NASA Astrophysics Data System (ADS)
Hawkins, Ed; Day, Jonny; Tietsche, Steffen
2016-04-01
Recent years have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. We describe a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual TimEscales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we provide a summary and update of the project's results which include: (1) quantifying the predictability of Arctic climate, especially sea ice; (2) the state-dependence of this predictability, finding that extreme years are potentially more predictable than neutral years; (3) analysing a spring 'predictability barrier' to skillful forecasts; (4) initial sea ice thickness information provides much of the skill for summer forecasts; (5) quantifying the sources of error growth and uncertainty in Arctic predictions. The dataset is now publicly available.
Enhancing seasonal climate prediction capacity for the Pacific countries
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Jones, D.; Hendon, H.; Charles, A.; Cottrill, A.; Lim, E.-P.; Langford, S.; de Wit, R.; Shelton, K.
2012-04-01
Seasonal and inter-annual climate variability is a major factor in determining the vulnerability of many Pacific Island Countries to climate change and there is need to improve weekly to seasonal range climate prediction capabilities beyond what is currently available from statistical models. In the seasonal climate prediction project under the Australian Government's Pacific Adaptation Strategy Assistance Program (PASAP), we describe a comprehensive project to strengthen the climate prediction capacities in National Meteorological Services in 14 Pacific Island Countries and East Timor. The intent is particularly to reduce the vulnerability of current services to a changing climate, and improve the overall level of information available assist with managing climate variability. Statistical models cannot account for aspects of climate variability and change that are not represented in the historical record. In contrast, dynamical physics-based models implicitly include the effects of a changing climate whatever its character or cause and can predict outcomes not seen previously. The transition from a statistical to a dynamical prediction system provides more valuable and applicable climate information to a wide range of climate sensitive sectors throughout the countries of the Pacific region. In this project, we have developed seasonal climate outlooks which are based upon the current dynamical model POAMA (Predictive Ocean-Atmosphere Model for Australia) seasonal forecast system. At present, meteorological services of the Pacific Island Countries largely employ statistical models for seasonal outlooks. Outcomes of the PASAP project enhanced capabilities of the Pacific Island Countries in seasonal prediction providing National Meteorological Services with an additional tool to analyse meteorological variables such as sea surface temperatures, air temperature, pressure and rainfall using POAMA outputs and prepare more accurate seasonal climate outlooks.
The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
DeWeber, Jefferson T; Wagner, Tyler
2018-06-01
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects. © 2018 John Wiley & Sons Ltd.
DeWeber, Jefferson T.; Wagner, Tyler
2018-01-01
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.
The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set
NASA Astrophysics Data System (ADS)
Day, J. J.; Tietsche, S.; Collins, M.; Goessling, H. F.; Guemas, V.; Guillory, A.; Hurlin, W. J.; Ishii, M.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Sigmond, M.; Tatebe, H.; Hawkins, E.
2015-10-01
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre) and an update of the project's results. Although designed to address Arctic predictability, this data set could also be used to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño Southern Oscillation.
NASA Astrophysics Data System (ADS)
Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.
2014-12-01
The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.
Belote, R Travis; Carroll, Carlos; Martinuzzi, Sebastián; Michalak, Julia; Williams, John W; Williamson, Matthew A; Aplet, Gregory H
2018-06-21
Addressing uncertainties in climate vulnerability remains a challenge for conservation planning. We evaluate how confidence in conservation recommendations may change with agreement among alternative climate projections and metrics of climate exposure. We assessed agreement among three multivariate estimates of climate exposure (forward velocity, backward velocity, and climate dissimilarity) using 18 alternative climate projections for the contiguous United States. For each metric, we classified maps into quartiles for each alternative climate projections, and calculated the frequency of quartiles assigned for each gridded location (high quartile frequency = more agreement among climate projections). We evaluated recommendations using a recent climate adaptation heuristic framework that recommends emphasizing various conservation strategies to land based on current conservation value and expected climate exposure. We found that areas where conservation strategies would be confidently assigned based on high agreement among climate projections varied substantially across regions. In general, there was more agreement in forward and backward velocity estimates among alternative projections than agreement in estimates of local dissimilarity. Consensus of climate predictions resulted in the same conservation recommendation assignments in a few areas, but patterns varied by climate exposure metric. This work demonstrates an approach for explicitly evaluating alternative predictions in geographic patterns of climate change.
Sutton, William B.; Barrett, Kyle; Moody, Allison T.; Loftin, Cynthia S.; deMaynadier, Phillip G.; Nanjappa, Priya
2015-01-01
Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1) evaluating species-specific predictions (based on 2050 climate projections) and vulnerabilities to climate change and (2) using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus), Cheat Mountain Salamander (Plethodon nettingi), Shenandoah Mountain Salamander (Plethodon virginia), Mabee’s Salamander (Ambystoma mabeei), and Streamside Salamander (Ambystoma barbouri) predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch), whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.
Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.
2013-01-01
High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.
Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.
Yigini, Yusuf; Panagos, Panos
2016-07-01
Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
The Decadal Climate Prediction Project (DCPP) contribution to CMIP6
Boer, George J.; Smith, Douglas M.; Cassou, Christophe; ...
2016-01-01
The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2016-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.
WEPPCAT is an on-line tool that provides a flexible capability for creating user-determined climate change scenarios for assessing the potential impacts of climate change on sediment loading to streams using the USDA’s Water Erosion Prediction Project (WEPP) Model. In combination...
NASA Astrophysics Data System (ADS)
Hasumi, H.
2016-12-01
We present initial results from the theme 5 of the project ArCS, which is a national flagship project for Arctic research in Japan. The goal of theme 5 is to evaluate the predictability of Arctic-related climate variations, wherein we aim to: (1) establish the scientific basis of climate predictability; and (2) develop a method for predicting/projecting medium- and long-term climate variations. Variability in the Arctic environment remotely influences middle and low latitudes. Since some of the processes specific to the Arctic environment function as a long memory of the state of the climate, understanding of the process of remote connections would lead to higher-precision and longer-term prediction of global climate variations. Conventional climate models have large uncertainty in the Arctic region. By making Arctic processes in climate models more sophisticated, we aim to clarify the role of multi-sphere interaction in the Arctic environment. In this regard, our newly developed high resolution ice-ocean model has revealed the relationship between the oceanic heat transport into the Arctic Ocean and the synoptic scale atmospheric variability. We also aim to reveal the mechanism of remote connections by conducting climate simulations and analyzing various types of climate datasets. Our atmospheric model experiments under possible future situations of Arctic sea ice cover indicate that reduction of sea ice qualitatively alters the basic mechanism of remote connection. Also, our analyses of climate data have identified the cause of recent more frequent heat waves at Eurasian mid-to-high latitudes and clarified the dynamical process which forms the West Pacific pattern, a dominant mode of the atmospheric anomalous circulation in the West Pacific region which also exhibits a significant signal in the Arctic stratosphere.
Peña-Gómez, Francisco T; Guerrero, Pablo C; Bizama, Gustavo; Duarte, Milén; Bustamante, Ramiro O
2014-01-01
Species climate requirements are useful for predicting their geographic distribution. It is often assumed that the niche requirements for invasive plants are conserved during invasion, especially when the invaded regions share similar climate conditions. California and central Chile have a remarkable degree of convergence in their vegetation structure, and a similar Mediterranean climate. Such similarities make these geographic areas an interesting natural experiment for testing climatic niche dynamics and the equilibrium of invasive species in a new environment. We tested to see if the climatic niche of Eschscholzia californica is conserved in the invaded range (central Chile), and we assessed whether the invasion process has reached a biogeographical equilibrium, i.e., occupy all the suitable geographic locations that have suitable conditions under native niche requirements. We compared the climatic niche in the native and invaded ranges as well as the projected potential geographic distribution in the invaded range. In order to compare climatic niches, we conducted a Principal Component Analysis (PCA) and Species Distribution Models (SDMs), to estimate E. californica's potential geographic distribution. We also used SDMs to predict altitudinal distribution limits in central Chile. Our results indicated that the climatic niche occupied by E. californica in the invaded range is firmly conserved, occupying a subset of the native climatic niche but leaving a substantial fraction of it unfilled. Comparisons of projected SDMs for central Chile indicate a similarity, yet the projection from native range predicted a larger geographic distribution in central Chile compared to the prediction of the model constructed for central Chile. The projected niche occupancy profile from California predicted a higher mean elevation than that projected from central Chile. We concluded that the invasion process of E. californica in central Chile is consistent with climatic niche conservatism but there is potential for further expansion in Chile.
Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.
Steen, Valerie; Skagen, Susan K; Noon, Barry R
2014-01-01
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branstator, Grant
The overall aim of our project was to quantify and characterize predictability of the climate as it pertains to decadal time scale predictions. By predictability we mean the degree to which a climate forecast can be distinguished from the climate that exists at initial forecast time, taking into consideration the growth of uncertainty that occurs as a result of the climate system being chaotic. In our project we were especially interested in predictability that arises from initializing forecasts from some specific state though we also contrast this predictability with predictability arising from forecasting the reaction of the system to externalmore » forcing – for example changes in greenhouse gas concentration. Also, we put special emphasis on the predictability of prominent intrinsic patterns of the system because they often dominate system behavior. Highlights from this work include: • Development of novel methods for estimating the predictability of climate forecast models. • Quantification of the initial value predictability limits of ocean heat content and the overturning circulation in the Atlantic as they are represented in various state of the art climate models. These limits varied substantially from model to model but on average were about a decade with North Atlantic heat content tending to be more predictable than North Pacific heat content. • Comparison of predictability resulting from knowledge of the current state of the climate system with predictability resulting from estimates of how the climate system will react to changes in greenhouse gas concentrations. It turned out that knowledge of the initial state produces a larger impact on forecasts for the first 5 to 10 years of projections. • Estimation of the predictability of dominant patterns of ocean variability including well-known patterns of variability in the North Pacific and North Atlantic. For the most part these patterns were predictable for 5 to 10 years. • Determination of especially predictable patterns in the North Atlantic. The most predictable of these retain predictability substantially longer than generic patterns, with some being predictable for two decades.« less
DOE Contribution to the 2015 US CLIVAR Project Office Budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeWeaver, Eric; Patterson, Michael
The primary goal of the US Climate Variability and Predictability (CLIVAR) Project Office is to enable science community planning and implementation of research to understand and predict climate variability and change on intraseasonal-to-centennial timescales, through observations and modeling with emphasis on the role of the ocean and its interaction with other elements of the Earth system, and to serve the climate community and society through the coordination and facilitation of research on outstanding climate questions.
Project Ukko - Design of a climate service visualisation interface for seasonal wind forecasts
NASA Astrophysics Data System (ADS)
Hemment, Drew; Stefaner, Moritz; Makri, Stephann; Buontempo, Carlo; Christel, Isadora; Torralba-Fernandez, Veronica; Gonzalez-Reviriego, Nube; Doblas-Reyes, Francisco; de Matos, Paula; Dykes, Jason
2016-04-01
Project Ukko is a prototype climate service to visually communicate probabilistic seasonal wind forecasts for the energy sector. In Project Ukko, an interactive visualisation enhances the accessibility and readability to the latests advances in seasonal wind speed predictions developed as part of the RESILIENCE prototype of the EUPORIAS (EC FP7) project. Climate services provide made-to-measure climate information, tailored to the specific requirements of different users and industries. In the wind energy sector, understanding of wind conditions in the next few months has high economic value, for instance, for the energy traders. Current energy practices use retrospective climatology, but access to reliable seasonal predictions based in the recent advances in global climate models has potential to improve their resilience to climate variability and change. Despite their potential benefits, a barrier to the development of commercially viable services is the complexity of the probabilistic forecast information, and the challenge of communicating complex and uncertain information to decision makers in industry. Project Ukko consists of an interactive climate service interface for wind energy users to explore probabilistic wind speed predictions for the coming season. This interface enables fast visual detection and exploration of interesting features and regions likely to experience unusual changes in wind speed in the coming months.The aim is not only to support users to better understand the future variability in wind power resources, but also to bridge the gap between practitioners' traditional approach and the advanced prediction systems developed by the climate science community. Project Ukko is presented as a case study of cross-disciplinary collaboration between climate science and design, for the development of climate services that are useful, usable and effective for industry users. The presentation will reflect on the challenge of developing a climate service for industry users in the wind energy sector, the background to this challenge, our approach, and the evaluation of the visualisation interface.
US Climate Variability and Predictability Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Mike
The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less
US Climate Variability and Predictability (CLIVAR) Project- Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Mike
The US CLIVAR Project Office administers the US CLIVAR Program with its mission to advance understanding and prediction of climate variability and change across timescales with an emphasis on the role of the ocean and its interaction with other elements of the Earth system. The Project Office promotes and facilitates scientific collaboration within the US and international climate and Earth science communities, addressing priority topics from subseasonal to centennial climate variability and change; the global energy imbalance; the ocean’s role in climate, water, and carbon cycles; climate and weather extremes; and polar climate changes. This project provides essential one-year supportmore » of the Project Office, enabling the participation of US scientists in the meetings of the US CLIVAR bodies that guide scientific planning and implementation, including the scientific steering committee that establishes program goals and evaluates progress of activities to address them, the science team of funded investigators studying the ocean overturning circulation in the Atlantic, and two working groups tackling the priority research topics of Arctic change influence on midlatitude climate and weather extremes and the decadal-scale widening of the tropical belt.« less
Projected climate-induced faunal change in the Western Hemisphere
Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J.
2009-01-01
Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today. ?? 2009 by the Ecological Society of America.
Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A
Steen, Valerie; Skagen, Susan K.; Noon, Barry R.
2014-01-01
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts. PMID:24927165
Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.
Steen, Valerie; Skagen, Susan K.; Noon, Barry R.
2014-01-01
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.
Species distribution models predict temporal but not spatial variation in forest growth.
van der Maaten, Ernst; Hamann, Andreas; van der Maaten-Theunissen, Marieke; Bergsma, Aldo; Hengeveld, Geerten; van Lammeren, Ron; Mohren, Frits; Nabuurs, Gert-Jan; Terhürne, Renske; Sterck, Frank
2017-04-01
Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.
Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri
2011-01-01
1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics is feasible for different populations using a common methodological framework. Our approach was limited to single populations and have neglected population settlement in new favourable habitats or changes in inter-specific relations as a potential response to future climate change. Predictions may be enhanced by merging demographic population models and climatic envelope models. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.
Indigenous Waters: Applying the SWAT Hydrological Model to the Lumbee River Watershed
NASA Astrophysics Data System (ADS)
Painter, J.; Singh, N.; Martin, K. L.; Vose, J. M.; Wear, D. N.; Emanuel, R. E.
2016-12-01
Hydrological modeling can reveal insight about how rainfall becomes streamflow in a watershed comprising heterogeneous soils, terrain and land cover. Modeling can also help disentangle predicted impacts of climate and land use change on hydrological processes. We applied a hydrological model to the Lumbee River watershed, also known as the Lumber River Watershed, in the coastal plain of North Carolina (USA) to better understand how streamflow may be impacted by predicted climate and land use change in the mid-21st century. The Lumbee River flows through a predominantly Native American community, which may be affected by changing water resources during this period. The long-term goal of our project is to predict the effects of climate and land use change on the Lumbee River watershed and on the Native community that relies upon the river. We applied the Soil & Water Assessment Tool for ArcGIS (ArcSWAT), which was calibrated to historical climate and USGS streamflow data during the late 20th century, and we determined frequency distributions for key model parameters that best predicted streamflow during this time period. After calibrating and validating the model during the historical period, we identified land use and climate projections to represent a range of future conditions in the watershed. Specifically, we selected downscaled climate forcing data from four general circulation models running the RCP8.5 scenario. We also selected land use projections from a cornerstone scenario of the USDA Forest Service's Southern Forest Futures Project. This presentation reports on our methods for propagating parameter and climatic uncertainty through model predictions, and it reports on spatial patterns of land use change predicted by the cornerstone scenario.
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander
2017-04-01
Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of climate change in Western Siberia, and dissemination of the Project results. Results of the first stage of the Project implementation are presented. This work is supported by the Russian Science Foundation grant No16-19-10257.
Ogden, Nicholas H; Milka, Radojević; Caminade, Cyril; Gachon, Philippe
2014-12-02
Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America. The risk of Ae. albopictus expanding its geographic range in North America under current and future climate was assessed using three climatic indicators of Ae. albopictus survival: overwintering conditions (OW), OW combined with annual air temperature (OWAT), and a linear index of precipitation and air temperature suitability expressed through a sigmoidal function (SIG). The capacity of these indicators to predict Ae. albopictus occurrence was evaluated using surveillance data from the United States. Projected future climatic suitability for Ae. albopictus was obtained using output of nine Regional Climate Model experiments (RCMs). OW and OWAT showed >90% specificity and sensitivity in predicting observed Ae. albopictus occurrence and also predicted moderate to high risk of Ae. albopictus invasion in Pacific coastal areas of the Unites States and Canada under current climate. SIG also well predicted observed Ae. albopictus occurrence (ROC area under the curve was 0.92) but predicted wider current climatic suitability in the north-central and north-eastern United States and south-eastern Canada. RCM output projected modest (circa 500 km) future northward range expansion of Ae. albopictus by the 2050s when using OW and OWAT indicators, but greater (600-1000 km) range expansion, particularly in eastern and central Canada, when using the SIG indicator. Variation in future possible distributions of Ae. albopictus was greater amongst the climatic indicators used than amongst the RCM experiments. Current Ae. albopictus distributions were well predicted by simple climatic indicators and northward range expansion was predicted for the future with climate change. However, current and future predicted geographic distributions of Ae. albopictus varied amongst the climatic indicators used. Further field studies are needed to assess which climatic indicator is the most accurate in predicting regions suitable for Ae. albopictus survival in North America.
A linear regression model for predicting PNW estuarine temperatures in a changing climate
Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...
NASA Astrophysics Data System (ADS)
Murtugudde, R. G.; Wang, X.; Valsala, V.; Karnauskas, K. B.
2016-12-01
Tropical Pacific spans nearly 50% of the global tropics allowing to have its own mind in terms of climate variability and physical-biogeochemical interactions. While the El Niño-Southern Oscillation (ENSO) and its flavors get much attention, it is fairly clear by now that any further improvements in ENSO prediction skills and reliability of global warming projections must begin to observe and represent bio-physical interactions in the climate and Earth System models. Coupled climate variability over the tropical Pacific has a global reach with its diurnal to decadal timescales being manifest in ecosystem and biogechemistry. Zonal and meridional contrasts in biogeochemistry across the tropical Pacific is closely related to seasonal variability, ENSO diversity and the PDO. Apparent dominance of ocean dynamic controls on biogeochemistry belies the potential biogeochemical feedbacks on ocean dynamics which may well explain some of the chronic biases in the state-of-the-art climate models. The east Pacific cold-tongue is the most productive open ocean region in the world and home to a unique physical-biogeochmical laboratory, viz., the Galapagos. The Galapagos islands not only control the coupled climate variability via their ability to terminate the equatorial undercurrent but also offer a clear example of a biological loophole in terms of their impact on local upwelling and an expanding penguin habitat in the face of global warming. The complex bio-physical interactions in the cold-tongue and their influence on climate predictions and projections require a holisti thinking on future observing systems. Tropical Pacific offers a natural laboratory for designing a robust and sustained physical-biogeochemical observation system that can effectively bridge climate predictions and projections into a unified framework for subseasonal to multidecadal timescales. Such a system will be a foundation for establishing similar systems over the rest of the World ocean to seemlessly merge climate predictions and projections with the need to constantly monitor climate impacts on marine resources. This talk will focus on the zonal contrasts of the ocean dynamics and biogechemistry across the tropical Pacific to make a case for integrated physical-biogeochemical observations for climate predictions and projections.
Temperature and tree growth [editorial
Michael G. Ryan
2010-01-01
Tree growth helps US forests take up 12% of the fossil fuels emitted in the USA (Woodbury et al. 2007), so predicting tree growth for future climates matters. Predicting future climates themselves is uncertain, but climate scientists probably have the most confidence in predictions for temperature. Temperatures are projected to rise by 0.2 °C in the next two decades,...
PROJECTED CLIMATE-INDUCED FAUNAL CHANGE IN THE WESTERN HEMISPHERE
Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can e...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, George J.; Smith, Douglas M.; Cassou, Christophe
The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less
Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R
2015-02-20
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.
Helweg, David A.; Keener, Victoria; Burgett, Jeff M.
2016-07-14
In the subtropical and tropical Pacific islands, changing climate is predicted to influence precipitation and freshwater availability, and thus is predicted to impact ecosystems goods and services available to ecosystems and human communities. The small size of high Hawaiian Islands, plus their complex microlandscapes, require downscaling of global climate models to provide future projections of greater skill and spatial resolution. Two different climate modeling approaches (physics-based dynamical downscaling and statistics-based downscaling) have produced dissimilar projections. Because of these disparities, natural resource managers and decision makers have low confidence in using the modeling results and are therefore are unwilling to include climate-related projections in their decisions. In September 2015, the Pacific Islands Climate Science Center (PICSC), the Pacific Islands Climate Change Cooperative (PICCC), and the Pacific Regional Integrated Sciences and Assessments (Pacific RISA) program convened a 2-day facilitated workshop in which the two modeling teams, plus key model users and resource managers, were brought together for a comparison of the two approaches, culminating with a discussion of how to provide predictions that are useable by resource managers. The proceedings, discussions, and outcomes of this Workshop are summarized in this Open-File Report.
John W. Hanna; James T. Blodgett; Eric W. I. Pitman; Sarah M. Ashiglar; John E. Lundquist; Mee-Sook Kim; Amy L. Ross-Davis; Ned B. Klopfenstein
2014-01-01
As part of an ongoing project to predict Armillaria root disease in the Rocky Mountain zone, this project predicts suitable climate space (potential distribution) for A. solidipes in Wyoming and associated forest areas at risk to disease caused by this pathogen. Two bioclimatic models are being developed. One model is based solely on verified locations of A. solidipes...
NASA Astrophysics Data System (ADS)
Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.
2014-12-01
There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.
Quintero, Ignacio; Wiens, John J
2013-08-01
A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species. © 2013 John Wiley & Sons Ltd/CNRS.
Incorporating climate change projections into riparian restoration planning and design
Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.
2015-01-01
Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.
Can decadal climate predictions be improved by ocean ensemble dispersion filtering?
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-12-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years inadvance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-termweather forecasts represent an initial value problem and long-term climate projections represent a boundarycondition problem, the decadal climate prediction falls in-between these two time scales. The ocean memorydue to its heat capacity holds big potential skill on the decadal scale. In recent years, more precise initializationtechniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions.Ensembles are another important aspect. Applying slightly perturbed predictions results in an ensemble. Insteadof using and evaluating one prediction, but the whole ensemble or its ensemble average, improves a predictionsystem. However, climate models in general start losing the initialized signal and its predictive skill from oneforecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improvedby a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. Wefound that this procedure, called ensemble dispersion filter, results in more accurate results than the standarddecadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions showan increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with largerensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from oceanensemble dispersion filtering toward the ensemble mean. This study is part of MiKlip (fona-miklip.de) - a major project on decadal climate prediction in Germany.We focus on the Max-Planck-Institute Earth System Model using the low-resolution version (MPI-ESM-LR) andMiKlip's basic initialization strategy as in 2017 published decadal climate forecast: http://www.fona-miklip.de/decadal-forecast-2017-2026/decadal-forecast-for-2017-2026/ More informations about this study in JAMES:DOI: 10.1002/2016MS000787
Model structures amplify uncertainty in predicted soil carbon responses to climate change.
Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien
2018-06-04
Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslowski, Wieslaw
This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate throughmore » polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.« less
USDA-ARS?s Scientific Manuscript database
Proper spatial and temporal treatments of climate change scenarios projected by General Circulation Models (GCMs) are critical to accurate assessment of climatic impacts on natural resources and ecosystems. For accurate prediction of soil erosion risk at a particular farm or field under climate cha...
Reside, April E; VanDerWal, Jeremy; Kutt, Alex S
2012-01-01
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. PMID:22837819
Climate Projections and Uncertainty Communication.
Joslyn, Susan L; LeClerc, Jared E
2016-01-01
Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.
Final Technical Report for DOE Award SC0006616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Andrew
2015-08-01
This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less
Arabian Sea Fronts and Barrier Layers
2015-09-30
enable accurate prediction of the coupled ocean-atmosphere system that governs the climate of the Northern Indian Ocean. RELATED PROJECTS NASA ...relationship with the Indian Ocean monsoons and regional climate in general. OBJECTIVES The primary objective of this project is to
Yamana, Teresa K; Eltahir, Elfatih A B
2013-10-01
Climate change is expected to affect the distribution of environmental suitability for malaria transmission by altering temperature and rainfall patterns; however, the local and global impacts of climate change on malaria transmission are uncertain. We assessed the effect of climate change on malaria transmission in West Africa. We coupled a detailed mechanistic hydrology and entomology model with climate projections from general circulation models (GCMs) to predict changes in vectorial capacity, an indication of the risk of human malaria infections, resulting from changes in the availability of mosquito breeding sites and temperature-dependent development rates. Because there is strong disagreement in climate predictions from different GCMs, we focused on the GCM projections that produced the best and worst conditions for malaria transmission in each zone of the study area. Simulation-based estimates suggest that in the desert fringes of the Sahara, vectorial capacity would increase under the worst-case scenario, but not enough to sustain transmission. In the transitional zone of the Sahel, climate change is predicted to decrease vectorial capacity. In the wetter regions to the south, our estimates suggest an increase in vectorial capacity under all scenarios. However, because malaria is already highly endemic among human populations in these regions, we expect that changes in malaria incidence would be small. Our findings highlight the importance of rainfall in shaping the impact of climate change on malaria transmission in future climates. Even under the GCM predictions most conducive to malaria transmission, we do not expect to see a significant increase in malaria prevalence in this region.
Kane, Kristin; Debinski, Diane M.; Anderson, Chris; Scasta, John D.; Engle, David M.; Miller, James R.
2017-01-01
Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss. PMID:28536591
NASA Astrophysics Data System (ADS)
Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.
2015-06-01
Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, change vegetation dynamics and influence the availability of water at the catchment scale. This study combines a nonlinear model for estimating changes in leaf area index (LAI) due to climatic fluctuations with the variable infiltration capacity (VIC) hydrological model to improve catchment streamflow prediction under a changing climate. The combined model was applied to 13 gauged sub-catchments with different land cover types (crop, pasture and tree) in the Goulburn-Broken catchment, Australia, for the "Millennium Drought" (1997-2009) relative to the period 1983-1995, and for two future periods (2021-2050 and 2071-2100) and two emission scenarios (Representative Concentration Pathway (RCP) 4.5 and RCP8.5) which were compared with the baseline historical period of 1981-2010. This region was projected to be warmer and mostly drier in the future as predicted by 38 Coupled Model Intercomparison Project Phase 5 (CMIP5) runs from 15 global climate models (GCMs) and for two emission scenarios. The results showed that during the Millennium Drought there was about a 29.7-66.3 % reduction in mean annual runoff due to reduced precipitation and increased temperature. When drought-induced changes in LAI were included, smaller reductions in mean annual runoff of between 29.3 and 61.4 % were predicted. The proportional increase in runoff due to modeling LAI was 1.3-10.2 % relative to not including LAI. For projected climate change under the RCP4.5 emission scenario, ignoring the LAI response to changing climate could lead to a further reduction in mean annual runoff of between 2.3 and 27.7 % in the near-term (2021-2050) and 2.3 to 23.1 % later in the century (2071-2100) relative to modeling the dynamic response of LAI to precipitation and temperature changes. Similar results (near-term 2.5-25.9 % and end of century 2.6-24.2 %) were found for climate change under the RCP8.5 emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced the projected declines in streamflow and confirms the importance of including the effects of changes in LAI in future projections of streamflow.
