (2013-2014) involves the selection of preferred actions from a set of promising actions that meet the defined objectives. These actions are all modeled and evaluated using the complex model. The outcome of the process will be an adaptive management plan. The adaptive plan describes a set of preferred policy pathways - sequences of policy actions - to achieve targets under changing conditions. The plan commits to short term actions, and identifies signpost indicators and trigger values to assess if next actions of the identified policy pathways need to be implemented or if reassessment of the plan is needed. For example, river discharges could be measured to monitor changes in low discharges as a result of climate change, and assess whether policy options such as diverting more water the main fresh water lake (IJsselmeer) need to be implemented sooner or later or not at all. The adaptive plan of the Delta Programme will be presented in 2014. First lessons of this part of the Delta Programme can already be drawn: Both the complex and meta-model had its own purpose in each phase. The meta-model was particularly useful for identifying promising policy options and for consultation of stakeholders due to the instant response. The complex model had much more opportunities to assess impacts of regional policy actions, and was supported by regional stakeholders that recognized their areas better in this model. Different sector impact assessment modules are also included in the workflow of the complex model. However, the complex model has a long runtime (i.e. three days for 1 year simulation or more than 100 days for 35 year time series simulation), which makes it less suitable to support the dynamic policy process on instant demand and interactively.
NASA Astrophysics Data System (ADS)
Baba, Kenshi; Sugimoto, Takuya; Kubota, Hiromi; Hijioka, Yasuaki; Tanaka, Mitsuru
This study clarifies the factors to determine risk perception of climate change and attitudes toward adaptation policy by analyzing the data collecting from Internet survey to the general public. The results indicate the followings: 1) more than 70% people perceive some sort of risk of climate change, and most people are awaken to wind and flood damage. 2) most people recognize that mitigation policy is much more important than adaptation policy, whereas most people assume to accept adaptation policy as self-reponsibility, 3) the significant factors to determinane risk perception of climate chage and attitude towerd adaptation policy are cognition of benefits on the policy and procedural justice in the policy process in addion to demographics such as gender, experience of disaster, intension of inhabitant.
NASA Astrophysics Data System (ADS)
Bessembinder, Janette; Kotova, Lola; Manez, Maria; Jacob, Daniela; Hewitt, Chris; Garrett, Natalie; Monfray, Patrick; Doescher, Ralf; Doblas Reyes, Francisco; Joussaume, Sylvie; Toumi, Ralf; Buonocore, Mauro; Gualdi, Silvio; Nickovic, Slobodan
2017-04-01
Changes in the climate are affecting many sectors but the audience of decision- and policy-makers is so wide and varied that the requirements from each application can be quite different. There are a growing number of initiatives at the international and European level, from research networks of data providers, operational services, impact assessments, to coordination of government initiatives and provision of policy relevant recommendations; all provided on a wide range of timescales. The landscape of activities is very diverse. Users and providers of climate information currently face significant challenges in understanding this complex landscape. If we are to maximize the benefits of the investments and provide European citizens with the information and technology to develop a climate-smart society, then a mechanism is needed to coordinate the impressive and varied research and innovation effort. The overall concept behind the EU-project Climateurope is to create and manage a framework to coordinate, integrate and support Europe's research and innovation activities in the fields of Earth-System modeling and climate services. The purpose of this concept is to create greater social and economic value for Europe through improved preparation for, and management of, climate-related risks and opportunities arising from making European world-class knowledge more useable and thus more applicable to policy- and decision-making. This value will be felt by a range of actors including the public sector, governments, business and industry. Climateurope will provide a comprehensive overview of all the relevant activities to ensure the society at large can take full advantage of the investment Europe is making in research and innovation and associated development of services. The Climateurope network will facilitate dialog among climate science communities, funding bodies, climate service providers and users. Through the communication and dissemination activities, Climateurope will establish multidisciplinary expert groups to access the state-of-the-art of Earth system modeling and climate services and will identify existing gaps, new challenges and emerging needs. During this presentation the activities and progress of the project (website, webinars, discussion platform, festivals, state-of-the-art report) will be presented shortly and we will indicate how interested people can join the network.
A real-time Global Warming Index.
Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J
2017-11-13
We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.
Mitigation potential and global health impacts from emissions pricing of food commodities
NASA Astrophysics Data System (ADS)
Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Wiebe, Keith; Godfray, H. Charles J.; Rayner, Mike; Scarborough, Peter
2017-01-01
The projected rise in food-related greenhouse gas emissions could seriously impede efforts to limit global warming to acceptable levels. Despite that, food production and consumption have long been excluded from climate policies, in part due to concerns about the potential impact on food security. Using a coupled agriculture and health modelling framework, we show that the global climate change mitigation potential of emissions pricing of food commodities could be substantial, and that levying greenhouse gas taxes on food commodities could, if appropriately designed, be a health-promoting climate policy in high-income countries, as well as in most low- and middle-income countries. Sparing food groups known to be beneficial for health from taxation, selectively compensating for income losses associated with tax-related price increases, and using a portion of tax revenues for health promotion are potential policy options that could help avert most of the negative health impacts experienced by vulnerable groups, whilst still promoting changes towards diets which are more environmentally sustainable.
Scaling the Problem: How Commercial Interests Have Influenced the U.S. Dialogue on Climate Change
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Rogerson, P.
2012-12-01
In recent years, corporations and their affiliates have played an increasing role in the national conversation on climate change, with companies weighing in not only on policy debates but also participating in discussions around climate science. A few of these companies in particular have been tremendously influential in dictating how the public understands, or misunderstands, climate science and how the national discourse on climate policy has progressed, or not progressed. To better understand this corporate involvement, we explored the roles that major corporate actors have played during a key time period in 2009 and 2010 when several important climate change policy proposals were being actively debated in the United States. Analyzing multiple venues in which companies engaged in discussion of climate change with different audiences—including the government, shareholders, and the public—we assess the degree to which commercial interests have helped or hindered a science-based public discourse on climate policy in the past decade. Discussion will focus especially on corporations' use of third party organizations, including industry trade groups, think tanks, and others, to exert influence on climate-related policy without accountability.
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
Modeling the Near-Term Risk of Climate Uncertainty: Interdependencies among the U.S. States
NASA Astrophysics Data System (ADS)
Lowry, T. S.; Backus, G.; Warren, D.
2010-12-01
Decisions made to address climate change must start with an understanding of the risk of an uncertain future to human systems, which in turn means understanding both the consequence as well as the probability of a climate induced impact occurring. In other words, addressing climate change is an exercise in risk-informed policy making, which implies that there is no single correct answer or even a way to be certain about a single answer; the uncertainty in future climate conditions will always be present and must be taken as a working-condition for decision making. In order to better understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, this study estimates the impacts from responses to climate change on U.S. state- and national-level economic activity by employing a risk-assessment methodology for evaluating uncertain future climatic conditions. Using the results from the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) as a proxy for climate uncertainty, changes in hydrology over the next 40 years were mapped and then modeled to determine the physical consequences on economic activity and to perform a detailed 70-industry analysis of the economic impacts among the interacting lower-48 states. The analysis determines industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. The conclusions show that the average risk of damage to the U.S. economy from climate change is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Further analysis shows that an increase in uncertainty raises this risk. This paper will present the methodology behind the approach, a summary of the underlying models, as well as the path forward for improving the approach.
NASA Astrophysics Data System (ADS)
Khodayari, Arezoo; Wuebbles, Donald J.; Olsen, Seth C.; Fuglestvedt, Jan S.; Berntsen, Terje; Lund, Marianne T.; Waitz, Ian; Wolfe, Philip; Forster, Piers M.; Meinshausen, Malte; Lee, David S.; Lim, Ling L.
2013-08-01
This study evaluates the capabilities of the carbon cycle and energy balance treatments relative to the effect of aviation CO2 emissions on climate in several existing simplified climate models (SCMs) that are either being used or could be used for evaluating the effects of aviation on climate. Since these models are used in policy-related analyses, it is important that the capabilities of such models represent the state of understanding of the science. We compare the Aviation Environmental Portfolio Management Tool (APMT) Impacts climate model, two models used at the Center for International Climate and Environmental Research-Oslo (CICERO-1 and CICERO-2), the Integrated Science Assessment Model (ISAM) model as described in Jain et al. (1994), the simple Linear Climate response model (LinClim) and the Model for the Assessment of Greenhouse-gas Induced Climate Change version 6 (MAGICC6). In this paper we select scenarios to illustrate the behavior of the carbon cycle and energy balance models in these SCMs. This study is not intended to determine the absolute and likely range of the expected climate response in these models but to highlight specific features in model representations of the carbon cycle and energy balance models that need to be carefully considered in studies of aviation effects on climate. These results suggest that carbon cycle models that use linear impulse-response-functions (IRF) in combination with separate equations describing air-sea and air-biosphere exchange of CO2 can account for the dominant nonlinearities in the climate system that would otherwise not have been captured with an IRF alone, and hence, produce a close representation of more complex carbon cycle models. Moreover, results suggest that an energy balance model with a 2-box ocean sub-model and IRF tuned to reproduce the response of coupled Earth system models produces a close representation of the globally-averaged temperature response of more complex energy balance models.
Climate change : expert opinion on the economics of policy options to address climate change
DOT National Transportation Integrated Search
2008-05-01
Panelists identified key strengths and limitations of alternative policy approaches that should be of assistance to the Congress in weighing the potential benefits and costs of different policies for addressing climate change. Many panelists said tha...
Climate policy in India: what shapes international, national and state policy?
Atteridge, Aaron; Shrivastava, Manish Kumar; Pahuja, Neha; Upadhyay, Himani
2012-01-01
At the international level, India is emerging as a key actor in climate negotiations, while at the national and sub-national levels, the climate policy landscape is becoming more active and more ambitious. It is essential to unravel this complex landscape if we are to understand why policy looks the way it does, and the extent to which India might contribute to a future international framework for tackling climate change as well as how international parties might cooperate with and support India's domestic efforts. Drawing on both primary and secondary data, this paper analyzes the material and ideational drivers that are most strongly influencing policy choices at different levels, from international negotiations down to individual states. We argue that at each level of decision making in India, climate policy is embedded in wider policy concerns. In the international realm, it is being woven into broader foreign policy strategy, while domestically, it is being shaped to serve national and sub-national development interests. While our analysis highlights some common drivers at all levels, it also finds that their influences over policy are not uniform across the different arenas, and in some cases, they work in different ways at different levels of policy. We also indicate what this may mean for the likely acceptability within India of various climate policies being pushed at the international level.
Modeling Adaptation as a Flow and Stock Decsion with Mitigation
Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-live...
Modeling Adaptation as a Flow and Stock Decision with Mitigation
Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-liv...
Seeing the forest beyond the carbon
NASA Astrophysics Data System (ADS)
Schwalm, C.; Giffen, A.; Duffy, P.; Houghton, R. A.; Lowenstein, F.; Perschel, R.; Rogers, B. M.
2016-12-01
Climate policy should be about more than obviating greenhouse gas emissions from fossil fuel combustion. From Kyoto onward forests and forest management have played a role-albeit a misspecified one-in climate policy. The 2015 COP21 Paris Agreement took the unprecedented step of providing funding for REDD+; re-emphasizing the importance of forest stewardship as a policy vehicle. This step is welcome but still falls well short of leveraging the full effect of forests on climate in the context of policy. Forest-climate effects can be grouped in three broad categories: (1) land carbon sink, i.e., maximizing carbon contained in forest carbon stocks; (2) biophysical effects whereby forest structure and extent influence climate directly; and (3) the use of wood in long-lived structures, i.e., "build it with wood". This last category refers to offsetting fossil fuel emissions through forest management and the use of wood products. Climate policy strongly emphasizes the land carbon sink. This ignores management as a means to alter climate-through, for example, evaporative cooling, cloud engineering, and the albedo effect-as well as the up to 31% decrease in CO2 emissions if wood were substituted for other construction materials. We present a new framework for forest-based climate policy that accounts for all three types for forest-climate effects. A clear change in course is needed. This agenda-for-change must move toward policy and subsidy that foster forest management and use that (1) minimizes total CO2 emissions, (2) maximizes biophysical climate benefits, and (3) provides communities with still greater incentives to maintain forest cover and quality. Absent such incentives we are left with the prospect that we are not harnessing the full potential of forests in climate regulation. Indeed, we may be making our climate situation worse.
ERIC Educational Resources Information Center
Bellizio, Dan
2012-01-01
This December 2012 Brief updates NSCC's 2011 report "State Policies on School Climate and Bully Prevention Efforts: Challenges and Opportunities for Deepening State Policy Support for Safe and Civil School"s (www.schoolclimate.org/climate/papers-briefs.php). This Brief provides a summary of State level: (1) anti-bullying legislation; (2)…
A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California
Yeh, Sonia; Yang, Christopher; Gibbs, Michael; ...
2016-10-21
California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low- or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs),more » demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. Here, this paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Lastly, even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales.« less
A Profile of Substance Abuse, Gender, Crime, and Drug Policy in the United States and Canada
ERIC Educational Resources Information Center
Grant, Judith
2009-01-01
The climate of domestic drug policy in the United States as it pertains to both women and men at the beginning of the 21st century is the criminalization mode of regulation--a mode that is based on the model of addiction as a crime and one that is used to prohibit the use of illegal drugs. In Canada, drug policy is based mainly on the harm…
Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes
NASA Astrophysics Data System (ADS)
MU, J.
2014-12-01
Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.
NASA Astrophysics Data System (ADS)
Pages, Lucien; Bertel, Evelyne; Joffre, Henri; Sklavenitis, Laodamas
2012-12-01
Even though the United States lacks a national climate policy, significant action has occurred at the local and regional levels. Some of the most aggressive climate change policies have occurred at the state and local levels and in interagency cooperation on specific management issues. While there is a long history of partnerships in dealing with a wide variety of policy issues, the uncertainty and the political debate surrounding climate change has generated new challenges to establishing effective policy networks. This paper investigates the formation of climate policy networks in the State of Nevada. It presents a methodology based on social network analysis for assessing the structure and function of local policy networks across a range of substantive climate impacted resources (water, landscape management, conservation, forestry and others). It draws from an emerging literature on federalism and climate policy, public sector innovation, and institutional analysis in socio-ecological systems. Comparisons across different policy issue networks in the state are used to highlight the influence of network structure, connectivity, bridging across vertical and horizontal organizational units, organizational diversity, and flows between organizational nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R
2010-01-01
The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditionalmore » and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Nina, E-mail: nina.schwarz@ufz.de; Bauer, Annette, E-mail: annette.bauer@ufz.de; Haase, Dagmar, E-mail: dagmar.haase@ufz.d
2011-03-15
Local climate regulation by urban green areas is an important urban ecosystem service, as it reduces the extent of the urban heat island and therefore enhances quality of life. Local and regional planning policies can control land use changes in an urban region, which in turn alter local climate regulation. Thus, this paper describes a method for estimating the impacts of current land uses as well as local and regional planning policies on local climate regulation, using evapotranspiration and land surface emissivity as indicators. This method can be used by practitioners to evaluate their policies. An application of this methodmore » is demonstrated for the case study Leipzig (Germany). Results for six selected planning policies in Leipzig indicate their distinct impacts on climate regulation and especially the role of their spatial extent. The proposed method was found to easily produce a qualitative assessment of impacts of planning policies on climate regulation.« less
NASA Astrophysics Data System (ADS)
Palazzo, A.; Havlik, P.; Van Dijk, M.; Leclere, D.
2017-12-01
Agriculture plays a key role in achieving adequate food, water, and energy security (as summarized in the Sustainable Development Goals SDGs) as populations grow and incomes rise. Yet, agriculture is confronted with an enormous challenge to produce more using less. Land and water resources are projected to be strongly affected by climate change demand and agriculture faces growing competition in the demand for these resources. To formulate policies that contribute to achieving the SDGs, policy makers need assessments that can anticipate and navigate the trade-offs within the water/land/energy domain. Assessments that identify locations or hotspots where trade-offs between the multiple, competing users of resources may exist must consider both the local scale impacts of resource use as well as regional scale socioeconomic trends, policies, and international markets that further contribute to or mitigate the impacts of resource trade-offs. In this study, we quantify impacts of increased pressure on the land system to provide agricultural and bioenergy products under increasingly scarce water resources using a global economic and land use model, GLOBIOM. We model the supply and demand of agricultural products at a high spatial resolution in an integrated approach that considers the impacts of global change (socioeconomic and climatic) on the biophysical availability and the growing competition of land and water. We also developed a biodiversity module that relates changes in land uses to changes in local species richness and global species extinction risk. We find that water available for agriculture and freshwater ecosystems decreases due to climate change and growing demand from other sectors (domestic, energy and industry) (Fig 1). Climate change impacts will limit areas suitable for irrigation and may lead to an expansion of rainfed areas in biodiverse areas. Impacts on food security from climate change are significant in some regions (SSA and SA) and policies that protect environmental stream flows compound that effect (Fig 2).
ERIC Educational Resources Information Center
Weninger, Csilla
2018-01-01
Public education in post-industrial societies has been restructured based on a human capital model that prioritizes the economic value of citizens for the benefit of globally competitive national economies. In a policy-as-numbers climate [Lingard, B. (2011). "Policy as numbers: Ac/counting for educational research." "The Australian…
ERIC Educational Resources Information Center
Saeki, Elina; Segool, Natasha; Pendergast, Laura; von der Embse, Nathaniel
2018-01-01
This study examined the potential influence of test-based accountability policies on school environment and teacher stress among early elementary teachers. Structural equation modeling of data from 541 kindergarten through second grade teachers across three states found that use of student performance on high-stakes tests to evaluate teachers…
Mandate for the Nursing Profession to Address Climate Change Through Nursing Education.
Leffers, Jeanne; Levy, Ruth McDermott; Nicholas, Patrice K; Sweeney, Casey F
2017-11-01
The adverse health effects from climate change demand action from the nursing profession. This article examines the calls to action, the status of climate change in nursing education, and challenges and recommendations for nursing education related to climate change and human health. Discussion paper. The integration of climate change into nursing education is essential so that knowledge, skills, and insights critical for clinical practice in our climate-changing world are incorporated in curricula, practice, research, and policy. Our Ecological Planetary Health Model offers a framework for nursing to integrate relevant climate change education into nursing curricula and professional nursing education. Nursing education can offer a leadership role to address the mitigation, adaptation, and resilience strategies for climate change. An ecological framework is valuable for nursing education regarding climate change through its consideration of political, cultural, economic, and environmental interrelationships on human health and the health of the planet. Knowledge of climate change is important for integration into basic and advanced nursing education, as well as professional education for nurses to address adverse health impacts, climate change responses policy, and advocacy roles. For current and future nurses to provide care within a climate-changing environment, nursing education has a mandate to integrate knowledge about climate change issues across all levels of nursing education. Competence in nursing practice follows from knowledge and skill acquisition gained from integration of climate change content into nursing education. © 2017 Sigma Theta Tau International.
Keune, Hans; Ludlow, David; van den Hazel, Peter; Randall, Scott; Bartonova, Alena
2012-06-28
The EU FP6 HENVINET project reviewed the potential relevance of a focus on climate change related health effects for climate change policies at the city region level. This was undertaken by means of a workshop with both scientists, city representatives from several EU-countries, representatives of EU city networks and EU-experts. In this paper we introduce some important health related climate change issues, and discuss the current city policies of the participating cities. The workshop used a backcasting format to analyse the future relevance of a health perspective, and the main benefits and challenges this would bring to urban policy making. It was concluded that health issues have an important function as indicators of success for urban climate change policies, given the extent to which climate change policies contribute to public health and as such to quality of life. Simultaneously the health perspective may function as a policy integrator in that it can combine several related policy objectives, such as environmental policies, health policies, urban planning and economic development policies, in one framework for action. Furthermore, the participants to the workshop considered public health to be of strategic importance in organizing public support for climate change policies. One important conclusion of the workshop was the view that the connection of science and policy at the city level is inadequate, and that the integration of scientific knowledge on climate change related health effects and local policy practice is in need of more attention. In conclusion, the workshop was viewed as a constructive advance in the process of integration which hopefully will lead to ongoing cooperation. The workshop had the ambition to bring together a diversity of actor perspectives for exchange of knowledge and experiences, and joint understanding as a basis for future cooperation. Next to the complementarities in experience and knowledge, the mutual critical reflection was a bonus, as ideas had the opportunity to be scrutinized by others, leading to more robustness and common ground. The structured backcasting approach was helpful in integrating all of this with one common focus, embracing diversity and complexity, and stimulating reflection and new ideas.
2012-01-01
Background The EU FP6 HENVINET project reviewed the potential relevance of a focus on climate change related health effects for climate change policies at the city region level. This was undertaken by means of a workshop with both scientists, city representatives from several EU-countries, representatives of EU city networks and EU-experts. In this paper we introduce some important health related climate change issues, and discuss the current city policies of the participating cities. Methods The workshop used a backcasting format to analyse the future relevance of a health perspective, and the main benefits and challenges this would bring to urban policy making. Results It was concluded that health issues have an important function as indicators of success for urban climate change policies, given the extent to which climate change policies contribute to public health and as such to quality of life. Simultaneously the health perspective may function as a policy integrator in that it can combine several related policy objectives, such as environmental policies, health policies, urban planning and economic development policies, in one framework for action. Furthermore, the participants to the workshop considered public health to be of strategic importance in organizing public support for climate change policies. One important conclusion of the workshop was the view that the connection of science and policy at the city level is inadequate, and that the integration of scientific knowledge on climate change related health effects and local policy practice is in need of more attention. In conclusion, the workshop was viewed as a constructive advance in the process of integration which hopefully will lead to ongoing cooperation. Conclusions The workshop had the ambition to bring together a diversity of actor perspectives for exchange of knowledge and experiences, and joint understanding as a basis for future cooperation. Next to the complementarities in experience and knowledge, the mutual critical reflection was a bonus, as ideas had the opportunity to be scrutinized by others, leading to more robustness and common ground. The structured backcasting approach was helpful in integrating all of this with one common focus, embracing diversity and complexity, and stimulating reflection and new ideas. PMID:22759496
Bridging the Gap between Policy-Driven Land Use Changes and Regional Climate Projections
NASA Astrophysics Data System (ADS)
Berckmans, J.; Hamdi, R.; Dendoncker, N.; Ceulemans, R.
2017-12-01
Land use land cover changes (LULCC) can impact the regional climate by two mechanisms: biogeochemical and biogeophysical. The biogeochemical mechanism of the LULCC alters the chemical composition of the atmosphere by greenhouse gas emissions. The biogeophysical mechanism forces changes in the heat and moisture transfer between the land and the atmosphere. The different representations of the future LULCC under influence of the biogeochemical mechanism are included in the IPCC Radiative Concentration Pathways (RCPs). In contrast, the RCPs do not incorporate the biogeophysical effects. Although considerable research has been devoted to the biogeophysical effects of LULCC on climate, less attention has been paid to assessing the full (both biogeochemical and biogeophysical) LULCC impact on the regional climate in modeling studies. Due to the large variety of small changes in the landscape of Western Europe, the small scale climate impact by the LULCC has been achieved using high-resolution scenarios. The "ALARM" project that was governed by the European Commission generated LULCC data on a resolution of 250x250 m for three time steps: 2020, 2050 and 2080. The CNRM-CM5.1 global climate model has been downscaled to perform simulations with ALARO-SURFEX for the near-term future. Both climate changes and land cover changes have been assessed based on RCP and ALARM scenarios. The use of the land surface model SURFEX with its tiling approach allowed us to accurately represent the small scale changes in the landscape. The largest landscape changes contain the abandonment of agricultural land and the increase in forestry and urban areas. Our results show that the conversions from rural areas to urban areas and arable land to forest in Western Europe considerable affect the near-surface temperature and to a lesser extent the precipitation. These results are related to modifications demonstrated in the surface energy budget. The LULCC have a significant impact compared to the near-term future climate changes. They provide valuable information for landscape planning to mitigate and adapt to climate change. The strength of this study is the use of policy-driven LULCC data combined with an accurate representation of the land by the climate model.
Relevance of emissions timing in biofuel greenhouse gases and climate impacts.
Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott
2011-10-01
Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.
Energy-economic policy modeling
NASA Astrophysics Data System (ADS)
Sanstad, Alan H.
2018-01-01
Computational models based on economic principles and methods are powerful tools for understanding and analyzing problems in energy and the environment and for designing policies to address them. Among their other features, some current models of this type incorporate information on sustainable energy technologies and can be used to examine their potential role in addressing the problem of global climate change. The underlying principles and the characteristics of the models are summarized, and examples of this class of model and their applications are presented. Modeling epistemology and related issues are discussed, as well as critiques of the models. The paper concludes with remarks on the evolution of the models and possibilities for their continued development.
America's Climate Choices: Limiting the Magnitude of Future Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Carlson, A.; Fri, R.; Brown, M.; Geller, L.
2010-12-01
At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies the nation can take to respond to climate change. This suite of activities included a study on strategies for limiting the magnitude of future climate change (i.e. mitigation). Limiting climate change is a global effort that will require significant reductions of greenhouse gas emissions by countries around the world. U.S. action alone is not sufficient, but it is clearly necessary for the U.S. to make significant contributions to the global effort. While efforts to limit climate change are already underway across the U.S. (by state and local governments, businesses, non-governmental organizations, and individual households), we currently lack a framework of federal policies to help assure that all key actors participating and working towards coherent national goals. This study recommends a U.S. policy goal stated as a budget for cumulative greenhouse gas emissions through the year 2050, and offers an illustrative range of budget numbers derived from recent work of the Energy Modeling Forum. The report evaluates the types of changes to our nation's energy system that are needed to meet a budget in the proposed range, which leads to a conclusion that the U.S. must get started now in aggressively pursuing available emission reduction opportunities, while also investing heavily in R&D to create new emission reduction opportunities. The study offers a series of recommendations for how to move ahead in pursing these near-term and longer-term opportunities. The recommendations address the need for a carbon pricing system and strategically-targeted complimentary policies, for effective international engagement, for careful balancing of federal with state/local action, and for consideration of equity and employment impacts of response policies. The study also discusses the need to design policies that are both durable over the long-term, and have the capacity to evolve in response to new scientific, technological, and economic developments.
Role of Science in the Development of U.S. Climate Policy Legislation
NASA Astrophysics Data System (ADS)
Staudt, A. C.
2009-12-01
Climate policy in the United States advanced substantially in 2009, including the development of the first comprehensive legislation designed to reduce greenhouse gas emissions. Whereas in prior years Congress actively sought out information on climate change science and impacts to help make the case for policy action, the emphasis recently shifted to economic implications and technological readiness for proposed policies. This shift reflected an acknowledgment among many, but not all, members of Congress that the debate about human-caused climate change is over and that they must focus on crafting policy solutions. The dozens of Congressional hearings held during 2008 and 2009 on climate solutions certainly were necessary for developing legislation. However, a question remains as to whether the legislation, in particular the selection of emissions reduction targets and timetables, was informed by the latest climate science. Of particular concern is to what extent recently published scientific studies indicating many climate changes are on pace with or exceeding the worst-case scenarios considered in the 2007 reports of the Intergovernmental Panel on Climate Change were considered. Furthermore, lacking official hearings on the topic of climate science, skeptical policy makers may have little exposure to the latest scientific findings. Environmental non-governmental organizations play an important intermediary role between the scientific community and policy makers to bridge both of these information gaps. Examples of NGO strategies for bringing the latest science to Congress and of ways that scientists can engage in these efforts will be presented.
USDA-ARS?s Scientific Manuscript database
Hydrologic models are used to simulate the responses of agricultural systems to different inputs and management strategies to identify alternative management practices to cope up with future climate and/or geophysical changes. The Agricultural Policy/Environmental eXtender (APEX) is a model develope...
The Global Change Assessment Model (GCAM) is an integrated assessment model that links representations of the economy, energy sector, land use, and climate within an integrated modeling environment. GCAM-USA, which is an extension of GCAM, provides U.S. state-level resolution wit...
A climate stress-test of the financial system
NASA Astrophysics Data System (ADS)
Battiston, Stefano; Mandel, Antoine; Monasterolo, Irene; Schütze, Franziska; Visentin, Gabriele
2017-03-01
The urgency of estimating the impact of climate risks on the financial system is increasingly recognized among scholars and practitioners. By adopting a network approach to financial dependencies, we look at how climate policy risk might propagate through the financial system. We develop a network-based climate stress-test methodology and apply it to large Euro Area banks in a `green' and a `brown' scenario. We find that direct and indirect exposures to climate-policy-relevant sectors represent a large portion of investors' equity portfolios, especially for investment and pension funds. Additionally, the portion of banks' loan portfolios exposed to these sectors is comparable to banks' capital. Our results suggest that climate policy timing matters. An early and stable policy framework would allow for smooth asset value adjustments and lead to potential net winners and losers. In contrast, a late and abrupt policy framework could have adverse systemic consequences.
Advances in risk assessment for climate change adaptation policy.
Adger, W Neil; Brown, Iain; Surminski, Swenja
2018-06-13
Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).
Advances in risk assessment for climate change adaptation policy
NASA Astrophysics Data System (ADS)
Adger, W. Neil; Brown, Iain; Surminski, Swenja
2018-06-01
Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
A global food demand model for the assessment of complex human-earth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
EDMONDS, JAMES A.; LINK, ROBERT; WALDHOFF, STEPHANIE T.
Demand for agricultural products is an important problem in climate change economics. Food consumption will shape and shaped by climate change and emissions mitigation policies through interactions with bioenergy and afforestation, two critical issues in meeting international climate goals such as two-degrees. We develop a model of food demand for staple and nonstaple commodities that evolves with changing incomes and prices. The model addresses a long-standing issue in estimating food demands, the evolution of demand relationships across large changes in income and prices. We discuss the model, some of its properties and limitations. We estimate parameter values using pooled cross-sectional-time-seriesmore » observations and the Metropolis Monte Carlo method and cross-validate the model by estimating parameters using a subset of the observations and test its ability to project into the unused observations. Finally, we apply bias correction techniques borrowed from the climate-modeling community and report results.« less
Risk, Scientific Uncertainty, and Policy Implications of Global Climate Change Models
NASA Astrophysics Data System (ADS)
Briggs, C.; Sahagian, D.
2006-12-01
The risks of global climate change to human populations and natural environments have received increasing attention in recent years. With high-profile events such as hurricane Katrina in the United States, rapid melting of the Greenland ice sheet, shifting precipitation patterns in Europe and elsewhere, more political attention has been given to the risks posed by anthropogenic changes in the earth's atmosphere. Yet despite increasing scientific evidence of such environmental risks, reactions from political sources have been far from consistent. While some states have adopted emissions regulations on greenhouse gases, other states or national governments have downplayed the existence of any significant risk. Explanations for why political actors or the public may appear unaware of scientific data relate to the nature of uncertainty in environmental risk models and decisions. Professional scientific methodologies must approach uncertainty in a far different manner than government agencies or members of the public, and these varying types of uncertainty create spaces for translation of scientific data into incompatible conclusions. Such conclusions depend not only upon the translation of scientific data, but also perception of the risks involved, differential local impacts of climate change, and available policy alternatives and resources. Scientists involved in climate research bear a particular responsibility for how their data are interpreted politically, but this requires awareness of the manners in which uncertainty is employed, the ethics of applying research to policy questions, and realization that risks will be perceived differently according to political cultures and geographic regions.
Policy challenges for wildlife management in a changing climate
Mark L. Shaffer
2014-01-01
Try as it might, wildlife management cannot make wild living things adapt to climate change. Management can, however, make adaptation more or less likely. Given that policy is a rule set for action, policy will play a critical role in societyâs efforts to help wildlife cope with the challenge of climate change. To be effective, policy must provide clear goals and be...