NASA Astrophysics Data System (ADS)
Daron, Joseph
2010-05-01
Exploring the reliability of model based projections is an important pre-cursor to evaluating their societal relevance. In order to better inform decisions concerning adaptation (and mitigation) to climate change, we must investigate whether or not our models are capable of replicating the dynamic nature of the climate system. Whilst uncertainty is inherent within climate prediction, establishing and communicating what is plausible as opposed to what is likely is the first step to ensuring that climate sensitive systems are robust to climate change. Climate prediction centers are moving towards probabilistic projections of climate change at regional and local scales (Murphy et al., 2009). It is therefore important to understand what a probabilistic forecast means for a chaotic nonlinear dynamic system that is subject to changing forcings. It is in this context that we present the results of experiments using simple models that can be considered analogous to the more complex climate system, namely the Lorenz 1963 and Lorenz 1984 models (Lorenz, 1963; Lorenz, 1984). Whilst the search for a low-dimensional climate attractor remains illusive (Fraedrich, 1986; Sahay and Sreenivasan, 1996) the characterization of the climate system in such terms can be useful for conceptual and computational simplicity. Recognising that a change in climate is manifest in a change in the distribution of a particular climate variable (Stainforth et al., 2007), we first establish the equilibrium distributions of the Lorenz systems for certain parameter settings. Allowing the parameters to vary in time, we investigate the dependency of such distributions to initial conditions and discuss the implications for climate prediction. We argue that the role of chaos and nonlinear dynamic behaviour ought to have more prominence in the discussion of the forecasting capabilities in climate prediction. References: Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci, 43, 419-432, 1986. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141, 1963. Lorenz, E. N. Irregularity: a fundamental property of the atmosphere. Tellus, 36A, 98-110, 1984. Murphy, J. M., D. M. H. Sexton, G. J. Jenkins, B. B. B. Booth, C. C. Brown, R. T. Clark, M. Collins, G. R. Harris, E. J. Kendon, R. A. Betts, S. J. Brown, P. Boorman, T. P. Howard, K. A. Humphrey, M. P. McCarthy, R. E. McDonald, A. Stephens, C. Wallace, R. Warren, R. Wilby, and R. A. Wood. Uk climate projections science report: Climate change projections. 2009. Sahay, A. and K. R. Sreenivasan. The search for a low-dimensional characterization of a local climate system. Phil. Trans. R. Soc. A., 354, 1715-1750, 1996. Stainforth, D. A., M. R. Allen, E. R. Tredger, and L. A. Smith. Confidence, uncertainty and decision-support relevance in climate predictions. Phil. Trans. R. Soc. A, 365, 2145-2161, 2007.
Limits on determining the skill of North Atlantic Ocean decadal predictions.
Menary, Matthew B; Hermanson, Leon
2018-04-27
The northern North Atlantic is important globally both through its impact on the Atlantic Meridional Overturning Circulation (AMOC) and through widespread atmospheric teleconnections. The region has been shown to be potentially predictable a decade ahead with the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show that the prediction skill in this region is strongly dependent on the choice of reanalysis used for validation, and describe the causes. Multiannual skill in key metrics such as Labrador Sea density and the AMOC depends on more than simply the choice of the prediction model. Instead, this skill is related to the similarity between the nature of interannual density variability in the underlying climate model and the chosen reanalysis. The climate models used in these decadal predictions are also used in climate projections, which raises questions about the sensitivity of these projections to the models' innate North Atlantic density variability.
Impacts of past and future climate change on wind energy resources in the United States
NASA Astrophysics Data System (ADS)
McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.
2009-12-01
The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.
AMOC decadal variability in Earth system models: Mechanisms and climate impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey
This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less
EUPORIAS: plans and preliminary results
NASA Astrophysics Data System (ADS)
Buontempo, C.
2013-12-01
Recent advances in our understanding and ability to forecast climate variability have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. In 2012 the European Commission funded EUPORIAS, a four year long project to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The poster describes the setup of the project, its main outcome and some of the very preliminary results.
Subseasonal-to-Seasonal Science and Prediction Initiatives of the NOAA MAPP Program
NASA Astrophysics Data System (ADS)
Archambault, H. M.; Barrie, D.; Mariotti, A.
2016-12-01
There is great practical interest in developing predictions beyond the 2-week weather timescale. Scientific communities have historically organized themselves around the weather and climate problems, but the subseasonal-to-seasonal (S2S) timescale range overall is recognized as new territory for which a concerted shared effort is needed. For instance, the climate community, as part of programs like CLIVAR, has historically tackled coupled phenomena and modeling, keys to harnessing predictability on longer timescales. In contrast, the weather community has focused on synoptic dynamics, higher-resolution modeling, and enhanced model initialization, of importance at the shorter timescales and especially for the prediction of extremes. The processes and phenomena specific to timescales between weather and climate require a unified approach to science, modeling, and predictions. Internationally, the WWRP/WCRP S2S Prediction Project is a promising catalyzer for these types of activities. Among the various contributing U.S. research programs, the Modeling, Analysis, Predictions and Projections (MAPP) program, as part of the NOAA Climate Program Office, has launched coordinated research and transition activities that help to meet the agency's goals to fill the weather-to-climate prediction gap and will contribute to advance international goals. This presentation will describe ongoing MAPP program S2S science and prediction initiatives, specifically the MAPP S2S Task Force and the SubX prediction experiment.
Improving the Accuracy of Estimation of Climate Extremes
NASA Astrophysics Data System (ADS)
Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.
2010-12-01
Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model
2016-01-14
distribution is unlimited. TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH A GLOBAL CLOUD RESOLVING MODEL PI: Tim Li IPRC/SOEST, University of Hawaii at...Project Final Report 3. DATES COVERED (From - To) 1 May 2012 - 30 September 2015 4. TITLE AND SUBTITLE TOWARD SEAMLESS WEATHER- CLIMATE PREDICTION WITH...A GLOBAL CLOUD RESOLVING MODEL 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000141210450 5c. PROGRAM ELEMENT NUMBER ONR Marine Meteorology Program 6
Amplified plant turnover in response to climate change forecast by Late Quaternary records
NASA Astrophysics Data System (ADS)
Nogués-Bravo, D.; Veloz, S.; Holt, B. G.; Singarayer, J.; Valdes, P.; Davis, B.; Brewer, S. C.; Williams, J. W.; Rahbek, C.
2016-12-01
Conservation decisions are informed by twenty-first-century climate impact projections that typically predict high extinction risk. Conversely, the palaeorecord shows strong sensitivity of species abundances and distributions to past climate changes, but few clear instances of extinctions attributable to rising temperatures. However, few studies have incorporated palaeoecological data into projections of future distributions. Here we project changes in abundance and conservation status under a climate warming scenario for 187 European and North American plant taxa using niche-based models calibrated against taxa-climate relationships for the past 21,000 years. We find that incorporating long-term data into niche-based models increases the magnitude of projected future changes for plant abundances and community turnover. The larger projected changes in abundances and community turnover translate into different, and often more threatened, projected IUCN conservation status for declining tree taxa, compared with traditional approaches. An average of 18.4% (North America) and 15.5% (Europe) of taxa switch IUCN categories when compared with single-time model results. When taxa categorized as `Least Concern' are excluded, the palaeo-calibrated models increase, on average, the conservation threat status of 33.2% and 56.8% of taxa. Notably, however, few models predict total disappearance of taxa, suggesting resilience for these taxa, if climate were the only extinction driver. Long-term studies linking palaeorecords and forecasting techniques have the potential to improve conservation assessments.
Seasonal and decadal information towards climate services: EUPORIAS
NASA Astrophysics Data System (ADS)
Buontempo, Carlo; Hewitt, Chris
2013-04-01
Societies have always faced challenges and opportunities arising from variations in climate, and have often flourished or collapsed depending on their ability to adapt to such changes. Recent advances in our understanding and ability to forecast climate variability and climate change have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. The European Commission have recently commissioned a major four year long project (EUPORIAS) to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The paper describes the setup of the project, its main outcome and some of the very preliminary results.
Short-term climate change impacts on Mara basin hydrology
NASA Astrophysics Data System (ADS)
Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.
2017-12-01
The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).
CLIMATE CHANGE IN THAILAND AND ITS POTENTIAL IMPACT ON RICE YIELD
Because of the uncertainties surrounding prediction of climate change, it is common to employ climate scenarios to estimate its impacts on a system. Climate scenarios are sets of climatic perturbations used with models to test system sensitivity to projected changes. In this stud...
Woody plants and the prediction of climate-change impacts on bird diversity.
Kissling, W D; Field, R; Korntheuer, H; Heyder, U; Böhning-Gaese, K
2010-07-12
Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant-animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.
Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A
2015-01-01
Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change
Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.
2015-01-01
Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081
Challenges in predicting climate change impacts on pome fruit phenology
NASA Astrophysics Data System (ADS)
Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E. W. R.
2014-08-01
Climate projection data were applied to two commonly used pome fruit flowering models to investigate potential differences in predicted full bloom timing. The two methods, fixed thermal time and sequential chill-growth, produced different results for seven apple and pear varieties at two Australian locations. The fixed thermal time model predicted incremental advancement of full bloom, while results were mixed from the sequential chill-growth model. To further investigate how the sequential chill-growth model reacts under climate perturbed conditions, four simulations were created to represent a wider range of species physiological requirements. These were applied to five Australian locations covering varied climates. Lengthening of the chill period and contraction of the growth period was common to most results. The relative dominance of the chill or growth component tended to predict whether full bloom advanced, remained similar or was delayed with climate warming. The simplistic structure of the fixed thermal time model and the exclusion of winter chill conditions in this method indicate it is unlikely to be suitable for projection analyses. The sequential chill-growth model includes greater complexity; however, reservations in using this model for impact analyses remain. The results demonstrate that appropriate representation of physiological processes is essential to adequately predict changes to full bloom under climate perturbed conditions with greater model development needed.
Establishing a Real-Money Prediction Market for Climate on Decadal Horizons
NASA Astrophysics Data System (ADS)
Roulston, M. S.; Hand, D. J.; Harding, D. W.
2016-12-01
A plan to establish a not-for-profit prediction market that will allow participants to bet on the value of selected climate variables decades into the future will be presented. It is hoped that this market will provide an objective measure of the consensus view on climate change, including information concerning the uncertainty of climate projections. The proposed design of the market and the definition of the climate variables underlying the contracts will be discussed, as well as relevant regulatory and legal issues.
Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts
NASA Astrophysics Data System (ADS)
Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.
2017-05-01
In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.
NASA Astrophysics Data System (ADS)
Moore, K.; Pierson, D.; Pettersson, K.; Naden, P.; Allott, N.; Jennings, E.; Tamm, T.; Järvet, A.; Nickus, U.; Thies, H.; Arvola, L.; Järvinen, M.; Schneiderman, E.; Zion, M.; Lounsbury, D.
2004-05-01
We are applying an existing watershed model in the EU CLIME (Climate and Lake Impacts in Europe) project to evaluate the effects of weather on seasonal and annual delivery of N, P, and DOC to lakes. Model calibration is based on long-term records of weather and water quality data collected from sites in different climatic regions spread across Europe and in New York State. The overall aim of the CLIME project is to develop methods and models to support lake and catchment management under current climate conditions and make predictions under future climate scenarios. Scientists from 10 partner countries are collaborating on developing a consistent approach to defining model parameters for the Generalized Watershed Loading Functions (GWLF) model, one of a larger suite of models used in the project. An example of the approach for the hydrological portion of the GWLF model will be presented, with consideration of the balance between model simplicity, ease of use, data requirements, and realistic predictions.
Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O
2018-04-24
As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.
Advancing decadal-scale climate prediction in the North Atlantic sector.
Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E
2008-05-01
The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.
NASA Astrophysics Data System (ADS)
Ganguly, A. R.; Steinbach, M.; Kumar, V.
2009-12-01
The IPCC AR4 not only provided conclusive evidence about anticipated global warming at century scales, but also indicated with a high level of certainty that the warming is caused by anthropogenic emissions. However, an outstanding knowledge-gap is to develop credible projections of climate extremes and their impacts. Climate extremes are defined in this context as extreme weather and hydrological events, as well as changes in regional hydro-meteorological patterns, especially at decadal scales. While temperature extremes from climate models have relatively better skills, hydrological variables and their extremes have significant shortcomings. Credible projections about tropical storms, sea level rise, coastal storm surge, land glacier melts, and landslides remain elusive. The next generation of climate models is expected to have higher precision. However, their ability to provide more accurate projections of climate extremes remains to be tested. Projections of observed trends into the future may not be reliable in non-stationary environments like climate change, even though functional relationships derived from physics may hold. On the other hand, assessments of climate change impacts which are useful for stakeholders and policy makers depend critically on regional and decadal scale projections of climate extremes. Thus, climate impacts scientists often need to develop qualitative inferences about the not so-well predicted climate extremes based on insights from observations (e.g., increased hurricane intensity) or conceptual understanding (e.g., relation of wildfires to regional warming or drying and hurricanes to SST). However, neither conceptual understanding nor observed trends may be reliable when extrapolating in a non-stationary environment. These urgent societal priorities offer fertile grounds for nonlinear modeling and knowledge discovery approaches. Thus, qualitative inferences on climate extremes and impacts may be transformed into quantitative predictive insights based on a combination of hypothesis-guided data analysis and relatively hypothesis-free but data-guided discovery processes. The analysis and discovery approaches need to be cognizant of climate data characteristics like nonlinear processes, low-frequency variability, long-range spatial dependence and long-memory temporal processes; the value of physically-motivated conceptual understanding and functional associations; as well as possible thresholds and tipping points in the impacted natural, engineered or human systems. Case studies focusing on new methodologies as well as novel climate insights are discussed with a focus on stakeholder requirements.
MISST: The Multi-Sensor Improved Sea Surface Temperature Project
2009-06-01
climate change studies, fisheries management, and a wide range of other applications. Measurements are taken by several satellites carrying infrared and...TEMPERATURE PROJECT ABSTRACT. Sea surface temperature (SST) measurements are vital to global weather prediction, climate change studies, fisheries management...important variables related to the global ocean-atmosphere system. It is a key indicator of climate change , is widely applied to studies of upper
NASA Astrophysics Data System (ADS)
Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.
2013-12-01
Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.
Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.
2014-01-01
Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.
Ruiz-Navarro, Ana; Gillingham, Phillipa K; Britton, J Robert
2016-09-01
Predictions of species responses to climate change often focus on distribution shifts, although responses can also include shifts in body sizes and population demographics. Here, shifts in the distributional ranges ('climate space'), body sizes (as maximum theoretical body sizes, L∞) and growth rates (as rate at which L∞ is reached, K) were predicted for five fishes of the Cyprinidae family in a temperate region over eight climate change projections. Great Britain was the model area, and the model species were Rutilus rutilus, Leuciscus leuciscus, Squalius cephalus, Gobio gobio and Abramis brama. Ensemble models predicted that the species' climate spaces would shift in all modelled projections, with the most drastic changes occurring under high emissions; all range centroids shifted in a north-westerly direction. Predicted climate space expanded for R. rutilus and A. brama, contracted for S. cephalus, and for L. leuciscus and G. gobio, expanded under low-emission scenarios but contracted under high emissions, suggesting the presence of some climate-distribution thresholds. For R. rutilus, A. brama, S. cephalus and G. gobio, shifts in their climate space were coupled with predicted shifts to significantly smaller maximum body sizes and/or faster growth rates, aligning strongly to aspects of temperature-body size theory. These predicted shifts in L∞ and K had considerable consequences for size-at-age per species, suggesting substantial alterations in population age structures and abundances. Thus, when predicting climate change outcomes for species, outputs that couple shifts in climate space with altered body sizes and growth rates provide considerable insights into the population and community consequences, especially for species that cannot easily track their thermal niches. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Climate Modeling and Causal Identification for Sea Ice Predictability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark
This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2017-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.
NASA Astrophysics Data System (ADS)
Day, Jonathan J.; Tietsche, Steffen; Collins, Mat; Goessling, Helge F.; Guemas, Virginie; Guillory, Anabelle; Hurlin, William J.; Ishii, Masayoshi; Keeley, Sarah P. E.; Matei, Daniela; Msadek, Rym; Sigmond, Michael; Tatebe, Hiroaki; Hawkins, Ed
2016-06-01
Recent decades have seen significant developments in climate prediction capabilities at seasonal-to-interannual timescales. However, until recently the potential of such systems to predict Arctic climate had rarely been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to interannual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability estimates in these models, and an investigation into to what extent predictability is dependent on the initial state. The inclusion of additional models expands the range of sea ice volume and extent predictability estimates, demonstrating that there is model diversity in the potential to make seasonal-to-interannual timescale predictions. We also investigate whether sea ice forecasts started from extreme high and low sea ice initial states exhibit higher levels of potential predictability than forecasts started from close to the models' mean state, and find that the result depends on the metric. Although designed to address Arctic predictability, we describe the archived data here so that others can use this data set to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño-Southern Oscillation.
Erosion of lizard diversity by climate change and altered thermal niches.
Sinervo, Barry; Méndez-de-la-Cruz, Fausto; Miles, Donald B; Heulin, Benoit; Bastiaans, Elizabeth; Villagrán-Santa Cruz, Maricela; Lara-Resendiz, Rafael; Martínez-Méndez, Norberto; Calderón-Espinosa, Martha Lucía; Meza-Lázaro, Rubi Nelsi; Gadsden, Héctor; Avila, Luciano Javier; Morando, Mariana; De la Riva, Ignacio J; Victoriano Sepulveda, Pedro; Rocha, Carlos Frederico Duarte; Ibargüengoytía, Nora; Aguilar Puntriano, César; Massot, Manuel; Lepetz, Virginie; Oksanen, Tuula A; Chapple, David G; Bauer, Aaron M; Branch, William R; Clobert, Jean; Sites, Jack W
2010-05-14
It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce. Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local populations have gone extinct. We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide. Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20%. Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.
He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron
2012-01-01
Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
Climate-FVS Version 2: Content, users guide, applications, and behavior
Nicholas L. Crookston
2014-01-01
Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales. Individual tree climate viability scores measure the likelihood that the climate at a given...
Assessing the sensitivity of avian species abundance to land cover and climate
Jaymi J. LeBrun; Wayne E. Thogmartin; Frank R. Thompson; William D. Dijak; Joshua J. Millspaugh
2016-01-01
Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and...
NASA Astrophysics Data System (ADS)
Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Flubacher, Moritz; Maurer, Felix; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia
2017-04-01
Seasonal climate forecast products potentially have a high value for users of different sectors. During the first phase (2012-2015) of the project CLIMANDES (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), a demand study conducted with Peruvian farmers indicated a large interest in seasonal climate information for agriculture. The study further showed that the required information should by precise, timely, and understandable. In addition to the actual forecast, two complex measures are essential to understand seasonal climate predictions and their limitations correctly: forecast uncertainty and forecast skill. The former can be sampled by using an ensemble of climate simulations, the latter derived by comparing forecasts of past time periods to observations. Including uncertainty and skill information in an understandable way for end-users (who are often not technically educated) poses a great challenge. However, neglecting this information would lead to a false sense of determinism which could prove fatal to the credibility of climate information. Within the second phase (2016-2018) of the project CLIMANDES, one goal is to develop a prototype of a user-tailored seasonal forecast for the agricultural sector in Peru. In this local context, the basic education level of the rural farming community presents a major challenge for the communication of seasonal climate predictions. This contribution proposes different graphical presentations of climate forecasts along with possible approaches to visualize and communicate the associated skill and uncertainties, considering end users with varying levels of technical knowledge.
Identifying misbehaving models using baseline climate variance
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-06-01
The majority of projections made using general circulation models (GCMs) are conducted to help tease out the effects on a region, or on the climate system as a whole, of changing climate dynamics. Sun et al., however, used model runs from 20 different coupled atmosphere-ocean GCMs to try to understand a different aspect of climate projections: how bias correction, model selection, and other statistical techniques might affect the estimated outcomes. As a case study, the authors focused on predicting the potential change in precipitation for the Murray-Darling Basin (MDB), a 1-million- square- kilometer area in southeastern Australia that suffered a recent decade of drought that left many wondering about the potential impacts of climate change on this important agricultural region. The authors first compared the precipitation predictions made by the models with 107 years of observations, and they then made bias corrections to adjust the model projections to have the same statistical properties as the observations. They found that while the spread of the projected values was reduced, the average precipitation projection for the end of the 21st century barely changed. Further, the authors determined that interannual variations in precipitation for the MDB could be explained by random chance, where the precipitation in a given year was independent of that in previous years.
NASA Astrophysics Data System (ADS)
Lang, C.; Fettweis, X.; Erpicum, M.
2015-01-01
We have performed future projections of the climate and surface mass balance (SMB) of Svalbard with the MAR regional climate model forced by the MIROC5 global model, following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of the melt around 2050, with a larger melt increase in the south compared to the north of the archipelago and the ice caps. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a strong winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. At the end of the century (2070-2099 mean), SMB is projected to be negative over the entire Svalbard and, by 2085, all glaciated regions of Svalbard are predicted to undergo net ablation, meaning that, under the RCP8.5 scenario, all the glaciers and ice caps are predicted to start their irreversible retreat before the end of the 21st century.
Modeling erosion under future climates with the WEPP model
Timothy Bayley; William Elliot; Mark A. Nearing; D. Phillp Guertin; Thomas Johnson; David Goodrich; Dennis Flanagan
2010-01-01
The Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT) was developed to be an easy-to-use, web-based erosion model that allows users to adjust climate inputs for user-specified climate scenarios. WEPPCAT allows the user to modify monthly mean climate parameters, including maximum and minimum temperatures, number of wet days, precipitation, and...
Unlocking the climate riddle in forested ecosystems
Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking
2012-01-01
Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...
Reconstruction of Past Mediterranean Climate
NASA Astrophysics Data System (ADS)
García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos
2007-02-01
First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, A.W.; Ghil, M.; Kravtsov, K.
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael
2011-04-08
This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs,more » we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes. Each of these project components is elaborated on below, followed by a list of publications resulting from the grant.« less
Linking climate change projections for an Alaskan watershed to future coho salmon production.
Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M
2014-06-01
Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia
Camarero, J. Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q.; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin
2017-01-01
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950–2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells. PMID:29109266
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia.
Sánchez-Salguero, Raúl; Camarero, J Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin; Carreira, José A; Linares, Juan C
2017-11-21
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.
Simulating Climate Change in Ireland
NASA Astrophysics Data System (ADS)
Nolan, P.; Lynch, P.
2012-04-01
At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Ojima, D. S.; Morisette, J. T.
2012-12-01
The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.
Effects of climate change on long-term population growth of pronghorn in an arid environment
Gedir, Jay V.; Cain, James W.; Harris, Grant; Turnbull, Trey T.
2015-01-01
Climate often drives ungulate population dynamics, and as climates change, some areas may become unsuitable for species persistence. Unraveling the relationships between climate and population dynamics, and projecting them across time, advances ecological understanding that informs and steers sustainable conservation for species. Using pronghorn (Antilocapra americana) as an ecological model, we used a Bayesian approach to analyze long-term population, precipitation, and temperature data from 18 populations in the southwestern United States. We determined which long-term (12 and 24 months) or short-term (gestation trimester and lactation period) climatic conditions best predicted annual rate of population growth (λ). We used these predictions to project population trends through 2090. Projections incorporated downscaled climatic data matched to pronghorn range for each population, given a high and a lower atmospheric CO2 concentration scenario. Since the 1990s, 15 of the pronghorn populations declined in abundance. Sixteen populations demonstrated a significant relationship between precipitation and λ, and in 13 of these, temperature was also significant. Precipitation predictors of λ were highly seasonal, with lactation being the most important period, followed by early and late gestation. The influence of temperature on λ was less seasonal than precipitation, and lacked a clear temporal pattern. The climatic projections indicated that all of these pronghorn populations would experience increased temperatures, while the direction and magnitude of precipitation had high population-specific variation. Models predicted that nine populations would be extirpated or approaching extirpation by 2090. Results were consistent across both atmospheric CO2 concentration scenarios, indicating robustness of trends irrespective of climatic severity. In the southwestern United States, the climate underpinning pronghorn populations is shifting, making conditions increasingly inhospitable to pronghorn persistence. This realization informs and steers conservation and management decisions for pronghorn in North America, while exemplifying how similar research can aid ungulates inhabiting arid regions and confronting similar circumstances elsewhere.
Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.
2013-01-01
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820
NASA Astrophysics Data System (ADS)
Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.
2013-07-01
Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.
Cavanaugh, Kyle C; Parker, John D; Cook-Patton, Susan C; Feller, Ilka C; Williams, A Park; Kellner, James R
2015-05-01
Predictions of climate-related shifts in species ranges have largely been based on correlative models. Due to limitations of these models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here, we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments, we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and the frequency of freezes. When included in distribution models, FDD accurately predicted mangrove presence/absence. Using 28 years of satellite imagery, we linked FDD to observed changes in mangrove abundance in Florida, further exemplifying the importance of extreme cold. We then used downscaled climate projections of FDD to project that these range limits will move northward by 2.2-3.2 km yr(-1) over the next 50 years. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Schuster, Mareike; Kadow, Christopher; Kröner, Igor; Richling, Andy; Grieger, Jens; Kruschke, Tim; Lang, Benjamin; Redl, Robert; Schartner, Thomas; Cubasch, Ulrich
2016-04-01
MiKlip is project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and aims to create a model system that is able provide reliable decadal climate forecasts. During the first project phase of MiKlip the sub-project INTEGRATION located at Freie Universität Berlin developed a framework for scientific infrastructures (FREVA). More information about FREVA can be found in EGU2016-13060. An instance of this framework is used as Central Evaluation System (CES) during the MiKlip project. Throughout the first project phase various sub-projects developed over 25 analysis tools - so called plugins - for the CES. The main focus of these plugins is on the evaluation and verification of decadal climate prediction data, but most plugins are not limited to this scope. They target a wide range of scientific questions. Starting from preprocessing tools like the "LeadtimeSelector", which creates lead-time dependent time-series from decadal hindcast sets, over tracking tools like the "Zykpak" plugin, which can objectively locate and track mid-latitude cyclones, to plugins like "MurCSS" or "SPECS", which calculate deterministic and probabilistic skill metrics. We also integrated some analyses from Model Evaluation Tools (MET), which was developed at NCAR. We will show the theoretical background, technical implementation strategies, and some interesting results of the evaluation of the MiKlip Prototype decadal prediction system for a selected set of these tools.
Conflict in a changing climate
NASA Astrophysics Data System (ADS)
Carleton, T.; Hsiang, S. M.; Burke, M.
2016-05-01
A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.
Geospatial application of the Water Erosion Prediction Project (WEPP) Model
D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot
2011-01-01
The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...
The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.; Higgins, W.
2013-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward improving their representations in numerical models and improving MJO simulation and prediction. Recent results from CVP-funded projects will be summarized in this poster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, Jennifer; Joseph, Renu
2013-09-14
The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less
Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design
NASA Technical Reports Server (NTRS)
Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.;
2015-01-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.
2016-02-01
The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.
Emergent Constraints for Cloud Feedbacks and Climate Sensitivity
Klein, Stephen A.; Hall, Alex
2015-10-26
Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Oke, Tobi A; Hager, Heather A
2017-01-01
The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.
Oke, Tobi A.; Hager, Heather A.
2017-01-01
The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity. PMID:28426754
NASA Astrophysics Data System (ADS)
Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.
2012-12-01
Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.
Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R
2014-01-01
Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.
NASA Astrophysics Data System (ADS)
Quackenbush, A.
2015-12-01
Urban land cover and associated impervious surface area is expected to increase by as much as 50% over the next few decades across substantial portions of the United States. In combination with urban expansion, increases in temperature and changes in precipitation are expected to impact ecosystems through changes in productivity, disturbance and hydrological properties. In this study, we use the NASA Terrestrial Observation and Prediction System Biogeochemical Cycle (TOPS-BGC) model to explore the combined impacts of urbanization and climate change on hydrologic dynamics (snowmelt, runoff, and evapotranspiration) and vegetation carbon uptake (gross productivity). The model is driven using land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) to quantify projected changes in impervious surface area, and climate projections from the 30 arc-second NASA Earth Exchange Downscaled Climate Projection (NEX-DCP30) dataset derived from the CMIP5 climate scenarios. We present the modeling approach and an analysis of the ecosystem impacts projected to occur in the US, with an emphasis on protected areas in the Great Northern and Appalachian Landscape Conservation Cooperatives (LCC). Under the ensemble average of the CMIP5 models and land cover change scenarios for both representative concentration pathways (RCPs) 4.5 and 8.5, both LCCs are predicted to experience increases in maximum and minimum temperatures as well as annual average precipitation. In the Great Northern LCC, this is projected to lead to increased annual runoff, especially under RCP 8.5. Earlier melt of the winter snow pack and increased evapotranspiration, however, reduces summer streamflow and soil water content, leading to a net reduction in vegetation productivity across much of the Great Northern LCC, with stronger trends occurring under RCP 8.5. Increased runoff is also projected to occur in the Appalachian LCC under both RCP 4.5 and 8.5. However, under RCP 4.5, the model predicts that the warmer wetter conditions will lead to increases in vegetation productivity across much of the Appalachian LCC, while under RCP 8.5, the effects of increased precipitation are not enough to keep up with increases in evapotranspiration, leading to projected reductions in vegetation productivity for this LCC by the end of this century.