NASA Astrophysics Data System (ADS)
Bostrom, A.; Lashof, D.
2004-12-01
For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.
NASA Astrophysics Data System (ADS)
Ferguson, D. B.; Guido, Z. S.; Buizer, J.; Roy, M.
2010-12-01
Bringing climate change issues into focus for decision makers is a growing challenge. Decision makers are often confronted with unique informational needs, a lack of useable information, and needs for customized climate change training, among other issues. Despite significant progress in improving climate literacy among certain stakeholders such as water managers, recent reports have highlighted the growing demand for climate-change information in regions and sectors across the US. In recent years many ventures have sprung up to address these gaps and have predominantly focused on K-12 education and resource management agencies such as the National Park Service and National Weather Service. However, two groups that are critical for integrating climate information into actions have received less attention: (1) policy makers and (2) outreach experts, such as Cooperative Extension agents. Climate Change Boot Camps (CCBC) is a joint effort between the Climate Assessment for the Southwest (CLIMAS)—a NOAA Regionally Integrated Sciences and Assessments (RISA) program—and researchers at Arizona State University to diagnose climate literacy and training gaps in Arizona and develop a process that converts these deficiencies into actionable knowledge among the two aforementioned groups. This presentation will highlight the initial phases of the CCBC process, which has as its outcomes the identification of effective strategies for reaching legislators, climate literacy and training needs for both policy makers and trainers, and effective metrics to evaluate the success of these efforts. Specific attention is given to evaluating the process from initial needs assessment to the effectiveness of the workshops. Web curriculum and training models made available on the internet will also be developed, drawing on extensive existing Web resources for other training efforts and converted to meet the needs of these two groups. CCBC will also leverage CLIMAS’ long history of engaging with stakeholders in the Southwest to facilitate to use of climate information in the decision process.
NASA Astrophysics Data System (ADS)
Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier
2015-04-01
At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.
The Copernicus Climate Change Service (C3S): Open Access to a Climate Data Store
NASA Astrophysics Data System (ADS)
Thepaut, Jean-Noel; Dee, Dick
2016-04-01
In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we monitor and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its Climate Data Store will provide • global and regional climate data reanalyses; • multi-model seasonal forecasts; • customisable visual data to enable examination of wide range of scenarios and model the impact of changes; • access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. At the heart of the Service is the provision of open access to a one stop shop (the Climate Data Store) of climate data and modelling, analysing more than 20 Essential Climate Variables to build a global picture of our past, present and future climate and developing customisable climate indicators for key economic sectors, such as energy, water management, agriculture, insurance, health… This talk will focus on the Climate Data Store facility, designed as a distributed system, providing improved access to existing datasets though a unified web interface. This service will accommodate the needs of the highly diverse set of users, from policy makers to expert practitioners and scientists.
Analysis of Carbon Policies for Electricity Networks with High Penetration of Green Generation
NASA Astrophysics Data System (ADS)
Feijoo, Felipe A.
In recent decades, climate change has become one of the most crucial challenges for humanity. Climate change has a direct correlation with global warming, caused mainly by the green house gas emissions (GHG). The Environmental Protection Agency in the U.S. (EPA) attributes carbon dioxide to account for approximately 82% of the GHG emissions. Unfortunately, the energy sector is the main producer of carbon dioxide, with China and the U.S. as the highest emitters. Therefore, there is a strong (positive) correlation between energy production, global warming, and climate change. Stringent carbon emissions reduction targets have been established in order to reduce the impacts of GHG. Achieving these emissions reduction goals will require implementation of policies like as cap-and-trade and carbon taxes, together with transformation of the electricity grid into a smarter system with high green energy penetration. However, the consideration of policies solely in view of carbon emissions reduction may adversely impact other market outcomes such as electricity prices and consumption. In this dissertation, a two-layer mathematical-statistical framework is presented, that serves to develop carbon policies to reduce emissions level while minimizing the negative impacts on other market outcomes. The bottom layer of the two layer model comprises a bi-level optimization problem. The top layer comprises a statistical model and a Pareto analysis. Two related but different problems are studied under this methodology. The first problem looks into the design of cap-and-trade policies for deregulated electricity markets that satisfy the interest of different market constituents. Via the second problem, it is demonstrated how the framework can be used to obtain levels of carbon emissions reduction while minimizing the negative impact on electricity demand and maximizing green penetration from microgrids. In the aforementioned studies, forecasts for electricity prices and production cost are considered. This, this dissertation also presents anew forecast model that can be easily integrated in the two-layer framework. It is demonstrated in this dissertation that the proposed framework can be utilized by policy-makers, power companies, consumers, and market regulators in developing emissions policy decisions, bidding strategies, market regulations, and electricity dispatch strategies.
Translational Environmental Research: Improving the Usefulness and Usability of Research Results
NASA Astrophysics Data System (ADS)
Garfin, G.
2008-12-01
In recent years, requests for proposals more frequently emphasize outreach to stakeholder communities, decision support, and science that serves societal needs. Reports from the National Academy of Sciences and Western States Water Council emphasize the need for science translation and outreach, in order to address societal concerns with climate extremes, such as drought, the use of climate predictions, and the growing challenges of climate change. In the 1990s, the NOAA Climate Program Office developed its Regional Integrated Sciences and Asssessments program to help bridge the gap between climate science (notably, seasonal predictions) and society, to improve the flow of information to stakeholders, and to increase the relevance of climate science to inform decisions. During the same time period, the National Science Foundation initiated multi-year Science and Technology Centers and Decision Making Under Uncertainty Centers, with similar goals, but different metrics of success. Moreover, the combination of population growth, climate change, and environmental degradation has prompted numerous research initiatives on linking knowledge and action for sustainable development. This presentation reviews various models and methodologies for translating science results from field, lab, or modeling work to use by society. Lessons and approaches from cooperative extension, boundary organizations, co-production of science and policy, and medical translational research are examined. In particular, multi-step translation as practiced within the health care community is examined. For example, so- called "T1" (translation 1) research moves insights from basic science to clinical research; T2 research evaluates the effectiveness of clinical practice, who benefits from promising care regimens, and develops tools for clinicians, patients, and policy makers. T3 activities test the implementation, delivery, and spread of research results and clinical practices in order to foster policy changes and improve general health. Parallels in environmental sciences might be TER1 (translational environmental research 1), basic insights regarding environmental processes and relationships between environmental changes and their causes. TER2, applied environmental research, development of best practices, and development of decision support tools. TER3, might include usability and impact evaluation, effective outreach and implementation of best practices, and application of research insights to public policy and institutional change. According to the medical literature, and in anecdotal evidence from end-to-end environmental science, decision-maker and public involvement in these various forms of engaged research decreases the lag between scientific discovery and implementation of discoveries in operational practices, information tools, and organizational and public policies.
Climate Observations from Space
NASA Astrophysics Data System (ADS)
Briggs, Stephen
2016-07-01
The latest Global Climate Observing System (GCOS) Status Report on global climate observations, delivered to the UNFCCC COP21 in November 2016, showed how satellite data are critical for observations relating to climate. Of the 50 Essential Climate Variables (ECVs) identified by GCOS as necessary for understanding climate change, about half are derived only from satellite data while half of the remainder have a significant input from satellites. Hence data from Earth observing satellite systems are now a fundamental requirement for understanding the climate system and for managing the consequences of climate change. Following the Paris Agreement of COP21 this need is only greater. Not only will satellites have to continue to provide data for modelling and predicting climate change but also for a much wider range of actions relating to climate. These include better information on loss and damage, resilience, improved adaptation to change, and on mitigation including information on greenhouse gas emissions. In addition there is an emerging need for indicators of the risks associated with future climate change which need to be better quantified, allowing policy makers both to understand what decisions need to be taken, and to see the consequences of their actions. The presentation will set out some of the ways in which satellite data are important in all aspects of understanding, managing and predicting climate change and how they may be used to support future decisions by those responsible for policy related to managing climate change and its consequences.
Palaeoclimatic insights into future climate challenges.
Alley, Richard B
2003-09-15
Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.
Food Prices and Climate Extremes: A Model of Global Grain Price Variability with Storage
NASA Astrophysics Data System (ADS)
Otto, C.; Schewe, J.; Frieler, K.
2015-12-01
Extreme climate events such as droughts, floods, or heat waves affect agricultural production in major cropping regions and therefore impact the world market prices of staple crops. In the last decade, crop prices exhibited two very prominent price peaks in 2007-2008 and 2010-2011, threatening food security especially for poorer countries that are net importers of grain. There is evidence that these spikes in grain prices were at least partly triggered by actual supply shortages and the expectation of bad harvests. However, the response of the market to supply shocks is nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and trade policies. Quantifying the contributions of such different factors to short-term price variability remains difficult, not least because many existing models ignore the role of storage which becomes important on short timescales. This in turn impedes the assessment of future climate change impacts on food prices. Here, we present a simple model of annual world grain prices that integrates grain stocks into the supply and demand functions. This firstly allows us to model explicitly the effect of storage strategies on world market price, and thus, for the first time, to quantify the potential contribution of trade policies to price variability in a simple global framework. Driven only by reported production and by long--term demand trends of the past ca. 40 years, the model reproduces observed variations in both the global storage volume and price of wheat. We demonstrate how recent price peaks can be reproduced by accounting for documented changes in storage strategies and trade policies, contrasting and complementing previous explanations based on different mechanisms such as speculation. Secondly, we show how the integration of storage allows long-term projections of grain price variability under climate change, based on existing crop yield scenarios.
Charter School Discipline: Examples of Policies and School Climate Efforts from the Field
ERIC Educational Resources Information Center
Kern, Nora; Kim, Suzie
2016-01-01
Students need a safe and supportive school environment to maximize their academic and social-emotional learning potential. A school's discipline policies and practices directly impact school climate and student achievement. Together, discipline policies and positive school climate efforts can reinforce behavioral expectations and ensure student…
Reconciling justice and attribution research to advance climate policy
NASA Astrophysics Data System (ADS)
Huggel, Christian; Wallimann-Helmer, Ivo; Stone, Dáithí; Cramer, Wolfgang
2016-10-01
The Paris Climate Agreement is an important step for international climate policy, but the compensation for negative effects of climate change based on clear assignment of responsibilities remains highly debated. From both a policy and a science perspective, it is unclear how responsibilities should be defined and on what evidence base. We explore different normative principles of justice relevant to climate change impacts, and ask how different forms of causal evidence of impacts drawn from detection and attribution research could inform policy approaches in accordance with justice considerations. We reveal a procedural injustice based on the imbalance of observations and knowledge of impacts between developed and developing countries. This type of injustice needs to be considered in policy negotiations and decisions, and efforts strengthened to reduce it.
Don't shoot the messenger: re-framing climate policy to respond to evolving science (Invited)
NASA Astrophysics Data System (ADS)
Allen, M. R.; Otto, F. E.; Otto, A.; Rayner, S.
2013-12-01
Lack of progress in mitigation policy, as atmospheric CO2 concentrations climb apparently inexorably past 400ppm, is often blamed on a failure to 'communicate the climate change message' effectively. A small but increasing number of commentators is arguing that the problem is not communication, but the way in which climate policy choices are framed. In particular, the overt politicization of climate science, with so-called 'belief in climate change' being invoked as automatically implying support for a global carbon price or cap-and-trade regime, or even as an argument for voting for specific parties, makes it increasingly difficult to discuss policy options in the light of evolving science. At the heart of the problem is the interpretation of the 'precautionary principle', which is widely invoked in climate policy as a response to scientific uncertainty: policies, it is argued, should be designed to be robust to the range of possible future climates, or to deliver the ';best' possible probability-weighted outcome. The problem with this approach is that it very often makes policy contingent on worst-case scenarios - such as the risk of high climate sensitivity or rapid non-linear climate change - which are often the most uncertain aspects of climate science and hence subject to frequent revision. To be relevant to policies that are based on mitigating worst-case risks, the scientific community is also required to focus on establishing what these risks are, leaving it open, unjustly but understandably, to the accusation of alarmism. Focusing on worst-case scenarios can also give the impression that the mitigation problem is unachievable, and the only option is short-term adaptation followed by geo-engineering. One way of reducing the politicization of climate science is to make policy explicitly contingent on the climate response, such that a high (or low) rate of anthropogenic warming over the coming decades is automatically met with an aggressive (or moderate) mitigation effort. In the short term, such 'adaptive' policy responses take two forms: either investing in technologies to ensure they are available if and when aggressive mitigation is necessary; or devising policies that respond explicitly to climate change, such as a carbon tax linked to global temperature. Neither of these approaches has gained much traction in the mitigation debate because they are both seen as 'kicking the can down the road', or placing the burden of tough mitigation decisions on future politicians. We will propose that a climate policy that is explicitly contingent on the climate response should otherwise be as inflexible as possible. Ideally, the only unpredictable element of the policy should be the rate of warming attributable to rising greenhouse gas concentrations over the coming decades. Those affected by the policy should be able take a clean position on what that rate is likely to be, unaffected by speculation on what future politicians are likely to do. On this measure, relying on a carbon price or subsidizing technology development are both too flexible, however attractive they might be assuming perfectly rational implementation, because their impact depends as much or more on future decisions on taxes and subsidies as it does on future climate. We will describe a possible alternative, upstream mandatory sequestration (or 'SAFE carbon') explicitly linked to attributable warming, and discuss how it might be implemented.
Methane mitigation timelines to inform energy technology evaluation
NASA Astrophysics Data System (ADS)
Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.
2015-11-01
Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.
NASA Astrophysics Data System (ADS)
Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.
2016-04-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m-2 due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multinational efforts to reduce greenhouse gas (GHG) emissions and (2) to simultaneously target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides co-benefits to air quality and public health.
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Faluvegi, Gregory S.
2016-01-01
We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +C02 W m(sup -2) due to positive aerosol direct and indirect forcing, while the global mean total RF is -0.06 W m(sup -2) due to the dominant negative CO2 RF (instantaneous RF). To achieve a regional-scale climate benefit via a climate policy, it is critical (1) to have multinational efforts to reduce greenhouse gas (GHG) emissions and (2) to simultaneously target emission reduction of light-absorbing species (e.g., BC and O3) on top of long-lived species. The latter is very desirable as the resulting climate benefit occurs faster and provides cobenefits to air quality and public health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem
This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: thoughmore » coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less
Emotional climate of a pre-service science teacher education class in Bhutan
NASA Astrophysics Data System (ADS)
Rinchen, Sonam; Ritchie, Stephen M.; Bellocchi, Alberto
2016-09-01
This study explored pre-service secondary science teachers' perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher's diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students' presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.
Quantifying the Climate Impacts of Land Use Change (Invited)
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.
2010-12-01
Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.
2015-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.
Climate change, urbanization, and optimal long-term floodplain protection
NASA Astrophysics Data System (ADS)
Zhu, Tingju; Lund, Jay R.; Jenkins, Marion W.; Marques, Guilherme F.; Ritzema, Randall S.
2007-06-01
This paper examines levee-protected floodplains and economic aspects of adaptation to increasing long-term flood risk due to urbanization and climate change. The lower American River floodplain in the Sacramento, California, metropolitan area is used as an illustration to explore the course of optimal floodplain protection decisions over long periods. A dynamic programming model is developed and suggests economically desirable adaptations for floodplain levee systems given simultaneous changes in flood climate and urban land values. Economic engineering optimization analyses of several climate change and urbanization scenarios are made. Sensitivity analyses consider assumptions about future values of floodplain land and damageable property along with the discount rate. Methodological insights and policy lessons are drawn from modeling results, reflecting the joint effects and relationships that climate, economic costs, and regional economic growth can have on floodplain levee planning decisions.