Uncertainty in weather and climate prediction
Slingo, Julia; Palmer, Tim
2011-01-01
Following Lorenz's seminal work on chaos theory in the 1960s, probabilistic approaches to prediction have come to dominate the science of weather and climate forecasting. This paper gives a perspective on Lorenz's work and how it has influenced the ways in which we seek to represent uncertainty in forecasts on all lead times from hours to decades. It looks at how model uncertainty has been represented in probabilistic prediction systems and considers the challenges posed by a changing climate. Finally, the paper considers how the uncertainty in projections of climate change can be addressed to deliver more reliable and confident assessments that support decision-making on adaptation and mitigation. PMID:22042896
Competitive and demographic leverage points of community shifts under climate warming
Sorte, Cascade J. B.; White, J. Wilson
2013-01-01
Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199
USDA-ARS?s Scientific Manuscript database
Impacts of climate change on hydrology, soil erosion, and wheat production during 2010-2039 at El Reno in central Oklahoma, USA, were simulated using the Water Erosion Prediction Project (WEPP) model. Projections from four GCMs (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emissions scenari...
Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark Weinhold
2013-01-01
Existing models and predictions project serious changes to worldwide hydrologic processes as a result of global climate change. Projections indicate that significant change may threaten National Forest System watersheds that are an important source of water used to support people, economies, and ecosystems.Wildland managers are expected to anticipate and...
Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.
Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang
2017-06-01
Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.
Phylogenetic approaches reveal biodiversity threats under climate change
NASA Astrophysics Data System (ADS)
González-Orozco, Carlos E.; Pollock, Laura J.; Thornhill, Andrew H.; Mishler, Brent D.; Knerr, Nunzio; Laffan, Shawn W.; Miller, Joseph T.; Rosauer, Dan F.; Faith, Daniel P.; Nipperess, David A.; Kujala, Heini; Linke, Simon; Butt, Nathalie; Külheim, Carsten; Crisp, Michael D.; Gruber, Bernd
2016-12-01
Predicting the consequences of climate change for biodiversity is critical to conservation efforts. Extensive range losses have been predicted for thousands of individual species, but less is known about how climate change might impact whole clades and landscape-scale patterns of biodiversity. Here, we show that climate change scenarios imply significant changes in phylogenetic diversity and phylogenetic endemism at a continental scale in Australia using the hyper-diverse clade of eucalypts. We predict that within the next 60 years the vast majority of species distributions (91%) across Australia will shrink in size (on average by 51%) and shift south on the basis of projected suitable climatic space. Geographic areas currently with high phylogenetic diversity and endemism are predicted to change substantially in future climate scenarios. Approximately 90% of the current areas with concentrations of palaeo-endemism (that is, places with old evolutionary diversity) are predicted to disappear or shift their location. These findings show that climate change threatens whole clades of the phylogenetic tree, and that the outlined approach can be used to forecast areas of biodiversity losses and continental-scale impacts of climate change.
a Process-Based Drought Early Warning Indicator for Supporting State Drought Mitigation Decision
NASA Astrophysics Data System (ADS)
Fu, R.; Fernando, D. N.; Pu, B.
2014-12-01
Drought prone states such as Texas requires creditable and actionable drought early warning ranging from seasonal to multi-decadal scales. Such information cannot be simply extracted from the available climate prediction and projections because of their large uncertainties at regional scales and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA national multi-models ensemble experiment (NMME) and the IPCC AR5 (CMIP5) models, are much more reliable for winter and spring than for the summer season for the US Southern Plains. They also show little connection between the droughts in winter/spring and those in summer, in contrast to the observed dry memory from spring to summer over that region. To mitigate the weakness of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies. Based on these key processes and related fields, we have developed a multivariate principle component statistical model to provide a probabilistic summer drought early warning indicator, using the observed or predicted climate conditions in winter and spring on seasonal scale and climate projection for the mid-21stcentury. The summer drought early warning indicator is constructed in a similar way to the NOAA probabilistic predictions that are familiar to water resource managers. The indicator skill is assessed using the standard NOAA climate prediction assessment tools, i.e., the two alternative forced choice (2AFC) and the Receiver Operating Characteristic (ROC). Comparison with long-term observations suggest that this summer drought early warning indicator is able to capture nearly all the strong summer droughts and outperform the dynamic prediction in this regard over the US Southern Plains. This early warning indicator has been used by the state water agency in May 2014 in briefing the state drought preparedness council and will be provided to stake holders through the website of the Texas state water planning agency. We will also present the results of our ongoing work on using NASA satellite based soil moisture and vegetation stress measurements to further improve the reliability of the summer drought early warning indicator.
NASA Astrophysics Data System (ADS)
Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.
2015-12-01
It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to promote the utilization of environmental information and to develop human resources while using DIAS (Data Integration and Analysis System) which has been built by MEXT.
Predicting the Impact of Climate Change on Threatened Species in UK Waters
Jones, Miranda C.; Dye, Stephen R.; Fernandes, Jose A.; Frölicher, Thomas L.; Pinnegar, John K.; Warren, Rachel; Cheung, William W. L.
2013-01-01
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina). PMID:23349829
Predicting the impact of climate change on threatened species in UK waters.
Jones, Miranda C; Dye, Stephen R; Fernandes, Jose A; Frölicher, Thomas L; Pinnegar, John K; Warren, Rachel; Cheung, William W L
2013-01-01
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).
Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework
NASA Astrophysics Data System (ADS)
Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid
2017-12-01
Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar projects. Starting a Monsoon Mission experiment or research project? Let us know so we can add it to our Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court
Building a Framework in Improving Drought Monitoring and Early Warning Systems in Africa
NASA Astrophysics Data System (ADS)
Tadesse, T.; Wall, N.; Haigh, T.; Shiferaw, A. S.; Beyene, S.; Demisse, G. B.; Zaitchik, B.
2015-12-01
Decision makers need a basic understanding of the prediction models and products of hydro-climatic extremes and their suitability in time and space for strategic resource and development planning to develop mitigation and adaptation strategies. Advances in our ability to assess and predict climate extremes (e.g., droughts and floods) under evolving climate change suggest opportunity to improve management of climatic/hydrologic risk in agriculture and water resources. In the NASA funded project entitled, "Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa (GHA) under Evolving Climate Conditions to Support Adaptation Strategies," we are attempting to develop a framework that uses dialogue between managers and scientists on how to enhance the use of models' outputs and prediction products in the GHA as well as improve the delivery of this information in ways that can be easily utilized by managers. This process is expected to help our multidisciplinary research team obtain feedback on the models and forecast products. In addition, engaging decision makers is essential in evaluating the use of drought and flood prediction models and products for decision-making processes in drought and flood management. Through this study, we plan to assess information requirements to implement a robust Early Warning Systems (EWS) by engaging decision makers in the process. This participatory process could also help the existing EWSs in Africa and to develop new local and regional EWSs. In this presentation, we report the progress made in the past two years of the NASA project.
Dynamic climate emulators for solar geoengineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacMartin, Douglas G.; Kravitz, Ben
2016-12-22
Climate emulators trained on existing simulations can be used to project project the climate effects that result from different possible future pathways of anthropogenic forcing, without further relying on general circulation model (GCM) simulations. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of greenhouse gas concentrations, by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 × CO 2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per yearmore » CO 2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern Hemisphere sea ice extent, with the difference between simulation and prediction typically being smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern Hemisphere sea ice extent is less well predicted, indicating a limit to the linearity assumption.« less
Decadal climate prediction (project GCEP).
Haines, Keith; Hermanson, Leon; Liu, Chunlei; Putt, Debbie; Sutton, Rowan; Iwi, Alan; Smith, Doug
2009-03-13
Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.
Carvalho, Bruno M; Rangel, Elizabeth F; Ready, Paul D; Vale, Mariana M
2015-01-01
Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector's climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: "stabilization" and "high increase". Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become endemic for L. amazonensis, however, if they have competent reservoir hosts and transmission dynamics matching those in the Amazon region.
Carvalho, Bruno M.; Ready, Paul D.
2015-01-01
Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector’s climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: “stabilization” and “high increase”. Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become endemic for L. amazonensis, however, if they have competent reservoir hosts and transmission dynamics matching those in the Amazon region. PMID:26619186
Evaluating the sources of potential migrant species: implications under climate change
Ines Ibanez; James S. Clark; Michael C. Dietze
2008-01-01
As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the...
Complex networks as a unified framework for descriptive analysis and predictive modeling in climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R
The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with an aim towards characterizing observed phenomena as well as discovering new knowledge in the climate domain. Specifically, we posit that complex networks are well-suited for both descriptive analysis and predictive modeling tasks. We show that the structural properties of climate networks have useful interpretation within the domain. Further,more » we extract clusters from these networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each other.« less
Assessment of climate change impact on yield of major crops in the Banas River Basin, India.
Dubey, Swatantra Kumar; Sharma, Devesh
2018-09-01
Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.
Can air temperature be used to project influences of climate change on stream temperature?
Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson
2014-01-01
Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...
Projecting the future of an alpine ungulate under climate change scenarios.
White, Kevin S; Gregovich, David P; Levi, Taal
2018-03-01
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key "early warning signs" about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37-year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate-driven effects influence mountain goat populations, we developed an age-structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70-year time window (2015-2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., "thermoneutral") summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%-86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate-linked bottom-up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence. © 2017 John Wiley & Sons Ltd.
Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate
Russell, Bayden D.; Connell, Sean D.; Mellin, Camille; Brook, Barry W.; Burnell, Owen W.; Fordham, Damien A.
2012-01-01
The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery. PMID:23251326
Campaign datasets for ARM Airborne Carbon Measurements (ARM-ACME-V)
Biraud,Sebastien; Mei,Fan; Flynn,Connor; Hubbe,John; Long,Chuck; Matthews,Alyssa; Pekour,Mikhail; Sedlacek,Arthur; Springston,Stephen; Tomlinson,Jason; Chand,Duli
2016-03-15
Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.
Modeling nonbreeding distributions of shorebirds and waterfowl in response to climate change
Reese, Gordon; Skagen, Susan K.
2017-01-01
To identify areas on the landscape that may contribute to a robust network of conservation areas, we modeled the probabilities of occurrence of several en route migratory shorebirds and wintering waterfowl in the southern Great Plains of North America, including responses to changing climate. We predominantly used data from the eBird citizen-science project to model probabilities of occurrence relative to land-use patterns, spatial distribution of wetlands, and climate. We projected models to potential future climate conditions using five representative general circulation models of the Coupled Model Intercomparison Project 5 (CMIP5). We used Random Forests to model probabilities of occurrence and compared the time periods 1981–2010 (hindcast) and 2041–2070 (forecast) in “model space.” Projected changes in shorebird probabilities of occurrence varied with species-specific general distribution pattern, migration distance, and spatial extent. Species using the western and northern portion of the study area exhibited the greatest likelihoods of decline, whereas species with more easterly occurrences, mostly long-distance migrants, had the greatest projected increases in probability of occurrence. At an ecoregional extent, differences in probabilities of shorebird occurrence ranged from −0.015 to 0.045 when averaged across climate models, with the largest increases occurring early in migration. Spatial shifts are predicted for several shorebird species. Probabilities of occurrence of wintering Mallards and Northern Pintail are predicted to increase by 0.046 and 0.061, respectively, with northward shifts projected for both species. When incorporated into partner land management decision tools, results at ecoregional extents can be used to identify wetland complexes with the greatest potential to support birds in the nonbreeding season under a wide range of future climate scenarios.
NASA Astrophysics Data System (ADS)
Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric
2016-04-01
Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.
NASA Astrophysics Data System (ADS)
Stroeve, J. C.
2014-12-01
The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the September sea ice extent is near the long-term trend, contributions tend to be accurate. Years when the observed extent departs from the trend have proven harder to predict. Predictability skill does not appear to be more accurate for dynamical models over statistical ones, nor is there a measurable improvement in skill as the summer progresses.
Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-10-01
Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.
How climate change might influence the potential distribution of weed, bushmint (Hyptis suaveolens)?
Padalia, Hitendra; Srivastava, Vivek; Kushwaha, S P S
2015-04-01
Invasive species and climate change are considered as the most serious global environmental threats. In this study, we investigated the influence of projected global climate change on the potential distribution of one of the world's most successful invader weed, bushmint (Hyptis suaveolens (L.) Poit.). We used spatial data on 20 environmental variables at a grid resolution of 5 km, and 564 presence records of bushmint from its native and introduced range. The climatic profiles of the native and invaded sites were analyzed in a multi-variate space in order to examine the differences in the position of climatic niches. Maximum Entropy (MaxEnt) model was used to predict the potential distribution of bushmint using presence records from entire range (invaded and native) along with 14 eco-physiologically relevant predictor variables. Subsequently, the trained MaxEnt model was fed with Hadley Centre Coupled Model (HadCM3) climate projections to predict potential distribution of bushmint by the year 2050 under A2a and B2a emission scenarios. MaxEnt predictions were very accurate with an Area Under Curve (AUC) value of 0.95. The results of Principal Component Analysis (PCA) indicated that climatic niche of bushmint on the invaded sites is not entirely similar to its climatic niche in the native range. A vast area spread between 34 ° 02' north and 28 ° 18' south latitudes in tropics was predicted climatically suitable for bushmint. West and middle Africa, tropical southeast Asia, and northern Australia were predicted at high invasion risk. Study indicates enlargement, retreat, or shift across bushmint's invasion range under the influence of climate change. Globally, bushmint's potential distribution might shrink in future with more shrinkage for A2a scenario than B2a. The study outcome has immense potential for undertaking effective preventive/control measures and long-term management strategies for regions/countries, which are at higher risk of bushmint's invasion.
NASA Astrophysics Data System (ADS)
Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.
2012-01-01
Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse projections caused decreases around -20%. Changes in human ignition led to an increase of 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by -6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-12-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. PMID:24455138
Chang, Tony; Hansen, Andrew J; Piekielek, Nathan
2014-01-01
Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980-2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2-29% and 0.04-10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010-2099 time period related to consistent warming above the 1910-2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios.
Chang, Tony; Hansen, Andrew J.; Piekielek, Nathan
2014-01-01
Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980–2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2–29% and 0.04–10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010–2099 time period related to consistent warming above the 1910–2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios. PMID:25372719
The adventures of climate science in the sweet land of idle arguments
NASA Astrophysics Data System (ADS)
Winsberg, Eric; Goodwin, William Mark
2016-05-01
In a recent series of papers Roman Frigg, Leonard Smith, and several coauthors have developed a general epistemological argument designed to cast doubt on the capacity of a broad range of mathematical models to generate "decision relevant predictions." The presumptive targets of their argument are at least some of the modeling projects undertaken in contemporary climate science. In this paper, we trace and contrast two very different readings of the scope of their argument. We do this by considering the very different implications for climate science that these interpretations would have. Then, we lay out the structure of their argument-an argument by analogy-with an eye to identifying points at which certain epistemically significant distinctions might limit the force of the analogy. Finally, some of these epistemically significant distinctions are introduced and defended as relevant to a great many of the predictive mathematical modeling projects employed in contemporary climate science.
Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B
2012-01-01
Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we provide a framework to address methodological uncertainties and contextualize results.
Can air temperature be used to project influences of climate change on stream temperature?
Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.
2014-01-01
Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.
Projected changes in rainfall and temperature over homogeneous regions of India
NASA Astrophysics Data System (ADS)
Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara
2018-01-01
The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.
Changing currents: a strategy for understanding and predicting the changing ocean circulation.
Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn
2012-12-13
Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.
Franco Biondi; Scotty Strachan
2011-01-01
Predicting the future of high-elevation pine populations is closely linked to correctly interpreting their past responses to climatic variability. As a proxy index of climate, dendrochronological records have the advantage of seasonal to annual resolution over multiple centuries to millennia (Bradley 1999). All climate reconstructions rely on the 'uniformity...
The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy
NASA Astrophysics Data System (ADS)
DeWaters, J.; Powers, S. E.; Dhaniyala, S.
2014-12-01
Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.
ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6
NASA Technical Reports Server (NTRS)
Nowicki, S.
2015-01-01
ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.
Chi Zhang; Hanqin Tian; Yuhang Wang; Tao Zeng; Yongqiang Liu
2010-01-01
The model projected ecosystem carbon dynamics were incorporated into the default (contemporary) fuel load map developed by FCCS (Fuel Characteristic Classification System) to estimate the dynamics of fuel load in the Southern United States in response to projected changes in climate and atmosphere (CO2 and nitrogen deposition) from 2002 to 2050. The study results...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smyth, Padhraic
2013-07-22
This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies ofmore » climate variability in terms of the dynamics of atmospheric flow regimes.« less
Future Climate Impacts on Harmful Algal Blooms in an Agriculturally Dominated Ecosystem
NASA Astrophysics Data System (ADS)
Aloysius, N. R.; Martin, J.; Ludsin, S.; Stumpf, R. P.
2015-12-01
Cyanobacteria blooms have become a major problem worldwide in aquatic ecosystems that receive excessive runoff of limiting nutrients from terrestrial drainage. Such blooms often are considered harmful because they degrade ecosystem services, threaten public health, and burden local economies. Owing to changing agricultural land-use practices, Lake Erie, the most biologically productive of the North American Great Lakes, has begun to undergo a re-eutrophication in which the frequency and extent of harmful algal blooms (HABs) has increased. Continued climate change has been hypothesized to magnify the HAB problem in Lake Erie in the absence of new agricultural management practices, although this hypothesis has yet to be formally tested empirically. Herein, we tested this hypothesis by predicting how the frequency and extent of potentially harmful cyanobacteria blooms will change in Lake Erie during the 21st century under the Intergovernmental Panel on Climate Change Fifth Assessment climate projections in the region. To do so, we used 80 ensembles of climate projections from 20 Global Climate Models (GCMs) and two greenhouse gas emission scenarios (moderate reduction, RCP4.5; business-as-usual, RCP8.5) to drive a spatiotemporally explicit watershed-hydrology model that was linked to several statistical predictive models of annual cyanobacteria blooms in Lake Erie. Owing to anticipated increases in precipitation during spring and warmer temperatures during summer, our ensemble of predictions revealed that, if current land-management practices continue, the frequency of severe HABs in Lake Erie will increase during the 21st century. These findings identify a real need to consider future climate projections when developing nutrient reduction strategies in the short term, with adaptation also needing to be encouraged under both greenhouse gas emissions scenarios in the absence of effective nutrient mitigation strategies.
Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi
2015-06-01
Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
De Ventura, Sara; Avalos, Grinia; Rossa, Andrea; Flubacher, Moritz; Gubler, Stefanie; Sedlmeier, Katrin; Dapozzo, Marlene; Garcia, Teresa; Quevedo, Karim; Liniger, Mark; Spirig, Christoph; Rosas, Gabriela; Schwierz, Cornelia
2017-04-01
The project Climandes is a twinning project between the Peruvian National Meteorological and Hydrological Service (SENAMHI) and the Federal Office of Meteorology and Climatology of Switzerland (MeteoSwiss) aiming at improving climate services for the Andean Region. It was launched in 2012 as a pilot project of the Global Framework for Climate Services (GFCS) of WMO. In 2016 a second phase of the project has started. Until now, Peru as all the Andean countries has had only a limited access to climate services, and the few instruments already in place have mostly not been developed in concordance with the user needs. Due to this mismatch, the opportunity to achieve veritable socio-economic benefits (SEB) has been overlooked so far. An additional difficulty is the lack of trained and experienced climatology and meteorology professionals able to develop and provide high quality climate services. Furthermore, the importance of climate information and its far-reaching benefits has not yet been fully acknowledged and embraced by the political decision-makers. The overall goals of the Climandes project are the following:. • Provision of user-tailored climate services for the Andean Region to improve socio- economic benefits for the agricultural sector and for society at large. • Improvement of the capacities of the meteorological service of Peru to generate user-tailored climate services in the agricultural sector. These goals are elaborated within three mutually dependent modules: The first one comprises user-tailored climate products for the agricultural sector in the Peruvian Andes. This includes drought and precipitation monitoring as well as the development of a prototype seasonal prediction system for the region including indices tailored to the agricultural sector. The second module focuses on capacity building, enabling climatology-related professionals and students to develop high-quality climate services for Peru and the Andean Region. Training courses as well as E-learning tools covering the knowledge needed for the elaboration and use of climate services (e.g. monitoring, seasonal prediction of precipitation) are developed and implemented. The third module aims at raising the awareness of political stakeholders of the SEB of SENAMHI's sector-specific climate services underpinned by a case study to quantify the SEB of drought and precipitation information platform for selected crops. This contribution will give an overview of the project and highlights some of the results of the first year of Climandes 2.
Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.
Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J
2018-01-01
Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.
Steen, Valerie; Powell, Abby N.
2012-01-01
Wetland-dependent birds are considered to be at particularly high risk for negative climate change effects. Current and future distributions of American Bittern (Botaurus lentiginosus), American Coot (Fulica americana), Black Tern (Chlidonias niger), Pied-billed Grebe (Podilymbus podiceps) and Sora (Porzana carolina), five waterbird species common in the Prairie Pothole Region (PPR), were predicted using species distribution models (SDMs) in combination with climate data that projected a drier future for the PPR. Regional-scale SDMs were created for the U.S. PPR using breeding bird survey occurrence records for 1971-2000 and wetland and climate parameters. For each waterbird species, current distribution and four potential future distributions were predicted: all combinations of two Global Circulation Models and two emissions scenarios. Averaged for all five species, the ensemble range reduction was 64%. However, projected range losses for individual species varied widely with Sora and Black Tern projected to lose close to 100% and American Bittern 29% of their current range. Future distributions were also projected to a hypothetical landscape where wetlands were numerous and constant to highlight areas suitable as conservation reserves under a drier future climate. The ensemble model indicated that northeastern North Dakota and northern Minnesota would be the best areas for conservation reserves within the U.S. PPR under the modeled conditions.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.
Response of Groundwater Recharge to Potential Future Climate Change in the Grand River Watershed
NASA Astrophysics Data System (ADS)
Jyrkama, M. I.; Sykes, J. F.
2004-05-01
The Grand River watershed is situated in south-western Ontario, draining an area of nearly 7000 square kilometres into Lake Erie. Approximately eighty percent of the population in the watershed derive their drinking water from groundwater sources. Quantifying the recharge input to the groundwater system and the impact of climate variability due to climate change is, therefore, essential for ensuring the quantity and sustainability of the watershed's drinking water resources in the future. The primary goal of this study is to investigate the impact of potential future climate changes on groundwater recharge in the Grand River watershed. The physically based hydrologic model HELP3 is used in conjunction with GIS to simulate the past conditions and future changes in evapotranspiration, potential surface runoff, and groundwater recharge rates as a result of projected changes in the regions climate. The climate change projections are based on the general predictions reported by the Intergovernmental Panel on Climate Change (IPCC) in 2001. Forty years of daily historical weather data are used as the reference condition. The impact of climate change on the hydrologic cycle over a forty year study period is modelled by perturbing the HELP3 model input parameters using predicted future changes in precipitation, temperature, and solar radiation. The changes in land use and vegetation cover over time were not considered in the study. The results of the study indicate that the overall simulated rate of groundwater recharge is predicted to increase in the watershed as a result of the projected future climate change. Warmer winter temperatures will reduce the extent and duration of ground frost and shift the springmelt from spring toward winter months, allowing more water to infiltrate into the ground. This results in decreased surface runoff, higher infiltration, and subsequently increased groundwater recharge. The predicted higher intensity and frequency of future precipitation will not only contribute significantly to increased surface runoff, but also results in higher evapotranspiration and groundwater recharge rates due to increased amounts of available water. Changes in the incoming solar radiation have a minimal impact on the simulated hydrologic processes. The overall simulated average annual recharge in the watershed is predicted to increase by approximately 100 mm/year over the next forty years from 189 mm/year to 289 mm/year.
The QWeCI Project: seamlessly linking climate science to society
NASA Astrophysics Data System (ADS)
Morse, A. P.; Caminade, C.; Jones, A. E.; MacLeod, D.; Heath, A. E.
2012-04-01
The EU FP7 QWeCI project Quantifying Weather and Climate Impacts on health in developing countries (www.liv.ac.uk/qweci) has 13 partners with 7 of these in Africa. The geographical focus of the project is in Senegal, Ghana and Malawi. In all three countries the project has a strong scientific dissemination outlook as well as having field based surveillance programmes in Ghana and Senegal to understand more about the local parameters controlling the transmission of malaria and in Senegal of Rift Valley fever. The project has a strong and active climate science activity in using hindcasts of the new System 4 seasonal forecasting system at ECMWF; to further develop the use of monthly to seasonal forecasts from ensemble prediction systems; within project downscaling development; the assessment of decadal ensemble prediction systems; and the development and testing of vector borne disease models for malaria and Rift Valley fever. In parallel with the science programme the project has a large outreach activity involving regular communication and bi-lateral exchanges, science and decision maker focused workshops. In Malawi a long range WiFi network has been established for the dissemination of data. In Senegal where they is a concentration of partners and stakeholders the project is gaining a role as a catalyst for wider health and climate related activity within government departments and national research bodies along with the support and involvement of local communities. Within these wider community discussions we have interactive inputs from African and European scientists who are partners in the project. This paper will show highlights of the work completed so far and give an outline to future development and to encourage a wider user interaction from outside of the current project team and their direct collaborators.
Constructing optimal ensemble projections for predictive environmental modelling in Northern Eurasia
NASA Astrophysics Data System (ADS)
Anisimov, Oleg; Kokorev, Vasily
2013-04-01
Large uncertainties in climate impact modelling are associated with the forcing climate data. This study is targeted at the evaluation of the quality of GCM-based climatic projections in the specific context of predictive environmental modelling in Northern Eurasia. To accomplish this task, we used the output from 36 CMIP5 GCMs from the IPCC AR-5 data base for the control period 1975-2005 and calculated several climatic characteristics and indexes that are most often used in the impact models, i.e. the summer warmth index, duration of the vegetation growth period, precipitation sums, dryness index, thawing degree-day sums, and the annual temperature amplitude. We used data from 744 weather stations in Russia and neighbouring countries to analyze the spatial patterns of modern climatic change and to delineate 17 large regions with coherent temperature changes in the past few decades. GSM results and observational data were averaged over the coherent regions and compared with each other. Ultimately, we evaluated the skills of individual models, ranked them in the context of regional impact modelling and identified top-end GCMs that "better than average" reproduce modern regional changes of the selected meteorological parameters and climatic indexes. Selected top-end GCMs were used to compose several ensembles, each combining results from the different number of models. Ensembles were ranked using the same algorithm and outliers eliminated. We then used data from top-end ensembles for the 2000-2100 period to construct the climatic projections that are likely to be "better than average" in predicting climatic parameters that govern the state of environment in Northern Eurasia. The ultimate conclusions of our study are the following. • High-end GCMs that demonstrate excellent skills in conventional atmospheric model intercomparison experiments are not necessarily the best in replicating climatic characteristics that govern the state of environment in Northern Eurasia, and independent model evaluation on regional level is necessary to identify "better than average" GCMs. • Each of the ensembles combining results from several "better than average" models replicate selected meteorological parameters and climatic indexes better than any single GCM. The ensemble skills are parameter-specific and depend on models it consists of. The best results are not necessarily those based on the ensemble comprised by all "better than average" models. • Comprehensive evaluation of climatic scenarios using specific criteria narrows the range of uncertainties in environmental projections.
Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.
2011-01-01
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.
Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.
Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.
2012-01-01
Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.
Gray, Laura K; Clarke, Charles; Wint, G R William; Moran, Jonathan A
2017-01-01
Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them.
Gray, Laura K.; Clarke, Charles; Wint, G. R. William
2017-01-01
Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them. PMID:28817596
Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J
2018-03-23
Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.
Climate change unlikely to increase malaria burden in West Africa
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.
2016-11-01
The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.
2016 International Land Model Benchmarking (ILAMB) Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen
As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.
NASA Astrophysics Data System (ADS)
Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.
2016-09-01
The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.
Climate change effects on watershed hydrological and biogeochemical processes
Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...
Dynamic response of airborne infections to climate change: predictions for varicella
NASA Astrophysics Data System (ADS)
Baker, R.; Mahmud, A. S.; Metcalf, C. J. E.