Sabel, Clive E; Hiscock, Rosemary; Asikainen, Arja; Bi, Jun; Depledge, Mike; van den Elshout, Sef; Friedrich, Rainer; Huang, Ganlin; Hurley, Fintan; Jantunen, Matti; Karakitsios, Spyros P; Keuken, Menno; Kingham, Simon; Kontoroupis, Periklis; Kuenzli, Nino; Liu, Miaomiao; Martuzzi, Marco; Morton, Katie; Mudu, Pierpaolo; Niittynen, Marjo; Perez, Laura; Sarigiannis, Denis; Stahl-Timmins, Will; Tobollik, Myriam; Tuomisto, Jouni; Willers, Saskia
2016-03-08
Climate change is a global threat to health and wellbeing. Here we provide findings of an international research project investigating the health and wellbeing impacts of policies to reduce greenhouse gas emissions in urban environments. Five European and two Chinese city authorities and partner academic organisations formed the project consortium. The methodology involved modelling the impact of adopted urban climate-change mitigation transport, buildings and energy policy scenarios, usually for the year 2020 and comparing them with business as usual (BAU) scenarios (where policies had not been adopted). Carbon dioxide emissions, health impacting exposures (air pollution, noise and physical activity), health (cardiovascular, respiratory, cancer and leukaemia) and wellbeing (including noise related wellbeing, overall wellbeing, economic wellbeing and inequalities) were modelled. The scenarios were developed from corresponding known levels in 2010 and pre-existing exposure response functions. Additionally there were literature reviews, three longitudinal observational studies and two cross sectional surveys. There are four key findings. Firstly introduction of electric cars may confer some small health benefits but it would be unwise for a city to invest in electric vehicles unless their power generation fuel mix generates fewer emissions than petrol and diesel. Second, adopting policies to reduce private car use may have benefits for carbon dioxide reduction and positive health impacts through reduced noise and increased physical activity. Third, the benefits of carbon dioxide reduction from increasing housing efficiency are likely to be minor and co-benefits for health and wellbeing are dependent on good air exchange. Fourthly, although heating dwellings by in-home biomass burning may reduce carbon dioxide emissions, consequences for health and wellbeing were negative with the technology in use in the cities studied. The climate-change reduction policies reduced CO2 emissions (the most common greenhouse gas) from cities but impact on global emissions of CO2 would be more limited due to some displacement of emissions. The health and wellbeing impacts varied and were often limited reflecting existing relatively high quality of life and environmental standards in most of the participating cities; the greatest potential for future health benefit occurs in less developed or developing countries.
Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China
NASA Astrophysics Data System (ADS)
Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.
2014-12-01
China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.
Effect of Climate Change and Transaction Costs on Performance of a Groundwater Market
NASA Astrophysics Data System (ADS)
Khan, H. F.; Brown, C.
2017-12-01
With surface water resources becoming increasingly stressed, groundwater extraction, much of it unmanaged, has increased globally. Incentive-based policies, such as the cap-and-trade system, have been shown to be useful in the context of groundwater management. Previous research has shown that optimal groundwater markets (i.e. incentives-based policy) outperforms water quotas (command and control policy) with regards to both economic and environmental outcomes. In this work, we investigate whether these advantages of a water market over water quotas hold when assumptions of perfect information are violated due to climate change and hydrogeologic heterogeneity. We also assess whether the benefits of a cap-and-trade system outweigh the costs of implementing it, and how changes in future climate affect the performance a cap-and trade system. We use a sub-basin of the Republican River Basin, overlying the Ogallala aquifer in the High Plains of the United States, as a case study. We develop a multi-agent system model where individual benefits of each self-interested agent are maximized subject to bounds on irrigation requirements and water use permits. This economic model is coupled with a calibrated physically based groundwater model for the study region. Results show that permitting farmers to trade results in increased economic benefits and reduced environmental violations. However, the benefits of trading are dependent on the total allocations and the resulting level of water demand. We quantify third party impacts and environmental externalities for different water allocations, and highlight the unequal distributional effects of uniform water allocations resulting in `winners' and `losers'. The study reveals that high transaction costs can reduce the efficiency of the cap-and-trade system even below that of water quotas. Future changes in climate are shown to significantly influence the dynamics of the water market, and emphasize the need to address climate sensitivity in the setup of water markets.
Quantifying the economic risks of climate change
NASA Astrophysics Data System (ADS)
Diaz, Delavane; Moore, Frances
2017-11-01
Understanding the value of reducing greenhouse-gas emissions matters for policy decisions and climate risk management, but quantification is challenging because of the complex interactions and uncertainties in the Earth and human systems, as well as normative ethical considerations. Current modelling approaches use damage functions to parameterize a simplified relationship between climate variables, such as temperature change, and economic losses. Here we review and synthesize the limitations of these damage functions and describe how incorporating impacts, adaptation and vulnerability research advances and empirical findings could substantially improve damage modelling and the robustness of social cost of carbon values produced. We discuss the opportunities and challenges associated with integrating these research advances into cost-benefit integrated assessment models, with guidance for future work.
Enhancements to an Agriculture-land Modeling System - FEST-C and Its Applications
The Fertilizer Emission Scenario Tool for CMAQ (FEST-C) system was originally developed to simulate daily fertilizer application information using the Environmental Policy Integrated Climate (EPIC) model across any defined CMAQ conterminous United States (U.S.) CMAQ domain and gr...
Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Lamontagne, Jonathan R.; Reed, Patrick M.; Link, Robert; Calvin, Katherine V.; Clarke, Leon E.; Edmonds, James A.
2018-03-01
An analytic scenario generation framework is developed based on the idea that the same climate outcome can result from very different socioeconomic and policy drivers. The framework builds on the Scenario Matrix Framework's abstraction of "challenges to mitigation" and "challenges to adaptation" to facilitate the flexible discovery of diverse and consequential scenarios. We combine visual and statistical techniques for interrogating a large factorial data set of 33,750 scenarios generated using the Global Change Assessment Model. We demonstrate how the analytic framework can aid in identifying which scenario assumptions are most tied to user-specified measures for policy relevant outcomes of interest, specifically for our example high or low mitigation costs. We show that the current approach for selecting reference scenarios can miss policy relevant scenario narratives that often emerge as hybrids of optimistic and pessimistic scenario assumptions. We also show that the same scenario assumption can be associated with both high and low mitigation costs depending on the climate outcome of interest and the mitigation policy context. In the illustrative example, we show how agricultural productivity, population growth, and economic growth are most predictive of the level of mitigation costs. Formulating policy relevant scenarios of deeply and broadly uncertain futures benefits from large ensemble-based exploration of quantitative measures of consequences. To this end, we have contributed a large database of climate change futures that can support "bottom-up" scenario generation techniques that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.
Evaluating synoptic systems in the CMIP5 climate models over the Australian region
NASA Astrophysics Data System (ADS)
Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.
2016-10-01
Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.
Jensen, Trine S; Jensen, Jørgen D; Hasler, Berit; Illerup, Jytte B; Andersen, Frits M
2007-01-01
Integrated modelling of the interaction between environmental pressure and economic development is a useful tool to evaluate environmental consequences of policy initiatives. However, the usefulness of such models is often restricted by the fact that these models only include a limited set of environmental impacts, which are often energy-related emissions. In order to evaluate the development in the overall environmental pressure correctly, these model systems must be extended. In this article an integrated macroeconomic model system of the Danish economy with environmental modules of energy related emissions is extended to include the agricultural contribution to climate change and acidification. Next to the energy sector, the agricultural sector is the most important contributor to these environmental themes and subsequently the extended model complex calculates more than 99% of the contribution to both climate change and acidification. Environmental sub-models are developed for agriculture-related emissions of CH(4), N(2)O and NH(3). Agricultural emission sources related to the production specific activity variables are mapped and emission dependent parameters are identified in order to calculate emission coefficients. The emission coefficients are linked to the economic activity variables of the Danish agricultural production. The model system is demonstrated by projections of agriculture-related emissions in Denmark under two alternative sets of assumptions: a baseline projection of the general economic development and a policy scenario for changes in the husbandry sector within the agricultural sector.
Evaluating European Climate Change Policy: An Ecological Justice Approach
ERIC Educational Resources Information Center
Muhovic-Dorsner, Kamala
2005-01-01
To date, the concept of ecological justice, when applied to international climate change policy, has largely focused on the North-South dichotomy and has yet to be extended to Central and Eastern European countries. This article argues that current formulations of climate change policy cannot address potential issues of ecological injustice to…
FACE-IT. A Science Gateway for Food Security Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montella, Raffaele; Kelly, David; Xiong, Wei
Progress in sustainability science is hindered by challenges in creating and managing complex data acquisition, processing, simulation, post-processing, and intercomparison pipelines. To address these challenges, we developed the Framework to Advance Climate, Economic, and Impact Investigations with Information Technology (FACE-IT) for crop and climate impact assessments. This integrated data processing and simulation framework enables data ingest from geospatial archives; data regridding, aggregation, and other processing prior to simulation; large-scale climate impact simulations with agricultural and other models, leveraging high-performance and cloud computing; and post-processing to produce aggregated yields and ensemble variables needed for statistics, for model intercomparison, and to connectmore » biophysical models to global and regional economic models. FACE-IT leverages the capabilities of the Globus Galaxies platform to enable the capture of workflows and outputs in well-defined, reusable, and comparable forms. We describe FACE-IT and applications within the Agricultural Model Intercomparison and Improvement Project and the Center for Robust Decision-making on Climate and Energy Policy.« less
An approach for assessing the sensitivity of floods to regional climate change
NASA Astrophysics Data System (ADS)
Hughes, James P.; Lettenmaier, Dennis P.; Wood, Eric F.
1992-06-01
A high visibility afforded climate change issues is recent years has led to conflicts between and among decision makers and scientists. Decision makers inevitably feel pressure to assess the effect of climate change on the public welfare, while most climate modelers are, to a greater or lesser degree, concerned about the extent to which known inaccuracies in their models limit or preclude the use of modeling results for policy making. The water resources sector affords a good example of the limitations of the use of alternative climate scenarios derived from GCMs for decision making. GCM simulations of precipitation agree poorly between GCMs, and GCM predictions of runoff and evapotranspiration are even more uncertain. Further, water resources managers must be concerned about hydrologic extremes (floods and droughts) which are much more difficult to predict than ``average'' conditions. Most studies of the sensitivity of water resource systems and operating policies to climate change to data have been based on simple perturbations of historic hydroclimatological time series to reflect the difference between large area GCM simulations for an altered climate (e.g., CO2 doubling) and a GCM simulation of present climate. Such approaches are especially limited for assessment of the sensitivity of water resources systems under extreme conditions, conditions, since the distribution of storm inter-arrival times, for instance, is kept identical to that observed in the historic past. Further, such approaches have generally been based on the difference between the GCM altered and present climates for a single grid cell, primarily because the GCM spatial scale is often much larger than the scale at which climate interpretations are desired. The use of single grid cell GCM results is considered inadvisable by many GCM modelers, who feel the spatial scale for which interpretation of GCM results is most reasonable is on the order of several grid cells. In this paper, we demonstrate an alternative approach to assessing the implications of altered climates as predicted by GCMs for extreme (flooding) conditions. The approach is based on the characterization of regional atmospheric circulation patterns through a weather typing procedure, from which a stochastic model of the weather class occurrences is formulated. Weather types are identified through a CART (Classification and Regression Tree) approach. Precipitation occurence/non-occurence at multiple precipitation station is then predicted through a second stage stochastic model. Precipitation amounts are predicted conditional on the weather class identified from the large area circulation information.
Air quality co-benefits of subnational carbon policies
Thompson, Tammy M.; Rausch, Sebastian; Saari, Rebecca K.; ...
2016-05-18
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy,more » and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. Implications: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.« less
Air quality co-benefits of subnational carbon policies.
Thompson, Tammy M; Rausch, Sebastian; Saari, Rebecca K; Selin, Noelle E
2016-10-01
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.
Detecting failure of climate predictions
Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve
2016-01-01
The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty1, 2. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies3. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.
NASA Astrophysics Data System (ADS)
Webber, S.; MacDonald, G. M.
2016-12-01
The last decades have seen scholars argue for a greater integration of science and decision-making in order to more effectively respond to climate change. It has been suggested that overcoming the gap between science, on the one hand, and policy-making and management, on the other, requires building bridges through methods of co-production, creating actionable science, or through boundary organizations. In this paper, we review attempts at co-production for policy-making and management in the context of climate change adaptation in California. Building on field research, including numerous interviews conducted with scientists and decision-makers who are co-producers of adaptation projects, we make three arguments. First, we show that an emphasis on co-production and science-informed climate change adaptation decision-making has bolstered a contract-oriented, and decentralized network-based model of producing climate science. Second, reviewing successes and failures in co-production - as reported in interviews - indicates that it is principally in cases of neatly defined, and spatially and temporarily narrow decision-making contexts, and with highly motivated decision-makers, that climate science is used. Finally, we suggest that the ideas of co-production and actionable science may have increased the institutional and organizational burden at the science-decision interface, lengthening the boundary-organization-chain rather than necessarily facilitating adaptive policy-making and management.
NASA Astrophysics Data System (ADS)
Wilder, M.; Varady, R. G.; Pineda Pablos, N.; Browning-Aiken, A.; Diaz Caravantes, R.; Garfin, G.
2007-05-01
Since 1992, Mexico has developed a new set of water management institutions to usher in a ‘new culture of water’ that focuses on decentralized governance and formalized participation of local water users. Reforms to the national water legislation in April 2004 regionalized the governance of water and highlighted the importance of river basin councils as a mechanism for integrated management of major watersheds across Mexico. As a result of the dramatic national water policy reforms, water service delivery in Mexico has been decentralized to the state and municipal level, resulting in a critical new role for municipal governments charged with this important function. A network of river basin councils accompanied and sub-basin councils has been developed to undertake watershed planning. Decentralization and local participation policies embody numerous significant goals and promises, including greater efficiency, more financial accountability, fostering the beginnings of a sense of local stewardship of precious resources, and enhanced environmental sustainability. This paper examines the implications of municipalized water services and emerging river basin councils for utilization of climate knowledge and climate science. We analyze whether these changes open new windows of opportunity for meaningful use of climate science (e.g., forecasts; models). How effectively are municipal water managers and river basin councils utilizing climate knowledge and climate science, and for what purposes? Are there ways to improve the fit between the needs of water managers and river basin councils and the science that is currently available? What is the role of local participation in water policy making in urban settings and river basin councils? The study found overall that the promises and potential for effective utilization of climate science/knowledge to enhance sustainability exists, but is not yet being adequately realized. Binational efforts to develop climate science and information-sharing mechanisms across the Sonora/Arizona border and to work with local communities and stakeholders to improve the fit between science and social stakeholders’ needs should help realize the potential offered by Mexico’s emerging water management institutions and enhance sustainable policy making.
Regaining momentum for international climate policy beyond Copenhagen
2010-01-01
The 'Copenhagen Accord' fails to deliver the political framework for a fair, ambitious and legally-binding international climate agreement beyond 2012. The current climate policy regime dynamics are insufficient to reflect the realities of topical complexity, actor coalitions, as well as financial, legal and institutional challenges in the light of extreme time constraints to avoid 'dangerous' climate change of more than 2°C. In this paper we analyze these stumbling blocks for international climate policy and discuss alternatives in order to regain momentum for future negotiations. PMID:20525341
Australians' views on carbon pricing before and after the 2013 federal election
NASA Astrophysics Data System (ADS)
Dreyer, Stacia J.; Walker, Iain; McCoy, Shannon K.; Teisl, Mario F.
2015-12-01
As climate policies change through the legislative process, public attitudes towards them may change as well. Therefore, it is important to assess how people accept and support controversial climate policies as the policies change over time. Policy acceptance is a positive evaluation of, or attitude towards, an existing policy; policy support adds an active behavioural component. Acceptance does not necessarily lead to support. We conducted a national survey of Australian residents to investigate acceptance of, and support for, the Australian carbon pricing policy before and after the 2013 federal election, and how perceptions of the policy, economic ideology, and voting behaviour affect acceptance and support. We found acceptance and support were stable across the election period, which was surprising given that climate policy was highly contentious during the election. Policy acceptance was higher than policy support at both times and acceptance was a necessary but insufficient condition of support. We conclude that acceptance is an important process through which perceptions of the policy and economic ideology influence support. Therefore, future climate policy research needs to distinguish between acceptance and support to better understand this process, and to better measure these concepts.
NASA Astrophysics Data System (ADS)
Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.
2012-04-01
Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.
Coupling Climate Models and Forward-Looking Economic Models
NASA Astrophysics Data System (ADS)
Judd, K.; Brock, W. A.
2010-12-01
Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward-looking economic modules, and the initial models will help guide the construction of more refined models that can effectively use more powerful computational environments to analyze economic policies related to climate change. REFERENCES Brock, W., Xepapadeas, A., 2010, “An Integration of Simple Dynamic Energy Balance Climate Models and Ramsey Growth Models,” Department of Economics, University of Wisconsin, Madison, and University of Athens. Golub, A., Hertel, T., etal., 2009, “The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry,” RESOURCE AND ENERGY ECONOMICS, 31, 299-319. Judd, K., 1992, “Projection methods for solving aggregate growth models,” JOURNAL OF ECONOMIC THEORY, 58: 410-52. Judd, K., 1998, NUMERICAL METHODS IN ECONOMICS, MIT Press, Cambridge, Mass. Nordhaus, W., 2007, A QUESTION OF BALANCE: ECONOMIC MODELS OF CLIMATE CHANGE, Yale University Press, New Haven, CT. North, G., R., Cahalan, R., Coakely, J., 1981, “Energy balance climate models,” REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, Vol. 19, No. 1, 91-121, February Wu, W., North, G. R., 2007, “Thermal decay modes of a 2-D energy balance climate model,” TELLUS, 59A, 618-626.
The Impact of Climate Change on the United States Economy
NASA Astrophysics Data System (ADS)
Mendelsohn, Robert; Neumann, James E.
2004-08-01
Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.
Climate policy: Risk-averse governments
NASA Astrophysics Data System (ADS)
Harris, Paul G.
2014-04-01
Relative to the scale of the problem, climate policies worldwide have failed. Now research explains why policy innovations are often inadequate, routinely reflecting the aversion of policymakers to the risk of failure.
Ralph J. Alig
2010-01-01
This report is a compilation of six briefing papers based on literature reviews and syntheses, prepared for U.S. Department of Agriculture, Forest Service policy analysts and decisionmakers about specific questions pertaining to climate change. The main topics addressed here are economic effects on the forest sector at the national and global scales, costs of forest...
The future of the North American carbon cycle - projections and associated climate change
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Chatterjee, A.; Cooley, S. R.; Dunne, J. P.; Hoffman, F. M.; Luo, Y.; Moore, D. J.; Ohrel, S. B.; Poulter, B.; Ricciuto, D. M.; Tzortziou, M.; Walker, A. P.; Mayes, M. A.
2016-12-01
Approximately half of anthropogenic emissions from the burning of fossil fuels is taken up annually by carbon sinks on the land and in the oceans. However, there are key uncertainties in how carbon uptake by terrestrial, ocean, and freshwater systems will respond to, and interact with, climate into the future. Here, we outline the current state of understanding on the future carbon budget of these major reservoirs within North America and the globe. We examine the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. Progress has been made at identifying vulnerabilities in carbon pools, including high-latitude permafrost, peatlands, freshwater and coastal wetlands, and ecosystems subject to disturbance events, such as insects, fire and drought. However, many of these processes/pools are not well represented in current models, and model intercomparison studies have shown a range in carbon cycle response to factors such as climate and CO2 fertilization. Furthermore, as model complexity increases, understanding the drivers of model spread becomes increasingly more difficult. As a result, uncertainties in future carbon cycle projections are large. It is also uncertain how management decisions and policies will impact future carbon stocks and flows. In order to guide policy, a better understanding of the risk and magnitude of North American carbon cycle changes is needed. This requires that future carbon cycle projections be conditioned on current observations and be reported with sufficient confidence and fully specified uncertainties.
Feldman, Lauren; Hart, P Sol
2018-03-01
Using a national sample, this study experimentally tests the effects of news visuals and texts that emphasize either the causes and impacts of climate change or actions that can be taken to address climate change. We test the effects of variations in text and imagery on discrete emotions (i.e., hope, fear, and anger) and, indirectly, on support for climate mitigation policies. Political ideology is examined as a moderator. The findings indicate that news images and texts that focus on climate-oriented actions can increase hope and, in the case of texts, decrease fear and anger, and these effects generally hold across the ideological spectrum. In turn, the influence of emotions on policy support depends on ideology: Hope and fear increase support for climate policies for all ideological groups but particularly conservatives, whereas anger polarizes the opinions of liberals and conservatives. Implications for climate change communication that appeals to emotions are discussed. © 2017 Society for Risk Analysis.
Advancing coupled human-earth system models: The integrated Earth System Model Project
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.
2012-12-01
As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems. While these initial experiments have relied on offline coupling methodologies, current and future experiments are utilizing a single model code developed to integrate GCAM into CESM as a component of the land model. This unique capability facilitates many new applications to scientific questions arising from human and biogeophysical systems interaction. Future developments will further integrate the energy system decisions and greenhouse gas emissions as simulated in GCAM with the appropriate climate and land system components of CESM.
Possible future changes in extreme events over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Scott, Jeffery
2013-04-01
In this study, we investigate possible future climate change over Northern Eurasia and its impact on extreme events. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. Furthermore, severe permafrost degradation associated with climate change could result in peatlands releasing large amounts of carbon dioxide and methane. Meanwhile, changes in the frequency and magnitude of extreme events, such as extreme precipitation, heat waves or frost days are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response and changes in extreme events. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. In this study, regional change is investigated using the MIT IGSM-CAM framework that links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). New modules were developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations presented in this paper were carried out for two emission scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization, which are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol forcing used in the simulations within the IGSM-CAM framework provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. With these simulations, we investigate the role of emissions scenarios (climate policies), the global climate response (climate sensitivity) and natural variability (initial conditions) on the uncertainty in future climate changes over Northern Eurasia. A particular emphasis is made on future changes in extreme events, including frost days, extreme summer temperature and extreme summer and winter precipitation.
AgMIP 1.5°C Assessment: Mitigation and Adaptation at Coordinated Global and Regional Scales
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2016-12-01
The AgMIP 1.5°C Coordinated Global and Regional Integrated Assessments of Climate Change and Food Security (AgMIP 1.5 CGRA) is linking site-based crop and livestock models with similar models run on global grids, and then links these biophysical components with economics models and nutrition metrics at regional and global scales. The AgMIP 1.5 CGRA assessment brings together experts in climate, crop, livestock, economics, nutrition, and food security to define the 1.5°C Protocols and guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including socioeconomic development (Shared Socioeconomic Pathways), greenhouse gas concentrations (Representative Concentration Pathways), and specific pathways of agricultural sector development (Representative Agricultural Pathways). Shared Climate Policy Assumptions will be extended to provide additional agricultural detail on mitigation and adaptation strategies. The multi-model, multi-disciplinary, multi-scale integrated assessment framework is using scenarios of economic development, adaptation, mitigation, food policy, and food security. These coordinated assessments are grounded in the expertise of AgMIP partners around the world, leading to more consistent results and messages for stakeholders, policymakers, and the scientific community. The early inclusion of nutrition and food security experts has helped to ensure that assessment outputs include important metrics upon which investment and policy decisions may be based. The CGRA builds upon existing AgMIP research groups (e.g., the AgMIP Wheat Team and the AgMIP Global Gridded Crop Modeling Initiative; GGCMI) and regional programs (e.g., AgMIP Regional Teams in Sub-Saharan Africa and South Asia), with new protocols for cross-scale and cross-disciplinary linkages to ensure the propagation of expert judgment and consistent assumptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellwinckel, C.M.; West, Tristram O.; De La Torre Ugarte, D. G.
An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates.We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level.
NASA Technical Reports Server (NTRS)
Njoto, Sukrisno; Howe, Charles W.
1991-01-01
Study results indicate the likelihood of significant net damages from climate change, in particular damages from sea-level rise and higher temperatures that seem unlikely to be offset by favorable shifts in precipitation and carbon dioxide. Also indicated was the importance of better climate models, in particular models that can calculate climate change on a regional scale appropriate to policy-making. In spite of this potential for damage, there seems to be a low level of awareness and concern, probably caused by the higher priority given to economic growth and reinforced by the great uncertainty in the forecasts. The common property nature of global environment systems also leads to a feeling of helplessness on the part of country governments.
Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.
1998-01-01
Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.
NASA Astrophysics Data System (ADS)
Izard, Catherine Finlay
The electricity sector is responsible for producing 35% of US greenhouse gas (GHG) emissions. Estimates suggest that ideally, the electricity sector would be responsible for approximately 85% of emissions abatement associated with climate polices such as America's Clean Energy and Security Act (ACES). This is equivalent to ˜50% cumulative emissions reductions below projected cumulative business-as-usual (BAU) emissions. Achieving these levels of emissions reductions will require dramatic changes in the US electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society is likely to have to maintain a high build rate of new capacity for decades. Unfortunately, the inertia in the electricity sector means that there may be physical constraints to the rate at which new electricity generating capacity can be built. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical---the longer the U.S. waits to start reducing GHG emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. There is a real, and thus far unexplored, possibility that the U.S. could delay climate change policy implementation for long enough that it becomes infeasible to attain the necessary rate of turnover in the electricity sector. This dissertation investigates the relationship between climate policy timing and infrastructure turnover in the electricity sector. The goal of the dissertation is to answer the question: How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? Using the Infrastructure Flow Assessment Model, which was developed in this work, this dissertation shows that delaying climate change policy increases average retirements rates by 200-400%, increases average construction rates by 25-85% and increases maximum construction rates by 50-300%. It also shows that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. In order for the electricity sector to reduce emissions to a level required by ACES while limiting construction rates to within achievable levels, it is necessary to start immediately. Delaying the process of decarbonization means that more abatement will be necessary from other sectors or geoengineering. By not starting emissions abatement early, therefore, the US forfeits its most accessible abatement potential and increases the challenge of climate change mitigation unnecessarily.
A new decision sciences for complex systems.
Lempert, Robert J
2002-05-14
Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an approach to decision-making under conditions of deep uncertainty that is ideally suited to applying complex systems to policy analysis. The article demonstrates the approach on the policy problem of global climate change, with a particular focus on the role of technology policies in a robust, adaptive strategy for greenhouse gas abatement.
The structure of disaster resilience: a framework for simulations and policy recommendations
NASA Astrophysics Data System (ADS)
Edwards, J. H. Y.
2015-04-01
In this era of rapid climate change there is an urgent need for interdisciplinary collaboration and understanding in the study of what determines resistance to disasters and recovery speed. This paper is an economist's contribution to that effort. It traces the entrance of the word "resilience" from ecology into the social science literature on disasters, provides a formal economic definition of resilience that can be used in mathematical modeling, incorporates this definition into a multilevel model that suggests appropriate policy roles and targets at each level, and draws on the recent empirical literature on the economics of disaster, searching for policy handles that can stimulate higher resilience. On the whole it provides a framework for simulations and for formulating disaster resilience policies.
The structure of disaster resilience: a framework for simulations and policy recommendations
NASA Astrophysics Data System (ADS)
Edwards, J. H. Y.
2014-09-01
In this era of rapid climate change there is an urgent need for interdisciplinary collaboration and understanding in the study of what determines resistance to disasters and recovery speed. This paper is an economist's contribution to that effort. It traces the entrance of the word "resilience" from ecology into the social science literature on disasters, provides a formal economic definition of resilience that can be used in mathematical modeling, incorporates this definition into a multilevel model that suggests appropriate policy roles and targets at each level, and draws on the recent empirical literature on the economics of disaster searching for policy handles that can stimulate higher resilience. On the whole it provides a framework for simulations and for formulating disaster resilience policies.
2017-01-01
We use an experiment to examine whether the way in which climate change is framed affects individuals’ beliefs about its importance as a policy issue. We employ frames that emphasize national security, human rights, and environmental importance about the consequences of climate change. We find no evidence that issue frames have an overall effect on opinions about the importance of climate change policy. We do find some evidence that the effect of issue frames varies across ideological and partisan groups. Most notably, issue frames can lead Republicans and those on the political right to view climate change policy as less important. We conclude by discussing our findings relative to extant literature and considering the implications of our findings for those who seek to address the issue of climate change. PMID:28727842
Singh, Shane P; Swanson, Meili
2017-01-01
We use an experiment to examine whether the way in which climate change is framed affects individuals' beliefs about its importance as a policy issue. We employ frames that emphasize national security, human rights, and environmental importance about the consequences of climate change. We find no evidence that issue frames have an overall effect on opinions about the importance of climate change policy. We do find some evidence that the effect of issue frames varies across ideological and partisan groups. Most notably, issue frames can lead Republicans and those on the political right to view climate change policy as less important. We conclude by discussing our findings relative to extant literature and considering the implications of our findings for those who seek to address the issue of climate change.
NASA Astrophysics Data System (ADS)
Arnott, J. C.; Katzenberger, J.
2015-12-01
The impacts of global climate change to regional scales are complex and cut across sectorial and jurisdictional boundaries, and therefore, a unique enterprise of collaboration between scientists, resource managers, and other stakeholders for development of adequate response strategies is required. Such collaboration has been exhibited between stakeholders, researchers, and a boundary organization—the Aspen Global Change Institute—since 2005 in assessing impacts and crafting policies in response with regard to climate change impacts in the mountain watershed surrounding Aspen, CO. A series of structured stakeholder interviews and town hall sessions, impact assessment reports, and intensive collaboration between various information providers and user groups has set the stage for development of both mitigation of and adaptation to climate change impacts. The most recent example of this has included the use of global scale climate model output to inform the development of resiliency strategies in response to extreme precipitation projections. The use of this kind of resource has been considered in a variety of decision-making contexts and has included the development of region- and decision-relevant qualitative scenarios that make use of quantitative model-based information. Results from this line of work that include feedback from actual users', a boundary organization, and researchers' perspectives will be reported along with examples of policy and implementation results.
Future Climate Impacts on Crop Water Demand and Groundwater Longevity in Agricultural Regions
NASA Astrophysics Data System (ADS)
Russo, T. A.; Sahoo, S.; Elliott, J. W.; Foster, I.
2016-12-01
Improving groundwater management practices under future drought conditions in agricultural regions requires three steps: 1) estimating the impacts of climate and drought on crop water demand, 2) projecting groundwater availability given climate and demand forcing, and 3) using this information to develop climate-smart policy and water use practices. We present an innovative combination of models to address the first two steps, and inform the third. Crop water demand was simulated using biophysical crop models forced by multiple climate models and climate scenarios, with one case simulating climate adaptation (e.g. modify planting or harvest time) and another without adaptation. These scenarios were intended to represent a range of drought projections and farm management responses. Nexty, we used projected climate conditions and simulated water demand across the United States as inputs to a novel machine learning-based groundwater model. The model was applied to major agricultural regions relying on the High Plains and Mississippi Alluvial aquifer systems in the US. The groundwater model integrates input data preprocessed using single spectrum analysis, mutual information, and a genetic algorithm, with an artificial neural network model. Model calibration and test results indicate low errors over the 33 year model run, and strong correlations to groundwater levels in hundreds of wells across each aquifer. Model results include a range of projected groundwater level changes from the present to 2050, and in some regions, identification and timeframe of aquifer depletion. These results quantify aquifer longevity under climate and crop scenarios, and provide decision makers with the data needed to compare scenarios of crop water demand, crop yield, and groundwater response, as they aim to balance water sustainability with food security.