2017-12-01
Characterizing how climate change will alter the burden of infectious diseases has clear applications for public health policy. Despite our uniquely detailed understanding of the transmission process for directly transmitted infections, the impact of climate variables on these infections remains understudied. We develop a novel methodology for estimating the causal relationship between climate and directly transmitted infections, which combines an epidemiological model of disease transmission with panel regression techniques. Our method allows us to move beyond correlational approaches to studying the link between climate and infectious diseases. Further, we can generate semi-mechanistic projections of incidence across climate scenarios. We illustrate our approach using 30 years of reported cases of varicella, a common airborne childhood infection, across 32 states in Mexico. We find significantly increased varicella transmission in drier conditions. We use this to map potential changes in the magnitude and variability of varicella incidence in Mexico as a result of projected changes in future climate conditions. Our results indicate that the predicted decrease in humidity in Mexico towards the end of the century will increase incidence of varicella, all else equal, and that these changes in incidence will be non-uniform across the year.
Bonebrake, Timothy C; Mastrandrea, Michael D
2010-07-13
Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Potential Seasonal Predictability of Water Cycle in Observations and Reanalysis
NASA Astrophysics Data System (ADS)
Feng, X.; Houser, P.
2012-12-01
Identification of predictability of water cycle variability is crucial for climate prediction, water resources availability, ecosystem management and hazard mitigation. An analysis that can assess the potential skill in seasonal prediction was proposed by the authors, named as analysis of covariance (ANOCOVA). This method tests whether interannual variability of seasonal means exceeds that due to weather noise under the null hypothesis that seasonal means are identical every year. It has the advantage of taking into account autocorrelation structure in the daily time series but also accounting for the uncertainty of the estimated parameters in the significance test. During the past several years, multiple reanalysis datasets have become available for studying climate variability and understanding climate system. We are motivated to compare the potential predictability of water cycle variation from different reanalysis datasets against observations using the newly proposed ANOCOVA method. The selected eight reanalyses include the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) 40-year Reanalysis Project (NNRP), the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) Reanalysis Project (NDRP), the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis, The Japan Meteorological Agency 25-year Reanalysis Project (JRA25), the ECMWF) Interim Reanalysis (ERAINT), the NCEP Climate Forecast System Reanalysis (CFSR), the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the National Oceanic and Atmospheric Administration-Cooperative Institute for Research in Environmental Sciences (NOAA/CIRES) 20th Century Reanalysis Version 2 (20CR). For key water cycle components, precipitation and evaporation, all reanalyses consistently show high fraction of predictable variance in the tropics, low predictability over the extratropics, more potential predictability over the ocean than land, and a stronger seasonal variation in potential predictability over land than ocean. The substantial differences are observed especially over the extropical areas where boundary-forced signal is not as significant as in tropics. We further evaluate the accuracy of reanalysis in estimating seasonal predictability over several selected regions, where rain gauge measurement or land surface data assimilation product is available and accurate, to gain insight on the strength and weakness of reanalysis products.
Arctic melt ponds and energy balance in the climate system
NASA Astrophysics Data System (ADS)
Sudakov, Ivan
2017-02-01
Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.
NASA Astrophysics Data System (ADS)
Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.
2012-09-01
Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.
NASA Astrophysics Data System (ADS)
Di Piazza, A.; Cordano, E.; Eccel, E.
2012-04-01
The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices selected from the list recommended by the World Meteorological Organization Commission for Climatology (WMO-CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) project's Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Each index was applied to both observed (and processed) data and to synthetic time series produced by the Weather Generator, over the thirty year reference period 1981-2010, in order to validate the procedure. Climate projections were statistically downscaled for a selection of sites for the two 30-year periods 2021-2050 and 2071-2099 of the European project "Ensembles" multi-model output (scenario A1B). The use of several climatic indices strengthens the trend analysis of both the generated synthetic series and future climate projections.
Climate models predict increasing temperature variability in poor countries.
Bathiany, Sebastian; Dakos, Vasilis; Scheffer, Marten; Lenton, Timothy M
2018-05-01
Extreme events such as heat waves are among the most challenging aspects of climate change for societies. We show that climate models consistently project increases in temperature variability in tropical countries over the coming decades, with the Amazon as a particular hotspot of concern. During the season with maximum insolation, temperature variability increases by ~15% per degree of global warming in Amazonia and Southern Africa and by up to 10%°C -1 in the Sahel, India, and Southeast Asia. Mechanisms include drying soils and shifts in atmospheric structure. Outside the tropics, temperature variability is projected to decrease on average because of a reduced meridional temperature gradient and sea-ice loss. The countries that have contributed least to climate change, and are most vulnerable to extreme events, are projected to experience the strongest increase in variability. These changes would therefore amplify the inequality associated with the impacts of a changing climate.
Climate models predict increasing temperature variability in poor countries
Dakos, Vasilis; Scheffer, Marten
2018-01-01
Extreme events such as heat waves are among the most challenging aspects of climate change for societies. We show that climate models consistently project increases in temperature variability in tropical countries over the coming decades, with the Amazon as a particular hotspot of concern. During the season with maximum insolation, temperature variability increases by ~15% per degree of global warming in Amazonia and Southern Africa and by up to 10%°C−1 in the Sahel, India, and Southeast Asia. Mechanisms include drying soils and shifts in atmospheric structure. Outside the tropics, temperature variability is projected to decrease on average because of a reduced meridional temperature gradient and sea-ice loss. The countries that have contributed least to climate change, and are most vulnerable to extreme events, are projected to experience the strongest increase in variability. These changes would therefore amplify the inequality associated with the impacts of a changing climate. PMID:29732409
Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.
2017-01-01
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839
Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241
Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.
Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W
2017-01-01
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.
Projected health impacts of heat events in Washington State associated with climate change.
Isaksen, Tania Busch; Yost, Michael; Hom, Elizabeth; Fenske, Richard
2014-01-01
Climate change is predicted to increase the frequency and duration of extreme-heat events and associated health outcomes. This study used data from the historical heat-health outcome relationship, and a unique prediction model, to estimate mortality for 2025 and 2045. For each one degree change in humidex above threshold, we find a corresponding 1.83% increase in mortality for all ages, all non-traumatic causes of death in King County, Washington. Mortality is projected to increase significantly in 2025 and 2045 for the 85 and older age group (2.3-8.0 and 4.0-22.3 times higher than baseline, respectively).
Predicting future uncertainty constraints on global warming projections
Shiogama, H.; Stone, D.; Emori, S.; ...
2016-01-11
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less
Predicting future uncertainty constraints on global warming projections
Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.
2016-01-01
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491
Predicting future uncertainty constraints on global warming projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogama, H.; Stone, D.; Emori, S.
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less
Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections
NASA Astrophysics Data System (ADS)
Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.
2018-01-01
The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and, consequently, in the prediction of future discharge and maximum probable flood.
Microclimate predicts within-season distribution dynamics of montane forest birds
Sarah J.K. Frey; Adam S. Hadley; Matthew G. Betts; Mark Robertson
2016-01-01
Aim: Climate changes are anticipated to have pervasive negative effects on biodiversity and are expected to necessitate widespread range shifts or contractions. Such projections are based upon the assumptions that (1) species respond primarily to broad-scale climatic regimes, or (2) that variation in climate at fine spatial scales is less relevant at coarse spatial...
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi
2015-01-01
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.
Kutywayo, Dumisani; Chemura, Abel; Kusena, Winmore; Chidoko, Pardon; Mahoya, Caleb
2013-01-01
The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms. PMID:24014222
Seasonal Atmospheric and Oceanic Predictions
NASA Technical Reports Server (NTRS)
Roads, John; Rienecker, Michele (Technical Monitor)
2003-01-01
Several projects associated with dynamical, statistical, single column, and ocean models are presented. The projects include: 1) Regional Climate Modeling; 2) Statistical Downscaling; 3) Evaluation of SCM and NSIPP AGCM Results at the ARM Program Sites; and 4) Ocean Forecasts.
Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain
2015-09-01
Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.
Anache, Jamil A A; Flanagan, Dennis C; Srivastava, Anurag; Wendland, Edson C
2018-05-01
Land use and climate change can influence runoff and soil erosion, threatening soil and water conservation in the Cerrado biome in Brazil. The adoption of a process-based model was necessary due to the lack of long-term observed data. Our goals were to calibrate the WEPP (Water Erosion Prediction Project) model for different land uses under subtropical conditions in the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change. We performed the model calibration using a 5-year dataset (2012-2016) of observed runoff and soil loss in four different land uses (wooded Cerrado, tilled fallow without plant cover, pasture, and sugarcane) in experimental plots. Selected soil and management parameters were optimized for each land use during the WEPP model calibration with the existing field data. The simulations were conducted using the calibrated WEPP model components with a 100-year climate dataset created with CLIGEN (weather generator) based on regional climate statistics. We obtained downscaled General Circulation Model (GCM) projections, and runoff and soil loss were predicted with WEPP using future climate scenarios for 2030, 2060, and 2090 considering different Representative Concentration Pathways (RCPs). The WEPP model had an acceptable performance for the subtropical conditions. Land use can influence runoff and soil loss rates in a significant way. Potential climate changes, which indicate the increase of rainfall intensities and depths, may increase the variability and rates of runoff and soil erosion. However, projected climate changes did not significantly affect the runoff and soil erosion for the four analyzed land uses at our location. Finally, the runoff behavior was distinct for each land use, but for soil loss we found similarities between pasture and wooded Cerrado, suggesting that the soil may attain a sustainable level when the land management follows conservation principles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-07-01
Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.
Kodis, Mali'o; Galante, Peter; Sterling, Eleanor J; Blair, Mary E
2018-04-26
Under the threat of ongoing and projected climate change, communities in the Pacific Islands face challenges of adapting culture and lifestyle to accommodate a changing landscape. Few models can effectively predict how biocultural livelihoods might be impacted. Here, we examine how environmental and anthropogenic factors influence an ecological niche model (ENM) for the realized niche of cultivated taro (Colocasia esculenta) in Hawaii. We created and tuned two sets of ENMs: one using only environmental variables, and one using both environmental and cultural characteristics of Hawaii. These models were projected under two different Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) for 2070. Models were selected and evaluated using average omission rate and area under the receiver operating characteristic curve (AUC). We compared optimal model predictions by comparing the percentage of taro plots predicted present and measured ENM overlap using Schoener's D statistic. The model including only environmental variables consisted of 19 Worldclim bioclimatic variables, in addition to slope, altitude, distance to perennial streams, soil evaporation, and soil moisture. The optimal model with environmental variables plus anthropogenic features also included a road density variable (which we assumed as a proxy for urbanization) and a variable indicating agricultural lands of importance to the state of Hawaii. The model including anthropogenic features performed better than the environment-only model based on omission rate, AUC, and review of spatial projections. The two models also differed in spatial projections for taro under anticipated future climate change. Our results demonstrate how ENMs including anthropogenic features can predict which areas might be best suited to plant cultivated species in the future, and how these areas could change under various climate projections. These predictions might inform biocultural conservation priorities and initiatives. In addition, we discuss the incongruences that arise when traditional ENM theory is applied to species whose distribution has been significantly impacted by human intervention, particularly at a fine scale relevant to biocultural conservation initiatives. © 2018 by the Ecological Society of America.
Steen, Valerie; Sofaer, Helen R.; Skagen, Susan K.; Ray, Andrea J.; Noon, Barry R
2017-01-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.
Olson, Deanna H.; Blaustein, Andrew R.
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565
Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R
2017-11-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.
Future change of water vaiables from HadGEM2-AO simulation
NASA Astrophysics Data System (ADS)
Kim, Moon-Hyun; Kang, Hyun-Suk; Lee, Johan; Baek, Hee-Jeong; Cho, Chunho
2013-04-01
Complex global models developed for climate prediction are now applied to the future climate projection in a number of global modeling centers around the world. In climate prediction aspects, an atmosphere-ocean coupled model (one-tier climate system) has been recognized to exhibit useful skill for a global or certain regions (Graham et al., 2005). Wang et al. (2005) demonstrates that an AGCM coupled with an ocean model, simulates realistic SST-rainfall relationships for the Asia during the summer period. Also the transition from two-tier to one-tier approach in climate prediction are mainly caused by recent progresses in development of coupled climate models and enlargement of understanding air-sea interactions obtained from international collaborative efforts such as TOGA (the Tropical Ocean-Global Atmosphere) program (Wang et al., 2009). Meanwhile, water resource including river outflow in association with surface and sub-surface water flow is an important part of the global hydrological cycle, and is affected by climate variability and change through recharge processes (Chen et al., 2002), as well as by human interventions in many locations (Petheram et al., 2001). Also, water is critical resource to the social, economic and environmental aspects, and advances of these core elements requires improved water resource management. Better management and use of water need to abundant real time hydro-meteorological (river and weather) information as well as accurate water resource forecasting (Barrett, 1990). For this reason, many studies have recently carrying out the water resource prediction and estimation using hydrology and climate model. For example, Shiklomanov et al. (2011) predicted that water resource in Russian territory increases about 8-10% during 2010-2020 using the unit hydrograph (UH) model based on hydrologic rainfall-runoff model. Anderson et al. (2000) explained the probabilistic seasonal prediction of drought with a simplified climate model coupled hydrology-atmosphere for water resource planning. Arora et al. (1999) and Oki and Sud (1998) developed a method for routing river flows through GCM grid cells. Accordingly, reliable forecasts are expected to help water managers and users with long lead time decisions, leading to greater water use efficiency and better risk management (Wang, 2012). SO, we analysed hydrological cycle and drought index from precipitation, evaporation, runoff, soil moisture, river outflow, and so on using atmosphere-ocean coupled model which called by HadGEM2-AO. Details and added information by this climate projection system about the future water cycle's change will be presented at the workshop. Acknowledgments: This research has been supported by project NIMR-2013-B-2 of the National Institute of Meteorological Research in Korea Meteorological Administration.
Creating "Intelligent" Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, Noel; Taylor, Patrick
2014-05-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.
Projected changes in daily fire spread across Canada over the next century
NASA Astrophysics Data System (ADS)
Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.
2017-02-01
In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.
Climate change and watershed mercury export: a multiple projection and model analysis
Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.
2013-01-01
Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.
NASA Astrophysics Data System (ADS)
Ferrarini, Alessandro; Alsafran, Mohammed H. S. A.; Dai, Junhu; Alatalo, Juha M.
2018-04-01
Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.
Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho
2015-01-01
Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula.
Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P.; Hopkinson, Charles S.; Lee, Joon Ho
2015-01-01
Climate change has caused shifts in species’ ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula. PMID:26262755
Blodgett, David L.
2013-01-01
The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.
Tool for obtaining projected future climate inputs for the WEPP and SWAT models
USDA-ARS?s Scientific Manuscript database
Climate change is an increasingly important issue affecting natural resources. Rising temperatures, reductions in snow cover, and variability in precipitation depths and intensities are altering the accepted normal approaches for predicting runoff, soil erosion, and chemical losses from upland areas...
NASA Astrophysics Data System (ADS)
Lazrus, H.; Done, J.; Morss, R. E.
2017-12-01
A new branch of climate science, known as decadal prediction, seeks to predict the time-varying trajectory of climate over the next 3-30 years and not just the longer-term trends. Decadal predictions bring climate information into the time horizon of decision makers, particularly those tasked with managing water resources and floods whose master planning is often on the timescale of decades. Information from decadal predictions may help alleviate some aspects of vulnerability by helping to inform decisions that reduce drought and flood exposure and increase adaptive capacities including preparedness, response, and recovery. This presentation will highlight an interdisciplinary project - involving atmospheric and social scientists - on the development of decadal climate information and its use in decision making. The presentation will explore the skill and utility of decadal drought and flood prediction along Colorado's Front Range, an area experiencing rapid population growth and uncertain climate variability and climate change impacts. Innovative statistical and dynamical atmospheric modeling techniques explore the extent to which Colorado precipitation can be predicted on decadal scales using remote Pacific Ocean surface temperature patterns. Concurrently, stakeholder interviews with flood managers in Colorado are being used to explore the potential utility of decadal climate information. Combining the modeling results with results from the stakeholder interviews shows that while there is still significant uncertainty surrounding precipitation on decadal time scales, relevant and well communicated decadal information has potential to be useful for drought and flood management.
The fate of threatened coastal dune habitats in Italy under climate change scenarios.
Prisco, Irene; Carboni, Marta; Acosta, Alicia T R
2013-01-01
Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.
The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios
Prisco, Irene; Carboni, Marta; Acosta, Alicia T. R.
2013-01-01
Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future. PMID:23874787
A platform to integrate climate information and rural telemedicine in Malawi
NASA Astrophysics Data System (ADS)
Lowe, R.; Chadza, T.; Chirombo, J.; Fonda, C.; Muyepa, A.; Nkoloma, M.; Pietrosemoli, E.; Radicella, S. M.; Tompkins, A. M.; Zennaro, M.
2012-04-01
It is commonly accepted that climate plays a role in the transmission of many infectious diseases, particularly those transmitted by mosquitoes such as malaria, which is one of the most important causes of mortality and morbidity in developing countries. Due to time lags involved in the climate-disease transmission system, lagged observed climate variables could provide some predictive lead for forecasting disease epidemics. This lead time could be extended by using forecasts of the climate in disease prediction models. This project aims to implement a platform for the dissemination of climate-driven disease risk forecasts, using a telemedicine approach. A pilot project has been established in Malawi, where a 162 km wireless link has been installed, spanning from Blantyre City to remote health facilities in the district of Mangochi in the Southern region, bordering Lake Malawi. This long Wi-Fi technology allows rural health facilities to upload real-time disease cases as they occur to an online health information system (DHIS2); a national medical database repository administered by the Ministry of Health. This technology provides a real-time data logging system for disease incidence monitoring and facilitates the flow of information between local and national levels. This platform allows statistical and dynamical disease prediction models to be rapidly updated with real-time climate and epidemiological information. This permits health authorities to target timely interventions ahead of an imminent increase in malaria incidence. By integrating meteorological and health information systems in a statistical-dynamical prediction model, we show that a long-distance Wi-Fi link is a practical and inexpensive means to enable the rapid analysis of real-time information in order to target disease prevention and control measures and mobilise resources at the local level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutowski, William J.
This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less
Adaptive and plastic responses of Quercus petraea populations to climate across Europe.
Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine
2017-07-01
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.
Climate fails to predict wood decomposition at regional scales
Mark A. Bradford; Robert J. Warren; Petr Baldrian; Thomas W. Crowther; Daniel S. Maynard; Emily E. Oldfield; William R. Wieder; Stephen A. Wood; Joshua R. King
2014-01-01
Decomposition of organic matter strongly influences ecosystem carbon storage1. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter2, 3, 4, 5. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on...
Laura P. Leites; Andrew P. Robinson; Gerald E. Rehfeldt; John D. Marshall; Nicholas L. Crookston
2012-01-01
Projected climate change will affect existing forests, as substantial changes are predicted to occur during their life spans. Species that have ample intraspecific genetic differentiation, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), are expected to display population-specific growth responses to climate change. Using a mixed-effects modeling approach,...
Shifts in the potential distribution of Sky Island plant communities in response to climate change
John A. Kupfer; Jeff Balmat; Jacqueline L. Smith
2005-01-01
To examine potential responses of sky island ecosystem pattern to projected climate changes, we used topographic and climatic data to develop a predictive model of plant community distribution in Saguaro National Park East, AZ. Increasing temperatures led to an upslope movement of communities and increased the area of desert scrub at the expense of montane conifer...
International Land Model Benchmarking (ILAMB) Workshop Report, Technical Report DOE/SC-0186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Koven, Charles D.; Kappel-Aleks, Gretchen
2016-11-01
As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.
Temperature Changes in the United States. Chapter 6
NASA Technical Reports Server (NTRS)
Vose, R. S.; Easterling, D. R.; Kunkel, K. E.; LeGrande, A. N.; Wehner, M. F.
2017-01-01
Temperature is among the most important climatic elements used in decision-making. For example, builders and insurers use temperature data for planning and risk management while energy companies and regulators use temperature data to predict demand and set utility rates. Temperature is also a key indicator of climate change: recent increases are apparent over the land, ocean, and troposphere, and substantial changes are expected for this century. This chapter summarizes the major observed and projected changes in near-surface air temperature over the United States, emphasizing new data sets and model projections since the Third National Climate Assessment (NCA3). Changes are depicted using a spectrum of observations, including surface weather stations, moored ocean buoys, polar-orbiting satellites, and temperature-sensitive proxies. Projections are based on global models and downscaled products from CMIP5 (Coupled Model Intercomparison Project Phase 5) using a suite of Representative Concentration Pathways (RCPs; see Ch. 4: Projections for more on RCPs and future scenarios).
A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers.
Varela, Sara; Lima-Ribeiro, Matheus S; Terribile, Levi Carina
2015-01-01
Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12-BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/.
A Short Guide to the Climatic Variables of the Last Glacial Maximum for Biogeographers
Varela, Sara; Lima-Ribeiro, Matheus S.; Terribile, Levi Carina
2015-01-01
Ecological niche models are widely used for mapping the distribution of species during the last glacial maximum (LGM). Although the selection of the variables and General Circulation Models (GCMs) used for constructing those maps determine the model predictions, we still lack a discussion about which variables and which GCM should be included in the analysis and why. Here, we analyzed the climatic predictions for the LGM of 9 different GCMs in order to help biogeographers to select their GCMs and climatic layers for mapping the species ranges in the LGM. We 1) map the discrepancies between the climatic predictions of the nine GCMs available for the LGM, 2) analyze the similarities and differences between the GCMs and group them to help researchers choose the appropriate GCMs for calibrating and projecting their ecological niche models (ENM) during the LGM, and 3) quantify the agreement of the predictions for each bioclimatic variable to help researchers avoid the environmental variables with a poor consensus between models. Our results indicate that, in absolute values, GCMs have a strong disagreement in their temperature predictions for temperate areas, while the uncertainties for the precipitation variables are in the tropics. In spite of the discrepancies between model predictions, temperature variables (BIO1-BIO11) are highly correlated between models. Precipitation variables (BIO12- BIO19) show no correlation between models, and specifically, BIO14 (precipitation of the driest month) and BIO15 (Precipitation Seasonality (Coefficient of Variation)) show the highest level of discrepancy between GCMs. Following our results, we strongly recommend the use of different GCMs for constructing or projecting ENMs, particularly when predicting the distribution of species that inhabit the tropics and the temperate areas of the Northern and Southern Hemispheres, because climatic predictions for those areas vary greatly among GCMs. We also recommend the exclusion of BIO14 and BIO15 from ENMs because those variables show a high level of discrepancy between GCMs. Thus, by excluding them, we decrease the level of uncertainty of our predictions. All the climatic layers produced for this paper are freely available in http://ecoclimate.org/. PMID:26068930
Palaeoclimatic insights into future climate challenges.
Alley, Richard B
2003-09-15
Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.
Yue, Xu; Mickley, Loretta J.; Logan, Jennifer A.; Kaplan, Jed O.
2013-01-01
We estimate future wildfire activity over the western United States during the mid-21st century (2046–2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25–0.60 of the variance in observed annual area burned during 1980–2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ~0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at mid-century. We calculate increases of 24–124% in area burned using regressions and 63–169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p<0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at mid-century. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46–70% and black carbon by 20–27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ~90% and BC by ~50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in Rocky Mountains Forest. PMID:24015109
The impact of future climate on historic interiors.
Lankester, Paul; Brimblecombe, Peter
2012-02-15
The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.
Intraseasonal Variability in the Atmosphere-Ocean Climate System. Second Edition
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Waliser, Duane E.
2011-01-01
Understanding and predicting the intraseasonal variability (ISV) of the ocean and atmosphere is crucial to improving long-range environmental forecasts and the reliability of climate change projections through climate models. This updated, comprehensive and authoritative second edition has a balance of observation, theory and modeling and provides a single source of reference for all those interested in this important multi-faceted natural phenomenon and its relation to major short-term climatic variations.
NASA Astrophysics Data System (ADS)
Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.
2017-04-01
This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.
Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth
Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.
2012-01-01
Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.
Sensitivity of salmonid freshwater life history in western US streams to future climate conditions.
Beer, W Nicholas; Anderson, James J
2013-08-01
We projected effects of mid-21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature-dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid-21st century, the effects of climate change are projected to be mixed. Fish in warm-region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid-21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year-to-year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fischer, Dominik; Thomas, Stephanie Margarete; Niemitz, Franziska; Reineking, Björn; Beierkuhnlein, Carl
2011-07-01
During the last decades the disease vector Aedes albopictus ( Ae. albopictus) has rapidly spread around the globe. The spread of this species raises serious public health concerns. Here, we model the present distribution and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the most realistic current prediction and future projection, we compare the performance of four different modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs. statistical criteria) and by the geographical range of presence records (native range vs. global range). First, models of the native and global range were built with MaxEnt and were either based on (1) statistically selected climatic input variables or (2) input variables selected with expert knowledge from the literature. Native models show high model performance (AUC: 0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-0.72). Models based on the global distribution of the species, however, were able to identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). In a second step, the modelled bioclimatic envelope of the global range was projected to future climatic conditions in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 2071-2100. For both global-driven models, the results indicate that climatically suitable areas for the establishment of Ae. albopictus will increase in western and central Europe already in 2011-2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable areas in southern Europe is pronounced in the Expert knowledge based model. Our projections appear unaffected by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis. The generated risk maps can aid in identifying suitable habitats for Ae. albopictus and hence support monitoring and control activities to avoid disease vector establishment.
A New NOAA Research Initiative on the Seasonal Prediction of U.S. Coastal High Water Levels
NASA Astrophysics Data System (ADS)
Mariotti, A.; Archambault, H. M.; Barrie, D.; Huang, J.
2017-12-01
A crucial part of NOAA's service mission is to make U.S. communities more resilient to rises in coastal sea level, which on a seasonal timescale may increase the threat for nuisance ("sunny day") flooding, as well as enhance the severity of storm surge events. Over a season, variability in climate or ocean dynamics, in combination with longer-term trends, can influence coastal sea level in a way that is potentially predictable. To leverage these emerging scientific findings, the Climate Program Office's Modeling, Analysis, Predictions, and Projections Program, in partnership with the National Marine Fisheries Service, has funded a set of three-year projects starting in FY 2017 to help develop NOAA's capability to produce skillful seasonal (i.e, 2-9 month) predictions of coastal high water levels as well as changing living marine resources. This presentation will describe the goals, scope and intended activities of this research initiative and its coordination via a new MAPP Ocean Prediction Task Force.
NASA Astrophysics Data System (ADS)
Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4.5 and RCP8.5 scenarios show large areas with significant changes. For the RCP2.6 scenario, projected results present a predominance of very moderate decreases in rainfall, although significant in some models. Keywords: climate change projections, precipitation, Tropical America, statistical downscaling. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
NASA Astrophysics Data System (ADS)
Lemaire, Vincent E. P.; Colette, Augustin; Menut, Laurent
2016-03-01
Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology). After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071-2100) for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate) of -1.08 (±0.21), -1.03 (±0.32), -0.83 (±0.14) µg m-3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the impact of climate change on ozone was considered satisfactory and it confirms the climate penalty bearing upon ozone of 10.51 (±3.06), 11.70 (±3.63), 11.53 (±1.55), 9.86 (±4.41), 4.82 (±1.79) µg m-3, respectively. In the British-Irish Isles, Scandinavia and the Mediterranean, the skill of the statistical model was not considered robust enough to draw any conclusion for ozone pollution.
Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.
Assis, Jorge; Araújo, Miguel B; Serrão, Ester A
2018-01-01
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.
Studies of 21st-Century Precipitation Trends Over West Africa
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.
2010-01-01
West Africa includes a semi-arid zone between the Sahara Desert and the humid Gulf of Guinea coast, approximately between 10 N and 20 N, which is irrigated by summer monsoon rains. This article refers to the region as the Sahel. Rain-fed agriculture is the primary sustenance for Sahel populations, and severe droughts (in the 1970s and 1980s), therefore, have devastating negative societal impacts. The future frequency of Sahel droughts and the evolution of its hydrological balance are therefore of great interest. The article reviews 10 recent research studies that attempt to discover how climate changes will affect the hydrology of the Sahel throughout the 21st century. All 10 studies rely on atmosphere ocean global climate model (AOGCM) simulations based on a range of greenhouse gas emissions scenarios. Many of the simulations are contained in the Intergovernmental Panel on Climate Change archives for Assessment Reports #3 and #4. Two of the studies use AOGCM data to drive regional climate models. Seven studies make projections for the first half of the 21st century and eight studies make projections for the second half. Some studies make projections of wetter conditions and some predict more frequent droughts, and each describes the atmospheric processes associated with its prediction. Only one study projects more frequent droughts before 2050, and that is only for continent-wide degradation in vegetation cover. The challenge to correctly simulate Sahel rainfall decadal trends is particularly daunting because multiple physical mechanisms compete to drive the trend upwards or downwards. A variety of model deficiencies, regarding the simulation of one or more of these physical processes, taints models climate change projections. Consequently, no consensus emerges regarding the impact of anticipated greenhouse gas forcing on the hydrology of the Sahel in the second half of the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, Alexey V.