The foundation for climate services in Belgium: CORDEX.be
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Termonia, Piet; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick
2017-04-01
According to the Global Framework for Climate Services (GFCS) there are four pillars required to build climate services. As the first step towards the realization of a climate center in Belgium, the national project CORDEX.be focused on one pillar: research modelling and projection. By bringing together the Belgian climate and impact modeling research of nine groups a data-driven capacity development and community building in Belgium based on interactions with users. The project is based on the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project where ".be" indicates it will go beyond for Belgium. Our national effort links to the regional climate initiatives through the contribution of multiple high-resolution climate simulations over Europe following the EURO-CORDEX guidelines. Additionally the same climate simulations were repeated at convection-permitting resolutions over Belgium (3 to 5 km). These were used to drive different local impact models to investigate the impact of climate change on urban effects, storm surges and waves, crop production and changes in emissions from vegetation. Akin to international frameworks such as CMIP and CORDEX a multi-model approach is adopted allowing for uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. However, due to the lack of a large set of high resolution model runs, a combination of all available climate information is supplemented with the statistical downscaling approach. The organization of the project, together with its main results will be outlined. The proposed coordination framework could serve as a demonstration case for regions or countries where the climate-research capacity is present but a structure is required to assemble it coherently. Based on interactions and feedback with stakeholders different applications are planned, demonstrating the use of the climate data.
Assessment of Climate Suitability of Maize in South Korea
NASA Astrophysics Data System (ADS)
Hyun, S.; Choi, D.; Seo, B.
2017-12-01
Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.
National climate policies across Europe and their impacts on cities strategies.
Heidrich, O; Reckien, D; Olazabal, M; Foley, A; Salvia, M; de Gregorio Hurtado, S; Orru, H; Flacke, J; Geneletti, D; Pietrapertosa, F; Hamann, J J-P; Tiwary, A; Feliu, E; Dawson, R J
2016-03-01
Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.
2015-12-01
Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.
NASA Astrophysics Data System (ADS)
Klein, J. A.; Hopping, K. A.; Yeh, E.; Hu, J.; Nyima, Y.; Boone, R.; Galvin, K.; Kang, S.; Ojima, D. S.
2010-12-01
Pastoralists on the Tibetan Plateau are a marginalized people living in an extreme environment and may be especially vulnerable as the system approaches critical thresholds. In Tibet, temperatures are increasing several times more than the global average while the frequency and severity of severe snowstorms is predicted to increase. Pastoralists are also experiencing reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that include a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events within the context of changing natural resource policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika). We established the experiment in 2008 within the Tibet Autonomous Region (4,870 m) and are monitoring microclimate, vegetation, nutrient availability, carbon fluxes and stable isotopes. We are investigating the sensitivity of the system, whether it is likely to cross critical thresholds, and how resilient this system may be to predicted climate and land use changes. Semi-structured interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climatic and ecological change and vulnerability to snow disasters. To integrate our ecological and social findings, we are coupling an ecosystem model to an agent-based pastoral household model. Our results from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant species and primary grazing resource, is vulnerable to warming. Snow additions can partially mediate this effect. Herders throughout this region share common knowledge about both climatic and ecological changes, but appear to be more closely attuned to ecological shifts than to gradual climate changes. Herder perceptions about climate trends often contradict local weather station data, but herders tend to be in strong agreement that grassland health has declined. These results suggest that rangeland degradation has occurred, and that climate warming may be one driver responsible for these changes. While additional snow may improve ecological conditions, the warming-induced degradation may make the social-ecological system more vulnerable to large snowstorm events. Our findings suggest that climate adaptation strategies should address the effects of both warming and extreme weather events and should also encourage land use policies that will maintain these systems under change. The vulnerability of ecosystems on the roof of the world has implications for the 1x109 people living downstream and for feedbacks to the Earth’s climate system.
Global Warming Denial: The Human Brain on Extremes
NASA Astrophysics Data System (ADS)
Marrouch, N.; Johnson, B. T.; Slawinska, J. M.
2016-12-01
Future assessments of climate change rely on multi-model intercomparisons, and projections of the extreme events frequency are of particular interest as associated with significant economic costs and social threats. Notably, systematically simulated increases in the number of extreme weather events agree well with observational data over the last decade. At the same time, as the climate grows more volatile, widespread denial of climate change and its anthropocentric causes continues to proliferate (based on nationally representative U.S. polls). Simultaneous increases in both high-impact exposure and its denial is in stark contrast with our knowledge of socio-natural dynamics and its models. Disentangling this paradox requires an understanding of the origins of global warming denial at an individual level, and how subsequently it propagates across social networks of many scales, shaping global policies. However, as the real world and its dynamical models are complex (high-dimensional and coupled), separating the particular feedback of interest remains a challenge. Here, we demonstrate this feedback in a controlled experiment, where increasing unpredictability using helplessness-training paradigms induces changes in global warming denial, and the endorsement of conservative ideology. We explain these results in the context of evolutionary theory framing self-deception and denial as remnants of evolutionary processes that shaped and facilitated the survival of the human species. Further we link these findings to changes in neural and higher-level cognitive processes in response to unpredictable stimuli. We argue that climate change denial is an example of an extreme belief system that carries the potential to threaten the wellbeing of both humans and other species alike. It is therefore crucial to better quantify climate denial using social informatics tools that provide the means to improve its representations in coupled socio-geophysical models to mitigate its effects on global and local policies.
NASA Astrophysics Data System (ADS)
MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.
2013-12-01
Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.
Climate change and sustainable development: realizing the opportunity.
Robinson, John; Bradley, Mike; Busby, Peter; Connor, Denis; Murray, Anne; Sampson, Bruce; Soper, Wayne
2006-02-01
Manifold linkages exist between climate change and sustainable development. Although these are starting to receive attention in the climate exchange literature, the focus has typically been on examining sustainable development through a climate change lens, rather than vice versa. And there has been little systematic examination of how these linkages may be fostered in practice. This paper examines climate change through a sustainable development lens. To illustrate how this might change the approach to climate change issues, it reports on the findings of a panel of business, local government, and academic representatives in British Columbia, Canada, who were appointed to advise the provincial government on climate change policy. The panel found that sustainable development may offer a significantly more fruitful way to pursue climate policy goals than climate policy itself. The paper discusses subsequent climate change developments in the province and makes suggestions as how best to pursue such a sustainability approach in British Columbia and other jurisdictions.
Readying health services for climate change: a policy framework for regional development.
Bell, Erica
2011-05-01
Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.
Readying Health Services for Climate Change: A Policy Framework for Regional Development
2011-01-01
Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953
Climate change impacts on US agriculture and forestry: benefits of global climate stabilization
NASA Astrophysics Data System (ADS)
Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent
2015-09-01
Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.
2011-01-01
Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880
Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M
2011-08-15
Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity.
USDA Collaboration with EPA/ORD
For more than seven years, EPA scientists have been leveraging the USDA Environmental Policy Integrated Climate (EPIC) model to reduce uncertainty in our estimates of agricultural emissions, ambient PM concentrations and subsequent human exposure risk. This presentation summariz...
Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu
2016-11-15
This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.
2007-09-01
Much of the nearly $2 billion annual climate change research budget supports grants from the Department of Energy (DOE), National Aeronautics and...requirements, policies, and practices for external climate change researchers funded by DOE, NASA, NOAA, and NSF; and (3) the extent to which these agencies...foster data sharing. GAO examined requirements, policies, and practices and surveyed the 64 officials managing climate change grants at these agencies
Modeling Soil Organic Carbon in a Semiarid Region of Kazakhstan Using EPIC
USDA-ARS?s Scientific Manuscript database
Inappropriate land use and soil mismanagement produced wide-scale soil and environmental degradation to the short-grass steppe ecosystem in the semiarid region of Kazakhstan. We used the Environmental Policy Integrated Climate (EPIC) model to study long-term impacts of land use changes and soil mana...
Climate change on the Colorado River: a method to search for robust management strategies
NASA Astrophysics Data System (ADS)
Keefe, R.; Fischbach, J. R.
2010-12-01
The Colorado River is a principal source of water for the seven Basin States, providing approximately 16.5 maf per year to users in the southwestern United States and Mexico. Though the dynamics of the river ensure Upper Basin users a reliable supply of water, the three Lower Basin states (California, Nevada, and Arizona) are in danger of delivery interruptions as Upper Basin demand increases and climate change threatens to reduce future streamflows. In light of the recent drought and uncertain effects of climate change on Colorado River flows, we evaluate the performance of a suite of policies modeled after the shortage sharing agreement adopted in December 2007 by the Department of the Interior. We build on the current literature by using a simplified model of the Lower Colorado River to consider future streamflow scenarios given climate change uncertainty. We also generate different scenarios of parametric consumptive use growth in the Upper Basin and evaluate alternate management strategies in light of these uncertainties. Uncertainty associated with climate change is represented with a multi-model ensemble from the literature, using a nearest neighbor perturbation to increase the size of the ensemble. We use Robust Decision Making to compare near-term or long-term management strategies across an ensemble of plausible future scenarios with the goal of identifying one or more approaches that are robust to alternate assumptions about the future. This method entails using search algorithms to quantitatively identify vulnerabilities that may threaten a given strategy (including the current operating policy) and characterize key tradeoffs between strategies under different scenarios.
NASA Astrophysics Data System (ADS)
Gordon, K.; Houser, T.; Kopp, R. E., III; Hsiang, S. M.; Larsen, K.; Jina, A.; Delgado, M.; Muir-Wood, R.; Rasmussen, D.; Rising, J.; Mastrandrea, M.; Wilson, P. S.
2014-12-01
The United States faces a range of economic risks from global climate change - from increased flooding and storm damage, to climate-driven changes in crop yields and labor productivity, to heat-related strains on energy and public health systems. The Risky Business Project commissioned a groundbreaking new analysis of these and other climate risks by region of the country and sector of the economy. The American Climate Prospectus (ACP) links state-of-the-art climate models with econometric research of human responses to climate variability and cutting edge private sector risk assessment tools, the ACP offers decision-makers a data driven assessment of the specific risks they face. We describe the challenge, methods, findings, and policy implications of the national risk analysis, with particular focus on methodological innovations and novel insights.
NASA Astrophysics Data System (ADS)
Swart, R. J.; Pagé, C.
2010-12-01
Until recently, the policy applications of Earth System Models in general and climate models in particular were focusing mainly on the potential future changes in the global and regional climate and attribution of observed changes to anthropogenic activities. Is climate change real? And if so, why do we have to worry about it? Following the broad acceptance of the reality of the risks by the majority of governments, particularly after the publication of IPCC’s 4th Assessment Report and the increasing number of observations of changes in ecological and socio-economic systems that are consistent with the observed climatic changes, governments, companies and other societal groups have started to evaluate their own vulnerability in more detail and to develop adaptation and mitigation strategies. After an early focus on the most vulnerable developing countries, recently, an increasing number of industrialized countries have embarked on the design of adaptation and mitigation plans, or on studies to evaluate the level of climate resilience of their development plans and projects. Which climate data are actually required to effectively support these activities? This paper reports on the efforts of the IS-ENES project, the infrastructure project of the European Network for Earth System Modeling, to address this question. How do we define user needs and can the existing gap between the climate modeling and impact research communities be bridged in support of the ENES long-term strategy? In contrast from the climate modeling community, which has a relatively long history of collaboration facilitated by a relatively uniform subject matter, commonly agreed definitions of key terminology and some level of harmonization of methods, the climate change impacts research community is very diverse and fragmented, using a wide variety of data sources, methods and tools. An additional complicating factor is that researchers working on adaptation usually closely collaborate with non-scientific stakeholders in government, civil society and the private sector, in a context which is different in many European countries. In the IS-ENES effort, a dialogue is set up between the communities in Europe, building on various existing research networks in the area of climate change impacts, vulnerability and adaptation. Generally, the data needs have not been well articulated. If asked, people working on impacts and adaptation routinely seem to ask for data with the highest possible resolution. However, in reality for many impact and adaptation applications this is not needed, and the large resulting data sets may exceed the analytical capacity of the impact researchers. For impact analysis often various types of climate indices, derived from primary climate model output variables, are required, including indices for extremes and in probabilistic format. Rather than making output from climate modeling generically available, e.g. through a climate service e-portal, context-specific tailoring of information for specific applications is important for effective use. This may require some level of interaction between the users and the data providers, dependent on the specific questions to be addressed.
NASA Astrophysics Data System (ADS)
Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.
2014-12-01
Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are made unavailable—resulting in a large increase in the nuclear fraction of the mix.
Energy Structure and Energy Security under Climate Mitigation Scenarios in China
Matsumoto, Ken’ichi
2015-01-01
This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094
"Going the Extra Mile in Downscaling: Why Downscaling is not ...
This presentation provides an example of doing additional work for preprocessing global climate model data for use in regional climate modeling simulations with the Weather Research and Forecasting (WRF) model. In this presentation, results from 15 months of downscaling the Community Earth System Model (CESM) were shown, both using the out-of-the-box downscaling of CESM and also with a modification to setting the inland lake temperatures. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
Scenarios of global mercury emissions from anthropogenic sources
NASA Astrophysics Data System (ADS)
Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.
2013-11-01
This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.
Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy
NASA Astrophysics Data System (ADS)
Neely, R.; Owens, M. A.
2011-12-01
The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-13
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
Climate Regulation Services of Natural and Managed Ecosystems of the Americas
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.; Costa, M. H.; Cuadra, S.; DeLucia, E. H.
2011-12-01
Terrestrial ecosystems regulate climate through both biogeochemical mechanisms (greenhouse gas regulation) and biophysical mechanisms (regulation of water and energy). Land management therefore provides some of the most effective strategies for climate change mitigation. However, most policies aimed at climate protection through land management, including UNFCCC mechanisms and bioenergy sustainability standards, account only for biogeochemical climate services. By ignoring biophysical climate regulation services that in some cases offset the biogeochemical regulation services, these policies run the risk of failing to advance the best climate solutions. Quantifying the combined value of biogeochemical and biophysical climate regulation services remains an important challenge. Here, we use a combination of data synthesis and modeling to quantify how biogeochemical and biophysical effects combine to shape the climate regulation value (CRV) of 18 natural and managed ecosystem types across the Western Hemisphere. Natural ecosystems generally had higher CRVs than agroecosystems, largely driven by differences in biogeochemical services. Biophysical contributions ranged from minimal to dominant. They were highly variable in space and across ecosystem types, and their relative importance varied strongly with the spatio-temporal scale of analysis. Our findings pertain to current efforts to protect climate through land management. Specifically, they reinforce the importance of protecting tropical forests and recent findings that the climatic effects of bioenergy production may be somewhat more positive than previously estimated. Given that biophysical effects in some cases dominate, ensuring effective climate protection through land management requires consideration of combined biogeochemical and biophysical climate regulation services. While quantification of ecosystem climate services is necessarily complex, our CRV index serves as one potential approach to measure the full climate services of terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Reis, S.; Fleming, L. E.; Beck, S.; Austen, M.; Morris, G.; White, M.; Taylor, T. J.; Orr, N.; Osborne, N. J.; Depledge, M.
2014-12-01
Conceptual models for problem framing in environmental (EIA) and health impact assessment (HIA) share similar concepts, but differ in their scientific or policy focus, methodologies and underlying causal chains, and the degree of complexity and scope. The Driver-Pressure-State-Impact-Response (DPSIR) framework used by the European Environment Agency, the OECD and others and the Integrated Science for Society and the Environment (ISSE) frameworks are widely applied in policy appraisal and impact assessments. While DPSIR is applied across different policy domains, the ISSE framework is used in Ecosystem Services assessments. The modified Driver-Pressure-State-Exposure-Effect-Action (DPSEEA) model extends DPSIR by separating exposure from effect, adding context as a modifier of effect, and susceptibility to exposures due to socio-economic, demographic or other determinants. While continuously evolving, the application of conceptual frameworks in policy appraisals mainly occurs within established discipline boundaries. However, drivers and environmental states, as well as policy measures and actions, affect both human and ecosystem receptors. Furthermore, unintended consequences of policy actions are seldom constrained within discipline or policy silos. Thus, an integrated conceptual model is needed, accounting for the full causal chain affecting human and ecosystem health in any assessment. We propose a novel model integrating HIA methods and ecosystem services in an attempt to operationalise the emerging concept of "Ecological Public Health." The conceptual approach of the ecosystem-enriched DPSEEA model ("eDPSEEA") has stimulated wide-spread debates and feedback. We will present eDPSEEA as a stakeholder engagement process and a conceptual model, using illustrative case studies of climate change as a starting point, not a complete solution, for the integration of human and ecosystem health impact assessment as a key challenge in a rapidly changing world. Rayner G and Lang T Ecological Public Health: Reshaping the Conditions for Good Health. Routledge Publishers; 2012.Reis S, Morris G, Fleming LE, Beck S, Taylor T, White M, Depledge MH, Steinle S, Sabel CE, Cowie H, Hurley F, Dick JMcP, Smith RI, Austen M (2013) Integrating Health & Environmental Impact Analysis. Public Health.
Sustainability Indicators for Coupled Human-Earth Systems
NASA Astrophysics Data System (ADS)
Motesharrei, S.; Rivas, J. R.; Kalnay, E.
2014-12-01
Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.
NASA Astrophysics Data System (ADS)
Randers, Jorgen; Golüke, Ulrich; Wenstøp, Fred; Wenstøp, Søren
2016-11-01
We have made a simple system dynamics model, ESCIMO (Earth System Climate Interpretable Model), which runs on a desktop computer in seconds and is able to reproduce the main output from more complex climate models. ESCIMO represents the main causal mechanisms at work in the Earth system and is able to reproduce the broad outline of climate history from 1850 to 2015. We have run many simulations with ESCIMO to 2100 and beyond. In this paper we present the effects of introducing in 2015 six possible global policy interventions that cost around USD 1000 billion per year - around 1 % of world GDP. We tentatively conclude (a) that these policy interventions can at most reduce the global mean surface temperature - GMST - by up to 0.5 °C in 2050 and up to 1.0 °C in 2100 relative to no intervention. The exception is injection of aerosols into the stratosphere, which can reduce the GMST by more than 1.0 °C in a decade but creates other serious problems. We also conclude (b) that relatively cheap human intervention can keep global warming in this century below +2 °C relative to preindustrial times. Finally, we conclude (c) that run-away warming is unlikely to occur in this century but is likely to occur in the longer run. The ensuing warming is slow, however. In ESCIMO, it takes several hundred years to lift the GMST to +3 °C above preindustrial times through gradual self-reinforcing melting of the permafrost. We call for research to test whether more complex climate models support our tentative conclusions from ESCIMO.
Immigration Policies and Mental Health Morbidity among Latinos: A State-Level Analysis
Hatzenbuehler, Mark L.; Prins, Seth; Flake, Morgan; Philbin, Morgan; Frazer, Somjen; Hagen, Daniel; Hirsch, Jennifer
2017-01-01
Rationale Despite abundant state-level policy activity in the U.S. related to immigration, no research has examined the mental health impact of the overall policy climate for Latinos, taking into account both inclusionary and exclusionary legislation. Objective To examine associations between the state-level policy climate related to immigration and mental health outcomes among Latinos. Methods We created a multi-sectoral policy climate index that included 14 policies in four domains (immigration, race/ethnicity, language, and agricultural worker protections). We then examined the relation of this policy climate index to two mental health outcomes (days of poor mental health and psychological distress) among Latinos from 31 states in the 2012 Behavioral Risk Factor Surveillance System (BRFSS), a population-based health survey of non-institutionalized individuals aged 18 years or older. Results Individuals in states with more exclusionary immigration policies had higher rates of poor mental health days than participants in states with less exclusionary policies (RR: 1.05, 95% CI: 1.00, 1.10). The association between state policies and the rate of poor mental health days was significantly higher among Latinos versus non-Latinos (RR for interaction term: 1.03, 95% CI: 1.01, 1.06). Furthermore, Latinos in states with more exclusionary policies had 1.14 (95% CI: 1.04, 1.25) times the rate of poor mental health days than Latinos in states with less exclusionary policies. Results were robust to individual- and state-level confounders. Sensitivity analyses indicated that results were specific to immigration policies, and not indicators of state political climate or of residential segregation. No relationship was observed between the immigration policy index and psychological distress. Conclusion These results suggest that restrictive immigration policies may be detrimental to the mental health of Latinos in the United States. PMID:28043019
Tools and Techniques for Basin-Scale Climate Change Assessment
NASA Astrophysics Data System (ADS)
Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.
2012-12-01
The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.
Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele
2014-01-01
The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.
Climate and southern Africa's water-energy-food nexus
NASA Astrophysics Data System (ADS)
Conway, Declan; van Garderen, Emma Archer; Deryng, Delphine; Dorling, Steve; Krueger, Tobias; Landman, Willem; Lankford, Bruce; Lebek, Karen; Osborn, Tim; Ringler, Claudia; Thurlow, James; Zhu, Tingju; Dalin, Carole
2015-09-01
In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven, for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and gross domestic product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose: the Southern African Development Community, the Southern African Power Pool and trade of agricultural products amounting to significant transfers of embedded water.
Climate-agriculture interactions and needs for policy making
NASA Astrophysics Data System (ADS)
Phillips, J. G.
2010-12-01
Research exploring climate change interactions with agriculture has evolved from simplistic “delta T” simulation experiments with crop models to work highlighting the importance of climate variability and extreme events, which characterized the negative impacts possible if no adaptation occurred. There soon followed consideration of socioeconomic factors allowing for adaptive strategies that are likely to mitigate the worst case outcomes originally projected. At the same time, improved understanding of biophysical feedbacks has led to a greater recognition of the role that agriculture plays in modifying climate, with a great deal of attention recently paid to strategies to enhance carbon sequestration in agricultural systems. Advances in models of biogeochemical cycling applied to agronomic systems have allowed for new insights into greenhouse gas emissions and sinks associated with current, conventional farming systems. Yet this work is still relatively simplistic in that it seldom addresses interactions between climate dynamics, adoption of mitigation strategies, and feedbacks to the climate system and the surrounding environment. In order for agricultural policy to be developed that provides incentives for appropriate adaptation and mitigation strategies over the next 50 years, a systems approach needs to be utilized that addresses feedbacks and interactions at field, farm and regional scales in a broader environmental context. Interactions between carbon and climate constraints on the one hand, and environmental impacts related to water, nutrient runoff, and pest control all imply a transformation of farming practices that is as of yet not well defined. Little attention has been paid to studying the implications of “alternative” farming strategies such as organic systems, intensive rotational grazing of livestock, or increases in the perennial component of farmscapes, all of which may be necessary responses to energy and other environmental constraints over the coming century, interacting with a changing climate. Examples of interactions that need further exploration include the degree to which increases in soil organic matter to enhance carbon sequestration will improve system resilience and help mitigate the effects of an increase in climate variability, and how we can optimize the role of below-ground microbial communities in methane and nitrous-oxide emissions and sinks as well as in nutrient cycling and plant-water relations. These and other key areas where agroecosystem research is needed to advance policy will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banner, Jay L.; Jackson, Charles S.; Yang, Zong-Liang
2010-09-01
Texas comprises the eastern portion of the Southwest region, where the convergence of climatological and geopolitical forces has the potential to put extreme stress on water resources. Geologic records indicate that Texas experienced large climate changes on millennial time scales in the past, and over the last thousand years, tree-ring records indicate that there were significant periods of drought in Texas. These droughts were of longer duration than the 1950s 'drought of record' that is commonly used in planning, and they occurred independently of human-induced global climate change. Although there has been a negligible net temperature increase in Texas overmore » the past century, temperatures have increased more significantly over the past three decades. Under essentially all climate model projections, Texas is susceptible to significant climate change in the future. Most projections for the 21st century show that with increasing atmospheric greenhouse gas concentrations, there will be an increase in temperatures across Texas and a shift to a more arid average climate. Studies agree that Texas will likely become significantly warmer and drier, yet the magnitude, timing, and regional distribution of these changes are uncertain. There is a large uncertainty in the projected changes in precipitation for Texas for the 21st century. In contrast, the more robust projected increase in temperature with its effect on evaporation, which is a dominant component in the region's hydrologic cycle, is consistent with model projections of frequent and extended droughts throughout the state. For these reasons, we recommend that Texas invest resources to investigate and anticipate the impacts of climate change on Texas water resources, with the goal of providing data to inform resource planning. This investment should support development of (1) research programs that provide policy-relevant science; (2) education programs to engage future researchers and policy-makers; and (3) connections between policy-makers, scientists, water resource managers, and other stakeholders. It is proposed that these goals may be achieved through the establishment of a Texas Climate Consortium, consisting of representatives from academia, industry, government agencies, water authorities, and other stakeholders. The mission of this consortium would be to develop the capacity to provide decision makers with the information needed to develop adaptation strategies in the face of future climate change and uncertainty.« less
Aarons, Gregory A; Green, Amy E; Willging, Cathleen E; Ehrhart, Mark G; Roesch, Scott C; Hecht, Debra B; Chaffin, Mark J
2014-12-10
This study examines sustainment of an EBI implemented in 11 United States service systems across two states, and delivered in 87 counties. The aims are to 1) determine the impact of state and county policies and contracting on EBI provision and sustainment; 2) investigate the role of public, private, and academic relationships and collaboration in long-term EBI sustainment; 3) assess organizational and provider factors that affect EBI reach/penetration, fidelity, and organizational sustainment climate; and 4) integrate findings through a collaborative process involving the investigative team, consultants, and system and community-based organization (CBO) stakeholders in order to further develop and refine a conceptual model of sustainment to guide future research and provide a resource for service systems to prepare for sustainment as the ultimate goal of the implementation process. A mixed-method prospective and retrospective design will be used. Semi-structured individual and group interviews will be used to collect information regarding influences on EBI sustainment including policies, attitudes, and practices; organizational factors and external policies affecting model implementation; involvement of or collaboration with other stakeholders; and outer- and inner-contextual supports that facilitate ongoing EBI sustainment. Document review (e.g., legislation, executive orders, regulations, monitoring data, annual reports, agendas and meeting minutes) will be used to examine the roles of state, county, and local policies in EBI sustainment. Quantitative measures will be collected via administrative data and web surveys to assess EBI reach/penetration, staff turnover, EBI model fidelity, organizational culture and climate, work attitudes, implementation leadership, sustainment climate, attitudes toward EBIs, program sustainment, and level of institutionalization. Hierarchical linear modeling will be used for quantitative analyses. Qualitative analyses will be tailored to each of the qualitative methods (e.g., document review, interviews). Qualitative and quantitative approaches will be integrated through an inclusive process that values stakeholder perspectives. The study of sustainment is critical to capitalizing on and benefiting from the time and fiscal investments in EBI implementation. Sustainment is also critical to realizing broad public health impact of EBI implementation. The present study takes a comprehensive mixed-method approach to understanding sustainment and refining a conceptual model of sustainment.
Advances in risk assessment for climate change adaptation policy
Adger, W. Neil; Brown, Iain; Surminski, Swenja
2018-01-01
Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800
NASA Astrophysics Data System (ADS)
Iwanaga, Takuya; Zare, Fateme; Croke, Barry; Fu, Baihua; Merritt, Wendy; Partington, Daniel; Ticehurst, Jenifer; Jakeman, Anthony
2018-06-01
Management of water resources requires understanding of the hydrology and hydrogeology, as well as the policy and human drivers and their impacts. This understanding requires relevant inputs from a wide range of disciplines, which will vary depending on the specific case study. One approach to gain understanding of the impact of climate and society on water resources is through the use of an integrated modelling process that engages stakeholders and experts in specifics of problem framing, co-design of the underpinning conceptual model, and discussion of the ensuing results. In this study, we have developed such an integrated modelling process for the Campaspe basin in northern Victoria, Australia. The numerical model built has a number of components:
Evaluation of regional climate simulations for air quality modelling purposes
NASA Astrophysics Data System (ADS)
Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand
2013-05-01
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
NASA Astrophysics Data System (ADS)
Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello
2015-04-01
In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.
The Distribution of Climate Change Public Opinion in Canada.
Mildenberger, Matto; Howe, Peter; Lachapelle, Erick; Stokes, Leah; Marlon, Jennifer; Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.
The Distribution of Climate Change Public Opinion in Canada
Gravelle, Timothy
2016-01-01
While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change’s causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels. PMID:27486659
Climate change risk perception and communication: addressing a critical moment?
Pidgeon, Nick
2012-06-01
Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions. © 2012 Society for Risk Analysis.
Two-Basket Approach and Emission Metrics
NASA Astrophysics Data System (ADS)
Tanaka, K.; Schmale, J.; von Schneidemesser, E.
2013-12-01
Cutting the emissions of Short-Lived Climate-Forcing Air Pollutants (SLCPs) gains increasing global attention as a mitigation policy option because of direct benefits for climate and co-benefits such as improvements in air quality. Including SLCPs as target components to abate within a single basket (e.g. the Kyoto Protocol) would, however, face issues with regard to: i) additional assumptions that are required to compare SLCP emissions and CO2 emissions within a basket in terms of climatic effects, especially because of the difference in lifetimes, ii) the accountability of non-climatic effects in the emission trading between SLCPs and CO2. The idea of a two-basket approach was originally proposed as a climatic analogue to the Montreal Protocol dealing with ozone depleting substances (Jackson 2009; Daniel et al. 2012; Smith et al. 2013). In a two-basket approach, emissions are allowed to be traded within a basket but not across the baskets. While this approach potentially ensures scientifically supported emission trading (e.g. (Smith et al. 2013)), this approach leaves open the important issue of how to determine the relative weight between two baskets. Determining the weight cannot be answered by science alone, as the question involves a value judgment as stressed in metric studies (e.g. (Tanaka et al. 2010; Tanaka et al. 2013)). We discuss emission metrics in the context of a two-basket approach and present policy implications of such an approach. In a two-basket approach, the weight between two baskets needs to be determined a priori or exogenously. Here, an opportunity arises to present synergetic policy options targeted at mitigating climate change and air pollution simultaneously. In other words, this could be a strategy to encourage policymakers to consider cross-cutting issues. Under a two-basket climate policy, policymakers would be exposed to questions such as: - What type of damages caused by climate change does one choose to avoid? - To what extent does one wish to prioritize climate change issues over air pollution issues? - What is the time perspective one is most concerned with in a given policy? Because climate change and air pollution are closely linked via emission sources, their impacts and mitigation options, it would be beneficial for the two sets of policies to be dealt with together to make the best of synergies and to avoid trade-offs between them. References Daniel J, Solomon S, Sanford T, McFarland M, Fuglestvedt J, Friedlingstein P (2012) Limitations of single-basket trading: Lessons from the montreal protocol for climate policy. Clim Change 111:241-248 Jackson SC (2009) Parallel pursuit of near-term and long-term climate mitigation. Science 326:526-527 Smith S, Karas J, Edmonds J, Eom J, Mizrahi A (2013) Sensitivity of multi-gas climate policy to emission metrics. Clim Change 117:663-675 Tanaka K, Johansson DJA, O'Neill BC, Fuglestvedt JS (2013) Emission metrics under the 2°c climate stabilization target. Climatic Change Letters 117:933-941 Tanaka K, Peters GP, Fuglestvedt JS (2010) Policy update: Multicomponent climate policy: Why do emission metrics matter? Carbon Management 1:191-197
Intensification of hot extremes in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diffenbaugh, Noah; Ashfaq, Moetasim
Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulationmore » during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.« less
Economic tools to promote transparency and comparability in the Paris Agreement
NASA Astrophysics Data System (ADS)
Aldy, Joseph; Pizer, William; Tavoni, Massimo; Reis, Lara Aleluia; Akimoto, Keigo; Blanford, Geoffrey; Carraro, Carlo; Clarke, Leon E.; Edmonds, James; Iyer, Gokul C.; McJeon, Haewon C.; Richels, Richard; Rose, Steven; Sano, Fuminori
2016-11-01
The Paris Agreement culminates a six-year transition towards an international climate policy architecture based on parties submitting national pledges every five years. An important policy task will be to assess and compare these contributions. We use four integrated assessment models to produce metrics of Paris Agreement pledges, and show differentiated effort across countries: wealthier countries pledge to undertake greater emission reductions with higher costs. The pledges fall in the lower end of the distributions of the social cost of carbon and the cost-minimizing path to limiting warming to 2 °C, suggesting insufficient global ambition in light of leaders’ climate goals. Countries’ marginal abatement costs vary by two orders of magnitude, illustrating that large efficiency gains are available through joint mitigation efforts and/or carbon price coordination. Marginal costs rise almost proportionally with income, but full policy costs reveal more complex regional patterns due to terms of trade effects.