2015-01-14
The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth systemmore » models, to the stability and variability of the AMOC in past climates.« less
Carey, Michael P.; Zimmerman, Christian E.
2014-01-01
Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic.
Carey, Michael P; Zimmerman, Christian E
2014-01-01
Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic. PMID:24963391
Carey, Michael P; Zimmerman, Christian E
2014-05-01
Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to the entire food web will be necessary to predict ecosystem responses in lakes of the Arctic.
Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi
2016-04-01
We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other countries were conducted and mooring buoy observations were also carried out. The data retrieved during these observations was accumulated in the "Arctic Data archive System (ADS)" (https://ads.nipr.ac.jp/) and served with interfaces for analysis. In addition, modeling studies have been promoted from fundamental process model to general circulation model. The successor of the project, ArCS (Arctic Challenge for Sustainability), which lays delivering emphasis on robust scientific information to stakeholders for decision making and solving problems, was started in FY2015. Within this project, a cooperative observation of black carbon are planned to be started at Cape Baranova Station (AARI, Rusia), Severnaya Zemlya, and new activities including emphasizing aerological observations are also planned to be started for contributing to "Year of Polar Prediction (YOPP)" of Polar Prediction Project (PPP/ WMO). It will be desirable to have a future collaboration with IASOA.
Forecasting Western U.S. Snowpack
NASA Astrophysics Data System (ADS)
Kapnick, S. B.; Yang, X.; Vecchi, G. A.; Delworth, T. L.; Gudgel, R.; Malyshev, S.; Milly, C.; Shevliakova, E.; Underwood, S.; Margulis, S. A.
2017-12-01
Cold season mountain snow accumulation in the western United States plays a critical role in regional hydroclimate and water supply. While climate projections provide estimates of future snowpack loss by the end of the century and weather forecasts provide predictions of weather conditions and hazards out to two weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), particularly beyond 6 months. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate our dynamical system's feasibility of seasonal snowpack predictions and quantify the limits of predictive skill more than 2 seasons in advance for snowpack—snow that accumulates on the ground in the mountains. Our ability to predict snowpack is reliant on both temperature and precipitation prediction skill modulating both the amount of frozen precipitation that falls and how much snow accumulates and stays on the ground throughout the season. We will quantify prediction skill and outline areas necessary for the future advancement of seasonal hydroclimate prediction.
NASA Astrophysics Data System (ADS)
Rosendahl, D. H.; Ćwik, P.; Martin, E. R.; Basara, J. B.; Brooks, H. E.; Furtado, J. C.; Homeyer, C. R.; Lazrus, H.; Mcpherson, R. A.; Mullens, E.; Richman, M. B.; Robinson-Cook, A.
2017-12-01
Extreme precipitation events cause significant damage to homes, businesses, infrastructure, and agriculture, as well as many injures and fatalities as a result of fast-moving water or waterborne diseases. In the USA, these natural hazard events claimed the lives of more than 300 people during 2015 - 2016 alone, with total damage reaching $24.4 billion. Prior studies of extreme precipitation events have focused on the sub-daily to sub-weekly timeframes. However, many decisions for planning, preparing and resilience-building require sub-seasonal to seasonal timeframes (S2S; 14 to 90 days), but adequate forecasting tools for prediction do not exist. Therefore, the goal of this newly funded project is an enhancement in understanding of the large-scale forcing and dynamics of S2S extreme precipitation events in the United States, and improved capability for modeling and predicting such events. Here, we describe the project goals, objectives, and research activities that will take place over the next 5 years. In this project, a unique team of scientists and stakeholders will identify and understand weather and climate processes connected with the prediction of S2S extreme precipitation events by answering these research questions: 1) What are the synoptic patterns associated with, and characteristic of, S2S extreme precipitation evens in the contiguous U.S.? 2) What role, if any, do large-scale modes of climate variability play in modulating these events? 3) How predictable are S2S extreme precipitation events across temporal scales? 4) How do we create an informative prediction of S2S extreme precipitation events for policymaking and planing? This project will use observational data, high-resolution radar composites, dynamical climate models and workshops that engage stakeholders (water resource managers, emergency managers and tribal environmental professionals) in co-production of knowledge. The overarching result of this project will be predictive models to reduce of the societal and economic impacts of extreme precipitation events. Another outcome will include statistical and co-production frameworks, which could be applied across other meteorological extremes, all time scales and in other parts of the world to increase resilience to extreme meteorological events.
oldWeather.org: Citizen Science for Climate Reconstruction
NASA Astrophysics Data System (ADS)
Brohan, P.
2012-12-01
Most of us care about today's weather, and the predictions for tomorrow's; but the weather of decades and centuries ago has traditionally been of interest only to a handful of historians and climatologists. However, the increasing concern about the consequences of climate change is raising the profile of historical climatology - a good understanding of past climate is needed to judge whether today's storms and droughts are unusual, and to add confidence and context to predictions of future change. `Old weather' is changing from an academic speciality into an area of public interest, and reconstructions of past climate are being subjected to intense critical inspection. This increased public interest is a challenge for scientists, as they have to communicate their methods and results to a much wider audience; but also an opportunity, as the public can actively help with scientific projects. The oldWeather project (http://oldweather.org) takes advantage of this interest by engaging a large community of interested volunteers, who are recovering the millions of archived historic weather observations needed to reconstruct the past weather and climate. Over the past 18 months, more than 12,000 volunteers have been reading the logbooks of 300 Royal Navy ships from the period 1914-22, and transcribing the frequent and regular weather observations they contain. The wide area of operation of the Royal Navy means that the observations recovered improve historical weather reconstructions over a large fraction of the world. As well as the new climate records, the project has produced a wealth of historical information for the Navy of the period, and an active community of volunteer researchers. The project is now being extended to look at US records - from the Navy and revenue service.
Global variation in thermal tolerances and vulnerability of endotherms to climate change
Khaliq, Imran; Hof, Christian; Prinzinger, Roland; Böhning-Gaese, Katrin; Pfenninger, Markus
2014-01-01
The relationships among species' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species' physiology and the geography of climate change will advance assessments of species' vulnerability to climate change. PMID:25009066
NASA Astrophysics Data System (ADS)
Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey
2018-01-01
Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.
Projected changes to growth and mortality of Hawaiian corals over the next 100 years.
Hoeke, Ron K; Jokiel, Paul L; Buddemeier, Robert W; Brainard, Russell E
2011-03-29
Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000-2099 A.D. were calculated assuming a single middle-of-the-road greenhouse gas emissions scenario. These projections were based on ensemble calculations of a growth and mortality model that used sea surface temperature (SST), atmospheric carbon dioxide (CO(2)), observed coral growth (calcification) rates, and observed mortality linked to mass coral bleaching episodes as inputs. SST and CO(2) predictions were derived from the World Climate Research Programme (WCRP) multi-model dataset, statistically downscaled with historical data. The model calculations illustrate a practical approach to systematic evaluation of climate change effects on corals, and also show the effect of uncertainties in current climate predictions and in coral adaptation capabilities on estimated changes in coral cover. Despite these large uncertainties, this analysis quantitatively illustrates that a large decline in coral cover is highly likely in the 21(st) Century, but that there are significant spatial and temporal variances in outcomes, even under a single climate change scenario.
Projected changes to growth and mortality of Hawaiian corals over the next 100 years
Hoeke, R.K.; Jokiel, P.L.; Buddemeier, R.W.; Brainard, R.E.
2011-01-01
Background: Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. Methodology/Principal Findings: Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000-2099 A.D. were calculated assuming a single middle-of-the-road greenhouse gas emissions scenario. These projections were based on ensemble calculations of a growth and mortality model that used sea surface temperature (SST), atmospheric carbon dioxide (CO2), observed coral growth (calcification) rates, and observed mortality linked to mass coral bleaching episodes as inputs. SST and CO2 predictions were derived from the World Climate Research Programme (WCRP) multi-model dataset, statistically downscaled with historical data. Conclusions/Significance: The model calculations illustrate a practical approach to systematic evaluation of climate change effects on corals, and also show the effect of uncertainties in current climate predictions and in coral adaptation capabilities on estimated changes in coral cover. Despite these large uncertainties, this analysis quantitatively illustrates that a large decline in coral cover is highly likely in the 21st Century, but that there are significant spatial and temporal variances in outcomes, even under a single climate change scenario.
Landuse and climate change have affected biological systems in many parts of the world, and are projected to further adversely affect associated ecosystem goods and services, including provisioning of clean air, clean water, food, and biodiversity. Such adverse effects on ecosyst...
USDA-ARS?s Scientific Manuscript database
Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based up...
Sue Miller; Matt Reeves; Karen Bagne; John Tanaka
2017-01-01
Cattle production capacity on western rangelands is potentially vulnerable to climate change through impacts on the amount of forage, changes in vegetation type, heat stress, and year-to-year forage variability. The researchers in this study projected climate change effects to rangelands through 2100 and compared them to a present-day baseline to estimate vulnerability...
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Stroeve, Julienne; Weimerskirch, Henri
2009-02-10
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.
Demographic models and IPCC climate projections predict the decline of an emperor penguin population
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri
2009-01-01
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908
Climate change and watershed mercury export: a multiple projection and model analysis.
Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M
2013-09-01
Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel
2016-04-01
This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.
Decadal climate predictions improved by ocean ensemble dispersion filtering
NASA Astrophysics Data System (ADS)
Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.
2017-06-01
Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.
Assessing the sensitivity of avian species abundance to land cover and climate
LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.
2016-01-01
Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.
Climate and dengue transmission: evidence and implications.
Morin, Cory W; Comrie, Andrew C; Ernst, Kacey
2013-01-01
Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.
Impact of transient climate change upon Grouse population dynamics in the Italian Alps
NASA Astrophysics Data System (ADS)
Pirovano, Andrea; Bocchiola, Daniele
2010-05-01
Understanding the effect of short to medium term weather condition, and of transient global warming upon wildlife species life history is essential to predict the demographic consequences therein, and possibly develop adaptation strategies, especially in game species, where hunting mortality may play an important role in population dynamics. We carried out a preliminary investigation of observed impact of weather variables upon population dynamics indexes of three alpine Grouse species (i.e. Rock Ptarmigan, Lagopus Mutus, Black Grouse, Tetrao Tetrix, Rock Partridge, Alectoris Graeca), nested within central Italian Alps, based upon 15 years (1995-2009) of available censuses data, provided by the Sondrio Province authority. We used a set of climate variables already highlighted within recent literature for carrying considerable bearing on Grouse population dynamics, including e.g. temperature at hatching time and during winter, snow cover at nesting, and precipitation during nursing period. We then developed models of Grouses' population dynamics by explicitly driving population change according to their dependence upon the significant weather variables and population density and we evaluated objective indexes to assess the so obtained predictive power. Eventually, we develop projection of future local climate, based upon locally derived trends, and upon projections from GCMs (A2 IPCC storyline) already validated for the area, to project forward in time (until 2100 or so) the significant climatic variables, which we then use to force population dynamics models of the target species. The projected patterns obtained through this exercise are discussed and compared against those expected under stationary climate conditions at present, and preliminary conclusions are drawn.
Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail
2017-01-01
Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource-intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.
Intercomparison of model response and internal variability across climate model ensembles
NASA Astrophysics Data System (ADS)
Kumar, Devashish; Ganguly, Auroop R.
2017-10-01
Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.
NASA Astrophysics Data System (ADS)
Soja, A. J.; Tchebakova, N. M.; Parfenova, E. I.; Cantin, A.; Conard, S. G.
2015-12-01
Global GCMs have demonstrated profound potential for projections to affect the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progression of potential Russian ecotones and forest-forming species as the climate changes. Large-scale bioclimatic models were developed to predict Russian zonal vegetation (RuBCliM) and forest types (ForCliM) from three bioclimatic indices (1) growing degree-days above 5 degrees C; (2) negative degree-days below 0 C ; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). The presence or absence of continuous permafrost was explicitly included in the models as limiting the forests and tree species distribution. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period and for the future 2020, 2050 and 2100 simulated by 3 GCMs (CGCM3.1, HadCM3 and IPSLCM4) and 3 climate change scenarios (A1B, A2 and B1). Under these climate scenarios, it is projected the zonobiomes will shift far northward to reach equilibrium with the change in climate. Under the warmer and drier projected future climate, about half of Russia would be suitable for the forest-steppe ecotone and grasslands, rather than for forests. Water stress tolerant light-needled taiga would have an increased advantage over water-loving dark-needled taiga. Permafrost-tolerant L. dahurica taiga would remain the dominant forest across permafrost. Increases in severe fire weather would lead to increases in large, high-severity fires, especially at boundaries between forest ecotones, which can be expected to facilitate a more rapid progression of vegetation towards a new equilibrium with the climate. Adaptation to climate change may be facilitated by: assisting migration of forests by seed transfers to establish genotypes that may be more ecologically suited as climate changes; and the introduction of suitable agricultural crops that may be potentially adapted to a warmer climate in the expected steppe and forest-steppe.
NASA Astrophysics Data System (ADS)
Breil, Marcus; Panitz, Hans-Jürgen
2014-05-01
Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the project DEPARTURE (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, driven by global decadal MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, two different SVATs (Community Land Model (CLM), and VEG3D) will be coupled with the CCLM, replacing TERRA_ML, the standard SVAT implemented in CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, TERRA_ML is substituted by VEG3D, a SVAT developed at the IMK-TRO, Karlsruhe, Germany. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer by using a big leaf approach, inducing higher correlations with observations as it has been shown in previous studies. The coupling of VEG3D with CCLM is performed by using the OASIS3-MCT coupling software, developed by CERFACS, Toulouse, France. Results of CCLM simulations using both SVATs are analysed and compared for the DEPARTURE model domain. Thereby ERA-Interim driven CCLM simulations with VEG3D showed better agreement with observational data than simulations with TERRA_ML, especially for dense vegetaded areas. This will be demonstrated exemplarily. Additionally, results for MPI-ESM-LR driven decadal hindcast simulations (1966 - 1975) are analysed and presented.
NASA Astrophysics Data System (ADS)
Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald
2015-04-01
Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but not so much at medium elevations. (ii) Considering climate change, the variability that is due to the GCM-RCM chains is much greater than the variability induced by the uncertainty in the initial climatic conditions. (iii) The uncertainties caused by the intrinsic stochasticity in the DVMs and by the random generation of the climate time-series are negligible. Overall, our results indicate that DVMs are quite sensitive to the climate data, highlighting particularly (1) the limitations of using one single multi-model average climate change scenario in climate impact studies and (2) the need to better consider the uncertainty in climate model outputs for projecting future vegetation changes.
Macroweather Predictions and Climate Projections using Scaling and Historical Observations
NASA Astrophysics Data System (ADS)
Hébert, R.; Lovejoy, S.; Del Rio Amador, L.
2017-12-01
There are two fundamental time scales that are pertinent to decadal forecasts and multidecadal projections. The first is the lifetime of planetary scale structures, about 10 days (equal to the deterministic predictability limit), and the second is - in the anthropocene - the scale at which the forced anthropogenic variability exceeds the internal variability (around 16 - 18 years). These two time scales define three regimes of variability: weather, macroweather and climate that are respectively characterized by increasing, decreasing and then increasing varibility with scale.We discuss how macroweather temperature variability can be skilfully predicted to its theoretical stochastic predictability limits by exploiting its long-range memory with the Stochastic Seasonal and Interannual Prediction System (StocSIPS). At multi-decadal timescales, the temperature response to forcing is approximately linear and this can be exploited to make projections with a Green's function, or Climate Response Function (CRF). To make the problem tractable, we exploit the temporal scaling symmetry and restrict our attention to global mean forcing and temperature response using a scaling CRF characterized by the scaling exponent H and an inner scale of linearity τ. An aerosol linear scaling factor α and a non-linear volcanic damping exponent ν were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference using historical data and these allow us to analytically calculate a median (and likely 66% range) for the transient climate response, and for the equilibrium climate sensitivity: 1.6K ([1.5,1.8]K) and 2.4K ([1.9,3.4]K) respectively. Aerosol forcing typically has large uncertainty and we find a modern (2005) forcing very likely range (90%) of [-1.0, -0.3] Wm-2 with median at -0.7 Wm-2. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to Representative Concentration Pathway (RCP) 2.6 for which the probability to remain under 1.5 K is 48%. RCP 4.5 and RCP 8.5-like futures overshoot with very high probability. This underscores that over the next century, the state of the environment will be strongly influenced by past, present and future economical policies.
NASA Astrophysics Data System (ADS)
Elkadiri, R.; Momm, H.; Yasarer, L.; Armour, G. L.
2017-12-01
Climatic conditions play a major role in physical processes impacting soil and agrochemicals detachment and transportation from/in agricultural watersheds. In addition, these climatic conditions are projected to significantly vary spatially and temporally in the 21st century, leading to vast uncertainties about the future of sediment and non-point source pollution transport in agricultural watersheds. In this study, we selected the sunflower basin in the lower Mississippi River basin, USA to contribute in the understanding of how climate change affects watershed processes and the transport of pollutant loads. The climate projections used in this study were retrieved from the archive of World Climate Research Programme's (WCRP) Coupled Model Intercomparison Phase 5 (CMIP5) project. The CMIP5 dataset was selected because it contains the most up-to-date spatially downscaled and bias corrected climate projections. A subset of ten GCMs representing a range in projected climate were spatially downscaled for the sunflower watershed. Statistics derived from downscaled GCM output representing the 2011-2040, 2041-2070 and 2071-2100 time periods were used to generate maximum/minimum temperature and precipitation on a daily time step using the USDA Synthetic Weather Generator, SYNTOR. These downscaled climate data were then utilized as inputs to run in the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution watershed model to estimate time series of runoff, sediment, and nutrient loads produced from the watershed. For baseline conditions a validated simulation of the watershed was created and validated using historical data from 2000 until 2015.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Lv, E.; Huang, Y.
2016-12-01
Located in the hinterland of the Qinghai-Tibetan Plateau, the Three-River Headwaters region (THR) features unique eco-environmental conditions and fragile ecosystems, and is very vulnerable to climate change. To investigate the effects of climate change on the ecosystem, the Normalized Difference Vegetation Index (NDVI) was employed as an indicator to reflect the vegetation dynamics in response to climate change. This study proposed a model based on Stepwise-cluster analysis to predict the temporal and spatial distributions of NDVI values for five future years according to Global Circulation Models (GCMs) climate projections under the RCP4.5 scenario. The obtained spatial results showed very good agreements between simulations and remote sensing observations of the NDVI value for both training and validation, and the developed model demonstrated its capability of predicting the monthly changes of NDVI through representing the relationships between it and various climatic factors, including remote sensed precipitation and temperature with no, 1 and 2-month lag period. The monthly average precipitation with one-month lag period was further found to be the most important climatic factor that drives the changes of NDVI in the THR. Compared with the values of NDVI in 2000 - 2013, the predicting results indicate the values of NDVI for the THR in growing season (May to October) will decrease by 15.74% in the next 100 years, suggesting that the THR is going to experience an environmental degradation. The results also show that precipitation is the primary driving factor relative to temperature, especially the one-month-lag precipitation. Findings from this study would help policy makers draw up effective water resource and eco-environmental management strategies for adapting to climate change in the THR.
Identifying bird and reptile vulnerabilities to climate change in the southwestern United States
Hatten, James R.; Giermakowski, J. Tomasz; Holmes, Jennifer A.; Nowak, Erika M.; Johnson, Matthew J.; Ironside, Kirsten E.; van Riper, Charles; Peters, Michael; Truettner, Charles; Cole, Kenneth L.
2016-07-06
Current and future breeding ranges of 15 bird and 16 reptile species were modeled in the Southwestern United States. Rather than taking a broad-scale, vulnerability-assessment approach, we created a species distribution model (SDM) for each focal species incorporating climatic, landscape, and plant variables. Baseline climate (1940–2009) was characterized with Parameter-elevation Regressions on Independent Slopes Model (PRISM) data and future climate with global-circulation-model data under an A1B emission scenario. Climatic variables included monthly and seasonal temperature and precipitation; landscape variables included terrain ruggedness, soil type, and insolation; and plant variables included trees and shrubs commonly associated with a focal species. Not all species-distribution models contained a plant, but if they did, we included a built-in annual migration rate for more accurate plant-range projections in 2039 or 2099. We conducted a group meta-analysis to (1) determine how influential each variable class was when averaged across all species distribution models (birds or reptiles), and (2) identify the correlation among contemporary (2009) habitat fragmentation and biological attributes and future range projections (2039 or 2099). Projected changes in bird and reptile ranges varied widely among species, with one-third of the ranges predicted to expand and two-thirds predicted to contract. A group meta-analysis indicated that climatic variables were the most influential variable class when averaged across all models for both groups, followed by landscape and plant variables (birds), or plant and landscape variables (reptiles), respectively. The second part of the meta-analysis indicated that numerous contemporary habitat-fragmentation (for example, patch isolation) and biological-attribute (for example, clutch size, longevity) variables were significantly correlated with the magnitude of projected range changes for birds and reptiles. Patch isolation was a significant trans-specific driver of projected bird and reptile ranges, suggesting that strategic actions should focus on restoration and enhancement of habitat at local and regional scales to promote landscape connectivity and conservation of core areas.
Impacts of land use and climate change on carbon dynamics in south-central Senegal
Liu, Shu-Guang; Kaire, M.; Wood, Eric C.; Diallo, O.; Tieszen, Larry L.
2004-01-01
Total carbon stock in vegetation and soils was reduced 37% in south-central Senegal from 1900 to 2000. The decreasing trend will continue during the 21st century unless forest clearing is stopped, selective logging dramatically reduced, and climate change, if any, relatively small. Developing a sustainable fuelwood and charcoal production system could be the most feasible and significant carbon sequestration project in the region. If future climate changes dramatically as some models have predicted, cropland productivity will drop more than 65% around 2100, posing a serious threat to food security and the efficiency of carbon sequestration projects.
Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.
Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem
2018-03-01
Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species abundances and can be applied to any stressor, species, or region.
Nelson, Kären C; Palmer, Margaret A; Pizzuto, James E; Moglen, Glenn E; Angermeier, Paul L; Hilderbrand, Robert H; Dettinger, Michael; Hayhoe, Katharine
2009-01-01
Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades. The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish assemblage composition, based on readily available biotic information (preferences for habitat, temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions. We illustrate the model using Piedmont headwater streams in the Chesapeake Bay watershed of the USA, projecting ten scenarios: Baseline (low urbanization; no on-going construction; and present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover, significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same four climate change scenarios plus Urbanization. Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses, sunfishes) and six of the ten currently most common species were predicted to be significantly stressed. The combined effect of climate change and urbanization on adult growth was sometimes large compared to the effect of either stressor alone. Thus, the model predicts considerable change in fish assemblage composition, including loss of diversity. Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems. PMID:19536343
Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change
NASA Astrophysics Data System (ADS)
Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.
2011-12-01
Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these vegetation types is projected to increase to 808 MMtC. Our results indicate that future C storage in Arizona is highly dependent on precipitation. Given that most climate models for the Southwest predict a more arid future, it is likely that C storage will decrease in Arizona ecosystems, as it has in response to recent droughts, reducing mitigation of rising human emissions.
Aalto, Juha; Harrison, Stephan; Luoto, Miska
2017-09-11
The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO 2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks.Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.
Tropical and Extratropical Cyclone Damages under Climate Change
NASA Astrophysics Data System (ADS)
Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.
2014-12-01
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.
Negative impacts of climate change on cereal yields: statistical evidence from France
NASA Astrophysics Data System (ADS)
Gammans, Matthew; Mérel, Pierre; Ortiz-Bobea, Ariel
2017-05-01
In several world regions, climate change is predicted to negatively affect crop productivity. The recent statistical yield literature emphasizes the importance of flexibly accounting for the distribution of growing-season temperature to better represent the effects of warming on crop yields. We estimate a flexible statistical yield model using a long panel from France to investigate the impacts of temperature and precipitation changes on wheat and barley yields. Winter varieties appear sensitive to extreme cold after planting. All yields respond negatively to an increase in spring-summer temperatures and are a decreasing function of precipitation about historical precipitation levels. Crop yields are predicted to be negatively affected by climate change under a wide range of climate models and emissions scenarios. Under warming scenario RCP8.5 and holding growing areas and technology constant, our model ensemble predicts a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield by the end of the century. Uncertainty from climate projections dominates uncertainty from the statistical model. Finally, our model predicts that continuing technology trends would counterbalance most of the effects of climate change.
NASA Astrophysics Data System (ADS)
Elders, Akiko; Pegion, Kathy
2017-12-01
Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.
Future Projections of ENSO and Drought (Invited)
NASA Astrophysics Data System (ADS)
Cane, M. A.
2009-12-01
Jule Charney, who was my advisor, worked very broadly - and profoundly - on climate dynamics. In this discussion of the present state of knowledge I will focus on two aspects of climate that I view as legacies of his work: our ability to project climate variability in the tropics and to project drought. (I have in mind his work with Shukla on predictability of monsoons, and Charney 1975, Dynamics of deserts and drought in the Sahel., Q. J. Roy. Meteor. Soc., 101, 193-202). First, I will consider the projections of ENSO (El Niño and Southern Oscillation) in a warming world. (My own interest in ENSO was piqued in discussions with Charney and others during the ENSO-influenced blocking events in the late 1970s; in good measure, the approach I took to understanding and modeling ENSO was based in my thesis work.) Current IPCC models differ markedly in their projections of the mean state of the equatorial Pacific, some favoring a more “El Niño- like”, some the opposite. Possible reasons for these disagreements will be considered in the light of our understanding of ENSO and tropical climate more generally. Observational data for the past century and a half will figure prominently. Droughts in the US Southwest have a strong ENSO signal, but IPCC models are fairly consistent in projecting enhanced drought there. The reasons for this will be discussed. Models are less consistent in their predictions of the future Sahel. I will discuss what is understood about causes of drought in the Sahel, which appear to point toward sea surface temperature as the controlling influence, in contrast to Charney’s albedo hypothesis.
GEWEX Continental-scale International Project (GCIP)
NASA Technical Reports Server (NTRS)
Try, Paul
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.
2017-12-01
Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and private forest managers can use these forest carbon projections to 2117 to inform 2017 decisions on which tree species and seed sources to select for planting, and implement forest management strategies now that may seek to maximize forest carbon sequestration for greenhouse gas abatement a century from now.
Scott A. Mensing; John L. Korfmacher; Thomas Minckley; Robert C. Musselman
2012-01-01
Future climate projections predict warming at high elevations that will impact treeline species, but complex topographic relief in mountains complicates ecologic response, and we have a limited number of long-term studies examining vegetation change related to climate. In this study, pollen and conifer stomata were analyzed from a 2.3 m sediment core extending to 15,...
S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang
2015-01-01
Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...
Robert Keane; Rachel Loehman
2010-01-01
Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...
Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan
NASA Astrophysics Data System (ADS)
Berliana Sipayung, Sinta; Nurlatifah, Amalia; Siswanto, Bambang; Slamet S, Lilik
2018-05-01
Climate change is one of the most important issues being discussed globally. It caused by global warming and indirectly affecting the world climate cycle. This research discussed the effect of climate change on rainfall pattern of Sambas District and predicted the future rainfall pattern due to climate change. CRU and TRMM were used and has been validated using in situ data. This research was used Climate Modelling and Prediction using CCAM (Conformal Cubic Atmospheric Model) which also validated by in situ data (correlation= 0.81). The results show that temperature trends in Sambas regency increased to 0.082°C/yr from 1991-2014 according to CRU data. High temperature trigger changes in rainfall patterns. Rainfall pattern in Sambas District has an equatorial type where the peak occurs when the sun is right on the equator. Rainfall in Sambas reaches the maximum in March and September when the equinox occurs. The CCAM model is used to project rainfall in Sambas District in the future. The model results show that rainfall in Sambas District is projected to increase to 0.018 mm/month until 2055 so the flow rate increase 0.006 m3/month and the water balance increase 0.009 mm/month.
Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R
2014-10-22
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.
2014-01-01
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769
Climate Change: Vulnerability Assessment for Water Resources Management in South Florida
NASA Astrophysics Data System (ADS)
Obeysekera, J.
2008-12-01
South Florida is home to over 7 million people and its population is projected to increase to over 10 million people by 2025 and possibly 12-15 million by 2050. Through Federal/State/Local partnerships, the Greater Everglades is being restored under numerous water resources management projects requiring large investments of time and money. Recent climate change projections as published in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) have the potential to cause significant impacts on flood control and water supply functions of water resources management, and on existing and future ecosystem restoration projects in south Florida. More recent estimates of sea level rise for south Florida are much higher than those in the IPCC report and if such projections become a reality, consequences may be disastrous. It is extremely important to understand the extent of global projections for various emission scenarios, their ability to represent the climatology of local regions, and the potential vulnerabilities of both climate change and sea level rise on water resources management. Implications of natural variability of the climate and teleconnections in South Florida are understood with a reasonable degree of certainty. Recent emphasis on climate change due to human-induced impacts have generated new questions on the sustainability of coastal environments with a heightened concern for the success of large-scale environmental projects throughout South Florida. An assessment of the precipitation projections of the General Circulation Models (GCMs) shows that their ability to represent the landscape of Florida and predict historical climate patterns may be limited. In order to understand the vulnerability of the water management system in south Florida under changing precipitation and evapotranspiration patterns, a sensitivity analysis using a regional-scale, hydrologic simulation model was conducted. The results show the vulnerability of projected climate change on water supply for all water sectors including the environment, and the potential impact of sea level rise on coastal regions. Questions on the potential impacts of climate change including sea level rise need to be investigated along with the uncertainties of projections to provide critical information for decision making on the planned infrastructure and operational changes in south Florida.
What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?
NASA Astrophysics Data System (ADS)
Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.
2009-12-01
“…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility planning is conducted. In the near term we feel strongly that water utilities and climate scientists should work together to leverage the upcoming Coupled Model Intercomparison Project, Phase 5 (CMIP5; a coordinated set climate model experiments that will be used to support the upcoming IPCC Fifth Assessment) to better benefit water utilities. In the longer term, even with model and downscaling improvements, it is very likely that substantial uncertainty about future climate change at the desired spatial and temporal scales will remain. Nonetheless, there is no doubt the climate is changing, and the challenge is to work with what we have, or what we can reasonably expect to have in the coming years to make the best decisions we can.
Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.
2016-10-13
Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4 of 5 cool-water species under present-day conditions will decline as much as 86 percent and as little as 33 percent, and habitats suitable for all 4 warm-water species will increase as much as 33 percent and as little as 7 percent. This report documents the approach and data used to predict and project fish species occurrence under present-day and future climate conditions for 13 lotic fish species in the United States Great Lakes Basin. A Web-based decision support mapping application termed “FishVis” was developed to provide a means to integrate, visualize, query, and download the results of these projected climate-driven responses and help inform conservation planning efforts within the region.
Response of Sierra Nevada forests to projected climate-wildfire interactions.
Liang, Shuang; Hurteau, Matthew D; Westerling, Anthony LeRoy
2017-05-01
Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species-specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species-specific, spatially explicit forest landscape model (LANDIS-II) to evaluate forest response to climate-wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium-high emission scenario (A2) in combination with corresponding climate-specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought-tolerant species over less drought-tolerant species relative to baseline, and this change was greatest at mid-elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape-level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome-based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century. © 2016 John Wiley & Sons Ltd.
Effects of climate change on forest insect and disease outbreaks
David W. Williams; Robert P. Long; Philip M. Wargo; Andrew M. Liebhold
2000-01-01
General circulation models (GCMs) predict dramatic future changes in climate for the northeastern and north central United States under doubled carbon dioxide (CO2) levels (Hansen et al., 1984; Manabe and Wetherald, 1987; Wilson and Mitchell, 1987; Cubasch and Cess, 1990; Mitchell et al., 1990). January temperatures are projected to rise as much...
As part of an U.S. EPA/USGS project to predict the relative vulnerability of near-coastal species to climate change along the Pacific Coast, we have synthesized the biogeographic distributions and abundances of bivalves found in depths <200 m. We have included the twelve &ldqu...
USDA-ARS?s Scientific Manuscript database
Water temperature is a primary physical factor affecting aquatic organisms. Assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream t...
Improving the forecast for biodiversity under climate change.
Urban, M C; Bocedi, G; Hendry, A P; Mihoub, J-B; Pe'er, G; Singer, A; Bridle, J R; Crozier, L G; De Meester, L; Godsoe, W; Gonzalez, A; Hellmann, J J; Holt, R D; Huth, A; Johst, K; Krug, C B; Leadley, P W; Palmer, S C F; Pantel, J H; Schmitz, A; Zollner, P A; Travis, J M J
2016-09-09
New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes. We describe and prioritize the biological information needed to inform more realistic projections of species' responses to climate change. We also highlight how trait-based approaches and adaptive modeling can leverage sparse data to make broader predictions. We outline a global effort to collect the data necessary to better understand, anticipate, and reduce the damaging effects of climate change on biodiversity. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Lang, C.; Fettweis, X.; Erpicum, M.
2015-05-01
We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.
NASA Technical Reports Server (NTRS)
Bretherton, Christopher S.
2002-01-01
The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.
The NASA Seasonal-to-Interannual Prediction Project (NSIPP). [Annual Report for 2000
NASA Technical Reports Server (NTRS)
Rienecker, Michele; Suarez, Max; Adamec, David; Koster, Randal; Schubert, Siegfried; Hansen, James; Koblinsky, Chester (Technical Monitor)
2001-01-01
The goal of the project is to develop an assimilation and forecast system based on a coupled atmosphere-ocean-land-surface-sea-ice model capable of using a combination of satellite and in situ data sources to improve the prediction of ENSO and other major S-I signals and their global teleconnections. The objectives of this annual report are to: (1) demonstrate the utility of satellite data, especially surface height surface winds, air-sea fluxes and soil moisture, in a coupled model prediction system; and (2) aid in the design of the observing system for short-term climate prediction by conducting OSSE's and predictability studies.
Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A
2016-11-01
The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.
Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee
The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics throughmore » atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.« less
Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea
NASA Astrophysics Data System (ADS)
Kang, Wanmo; Minor, Emily S.; Lee, Dowon; Park, Chan-Ryul
2016-02-01
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.
Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard
2013-01-01
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879
Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard
2013-01-01
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.
[Prediction of heat-related mortality impacts under climate change scenarios in Shanghai].
Guo, Ya-fei; Li, Tian-tian; Cheng, Yan-li; Ge, Tan-xi; Chen, Chen; Liu, Fan
2012-11-01
To project the future impacts of climate change on heat-related mortality in shanghai. The statistical downscaling techniques were applied to simulate the daily mean temperatures of Shanghai in the middle and farther future under the changing climate. Based on the published exposure-reaction relationship of temperature and mortality in Shanghai, we projected the heat-related mortality in the middle and farther future under the circumstance of high speed increase of carbon e mission (A2) and low speed increase of carbon emission (B2). The data of 1961 to 1990 was used to establish the model, and the data of 1991 - 2001 was used to testify the model, and then the daily mean temperature from 2030 to 2059 and from 2070 to 2099 were simulated and the heat-related mortality was projected. The data resources were from U.S. National Climatic Data Center (NCDC), U.S. National Centers for Environmental Prediction Reanalysis Data in SDSM Website and UK Hadley Centre Coupled Model Data in SDSM Website. The explained variance and the standard error of the established model was separately 98.1% and 1.24°C. The R(2) value of the simulated trend line equaled to 0.978 in Shanghai, as testified by the model. Therefore, the temperature prediction model simulated daily mean temperatures well. Under A2 scenario, the daily mean temperature in 2030 - 2059 and 2070 - 2099 were projected to be 17.9°C and 20.4°C, respectively, increasing by 1.1°C and 3.6°C when compared to baseline period (16.8°C). Under B2 scenario, the daily mean temperature in 2030 - 2059 and 2070 - 2099 were projected to be 17.8°C and 19.1°C, respectively, increasing by 1.0°C and 2.3°C when compared to baseline period (16.8°C). Under A2 scenario, annual average heat-related mortality were projected to be 516 cases and 1191 cases in 2030 - 2059 and 2070 - 2099, respectively, increasing 53.6% and 254.5% when compared with baseline period (336 cases). Under B2 scenario, annual average heat-related mortality were projected to be 498 cases and 832 cases in 2030 - 2059 and 2070 - 2099, respectively, increasing 48.2% and 147.6% when compared with baseline period (336 cases). Under the changing climate, heat-related mortality is projected to increase in the future;and the increase will be more obvious in year 2070 - 2099 than in year 2030 - 2059.
NASA Astrophysics Data System (ADS)
Tchigriaeva, E.; Lott, C.; Rollins, K.
2013-12-01
We analyze urban residential water demand for Southern Nevada as a part of the Nevada Infrastructure for Climate Change Science, Education, and Outreach project. The Nevada Climate Change project is a statewide interdisciplinary program which has launched joint research, education, and outreach on the effects of regional climate change on ecosystem services in Nevada with a particular focus on water resources. We estimate a random effect multiple regression model of urban residential water demand in order to better understand how residential water use is impacted by weather conditions and landscape characteristics and ultimately to inform predictions of urban water demand. The project develops a methodology of unification for several datasets from various sources including the Las Vegas Valley Water District (LVVWD), the Southern Nevada Water Authority (SNWA), Clark County Assessor, and the National Climatic Data Center (NCDC) resulting in a sample of 3,671,983 observations for 62,237 households with uninterrupted water use history for Las Vegas urban residents for the period from February 2007 to December 2011. The presented results (i) are significantly robust and in accordance with the economics theories, (ii) support basic empirical knowledge of weather and surface influence on water outdoor consumption, (iii) suggest quantitative measurements for predicting future water use due to climate/temperature changes as well as landscape redesign practices, and (iv) provide quantitative evaluation of the effectiveness of the existing water conservation programs by the Southern Nevada Water Authority (SNWA). The further study of conservation programs and analysis of interactions between surfaces and weather using the developed approach looks promising.
Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John
2009-01-01
A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake lower in the flow system, the impacts of climate change are diminished.
NASA Astrophysics Data System (ADS)
Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.
2012-12-01
For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.
National Climate Change and Wildlife Science Center project accomplishments: highlights
Holl, Sally
2011-01-01
The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.
Divergent surface and total soil moisture projections under global warming
Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.
2017-01-01
Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.
The ecology of climate change and infectious diseases
Lafferty, Kevin D.
2009-01-01
The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.
NASA Astrophysics Data System (ADS)
Basheer, A. K.; Lu, H.; Omer, A.; Ali, A. B.; Abdelgader, A. M. S.
2015-10-01
The fate of seasonal rivers ecosystem habitats under climate change essentially depends on the changes in annual recharge, which related to alterations in precipitation and evaporation over the river basin. Therefore the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in Dinder River Basin (DRB), and infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in the Sudan. Two global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with hydrological model (SWAT) were used to project the climate change conditions over the study periods 2020s, 2050s and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under the most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow was more sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during (1960s, 1970s and 1980s), the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration of the flora and fauna habitats'.
CMIP5 Scientific Gaps and Recommendations for CMIP6
Stouffer, R. J.; Eyring, V.; Meehl, G. A.; ...
2017-01-23
The Coupled Model Intercomparison Project (CMIP) is an ongoing coordinated international activity of numerical experimentation of unprecedented scope and impact on climate science. Its most recent phase, the fifth phase (CMIP5), has created nearly 2 PB of output from dozens of experiments performed by dozens of comprehensive climate models available to the climate science research community. In so doing, it has greatly advanced climate science. While CMIP5 has given answers to important science questions, with the help of a community survey we identify and motivate three broad topics here that guided the scientific framework of the next phase of CMIP,more » that is, CMIP6: (1) How does the Earth system respond to changes in forcing? (2) What are the origins and consequences of systematic model biases? (3) How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? CMIP has demonstrated the power of idealized experiments to better understand how the climate system works. We expect that these idealized approaches will continue to contribute to CMIP6. The quantification of radiative forcings and responses was poor, and thus it requires new methods and experiments to address this gap. There are a number of systematic model biases that appear in all phases of CMIP that remain a major climate modeling challenge. In conclusion, these biases need increased attention to better understand their origins and consequences through targeted experiments. Improving understanding of the mechanisms’ underlying internal climate variability for more skillful decadal climate predictions and long-term projections remains another challenge for CMIP6.« less
Jordan, Rebecca; Hoffmann, Ary A; Dillon, Shannon K; Prober, Suzanne M
2017-11-01
Understanding whether populations can adapt in situ or whether interventions are required is of key importance for biodiversity management under climate change. Landscape genomics is becoming an increasingly important and powerful tool for rapid assessments of climate adaptation, especially in long-lived species such as trees. We investigated climate adaptation in Eucalyptus microcarpa using the DArTseq genomic approach. A combination of F ST outlier and environmental association analyses were performed using >4200 genomewide single nucleotide polymorphisms (SNPs) from 26 populations spanning climate gradients in southeastern Australia. Eighty-one SNPs were identified as putatively adaptive, based on significance in F ST outlier tests and significant associations with one or more climate variables related to temperature (70/81), aridity (37/81) or precipitation (35/81). Adaptive SNPs were located on all 11 chromosomes, with no particular region associated with individual climate variables. Climate adaptation appeared to be characterized by subtle shifts in allele frequencies, with no consistent fixed differences identified. Based on these associations, we predict adaptation under projected changes in climate will include a suite of shifts in allele frequencies. Whether this can occur sufficiently rapidly through natural selection within populations, or would benefit from assisted gene migration, requires further evaluation. In some populations, the absence or predicted increases to near fixation of particular adaptive alleles hint at potential limits to adaptive capacity. Together, these results reinforce the importance of standing genetic variation at the geographic level for maintaining species' evolutionary potential. © 2017 John Wiley & Sons Ltd.
CMIP5 Scientific Gaps and Recommendations for CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stouffer, R. J.; Eyring, V.; Meehl, G. A.
The Coupled Model Intercomparison Project (CMIP) is an ongoing coordinated international activity of numerical experimentation of unprecedented scope and impact on climate science. Its most recent phase, the fifth phase (CMIP5), has created nearly 2 PB of output from dozens of experiments performed by dozens of comprehensive climate models available to the climate science research community. In so doing, it has greatly advanced climate science. While CMIP5 has given answers to important science questions, with the help of a community survey we identify and motivate three broad topics here that guided the scientific framework of the next phase of CMIP,more » that is, CMIP6: (1) How does the Earth system respond to changes in forcing? (2) What are the origins and consequences of systematic model biases? (3) How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? CMIP has demonstrated the power of idealized experiments to better understand how the climate system works. We expect that these idealized approaches will continue to contribute to CMIP6. The quantification of radiative forcings and responses was poor, and thus it requires new methods and experiments to address this gap. There are a number of systematic model biases that appear in all phases of CMIP that remain a major climate modeling challenge. In conclusion, these biases need increased attention to better understand their origins and consequences through targeted experiments. Improving understanding of the mechanisms’ underlying internal climate variability for more skillful decadal climate predictions and long-term projections remains another challenge for CMIP6.« less
Creating "Intelligent" Climate Model Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, N. C.; Taylor, P. C.
2014-12-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is often used to add value to model projections: consensus projections have been shown to consistently outperform individual models. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, certain models reproduce climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument and surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing weighted and unweighted model ensembles. For example, one tested metric weights the ensemble by how well models reproduce the time-series probability distribution of the cloud forcing component of reflected shortwave radiation. The weighted ensemble for this metric indicates lower simulated precipitation (up to .7 mm/day) in tropical regions than the unweighted ensemble: since CMIP5 models have been shown to overproduce precipitation, this result could indicate that the metric is effective in identifying models which simulate more realistic precipitation. Ultimately, the goal of the framework is to identify performance metrics for advising better methods for ensemble averaging models and create better climate predictions.
NASA Astrophysics Data System (ADS)
Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan
2017-12-01
The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century
Westerling, Anthony L.; Turner, Monica G.; Smithwick, Erica A. H.; Romme, William H.; Ryan, Michael G.
2011-01-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495
NASA Astrophysics Data System (ADS)
Sheffield, Justin
2013-04-01
Droughts arguably cause the most impacts of all natural hazards in terms of the number of people affected and the long-term economic costs and ecosystem stresses. Recent droughts worldwide have caused humanitarian and economic problems such as food insecurity across the Horn of Africa, agricultural economic losses across the central US and loss of livelihoods in rural western India. The prospect of future increases in drought severity and duration driven by projected changes in precipitation patterns and increasing temperatures is worrisome. Some evidence for climate change impacts on drought is already being seen for some regions, such as the Mediterranean and east Africa. Mitigation of the impacts of drought requires advance warning of developing conditions and enactment of drought plans to reduce vulnerability. A key element of this is a drought early warning system that at its heart is the capability to monitor evolving hydrological conditions and water resources storage, and provide reliable and robust predictions out to several months, as well as the capacity to act on this information. At longer time scales, planning and policy-making need to consider the potential impacts of climate change and its impact on drought risk, and do this within the context of natural climate variability, which is likely to dominate any climate change signal over the next few decades. There are several challenges that need to be met to advance our capability to provide both early warning at seasonal time scales and risk assessment under climate change, regionally and globally. Advancing our understanding of drought predictability and risk requires knowledge of drought at all time scales. This includes understanding of past drought occurrence, from the paleoclimate record to the recent past, and understanding of drought mechanisms, from initiation, through persistence to recovery and translation of this understanding to predictive models. Current approaches to monitoring and predicting drought are limited in many parts of the world, and especially in developing countries where national capacity is limited. Evaluation of past droughts and their mechanisms is limited by data availability and especially before the instrumental period of the last 50-100 years, for which there is reliance on incomplete spatial proxy data, such as tree rings. Seasonal predictability is currently mainly limited to tropical and sub-tropical regions through connections with sea surface temperature variations such as ENSO. Predictability in mid-latitudes is low and especially for precipitation, although dynamical model predictions appear to be edging statistical models in many aspects of seasonal prediction. This presentation describes ongoing research on evaluation of drought risk and drought mechanisms at regional to global scales with the eventual goal of developing a seamless monitoring and prediction framework at all time scales. Such a framework would allow consistent assessment of drought from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental global drought monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of drought variability over the 20th century, which forms the background climatology to which current conditions can be assessed and drought mechanisms can be diagnosed. Future drought risk is quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. Current research is focused on several aspects, including: 1) quantifying the uncertainties in historic drought reconstructions; 2) analysis of drought propagation through the coupled hydrological/vegetation system; 3) the utility of new data sources such as on the ground sensors and new satellite products for terrestrial hydrology and vegetation, for improved monitoring and prediction, especially in poorly observed regions; 4) advancing predictive skill for all aspects of drought occurrence through diagnosis of the driving mechanisms and feedbacks of historic droughts; and 5) quantification and reduction of uncertainties in future projections of drought under climate change. The steps towards the development of a seamless framework for analysis and prediction in the context of this research are discussed.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.
2004-01-01
international Argo practices. Data appropriate for research applications and for comparison with climate change models are not available for several...global ocean heat and fresh water storage and the detection and attribution of climate change . These presentations can be accessed at http...stresses on ocean ecosystems have serious consequences, and sometimes dramatic ones, such as coral reef bleaching . In the future, the impacts of a
Ensemble Prediction of Tropical Cyclone Genesis
2017-02-23
future changes in tropical cyclone (TC) activity around the Hawaiian Islands are investigated using the state-of-the-art climate models1–3. We find that...future warmer climate . This is in contrast to the NA, where BDI increases for all dynamic variables investigated while it shows little change for...Li, and A. Kitoh, 2013: Projected future increase in tropical cyclones near Hawaii. Nature Climate Change , 3, 749-754, doi:10.1038/nclimate1890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Chen, K. F.
2013-08-22
The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less
Gustafson, Eric J; De Bruijn, Arjan M G; Pangle, Robert E; Limousin, Jean-Marc; McDowell, Nate G; Pockman, William T; Sturtevant, Brian R; Muss, Jordan D; Kubiske, Mark E
2015-02-01
Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Large rainfall changes consistently projected over substantial areas of tropical land
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.
2016-02-01
Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.
Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols
NASA Astrophysics Data System (ADS)
Bartlett, R. E.; Bollasina, M. A.
2017-12-01
Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon systems outside of Asia. These results indicate that anthropogenic aerosols have significant climate impacts against a background of greenhouse gas-induced climate change, and thus represent a key source of uncertainty in near-term climate projection that should be seriously considered in future climate assessments.
NASA Astrophysics Data System (ADS)
Godbole, A. V.; Gurney, K. R.
2010-12-01
With urban and exurban areas now accounting for more than 50% of the world's population, projected to increase 20% by 2050 (UN World Urbanization Prospects, 2009), urban-climate interactions are of renewed interest to the climate change scientific community (Karl et. al, 1988; Kalnay and Cai, 2003; Seto and Shepherd, 2009). Until recently, climate modeling efforts treated urban-human systems as independent of the earth system. With studies pointing to the disproportionately large influence of urban areas on their surrounding environment (Small et. al, 2010), modeling efforts have begun to explicitly account for urban processes in land models, like the CLM 4.0 urban layer, for example (Oleson.et. al, 2008, 2010). A significant portion of the urban energy demand comes from the space heating and cooling requirement of the residential and commercial sectors - as much as 51% (DOE, RECS 2005) and 11% (Belzer, D. 2006) respectively, in the United States. Thus, these sectors are both responsible for a significant fraction of fossil fuel CO2 emissions and will be influenced by a changing climate through changes in energy use and energy supply planning. This points to the possibility of interactive processes and feedbacks with the climate system. Space conditioning energy demand is strongly driven by external air temperature (Ruth, M. et.al, 2006) in addition to other socio-economic variables such as building characteristics (age of structure, activity cycle, weekend/weekday usage profile), occupant characteristics (age of householder, household income) and energy prices (Huang, 2006; Santin et. al, 2009; Isaac and van Vuuren, 2009). All of these variables vary both in space and time. Projections of climate change have begun to simulate changes in temperature at much higher resolution than in the past (Diffenbaugh et. al, 2005). Hence, in order to understand how climate change and variability will potentially impact energy use/emissions and energy planning, these two components of the human-climate system must be coupled in climate modeling efforts to better understand the impacts and feedbacks. To implement modeling strategies for coupling the human and climate systems, their interactions must first be examined in greater detail at high spatial and temporal resolutions. This work attempts to quantify the impact of high resolution variations in projected climate change on energy use/emissions in the United States. We develop a predictive model for the space heating component of residential and commercial energy demand by leveraging results from the high resolution fossil fuel CO2 inventory of the Vulcan Project (Gurney et al., 2009). This predictive model is driven by high resolution temperature data from the RegCM3 model obtained by implementing a downscaling algorithm (Chow and Levermore, 2007). We will present the energy use/emissions in both the space and time domain from two different predictive models highlighting strengths and weaknesses in both. Furthermore, we will explore high frequency variations in the projected temperature field and how these might place potentially large burdens on energy supply and delivery.
The Subseasonal Experiment (SubX) to Advance National Weather Service Predictions for Weeks 3-4
NASA Astrophysics Data System (ADS)
Mariotti, A.; Barrie, D.; Archambault, H. M.
2017-12-01
There is great practical interest in developing skillful predictions of extremes for lead times extending beyond the two-week theoretical predictability skill barrier for weather forecasts to the subseasonal-to-seasonal (S2S) time scale. The processes and phenomena specific to S2S are posited to require a unified approach to science, modeling, and predictions that draws expertise from both the weather and climate/seasonal communities. Based on this premise, in 2016, the NOAA Climate Program Office Modeling, Analysis, Predictions and Projections (MAPP) program, in partnership with the National Weather Service Office of Science and Technology Integration, launched a major research and transition initiative to meet NOAA's emerging research and transition needs for developing skillful S2S predictions. A major component of this initiative is an experiment to test single- and multi-model ensembles for subseasonal prediction, called the Subseasonal Experiment (SubX). SubX, which engages six modeling groups, is producing real time experimental forecasts based on weather, climate, and Earth system models for weeks 3-4. The project investigators are evaluating, testing, and optimizing this system, and the hindcast and real time forecast data are available to the broad community. SubX research is targeted at a number of important decision-making contexts including drought and extremes, as well as the broad variety of phenomena that are meaningful at subseasonal timescales (e.g., MJO, ENSO, stratosphere/troposphere coupling, etc.). This presentation will discuss the design and status of SubX in the broader context of MAPP program S2S prediction research.
A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.
2007-01-01
The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.
Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity
David D. Briske; Linda A. Joyce; H. Wayne Polley; Joel R. Brown; Klaus Wolter; Jack A. Morgan; Bruce A. McCarl; Derek W. Bailey
2015-01-01
The ecological consequences of climate change are predicted to vary greatly throughout US rangelands. Projections show warming and drying in the southern Great Plains and the Southwest, warmer and drier summers with reduced winter snowpack in the Northwest, and warmer and wetter conditions in the northern Great Plains. Primarily through their combined effects on soil...
Case Study 3: Species vulnerability assessment for the Middle Rio Grande, New Mexico
Deborah M. Finch; Megan Friggens; Karen Bagne
2011-01-01
This case study describes a method for scoring terrestrial species that have potential to be vulnerable to climate change. The assessment tool seeks to synthesize complex information related to projected climate changes into a predictive tool for species conservation. The tool was designed to aid managers in prioritizing species management actions in response to...
Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades
Christina Tague; Gordon Grant; Mike Farrell; Janet Choate; Anne Jefferson
2008-01-01
Recent studies predict that projected climate change will lead to significant reductions in summer streamflow in the mountainous regions of the Western United States. Hydrologic modeling directed at quantifying these potential changes has focused on the magnitude and timing of spring snowmelt as the key control on the spatial temporal pattern of summer streamflow. We...
Predicting abundance of 80 tree species following climate change in the Eastern United States
Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad
1998-01-01
Projected climate warming will potentially have profound effects on the earth?s biota, including a large redistribution of tree species. We developed models to evaluate potential shifts for 80 individual tree species in the eastern United States. First, environmental factors associated with current ranges of tree species were assessed using geographic information...
Potential for western US seasonal snowpack prediction
Kapnick, Sarah B.; Yang, Xiaosong; Vecchi, Gabriel A.; Delworth, Thomas L.; Gudgel, Rich; Malyshev, Sergey; Milly, Paul C. D.; Shevliakova, Elena; Underwood, Seth; Margulis, Steven A.
2018-01-01
Western US snowpack—snow that accumulates on the ground in the mountains—plays a critical role in regional hydroclimate and water supply, with 80% of snowmelt runoff being used for agriculture. While climate projections provide estimates of snowpack loss by the end of th ecentury and weather forecasts provide predictions of weather conditions out to 2 weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), crucial for regional agricultural decisions (e.g., plant choice and quantity). Seasonal predictions with climate models first took the form of El Niño predictions 3 decades ago, with hydroclimate predictions emerging more recently. While the field has been focused on single-season predictions (3 months or less), we are now poised to advance our predictions beyond this timeframe. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate the feasibility of seasonal snowpack predictions and quantify the limits of predictive skill 8 month sin advance. This physically based dynamic system outperforms observation-based statistical predictions made on July 1 for March snowpack everywhere except the southern Sierra Nevada, a region where prediction skill is nonexistent for every predictor presently tested. Additionally, in the absence of externally forced negative trends in snowpack, narrow maritime mountain ranges with high hydroclimate variability pose a challenge for seasonal prediction in our present system; natural snowpack variability may inherently be unpredictable at this timescale. This work highlights present prediction system successes and gives cause for optimism for developing seasonal predictions for societal needs.
Assessing the implementation of bias correction in the climate prediction
NASA Astrophysics Data System (ADS)
Nadrah Aqilah Tukimat, Nurul
2018-04-01
An issue of the climate changes nowadays becomes trigger and irregular. The increment of the greenhouse gases (GHGs) emission into the atmospheric system day by day gives huge impact to the fluctuated weather and global warming. It becomes significant to analyse the changes of climate parameters in the long term. However, the accuracy in the climate simulation is always be questioned to control the reliability of the projection results. Thus, the Linear Scaling (LS) as a bias correction method (BC) had been applied to treat the gaps between observed and simulated results. About two rainfall stations were selected in Pahang state there are Station Lubuk Paku and Station Temerloh. Statistical Downscaling Model (SDSM) used to perform the relationship between local weather and atmospheric parameters in projecting the long term rainfall trend. The result revealed the LS was successfully to reduce the error up to 3% and produced better climate simulated results.