Seidel, Bastian M; Bell, Erica
2014-11-28
Many countries are developing or reviewing national adaptation policy for climate change but the extent to which these meet the health needs of vulnerable groups has not been assessed. This study examines the adequacy of such policies for nine known climate-vulnerable groups: people with mental health conditions, Aboriginal people, culturally and linguistically diverse groups, aged people, people with disabilities, rural communities, children, women, and socioeconomically disadvantaged people. The study analyses an exhaustive sample of national adaptation policy documents from Annex 1 ('developed') countries of the United Nations Framework Convention on Climate Change: 20 documents from 12 countries. A 'critical computational linguistics' method was used involving novel software-driven quantitative mapping and traditional critical discourse analysis. The study finds that references to vulnerable groups are relatively little present or non-existent, as well as poorly connected to language about practical strategies and socio-economic contexts, both also little present. The conclusions offer strategies for developing policy that is better informed by a 'social determinants of health' definition of climate vulnerability, consistent with best practice in the literature and global policy prescriptions.
A Nuclear Waste Management Cost Model for Policy Analysis
NASA Astrophysics Data System (ADS)
Barron, R. W.; Hill, M. C.
2017-12-01
Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost-benefit analysis produce many scenarios where nuclear energy is economically unattractive.
NASA Astrophysics Data System (ADS)
Samaras, Constantine
In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.
Physical-Socio-Economic Modeling of Climate Change
NASA Astrophysics Data System (ADS)
Chamberlain, R. G.; Vatan, F.
2008-12-01
Because of the global nature of climate change, any assessment of the effects of plans, policies, and response to climate change demands a model that encompasses the entire Earth System, including socio- economic factors. Physics-based climate models of the factors that drive global temperatures, rainfall patterns, and sea level are necessary but not sufficient to guide decision making. Actions taken by farmers, industrialists, environmentalists, politicians, and other policy makers may result in large changes to economic factors, international relations, food production, disease vectors, and beyond. These consequences will not be felt uniformly around the globe or even across a given region. Policy models must comprehend all of these considerations. Combining physics-based models of the Earth's climate and biosphere with societal models of population dynamics, economics, and politics is a grand challenge with high stakes. We propose to leverage our recent advances in modeling and simulation of military stability and reconstruction operations to models that address all these areas of concern. Following over twenty years' experience of successful combat simulation, JPL has started developing Minerva, which will add demographic, economic, political, and media/information models to capabilities that already exist. With these new models, for which we have design concepts, it will be possible to address a very wide range of potential national and international problems that were previously inaccessible. Our climate change model builds on Minerva and expands the geographical horizon from playboxes containing regions and neighborhoods to the entire globe. This system consists of a collection of interacting simulation models that specialize in different aspects of the global situation. They will each contribute to and draw from a pool of shared data. The basic models are: the physical model; the demographic model; the political model; the economic model; and the media/information operations model. Each of these models focuses on part of the overall picture while; each contributes information about its area of expertise to a common pool and draws from that pool and the feedbacks from the other models as needed. Existing high-quality physical models are based on analysis of the dynamic interactions of atmospheric, land, and ocean processes. The demographic model tracks the civilian demographics needed by the other models. The populations of neighborhood group age-gender cohorts are affected by births, deaths, aging, and migration. This model provides labor supply and product demand curves to the economic model. The political model focuses on political actors and describes how they use their clout to seek their goals. Clout is derived from civilian support, the formal and informal alliances that actors make with each other, military strength, wealth, and control of information. It considers how they are constrained by their cultural heritage. It deals with shifting alliances. The economic model determines local and international prices and production quantities for a small number of products, including imports and exports and black markets; wages, jobs, and unemployment for a small number of labor categories; capital, growth, and inflation; resource usage and pollution. The media/information operations model addresses the effects of the control and content of inter- group and intra-group communications-and the side effects of these on other groups. This model will consist of rules (probably a large number of them) detailing the effects of media/information operations of various kinds on civilian parameters used in the other models, such as political goals, concern saliencies, and shapes of supply and demand curves.
Assessing uncertainties in land cover projections.
Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A
2017-02-01
Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.
Table of Policy Options for Smart Growth Fixes for Climate Adaptation and Resilience
Sortable table of policy options discussed in the publication Smart Growth Fixes for Climate Adaptation and Resilience, which can help local governments prepare for climate change while gaining other environmental, economic, health, and social benefits
Mitigation and Adaptation within a Climate Policy Portfolio
An effective policy response to climate change will include, among other things, investments in lowering greenhouse gas emissions (mitigation), as well as short-term temporary (flow) and long-lived capital-intensive (stock) adaptation to climate change. A critical near-term ques...
DOT National Transportation Integrated Search
2009-01-01
There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...
Majone, Bruno; Villa, Francesca; Deidda, Roberto; Bellin, Alberto
2016-02-01
Climate change is expected to cause alterations of streamflow regimes in the Alpine region, with possible relevant consequences for several socio-economic sectors including hydropower production. The impact of climate change on water resources and hydropower production is evaluated with reference to the Noce catchment, which is located in the Southeastern Alps, Italy. Projected changes of precipitation and temperature, derived from an ensemble of 4 climate model (CM) runs for the period 2040-2070 under the SRES A1B emission scenario, have been downscaled and bias corrected before using them as climatic forcing in a hydrological model. Projections indicate an increase of the mean temperature of the catchment in the range 2-4K, depending on the climate model used. Projections of precipitation indicate an increase of annual precipitation in the range between 2% and 6% with larger changes in winter and autumn. Hydrological simulations show an increase of water yield during the period 2040-2070 with respect to 1970-2000. Furthermore, a transition from glacio-nival to nival regime is projected for the catchment. Hydrological regime is expected to change as a consequence of less winter precipitation falling as snow and anticipated melting in spring, with the runoff peak decreasing in intensity and anticipating from July to June. Changes in water availability reflect in the Technical Hydropower Potential (THP) of the catchment, with larger changes projected for the hydropower plants located at the highest altitudes. Finally, the impacts on THP of water use policies such as the introduction of prescriptions for minimum ecological flow (MEF) have been analyzed. Simulations indicate that in the lower part of the catchment reduction of the hydropower production due to MEF releases from the storage reservoirs counterbalances the benefits associated to the projected increases of inflows as foreseen by simulations driven only by climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling the influence of climate change on watershed systems: Adaptation through targeted practices
NASA Astrophysics Data System (ADS)
Dudula, John; Randhir, Timothy O.
2016-10-01
Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.
NASA Astrophysics Data System (ADS)
Whitehead, P. G.; Crossman, J.; Jin, L.
2011-12-01
The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate Change simulations predict reduced flow regimes in the river system and changes to the nitrogen patterns. Nitrate is predicted to reduce in summer, due to the lower flows which generate longer water residence times and hence allow more time for denitrification processes to occur. Phosphorus levels increase, however, due to the reduced dilution of effluents with subsequent detrimental effects on ecology. The model has been used to evaluate alternative water management policies such as a new reservoir for London, the transfer of water from the River Severn into the Thames, the reduction in P discharges from Sewage Treatment Works and the control of diffuse runoff by improved land management. Thus using the models to evaluate alternative strategies is very positive contribution to policy and planning.
Support for Climate Change Policy: Social Psychological and Social Structural Influences
ERIC Educational Resources Information Center
Dietz, Thomas; Dan, Amy; Shwom, Rachael
2007-01-01
We investigated preferences for climate change mitigation policies and factors contributing to higher levels of policy support. The sample was comprised of 316 Michigan and Virginia residents, all of whom completed mail surveys. Of the eight policies proposed to reduce the burning of fossil fuels, respondents overwhelmingly indicated they would…
Adapted conservation measures are required to save the Iberian lynx in a changing climate
NASA Astrophysics Data System (ADS)
Fordham, D. A.; Akçakaya, H. R.; Brook, B. W.; Rodríguez, A.; Alves, P. C.; Civantos, E.; Triviño, M.; Watts, M. J.; Araújo, M. B.
2013-10-01
The Iberian lynx (Lynx pardinus) has suffered severe population declines in the twentieth century and is now on the brink of extinction. Climate change could further threaten the survival of the species, but its forecast effects are being neglected in recovery plans. Quantitative estimates of extinction risk under climate change have so far mostly relied on inferences from correlative projections of species' habitat shifts. Here we use ecological niche models coupled to metapopulation simulations with source-sink dynamics to directly investigate the combined effects of climate change, prey availability and management intervention on the persistence of the Iberian lynx. Our approach is unique in that it explicitly models dynamic bi-trophic species interactions in a climate change setting. We show that anticipated climate change will rapidly and severely decrease lynx abundance and probably lead to its extinction in the wild within 50 years, even with strong global efforts to mitigate greenhouse gas emissions. In stark contrast, we also show that a carefully planned reintroduction programme, accounting for the effects of climate change, prey abundance and habitat connectivity, could avert extinction of the lynx this century. Our results demonstrate, for the first time, why considering prey availability, climate change and their interaction in models is important when designing policies to prevent future biodiversity loss.
Describing Ecosystem Complexity through Integrated Catchment Modeling
NASA Astrophysics Data System (ADS)
Shope, C. L.; Tenhunen, J. D.; Peiffer, S.
2011-12-01
Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.
Malaria ecology and climate change
NASA Astrophysics Data System (ADS)
McCord, G. C.
2016-05-01
Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.
Southeast Atmosphere Studies: learning from model-observation syntheses
NASA Astrophysics Data System (ADS)
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.
2018-02-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Southeast Atmosphere Studies: learning from model-observation syntheses
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.
2018-01-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Southeast Atmosphere Studies: Learning from Model-Observation Syntheses
NASA Technical Reports Server (NTRS)
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu;
2018-01-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
NASA Astrophysics Data System (ADS)
Smith, L. A.
2001-05-01
Many sources of uncertainty come into play when modelling geophysical systems by simulation. These include uncertainty in the initial condition, uncertainty in model parameter values (and the parameterisations themselves) and error in the model class from which the model(s) was selected. In recent decades, climate simulations have focused resources on reducing the last of these by including more and more details into the model. One can question when this ``kitchen sink'' approach should be complimented with realistic estimates of the impact from other uncertainties noted above. Indeed while the impact of model error can never be fully quantified, as all simulation experiments are interpreted a the rosy scenario which assumes a priori that nothing crucial is missing, the impact of other uncertainties can be quantified at only the cost of computational power; as illustrated, for example, in ensemble climate modelling experiments like Casino-21. This talk illustrates the interplay uncertainties in the context of a trivial nonlinear system and an ensemble of models. The simple systems considered in this small scale experiment, Keno-21, are meant to illustrate issues of experimental design; they are not intended to provide true climate simulations. The use of simulation models with huge numbers of parameters given limited data is usually justified by an appeal to the Laws of Physics: the number of free degrees-of-freedom are many fewer than the number of variables; both variables, parameterisations, and parameter values are constrained by ``the physics" and the resulting simulation yields a realistic reproduction of the entire planet's climate system to within reasonable bounds. But what bounds? exactly? In a single model run under transient forcing scenario, there are good statistical grounds for considering only large space and time averages; most of these reasons vanish if an ensemble of runs are made. Ensemble runs can quantify the (in)ability of a model to provide insight on regional changes: if a model cannot capture regional variations in the data on which the model was constructed (that is, in-sample) claims that out-of-sample predictions of those same regional averages should be used in policy making are vacuous. While motivated by climate modelling and illustrated on a trivial nonlinear system, these issues have implications across the range of geophysical modelling. These include implications for appropriate resource allocation, on the making of science policy, and on the public understanding of science and the role of uncertainty in decision making.
Fann, Neal; Nolte, Christopher G; Dolwick, Patrick; Spero, Tanya L; Brown, Amanda Curry; Phillips, Sharon; Anenberg, Susan
2015-05-01
In this United States-focused analysis we use outputs from two general circulation models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change. We conduct multiyear simulations to account for interannual variability and characterize the near-term influence of a changing climate on tropospheric ozone-related health impacts near the year 2030, which is a policy-relevant time frame that is subject to fewer uncertainties than other approaches employed in the literature. We adopt a 2030 emissions inventory that accounts for fully implementing anthropogenic emissions controls required by federal, state, and/or local policies, which is projected to strongly influence future ozone levels. We quantify a comprehensive suite of ozone-related mortality and morbidity impacts including emergency department visits, hospital admissions, acute respiratory symptoms, and lost school days, and estimate the economic value of these impacts. Both GCMs project average daily maximum temperature to increase by 1-4°C and 1-5 ppb increases in daily 8-hr maximum ozone at 2030, though each climate scenario produces ozone levels that vary greatly over space and time. We estimate tens to thousands of additional ozone-related premature deaths and illnesses per year for these two scenarios and calculate an economic burden of these health outcomes of hundreds of millions to tens of billions of U.S. dollars (2010$). Near-term changes to the climate have the potential to greatly affect ground-level ozone. Using a 2030 emission inventory with regional climate fields downscaled from two general circulation models, we project mean temperature increases of 1 to 4°C and climate-driven mean daily 8-hr maximum ozone increases of 1-5 ppb, though each climate scenario produces ozone levels that vary significantly over space and time. These increased ozone levels are estimated to result in tens to thousands of ozone-related premature deaths and illnesses per year and an economic burden of hundreds of millions to tens of billions of U.S. dollars (2010$).
Health-sector responses to address the impacts of climate change in Nepal.
Dhimal, Meghnath; Dhimal, Mandira Lamichhane; Pote-Shrestha, Raja Ram; Groneberg, David A; Kuch, Ulrich
2017-09-01
Nepal is highly vulnerable to global climate change, despite its negligible emission of global greenhouse gases. The vulnerable climate-sensitive sectors identified in Nepal's National Adaptation Programme of Action (NAPA) to Climate Change 2010 include agriculture, forestry, water, energy, public health, urbanization and infrastructure, and climate-induced disasters. In addition, analyses carried out as part of the NAPA process have indicated that the impacts of climate change in Nepal are not gender neutral. Vector-borne diseases, diarrhoeal diseases including cholera, malnutrition, cardiorespiratory diseases, psychological stress, and health effects and injuries related to extreme weather are major climate-sensitive health risks in the country. In recent years, research has been done in Nepal in order to understand the changing epidemiology of diseases and generate evidence for decision-making. Based on this evidence, the experience of programme managers, and regular surveillance data, the Government of Nepal has mainstreamed issues related to climate change in development plans, policies and programmes. In particular, the Government of Nepal has addressed climate-sensitive health risks. In addition to the NAPA report, several policy documents have been launched, including the Climate Change Policy 2011; the Nepal Health Sector Programme - Implementation Plan II (NHSP-IP 2) 2010-2015; the National Health Policy 2014; the National Health Sector Strategy 2015-2020 and its implementation plan (2016-2021); and the Health National Adaptation Plan (H-NAP): climate change and health strategy and action plan (2016-2020). However, the translation of these policies and plans of action into tangible action on the ground is still in its infancy in Nepal. Despite this, the health sector's response to addressing the impact of climate change in Nepal may be taken as a good example for other low- and middle-income countries.