2016 International Land Model Benchmarking (ILAMB) Workshop Report
NASA Technical Reports Server (NTRS)
Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen; Lawrence, David M.; Riley, William J.; Randerson, James T.; Ahlstrom, Anders; Abramowitz, Gabriel; Baldocchi, Dennis D.; Best, Martin J.;
2016-01-01
As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections.
The effects of climate change on storm surges around the United Kingdom.
Lowe, J A; Gregory, J M
2005-06-15
Coastal flooding is often caused by extreme events, such as storm surges. In this study, improved physical models have been used to simulate the climate system and storm surges, and to predict the effect of increased atmospheric concentrations of greenhouse gases on the surges. In agreement with previous studies, this work indicates that the changes in atmospheric storminess and the higher time-average sea-level predicted for the end of the twenty-first century will lead to changes in the height of water levels measured relative to the present day tide. However, the details of these projections differ somewhat from earlier assessments. Uncertainty in projections of future extreme water levels arise from uncertainty in the amount and timing of future greenhouse gas emissions, uncertainty in the physical models used to simulate the climate system and from the natural variability of the system. The total uncertainty has not yet been reliably quantified and achieving this should be a priority for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less
Climate Velocity Can Inform Conservation in a Warming World.
Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J
2018-06-01
Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale
2017-05-01
The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale
2017-05-01
The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1 h -1 yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.
Emergence, reductionism and landscape response to climate change
NASA Astrophysics Data System (ADS)
Harrison, Stephan; Mighall, Tim
2010-05-01
Predicting landscape response to external forcing is hampered by the non-linear, stochastic and contingent (ie dominated by historical accidents) forcings inherent in landscape evolution. Using examples from research carried out in southwest Ireland we suggest that non-linearity in landform evolution is likely to be a strong control making regional predictions of landscape response to climate change very difficult. While uncertainties in GCM projections have been widely explored in climate science much less attention has been directed by geomorphologists to the uncertainties in landform evolution under conditions of climate change and this problem may be viewed within the context of philosophical approaches to reductionsim and emergence. Understanding the present and future trajectory of landform change may also guide us to provide an enhanced appreciation of how landforms evolved in the past.
NASA Astrophysics Data System (ADS)
Mutua, F.; Koike, T.
2013-12-01
Extreme weather events have been the leading cause of disasters and damage all over the world.The primary ingredient to these disasters especially floods is rainfall which over the years, despite advances in modeling, computing power and use of new data and technologies, has proven to be difficult to predict. Also, recent climate projections showed a pattern consistent with increase in the intensity and frequency of extreme events in the East African region.We propose a holistic integrated approach to climate change assessment and extreme event adaptation through coupling of analysis techniques, tools and data. The Lake Victoria Basin (LVB) in East Africa supports over three million livelihoods and is a valuable resource to five East African countries as a source of water and means of transport. However, with a Mesoscale weather regime driven by land and lake dynamics,extreme Mesoscale events have been prevalent and the region has been on the receiving end during anomalously wet years in the region. This has resulted in loss of lives, displacements, and food insecurity. In the LVB, the effects of climate change are increasingly being recognized as a significant contributor to poverty, by its linkage to agriculture, food security and water resources. Of particular importance are the likely impacts of climate change in frequency and intensity of extreme events. To tackle this aspect, this study adopted an integrated regional, mesoscale and basin scale approach to climate change assessment. We investigated the projected changes in mean climate over East Africa, diagnosed the signals of climate change in the atmosphere, and transferred this understanding to mesoscale and basin scale. Changes in rainfall were analyzed and similar to the IPCC AR4 report; the selected three General Circulation Models (GCMs) project a wetter East Africa with intermittent dry periods in June-August. Extreme events in the region are projected to increase; with the number of wet days exceeding the 90% percentile of 1981-2000 likely to increase by 20-40% in the whole region. We also focused on short-term weather forecasting as a step towards adapting to a changing climate. This involved dynamic downscaling of global weather forecasts to high resolution with a special focus on extreme events. By utilizing complex model dynamics, the system was able to reproduce the Mesoscale dynamics well, simulated the land/lake breeze and diurnal pattern but was inadequate in some aspects. The quantitative prediction of rainfall was inaccurate with overestimation and misplacement but with reasonable occurrence. To address these shortcomings we investigated the value added by assimilating Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature during the event. By assimilating 23GHz (sensitive to water) and 89GHz (sensitive to cloud) frequency brightness temperature; the predictability of an extreme rain weather event was investigated. The assimilation through a Cloud Microphysics Data Assimilation (CMDAS) into the weather prediction model considerably improved the spatial distribution of this event.
Saltré, Frédérik; Duputié, Anne; Gaucherel, Cédric; Chuine, Isabelle
2015-02-01
Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future. © 2014 John Wiley & Sons Ltd.
Benchmarking novel approaches for modelling species range dynamics
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.
2016-01-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305
Benchmarking novel approaches for modelling species range dynamics.
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E
2016-08-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yoneda, Minoru; Abe-Ouchi, Ayako; Kawahata, Hodaka; Yokoyama, Yusuke; Oguchi, Takashi
2014-05-01
The impact of climate change on human evolution is important and debating topic for many years. Since 2010, we have involved in a general joint project entitled "Replacement of Neanderthal by Modern Humans: Testing Evolutional Models of Learning", which based on a theoretical prediction that the cognitive ability related to individual and social learning divide fates of ancient humans in very unstable Late Pleistocene climate. This model predicts that the human populations which experienced a series of environmental changes would have higher rate of individual learners, while detailed reconstructions of global climate change have reported fluent and drastic change based on ice cores and stalagmites. However, we want to understand the difference between anatomically modern human which survived and the other archaic extinct humans including European Neanderthals and Asian Denisovans. For this purpose the global synchronized change is not useful for understanding but the regional difference in the amplitude and impact of climate change is the information required. Hence, we invited a geophysicist busing Global Circulation Model to reconstruct the climatic distribution and temporal change in a continental scale. At the same time, some geochemists and geographers construct a database of local climate changes recorded in different proxies. At last, archaeologists and anthropologists tried to interpret the emergence and disappearance of human species in Europe and Asia on the reconstructed past climate maps using some tools, such as Eco-cultural niche model. Our project will show the regional difference in climate change and related archaeological events and its impact on the evolution of learning ability of modern humans.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.
Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions.
Fox, Naomi J; Marion, Glenn; Davidson, Ross S; White, Piran C L; Hutchings, Michael R
2012-03-06
Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.
NASA Astrophysics Data System (ADS)
Randin, C.; Engler, R.; Pearman, P.; Vittoz, P.; Guisan, A.
2007-12-01
Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In this study, we developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, we assessed the effect of scale on predictor variables and geographic projections of SDM. We also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, we used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, we showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe B1 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. Our study also highlighted the importance of fine scale and regional assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale.
NASA Astrophysics Data System (ADS)
Breil, Marcus; Panitz, Hans-Jürgen
2013-04-01
Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the DEPARTURE project (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, based on SST-driven global MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, three different SVAT's (TERRA_ML, Community Land Model (CLM), and VEG3D) will be coupled with the CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, the influence of the model domain on the CCLM results was examined. For this purpose, recent CCLM results from simulations for the official CORDEX domain were compared with CCLM results achieved by using an extended DEPARTURE model domain to about 60°W. This sensitivity analysis was performed with a horizontal resolution of 0.44°. Thereby, the analysis showed that the domain size doesn't affect the quality of the simulation results significantly. The impact of different SVAT's on the model performance is supposed to be higher. To investigate this assumption, TERRA_ML, the standard SVAT implemented in CCLM, is replaced by VEG3D using the OASIS3-MCT coupling software. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer, inducing higher correlations with observations as it has been shown in previous studies. The results of both model configurations are analysed and presented for the DEPARTURE model domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less
NASA Astrophysics Data System (ADS)
Han, B.; Flores, A. N.; Benner, S. G.
2017-12-01
In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of changes in precipitation versus temperature as a driver of scarcity, and potential shortcomings of the current water management framework in the region.
NASA Astrophysics Data System (ADS)
Groves, David G.; Yates, David; Tebaldi, Claudia
2008-12-01
Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.
NASA Astrophysics Data System (ADS)
Lemaire, V. E. P.; Colette, A.; Menut, L.
2015-10-01
Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projection. However, the computing cost of such method requires optimizing ensemble exploration techniques. By using a training dataset of deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed simple statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows concluding on the robustness of the climate impact on air quality. The climate benefit for PM2.5 was confirmed -0.96 (±0.18), -1.00 (±0.37), -1.16 ± (0.23) μg m-3, for resp. Eastern Europe, Mid Europe and Northern Italy and for the Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy regions a climate penalty on ozone was identified 10.11 (±3.22), 8.23 (±2.06), 9.23 (±1.13), 6.41 (±2.14), 7.43 (±2.02) μg m-3. This technique also allows selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections.
Changes in Black-legged Tick Population in New England with Future Climate Change
NASA Astrophysics Data System (ADS)
Krishnan, S.; Huber, M.
2015-12-01
Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.
Climate@Home: Crowdsourcing Climate Change Research
NASA Astrophysics Data System (ADS)
Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.
2011-12-01
Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.
Eric J. Greenfield; David J. Nowak
2013-01-01
Future projections of tree cover and climate change are useful to natural resource managers as they illustrate potential changes to our natural resources and the ecosystem services they provide. This report a) details three projections of tree cover change across the conterminous United States based on predicted land-use changes from 2000 to 2060; b) evaluates nine...
Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James
2015-08-28
There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
Howe, P D; Bryant, S R; Shreeve, T G
2007-10-01
We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.
Reservoir adaptive operating rules based on both of historical streamflow and future projections
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan
2017-10-01
Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.
US forest response to projected climate-related stress: a tolerance perspective.
Liénard, Jean; Harrison, John; Strigul, Nikolay
2016-08-01
Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine-scale predictions) and potential vegetation climate envelope models (for coarse-grained, large-scale predictions). Here, we develop and apply an intermediate approach wherein we use stand-level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate-related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought-related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high-elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States. © 2016 John Wiley & Sons Ltd.
Winter Precipitation Forecast in the European and Mediterranean Regions Using Cluster Analysis
NASA Astrophysics Data System (ADS)
Totz, Sonja; Tziperman, Eli; Coumou, Dim; Pfeiffer, Karl; Cohen, Judah
2017-12-01
The European climate is changing under global warming, and especially the Mediterranean region has been identified as a hot spot for climate change with climate models projecting a reduction in winter rainfall and a very pronounced increase in summertime heat waves. These trends are already detectable over the historic period. Hence, it is beneficial to forecast seasonal droughts well in advance so that water managers and stakeholders can prepare to mitigate deleterious impacts. We developed a new cluster-based empirical forecast method to predict precipitation anomalies in winter. This algorithm considers not only the strength but also the pattern of the precursors. We compare our algorithm with dynamic forecast models and a canonical correlation analysis-based prediction method demonstrating that our prediction method performs better in terms of time and pattern correlation in the Mediterranean and European regions.
NASA Astrophysics Data System (ADS)
Senatore, Alfonso; Hejabi, Somayeh; Mendicino, Giuseppe; Bazrafshan, Javad; Irannejad, Parviz
2018-03-01
Climate change projections were evaluated over both the whole Iran and six zones having different precipitation regimes considering the CORDEX South Asia dataset, for assessing space-time distribution of drought occurrences in the future period 2070-2099 under RCP4.5 scenario. Initially, the performances of eight available CORDEX South Asia Regional Climate Models (RCMs) were assessed for the baseline period 1970-2005 through the GPCC v.7 precipitation dataset and the CFSR temperature dataset, which were previously selected as the most reliable within a set of five global datasets compared to 41 available synoptic stations. Though the CCLM RCM driven by the MPI-ESM-LR General Circulation Model is in general the most suitable for temperature and, together with the REMO 2009 RCM also driven by MPI-ESM-LR, for precipitation, their performances do not overwhelm other models for every season and zone in which Iranian territory was divided according to a principal component analysis approach. Hence, a weighting approach was tested and adopted to take into account useful information from every RCM in each of the six zones. The models resulting more reliable compared to current climate show a strong precipitation decrease. Weighted average predicts an overall yearly precipitation decrease of about 20%. Temperature projections provide a mean annual increase of 2.4 °C. Future drought scenarios were depicted by means of the self-calibrating version of the Palmer drought severity index (SC-PDSI) model. Weighted average predicts a sharp drying that can be configured as a real shift in mean climate conditions, drastically affecting water resources of the country.
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...
2016-10-04
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
NASA Astrophysics Data System (ADS)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2017-01-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Decision-relevant evaluation of climate models: A case study of chill hours in California
NASA Astrophysics Data System (ADS)
Jagannathan, K. A.; Jones, A. D.; Kerr, A. C.
2017-12-01
The past decade has seen a proliferation of different climate datasets with over 60 climate models currently in use. Comparative evaluation and validation of models can assist practitioners chose the most appropriate models for adaptation planning. However, such assessments are usually conducted for `climate metrics' such as seasonal temperature, while sectoral decisions are often based on `decision-relevant outcome metrics' such as growing degree days or chill hours. Since climate models predict different metrics with varying skill, the goal of this research is to conduct a bottom-up evaluation of model skill for `outcome-based' metrics. Using chill hours (number of hours in winter months where temperature is lesser than 45 deg F) in Fresno, CA as a case, we assess how well different GCMs predict the historical mean and slope of chill hours, and whether and to what extent projections differ based on model selection. We then compare our results with other climate-based evaluations of the region, to identify similarities and differences. For the model skill evaluation, historically observed chill hours were compared with simulations from 27 GCMs (and multiple ensembles). Model skill scores were generated based on a statistical hypothesis test of the comparative assessment. Future projections from RCP 8.5 runs were evaluated, and a simple bias correction was also conducted. Our analysis indicates that model skill in predicting chill hour slope is dependent on its skill in predicting mean chill hours, which results from the non-linear nature of the chill metric. However, there was no clear relationship between the models that performed well for the chill hour metric and those that performed well in other temperature-based evaluations (such winter minimum temperature or diurnal temperature range). Further, contrary to conclusions from other studies, we also found that the multi-model mean or large ensemble mean results may not always be most appropriate for this outcome metric. Our assessment sheds light on key differences between global versus local skill, and broad versus specific skill of climate models, highlighting that decision-relevant model evaluation may be crucial for providing practitioners with the best available climate information for their specific needs.
GEWEX America Prediction Project (GAPP) Science and Implementation Plan
NASA Technical Reports Server (NTRS)
2004-01-01
The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.
Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment.
Chapra, Steven C; Boehlert, Brent; Fant, Charles; Bierman, Victor J; Henderson, Jim; Mills, David; Mas, Diane M L; Rennels, Lisa; Jantarasami, Lesley; Martinich, Jeremy; Strzepek, Kenneth M; Paerl, Hans W
2017-08-15
Cyanobacterial harmful algal blooms (CyanoHABs) have serious adverse effects on human and environmental health. Herein, we developed a modeling framework that predicts the effect of climate change on cyanobacteria concentrations in large reservoirs in the contiguous U.S. The framework, which uses climate change projections from five global circulation models, two greenhouse gas emission scenarios, and two cyanobacterial growth scenarios, is unique in coupling climate projections with a hydrologic/water quality network model of the contiguous United States. Thus, it generates both regional and nationwide projections useful as a screening-level assessment of climate impacts on CyanoHAB prevalence as well as potential lost recreation days and associated economic value. Our projections indicate that CyanoHAB concentrations are likely to increase primarily due to water temperature increases tempered by increased nutrient levels resulting from changing demographics and climatic impacts on hydrology that drive nutrient transport. The combination of these factors results in the mean number of days of CyanoHAB occurrence ranging from about 7 days per year per waterbody under current conditions, to 16-23 days in 2050 and 18-39 days in 2090. From a regional perspective, we find the largest increases in CyanoHAB occurrence in the Northeast U.S., while the greatest impacts to recreation, in terms of costs, are in the Southeast.
Climate change risks and conservation implications for a threatened small-range mammal species.
Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian
2010-04-29
Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.
Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species
Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian
2010-01-01
Background Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. Methodology/Principal Findings We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Conclusions/Significance Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change. PMID:20454451
ERIC Educational Resources Information Center
Taylor, Dianne L.; Tashakkori, Abbas
This study examined the relationship of teacher decisional participation and school climate to teachers' sense of efficacy and their job satisfaction. Data came from the National Education Longitudinal Study of 1988 (NELS-88) project, involving 1,035 schools with eighth grade students, and from the 1990 follow up of 1,296 schools. The final data…
Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...
As part of an EPA/USGS project to predict the relative vulnerability of near-coastal species to climate change we analyzed the biogeographic and abundance patterns of the brachyuran or ‘True’ crabs (n=368) and lithodid or ‘King’ crabs (n=20) that are found...
As part of an EPA/USGS project to predict the relative vulnerability of near-coastal species to climate change we analyzed the biogeographic and abundance patterns of the brachyuran or ‘True’ crabs (n=368) and lithodid or ‘King’ crabs (n=20) that are found...
Impacts of climate change on large forest wildfire of Washington and Oregon
NASA Astrophysics Data System (ADS)
Yang, Z.; Davis, R. J.; Yost, A.; Cohen, W. B.
2014-12-01
Climate changes in the 21st century were projected to have major impact on wildfire. The state of Washington and Oregon contains a tightly coupled forest ecosystem and fire regime. The objective of this study was to examine the impact of future climate changes for large wildfire in the two states. MAXENT algorithm was used to develop a large forest wildfire suitability model using historical fire for the 1971-2000 time period and validated for 1981-2010 time period . Input variables include climate (e.g. July-August temperature) and topographic variables (e.g. elevation). The model test AUC of 0.77±0.1. Using the predicted versus expected curve and methods described by Hirzel and others (Hirzel et al. 2006), we reclassified the model into four classes; low suitability (0-0.36), moderate suitability 0.36-0.5), high suitability (0.5-0.75), and very high suitability (0.75-1.0). To examine the future climate change impact, climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from 33 different climate models were used to predict the large wildfire suitability from 1971-2100 using the NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset. Results from ensembles of all the climate scenarios showed that the area with high and very high suitability for large wildfire increased under all 4 climate scenarios from 1971 to 2100. However, under RCP 2.6, the area start to decline from 2080 while the other three scenarios keep increasing. On the extreme case of RCP 8.5, very high suitable area increases from less than 1% during 1971-2000 to 14.9% during 2070-2100. Details about temporal patterns for the study area and changes by ecoregions will be presented.
Phylogeny predicts future habitat shifts due to climate change.
Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A
2014-01-01
Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.
Lieske, David J; Lloyd, Vett K
2018-03-01
Ixodes scapularis, a known vector of Borrelia burgdorferi sensu stricto (Bbss), is undergoing range expansion in many parts of Canada. The province of New Brunswick, which borders jurisdictions with established populations of I. scapularis, constitutes a range expansion zone for this species. To better understand the current and potential future distribution of this tick under climate change projections, this study applied occupancy modelling to distributional records of adult ticks that successfully overwintered, obtained through passive surveillance. This study indicates that I. scapularis occurs throughout the southern-most portion of the province, in close proximity to coastlines and major waterways. Milder winter conditions, as indicated by the number of degree days <0 °C, was determined to be a strong predictor of tick occurrence, as was, to a lesser degree, rising levels of annual precipitation, leading to a final model with a predictive accuracy of 0.845 (range: 0.828-0.893). Both RCP 4.5 and RCP 8.5 climate projections predict that a significant proportion of the province (roughly a quarter to a third) will be highly suitable for I. scapularis by the 2080s. Comparison with cases of canine infection show good spatial agreement with baseline model predictions, but the presence of canine Borrelia infections beyond the climate envelope, defined by the highest probabilities of tick occurrence, suggest the presence of Bbss-carrying ticks distributed by long-range dispersal events. This research demonstrates that predictive statistical modelling of multi-year surveillance information is an efficient way to identify areas where I. scapularis is most likely to occur, and can be used to guide subsequent active sampling efforts in order to better understand fine scale species distributional patterns. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Climate is changing, everything is flowing, stationarity is immortal
NASA Astrophysics Data System (ADS)
Koutsoyiannis, Demetris; Montanari, Alberto
2015-04-01
There is no doubt that climate is changing -- and ever has been. The environment is also changing and in the last decades, as a result of demographic change and technological advancement, environmental change has been accelerating. These affect also the hydrological processes, whose changes in connection with rapidly changing human systems have been the focus of the new scientific decade 2013-2022 of the International Association of Hydrological Sciences, entitled "Panta Rhei - Everything Flows". In view of the changing systems, it has recently suggested that, when dealing with water management and hydrological extremes, stationarity is no longer a proper assumption. Hence, it was proposed that hydrological processes should be treated as nonstationary. Two main reasons contributed to this perception. First, the climate models project a future hydroclimate that will be different from the current one. Second, as streamflow record become longer, they indicate the presence of upward or downward trends. However, till now hydroclimatic projections made in the recent past have not been verified. At the same time, evidence from quite longer records, instrumental or proxy, suggest that local trends are omnipresent but not monotonic; rather at some time upward trends turn to downward ones and vice versa. These observations suggest that improvident dismiss of stationarity and adoption of nonstationary descriptions based either on climate model outputs or observed trends may entail risks. The risks stem from the facts that the future can be different from what was deterministically projected, that deterministic projections are associated with an illusion of decreased uncertainty, as well as that nonstationary models fitted on observed data may have lower predictive capacity than simpler stationary ones. In most of the cases, what is actually needed is to revisit the concept of stationarity and try to apply it carefully, making it consistent with the presence of local trends, possibly incorporating information from deterministic predictions, whenever these prove to be reliable, and estimating the total predictive uncertainty.
NASA Astrophysics Data System (ADS)
Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.
2016-04-01
The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.
Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B
2009-02-01
We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.
NASA Astrophysics Data System (ADS)
Shibata, K.; Kurokawa, H.
The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction
Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project
NASA Astrophysics Data System (ADS)
Iglesias, A.
2011-12-01
The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed and used in collaboration with regional stakeholders. Possible adaptation and mitigation strategies were be identified. The integrated results discussed by the project CIRCE will be presented in the first Regional Assessment of Climate Change in the Mediterranean area, to be published in September 2011 and will make a powerful contribution to the definition and evaluation of adaptation and mitigation strategies.
Carroll, Matthew J; Heinemeyer, Andreas; Pearce-Higgins, James W; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E; Thomas, Chris D
2015-07-31
Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56-81% declines in cranefly abundance and, hence, 15-51% reductions in the abundances of these birds by 2051-2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators.
Carroll, Matthew J.; Heinemeyer, Andreas; Pearce-Higgins, James W.; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E.; Thomas, Chris D.
2015-01-01
Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56–81% declines in cranefly abundance and, hence, 15–51% reductions in the abundances of these birds by 2051–2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators. PMID:26227623
Uribe-Rivera, David E; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A; Pliscoff, Patricio
2017-07-01
Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios. © 2017 by the Ecological Society of America.
Diversity, Adaptability and Ecosystem Resilience
NASA Astrophysics Data System (ADS)
Keribin, Rozenn; Friend, Andrew
2013-04-01
Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.
Komac, Benjamin; Esteban, Pere; Trapero, Laura; Caritg, Roger
2016-01-01
Mountain areas are particularly sensitive to climate change. Species distribution models predict important extinctions in these areas whose magnitude will depend on a number of different factors. Here we examine the possible impact of climate change on the Rhododendron ferrugineum (alpenrose) niche in Andorra (Pyrenees). This species currently occupies 14.6 km2 of this country and relies on the protection afforded by snow cover in winter. We used high-resolution climatic data, potential snow accumulation and a combined forecasting method to obtain the realized niche model of this species. Subsequently, we used data from the high-resolution Scampei project climate change projection for the A2, A1B and B1 scenarios to model its future realized niche model. The modelization performed well when predicting the species’s distribution, which improved when we considered the potential snow accumulation, the most important variable influencing its distribution. We thus obtained a potential extent of about 70.7 km2 or 15.1% of the country. We observed an elevation lag distribution between the current and potential distribution of the species, probably due to its slow colonization rate and the small-scale survey of seedlings. Under the three climatic scenarios, the realized niche model of the species will be reduced by 37.9–70.1 km2 by the end of the century and it will become confined to what are today screes and rocky hillside habitats. The particular effects of climate change on seedling establishment, as well as on the species’ plasticity and sensitivity in the event of a reduction of the snow cover, could worsen these predictions. PMID:26824847
Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future
NASA Astrophysics Data System (ADS)
Miller, D.; Bradley, R. S.
2017-12-01
One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.
Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop
NASA Technical Reports Server (NTRS)
Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve
2012-01-01
Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.
Climate threat on the Macaronesian endemic bryophyte flora.
Patiño, Jairo; Mateo, Rubén G; Zanatta, Florian; Marquet, Adrien; Aranda, Silvia C; Borges, Paulo A V; Dirkse, Gerard; Gabriel, Rosalina; Gonzalez-Mancebo, Juana M; Guisan, Antoine; Muñoz, Jesús; Sim-Sim, Manuela; Vanderpoorten, Alain
2016-07-05
Oceanic islands are of fundamental importance for the conservation of biodiversity because they exhibit high endemism rates coupled with fast extinction rates. Nowhere in Europe is this pattern more conspicuous than in the Macaronesian biogeographic region. A large network of protected areas within the region has been developed, but the question of whether these areas will still be climatically suitable for the globally threatened endemic element in the coming decades remains open. Here, we make predictions on the fate of the Macaronesian endemic bryophyte flora in the context of ongoing climate change. The potential distribution of 35 Macaronesian endemic bryophyte species was assessed under present and future climate conditions using an ensemble modelling approach. Projections of the models under different climate change scenarios predicted an average decrease of suitable areas of 62-87% per species and a significant elevational increase by 2070, so that even the commonest species were predicted to fit either the Vulnerable or Endangered IUCN categories. Complete extinctions were foreseen for six of the studied Macaronesian endemic species. Given the uncertainty regarding the capacity of endemic species to track areas of suitable climate within and outside the islands, active management associated to an effective monitoring program is suggested.
Climate threat on the Macaronesian endemic bryophyte flora
Patiño, Jairo; Mateo, Rubén G.; Zanatta, Florian; Marquet, Adrien; Aranda, Silvia C.; Borges, Paulo A. V.; Dirkse, Gerard; Gabriel, Rosalina; Gonzalez-Mancebo, Juana M.; Guisan, Antoine; Muñoz, Jesús; Sim-Sim, Manuela; Vanderpoorten, Alain
2016-01-01
Oceanic islands are of fundamental importance for the conservation of biodiversity because they exhibit high endemism rates coupled with fast extinction rates. Nowhere in Europe is this pattern more conspicuous than in the Macaronesian biogeographic region. A large network of protected areas within the region has been developed, but the question of whether these areas will still be climatically suitable for the globally threatened endemic element in the coming decades remains open. Here, we make predictions on the fate of the Macaronesian endemic bryophyte flora in the context of ongoing climate change. The potential distribution of 35 Macaronesian endemic bryophyte species was assessed under present and future climate conditions using an ensemble modelling approach. Projections of the models under different climate change scenarios predicted an average decrease of suitable areas of 62–87% per species and a significant elevational increase by 2070, so that even the commonest species were predicted to fit either the Vulnerable or Endangered IUCN categories. Complete extinctions were foreseen for six of the studied Macaronesian endemic species. Given the uncertainty regarding the capacity of endemic species to track areas of suitable climate within and outside the islands, active management associated to an effective monitoring program is suggested. PMID:27377592
Isaac-Renton, Miriam G; Roberts, David R; Hamann, Andreas; Spiecker, Heinrich
2014-08-01
We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe. © 2014 John Wiley & Sons Ltd.
Environmental Impact of Megacities - Results from CityZen
NASA Astrophysics Data System (ADS)
Gauss, M.
2012-04-01
Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.
Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A
2017-01-01
Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.
2016-12-01
Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959
Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A
2014-01-01
In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.
Mapping Heat-related Risks for Community-based Adaptation Planning under Uncertainty
NASA Astrophysics Data System (ADS)
Bai, Yingjiu; Kaneko, Ikuyo; Kobayashi, Hikaru; Kurihara, Kazuo; Sasaki, Hidetaka; Murata, Akihiko; Takayabu, Izuru
2016-04-01
Climate change is leading to more frequent and intense heat waves. Recently, epidemiologic findings on heat-related health impacts have reinforced our understanding of the mortality impacts of extreme heat. This research has several aims: 1) to promote climate prediction services with spatial and temporal information on heat-related risks, using GIS (Geographical Information System), and digital mapping techniques; 2) to propose a visualization approach to articulating the evolution of local heat-health responses over time and the evaluation of new interventions for the implementation of valid community-based adaptation strategies and reliable actionable planning; and 3) to provide an appropriate and simple method of adjusting bias and quantifying the uncertainty in future outcomes, so that regional climate projections may be transcribed into useful forms for a wide variety of different users. Following the 2003 European heat wave, climatologists, medical specialists, and social scientists expedited efforts to revise and integrate risk governance frameworks for communities to take appropriate and effective actions themselves. Recently, the Coupled Model Intercomparison Project (CMIP) methodology has made projections possible for anyone wanting to openly access state-of-the-art climate model outputs and climate data to provide the backbone for decisions. Furthermore, the latest high-solution regional climate model (RCM) has been a huge increase in the volumes of data available. In this study, we used high-quality hourly projections (5-km resolution) from the Non-Hydrostatic Regional Climate Model (NHRCM-5km), following the SRES-A1B scenario developed by the Meteorological Research Institute (MRI) and observational data from the Automated Meteorological Data Acquisition System, Japan Meteorological Agency (JMA). The NHRCM-5km is a dynamic downscaling of results from the MRI-AGCM3.2S (20-km resolution), an atmospheric general circulation model (AGCM) driven by the ensemble of mean sea surface temperatures derived from the CMIP3 coupled GCMs. This contribution demonstrates how composite heat-related risk maps with a visualization of combined predicted population and the 5-km resolution climate projections, can be used in community-based adaptation planning in Japan. To test this approach, Tokyo (area 2190.9 km2; population 13.50 million as of 1 December 2015), a Japanese megacity, was chosen for a pilot study. Our challenges will be facilitated by the formation of research partnerships involving epidemiologists, climate scientists, and local stakeholders. Hopefully, the methodology could be transferred to developing countries to aid in planning heat adaptation.
Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Schubert, Siegfried; Pozzi, Will; Mo, Kingtse; Wood, Eric F.; Stahl, Kerstin; Hayes, Mike; Vogt, Juergen; Seneviratne, Sonia; Stewart, Ron;
2015-01-01
The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information.
Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble
Jiang, Mingkai; Felzer, Benjamin S.; Sahagian, Dork
2016-01-01
Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950–2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040–2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment. PMID:27425819
Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble.
Jiang, Mingkai; Felzer, Benjamin S; Sahagian, Dork
2016-07-18
Characterizing precipitation seasonality and variability in the face of future uncertainty is important for a well-informed climate change adaptation strategy. Using the Colwell index of predictability and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation predictability in the United States under various climate scenarios. Over the historic period (1950-2005), the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, and is less so in the arid Southwest. Comparing the future (2040-2095) to the historic period, larger changes in precipitation predictability are observed under Representative Concentration Pathways (RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in precipitation predictability, and these hotspots often coincide with regions of little projected change in total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, decision-makers are advised to not rely on future total precipitation as an indicator of water resources. Changes in precipitation predictability and the subsequent changes on seasonality and variability are equally, if not more, important factors to be included in future regional environmental assessment.
S. A. Covert; P. R. Robichaud; W. J. Elliot; T. E. Link
2005-01-01
This study evaluates runoff predictions generated by GeoWEPP (Geo-spatial interface to the Water Erosion Prediction Project) and a modified version of WEPP v98.4 for forest soils. Three small (2 to 9 ha) watersheds in the mountains of the interior Northwest were monitored for several years following timber harvest and prescribed fires. Observed climate variables,...
Impacts of Interannual Climate Variability on Agricultural and Marine Ecosystems
NASA Technical Reports Server (NTRS)
Cane, M. A.; Zebiak, S.; Kaplan, A.; Chen, D.
2001-01-01
The El Nino - Southern Oscillation (ENSO) is the dominant mode of global interannual climate variability, and seems to be the only mode for which current prediction methods are more skillful than climatology or persistence. The Zebiak and Cane intermediate coupled ocean-atmosphere model has been in use for ENSO prediction for more than a decade, with notable success. However, the sole dependence of its original initialization scheme and the improved initialization on wind fields derived from merchant ship observations proved to be a liability during 1997/1998 El Nino event: the deficiencies of wind observations prevented the oceanic component of the model from reaching the realistic state during the year prior to the event, and the forecast failed. Our work on the project was concentrated on the use of satellite data for improving various stages of ENSO prediction technology: model initialization, bias correction, and data assimilation. Close collaboration with other teams of the IDS project was maintained throughout.
Parasite biodiversity faces extinction and redistribution in a changing climate.
Carlson, Colin J; Burgio, Kevin R; Dougherty, Eric R; Phillips, Anna J; Bueno, Veronica M; Clements, Christopher F; Castaldo, Giovanni; Dallas, Tad A; Cizauskas, Carrie A; Cumming, Graeme S; Doña, Jorge; Harris, Nyeema C; Jovani, Roger; Mironov, Sergey; Muellerklein, Oliver C; Proctor, Heather C; Getz, Wayne M
2017-09-01
Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences.
NASA Astrophysics Data System (ADS)
Werth, D. W.; O'Steen, L.; Chen, K.; Altinakar, M. S.; Garrett, A.; Aleman, S.; Ramalingam, V.
2010-12-01
Global climate change has the potential for profound impacts on society, and poses significant challenges to government and industry in the areas of energy security and sustainability. Given that the ability to exploit energy resources often depends on the climate, the possibility of climate change means we cannot simply assume that the untapped potential of today will still exist in the future. Predictions of future climate are generally based on global climate models (GCMs) which, due to computational limitations, are run at spatial resolutions of hundreds of kilometers. While the results from these models can predict climatic trends averaged over large spatial and temporal scales, their ability to describe the effects of atmospheric phenomena that affect weather on regional to local scales is inadequate. We propose the use of several optimized statistical downscaling techniques that can infer climate change at the local scale from coarse resolution GCM predictions, and apply the results to assess future sustainability for two sources of energy production dependent on adequate water resources: nuclear power (through the dissipation of waste heat from cooling towers, ponds, etc.) and hydroelectric power. All methods will be trained with 20th century data, and applied to data from the years 2040-2049 to get the local-scale changes. Models of cooling tower operation and hydropower potential will then use the downscaled data to predict the possible changes in energy production, and the implications of climate change on plant siting, design, and contribution to the future energy grid can then be examined.
Developing Models for Predictive Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, John B; Jones, Philip W
2007-01-01
The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strongmore » tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.« less
NASA Astrophysics Data System (ADS)
Honings, J.; Seyoum, W. M.
2017-12-01
Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate +4.1% total flow and +4.8% recharge for RCP 2.6, compared to +4.5% total flow and +11% recharge for RCP 8.0. Effects of tile drainage and other management practices in the watershed will be examined under climate change scenarios. Model results will be used to aid future decisions involving water resource consumption and agricultural management.
González, Camila; Paz, Andrea; Ferro, Cristina
2014-01-01
Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L. longipalpis and confining L. evansi to certain regions in the Caribbean Coast. Altitudinal shifts have been reported for cutaneous leishmaniasis vectors in Colombia and Peru. Here, we predict the same outcome for VL vectors in Colombia. Changes in spatial distribution patterns could be affecting local abundances due to climatic pressures on vector populations thus reducing the incidence of human cases. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Zuliani, Anna; Massolo, Alessandro; Lysyk, Timothy; Johnson, Gregory; Marshall, Shawn; Berger, Kathryn; Cork, Susan Catherine
2015-01-01
Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA) and south-central Alberta (Canada) between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021-2040) and 2050 (2041-2060). Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors). Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and considerations. The results of this study can inform the development of cost effective surveillance programs, targeting areas within the predicted limits of C. sonorensis geographical occurrence under current and future climatic conditions.
Lysyk, Timothy; Johnson, Gregory; Marshall, Shawn; Berger, Kathryn; Cork, Susan Catherine
2015-01-01
Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA) and south-central Alberta (Canada) between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021–2040) and 2050 (2041–2060). Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors). Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and considerations. The results of this study can inform the development of cost effective surveillance programs, targeting areas within the predicted limits of C. sonorensis geographical occurrence under current and future climatic conditions. PMID:26301509
Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques
2016-01-01
Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.
BASINs and WEPP Climate Assessment Tools (CAT): Case ...
EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & Non-point Sources (BASINS) and the Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT). The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential effects of climate change on streamflow and water quality. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.
Boiffin, Juliette; Badeau, Vincent; Bréda, Nathalie
2017-03-01
Species distribution models (SDMs), which statistically relate species occurrence to climatic variables, are widely used to identify areas suitable for species growth under future climates and to plan for assisted migration. When SDMs are projected across times or spaces, it is assumed that species climatic requirements remain constant. However, empirical evidence supporting this assumption is rare, and SDM predictions could be biased. Historical human-aided movements of tree species can shed light on the reliability of SDM predictions in planning for assisted migration. We used Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a North American conifer introduced into Europe during the mid-19th century, as a case-study to test niche conservatism. We combined transcontinental data sets of Douglas-fir occurrence and climatic predictors to compare the realized niches between native and introduced ranges. We calibrated a SDM in the native range and compared areas predicted to be climatically suitable with observed presences. The realized niches in the native and introduced ranges showed very limited overlap. The SDM calibrated in North America had very high predictive power in the native range, but failed to predict climatic suitability in Europe where Douglas-fir grows in climates that have no analogue in the native range. We review the ecological mechanisms and silvicultural practices that can trigger such shifts in realized niches. Retrospective analysis of tree species introduction revealed that the assumption of niche conservatism is erroneous. As a result, distributions predicted by SDM are importantly biased. There is a high risk that assisted migration programs may be misdirected and target inadequate species or introduction zones. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Chung, F.
2008-12-01
While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.
Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.
2016-01-01
Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.
A seasonal hydrologic ensemble prediction system for water resource management
NASA Astrophysics Data System (ADS)
Luo, L.; Wood, E. F.
2006-12-01
A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.
Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J
2018-01-01
Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.
van der Meer, Sascha; Jacquemyn, Hans; Carey, Peter D; Jongejans, Eelke
2016-06-01
The population dynamics and distribution limits of plant species are predicted to change as the climate changes. However, it remains unclear to what extent climate variables affect population dynamics, which vital rates are most sensitive to climate change, and whether the same vital rates drive population dynamics in different populations. In this study, we used long-term demographic data from two populations of the terrestrial orchid Himantoglossum hircinum growing at the northern edge of their geographic range to quantify the influence of climate change on demographic vital rates. Integral projection models were constructed to study how climate conditions between 1991 and 2006 affected population dynamics and to assess how projected future climate change will affect the long-term viability of this species. Based on the parameterised vital rate functions and the observed climatic conditions, one of the studied populations had an average population growth rate above 1 (λ = 1.04), while the other was declining at ca. 3 % year(-1) (λ = 0.97). Variation in temperature and precipitation mainly affected population growth through their effect on survival and fecundity. Based on UK Climate Projection 2009 estimates of future climate conditions for three greenhouse gas emission scenarios, population growth rates are expected to increase in one of the studied populations. Overall, our results indicate that the observed changes in climatic conditions appeared to be beneficial to the long-term survival of the species in the UK and suggest that they may have been the driving force behind the current range expansion of H. hircinum in England.
Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit
2013-01-01
In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151
Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit
2013-01-01
In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.
NASA Astrophysics Data System (ADS)
Clinton, J.
2017-12-01
Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.
Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.
Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl
2016-08-01
Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simulating seasonal tropical cyclone intensities at landfall along the South China coast
NASA Astrophysics Data System (ADS)
Lok, Charlie C. F.; Chan, Johnny C. L.
2018-04-01
A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.
NASA Astrophysics Data System (ADS)
Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Pohlmann, Holger; Müller, Wolfgang; Cubasch, Ulrich
2014-05-01
Decadal forecasting of climate variability is a growing need for different parts of society, industry and economy. The German initiative MiKlip (www.fona-miklip.de) focuses on the ongoing processes of medium-term climate prediction. The scientific major project funded by the Federal Ministry of Education and Research in Germany (BMBF) develops a forecast system, that aims for reliable predictions on decadal timescales. Using a single earth system model from the Max-Planck institute (MPI-ESM) and moving from the uninitialized runs on to the first initialized 'Coupled Model Intercomparison Project Phase 5' (CMIP5) hindcast experiments identified possibilities and open scientific tasks. The MiKlip decadal prediction system was improved on different aspects through new initialization techniques and datasets of the ocean and atmosphere. To accompany and emphasize such an improvement of a forecast system, a standardized evaluation system designed by the MiKlip sub-project 'Integrated data and evaluation system for decadal scale prediction' (INTEGRATION) analyzes every step of its evolution. This study aims at combining deterministic and probabilistic skill scores of this prediction system from its unitialized state to anomaly and then full-field oceanic initialization. The improved forecast skill in these different decadal hindcast experiments of surface air temperature and precipitation in the Pacific region and the complex area of the North Atlantic illustrate potential sources of skill. A standardized evaluation leads prediction systems depending on development to find its way to produce reliable forecasts. Different aspects of these research dependencies, e.g. ensemble size, resolution, initializations, etc. will be discussed.
Project for Solar-Terrestrial Environment Prediction (PSTEP): Towards Predicting Next Solar Cycle
NASA Astrophysics Data System (ADS)
Imada, S.; Iijima, H.; Hotta, H.; Shiota, D.; Kanou, O.; Fujiyama, M.; Kusano, K.
2016-10-01
It is believed that the longer-term variations of the solar activity can affect the Earth's climate. Therefore, predicting the next solar cycle is crucial for the forecast of the "solar-terrestrial environment". To build prediction schemes for the activity level of the next solar cycle is a key for the long-term space weather study. Although three-years prediction can be almost achieved, the prediction of next solar cycle is very limited, so far. We are developing a five-years prediction scheme by combining the Surface Flux Transport (SFT) model and the most accurate measurements of solar magnetic fields as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction),. We estimate the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters are used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle. We also report the present status and the future perspective of our project.
NASA Astrophysics Data System (ADS)
Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.
2018-05-01
This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.
Maguire, Kaitlin C; Shinneman, Douglas J; Potter, Kevin M; Hipkins, Valerie D
2018-03-14
Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently-available, geographically-widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently-devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results demonstrate the utility in modeling intraspecific response to changing climate and they inform management and conservation strategies, by identifying haplotypes and geographic areas that may be most at risk, or most secure, under projected climate change.
Maguire, Kaitlin C.; Shinneman, Douglas; Potter, Kevin M.; Hipkins, Valerie D.
2018-01-01
Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently-available, geographically-widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently-devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results demonstrate the utility in modeling intraspecific response to changing climate and they inform management and conservation strategies, by identifying haplotypes and geographic areas that may be most at risk, or most secure, under projected climate change.
Multi-Scale Mapping of Vegetation Biomass
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Fekety, P.; Falkowski, M. J.; Kennedy, R. E.; Crookston, N.; Smith, A. M.; Mahoney, P.; Glenn, N. F.; Dong, J.; Kane, V. R.; Woodall, C. W.
2016-12-01
Vegetation biomass mapping at multiple scales is important for carbon inventory and monitoring, reporting, and verification (MRV). Project-level lidar collections allow biomass estimation with high confidence where associated with field plot measurements. Predictive models developed from such datasets are customarily used to generate landscape-scale biomass maps. We tested the feasibility of predicting biomass in landscapes surveyed with lidar but without field plots, by withholding plot datasets from a reduced model applied to the landscapes, and found support for a generalized model in the northern Idaho ecoregion. We are also upscaling a generalized model to all forested lands in Idaho. Our regional modeling approach is to sample the 30-m biomass predictions from the landscape-scale maps and use them to train a regional biomass model, using Landsat time series, topographic derivatives, and climate variables as predictors. Our regional map validation approach is to aggregate the regional, annual biomass predictions to the county level and compare them to annual county-level biomass summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. A national-scale forest cover map generated independently from 2010 PALSAR data at 25-m resolution is being used to mask non-forest pixels from the aggregations. Effects of climate change on future regional biomass stores are also being explored, using biomass estimates projected from stand-level inventory data collected in the National Forests and comparing them to FIA plot data collected independently on public and private lands, projected under the same climate change scenarios, with disturbance trends extracted from the Landsat time series. Our ultimate goal is to demonstrate, focusing on the ecologically diverse Northwest region of the USA, a carbon monitoring system (CMS) that is accurate, objective, repeatable, and transparent.
NASA Astrophysics Data System (ADS)
Dixon, K. W.; Balaji, V.; Lanzante, J.; Radhakrishnan, A.; Hayhoe, K.; Stoner, A. K.; Gaitan, C. F.
2013-12-01
Statistical downscaling (SD) methods may be viewed as generating a value-added product - a refinement of global climate model (GCM) output designed to add finer scale detail and to address GCM shortcomings via a process that gleans information from a combination of observations and GCM-simulated climate change responses. Making use of observational data sets and GCM simulations representing the same historical period, cross-validation techniques allow one to assess how well an SD method meets this goal. However, lacking observations of future, the extent to which a particular SD method's skill might degrade when applied to future climate projections cannot be assessed in the same manner. Here we illustrate and describe extensions to a 'perfect model' experimental design that seeks to quantify aspects of SD method performance both for a historical period (1979-2008) and for late 21st century climate projections. Examples highlighting cases in which downscaling performance deteriorates in future climate projections will be discussed. Also, results will be presented showing how synthetic datasets having known statistical properties may be used to further isolate factors responsible for degradations in SD method skill under changing climatic conditions. We will describe a set of input files used to conduct these analyses that are being made available to researchers who wish to utilize this experimental framework to evaluate SD methods they have developed. The gridded data sets cover a region centered on the contiguous 48 United States with a grid spacing of approximately 25km, have daily time resolution (e.g., maximum and minimum near-surface temperature and precipitation), and represent a total of 120 years of model simulations. This effort is consistent with the 2013 National Climate Predictions and Projections Platform Quantitative Evaluation of Downscaling Workshop goal of supporting a community approach to promote the informed use of downscaled climate projections.
Major challenges for correlational ecological niche model projections to future climate conditions.
Peterson, A Townsend; Cobos, Marlon E; Jiménez-García, Daniel
2018-06-20
Species-level forecasts of distributional potential and likely distributional shifts, in the face of changing climates, have become popular in the literature in the past 20 years. Many refinements have been made to the methodology over the years, and the result has been an approach that considers multiple sources of variation in geographic predictions, and how that variation translates into both specific predictions and uncertainty in those predictions. Although numerous previous reviews and overviews of this field have pointed out a series of assumptions and caveats associated with the methodology, three aspects of the methodology have important impacts but have not been treated previously in detail. Here, we assess those three aspects: (1) effects of niche truncation on model transfers to future climate conditions, (2) effects of model selection procedures on future-climate transfers of ecological niche models, and (3) relative contributions of several factors (replicate samples of point data, general circulation models, representative concentration pathways, and alternative model parameterizations) to overall variance in model outcomes. Overall, the view is one of caution: although resulting predictions are fascinating and attractive, this paradigm has pitfalls that may bias and limit confidence in niche model outputs as regards the implications of climate change for species' geographic distributions. © 2018 New York Academy of Sciences.
Climate change risk to forests in China associated with warming.
Yin, Yunhe; Ma, Danyang; Wu, Shaohong
2018-01-11
Variations in forest net primary productivity (NPP) reflects the combined effects of key climate variables on ecosystem structure and function, especially on the carbon cycle. We performed risk analysis indicated by the magnitude of future negative anomalies in NPP in comparison with the natural interannual variability to investigate the impact of future climatic projections on forests in China. Results from the multi-model ensemble showed that climate change risk of decreases in forest NPP would be more significant in higher emission scenario in China. Under relatively low emission scenarios, the total area of risk was predicted to decline, while for RCP8.5, it was predicted to first decrease and then increase after the middle of 21st century. The rapid temperature increases predicted under the RCP8.5 scenario would be probably unfavorable for forest vegetation growth in the long term. High-level risk area was likely to increase except RCP2.6. The percentage area at high risk was predicted to increase from 5.39% (2021-2050) to 27.62% (2071-2099) under RCP8.5. Climate change risk to forests was mostly concentrated in southern subtropical and tropical regions, generally significant under high emission scenario of RCP8.5, which was mainly attributed to the intensified dryness in south China.
Climate change, species-area curves and the extinction crisis.
Lewis, Owen T
2006-01-29
An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.
Climate change likely to reduce orchid bee abundance even in climatic suitable sites.
Faleiro, Frederico Valtuille; Nemésio, André; Loyola, Rafael
2018-06-01
Studies have tested whether model predictions based on species' occurrence can predict the spatial pattern of population abundance. The relationship between predicted environmental suitability and population abundance varies in shape, strength and predictive power. However, little attention has been paid to the congruence in predictions of different models fed with occurrence or abundance data, in particular when comparing metrics of climate change impact. Here, we used the ecological niche modeling fit with presence-absence and abundance data of orchid bees to predict the effect of climate change on species and assembly level distribution patterns. In addition, we assessed whether predictions of presence-absence models can be used as a proxy to abundance patterns. We obtained georeferenced abundance data of orchid bees (Hymenoptera: Apidae: Euglossina) in the Brazilian Atlantic Forest. Sampling method consisted in attracting male orchid bees to baits of at least five different aromatic compounds and collecting the individuals with entomological nets or bait traps. We limited abundance data to those obtained by similar standard sampling protocol to avoid bias in abundance estimation. We used boosted regression trees to model ecological niches and project them into six climate models and two Representative Concentration Pathways. We found that models based on species occurrences worked as a proxy for changes in population abundance when the output of the models were continuous; results were very different when outputs were discretized to binary predictions. We found an overall trend of diminishing abundance in the future, but a clear retention of climatically suitable sites too. Furthermore, geographic distance to gained climatic suitable areas can be very short, although it embraces great variation. Changes in species richness and turnover would be concentrated in western and southern Atlantic Forest. Our findings offer support to the ongoing debate of suitability-abundance models and can be used to support spatial conservation prioritization schemes and species triage in Atlantic Forest. © 2018 John Wiley & Sons Ltd.
Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.; ...
2017-11-26
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills maturemore » pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills maturemore » pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less
Knowlton, Kim; Rotkin-Ellman, Miriam; Geballe, Linda; Max, Wendy; Solomon, Gina M
2011-11-01
The future health costs associated with predicted climate change-related events such as hurricanes, heat waves, and floods are projected to be enormous. This article estimates the health costs associated with six climate change-related events that struck the United States between 2000 and 2009. The six case studies came from categories of climate change-related events projected to worsen with continued global warming-ozone pollution, heat waves, hurricanes, infectious disease outbreaks, river flooding, and wildfires. We estimate that the health costs exceeded $14 billion, with 95 percent due to the value of lives lost prematurely. Actual health care costs were an estimated $740 million. This reflects more than 760,000 encounters with the health care system. Our analysis provides scientists and policy makers with a methodology to use in estimating future health costs related to climate change and highlights the growing need for public health preparedness.
NASA Astrophysics Data System (ADS)
Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.
2016-12-01
Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.
NASA Technical Reports Server (NTRS)
Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon;
2014-01-01
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.
Assessing spatiotemporal changes in forest carbon turnover times in observational data and models
NASA Astrophysics Data System (ADS)
Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.
2017-12-01
Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.
Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa
2016-08-15
Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.
Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P
2018-06-01
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.
Impact of climate change on water resources status: A case study for Crete Island, Greece
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela
2013-02-01
SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.
WEPP FuME Analysis for a North Idaho Site
William Elliot; Ina Sue Miller; David Hall
2007-01-01
A computer interface has been developed to assist with analyzing soil erosion rates associated with fuel management activities. This interface uses the Water Erosion Prediction Project (WEPP) model to predict sediment yields from hillslopes and road segments to the stream network. The simple interface has a large database of climates, vegetation files and forest soil...
Tree mortality predicted from drought-induced vascular damage
Anderegg, William R.L.; Flint, Alan L.; Huang, Cho-ying; Flint, Lorraine E.; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.
2015-01-01
The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1, 2, 3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4, 5. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.
Khormi, Hassan M; Kumar, Lalit
2016-11-21
We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.
NASA Astrophysics Data System (ADS)
Roderick, Michael L.; Farquhar, Graham D.
2011-12-01
We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.
Transformation of soil organics under extreme climate events: a project description
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia
2017-04-01
Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation with unusual regional dynamics. Weather anomalies at European territory of Russia are currently revealed as long-term drought and strong showers in summer and as an increased frequency of soil freezing-thawing cycles. Climate extremes totally change biogeochemical processes and elements cycling both at the ecosystem level and at the level of soil profile mainly affecting soil biota. Misbalance in these processes can cause a reduction of soil carbon stock and an increase of greenhouse gases emission. Our project aims to reveal the transformation mechanisms of soil organic matter caused by extreme weather events taking into consideration the role of biotic-abiotic interactions in regulation of formation, maintenance and turnover of soil carbon stock. Our research strategy is based on the novel concept considering extreme climatic events (showers after long-term droughts, soil flooding, freezing-thawing) as abiotic factors initiating a microbial succession. Study on stoichiometric flexibility of plants under climate extremes as well as on resulting response of soil heterotrophs on stoichiometric changes in substrate will be used for experimental prove and further development of the theory of ecological stoichiometry. The results enable us to reveal the mechanisms of biotic - abiotic interactions responsible for the balance between mobilization and stabilization of soil organic matter. Identified mechanisms will form the basis of an ecosystem model enabled to predict the effects of extreme climatic events on biogenic carbon cycle in the biosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Kravtsov, S.; Robertson, A. W.
2008-10-14
This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less
NASA Astrophysics Data System (ADS)
Goldenson, Naomi L.
Uncertainties in climate projections at the regional scale are inevitably larger than those for global mean quantities. Here, focusing on western North American regional climate, several approaches are taken to quantifying uncertainties starting with the output of global climate model projections. Internal variance is found to be an important component of the projection uncertainty up and down the west coast. To quantify internal variance and other projection uncertainties in existing climate models, we evaluate different ensemble configurations. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find internal variability can be quantified consistently using a large ensemble or an ensemble of opportunity that includes small ensembles from multiple models and climate scenarios. The latter offers the advantage of also producing estimates of uncertainty due to model differences. We conclude that climate projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible. We then conduct a small single-model ensemble of simulations using the Model for Prediction Across Scales with physics from the Community Atmosphere Model Version 5 (MPAS-CAM5) and prescribed historical sea surface temperatures. In the global variable resolution domain, the finest resolution (at 30 km) is in our region of interest over western North America and upwind over the northeast Pacific. In the finer-scale region, extreme precipitation from atmospheric rivers (ARs) is connected to tendencies in seasonal snowpack in mountains of the Northwest United States and California. In most of the Cascade Mountains, winters with more AR days are associated with less snowpack, in contrast to the northern Rockies and California's Sierra Nevadas. In snowpack observations and reanalysis of the atmospheric circulation, we find similar relationships between frequency of AR events and winter season snowpack in the western United States. In spring, however, there is not a clear relationship between number of AR days and seasonal mean snowpack across the model ensemble, so caution is urged in interpreting the historical record in the spring season. Finally, the representation of the El Nino Southern Oscillation (ENSO)--an important source of interannual climate predictability in some regions--is explored in a large single-model ensemble using ensemble Empirical Orthogonal Functions (EOFs) to find modes of variance across the entire ensemble at once. The leading EOF is ENSO. The principal components (PCs) of the next three EOFs exhibit a lead-lag relationship with the ENSO signal captured in the first PC. The second PC, with most of its variance in the summer season, is the most strongly cross-correlated with the first. This approach offers insight into how the model considered represents this important atmosphere-ocean interaction. Taken together these varied approaches quantify the implications of climate projections regionally, identify processes that make snowpack water resources vulnerable, and seek insight into how to better simulate the large-scale climate modes controlling regional variability.
A Computing Infrastructure for Supporting Climate Studies
NASA Astrophysics Data System (ADS)
Yang, C.; Bambacus, M.; Freeman, S. M.; Huang, Q.; Li, J.; Sun, M.; Xu, C.; Wojcik, G. S.; Cahalan, R. F.; NASA Climate @ Home Project Team
2011-12-01
Climate change is one of the major challenges facing us on the Earth planet in the 21st century. Scientists build many models to simulate the past and predict the climate change for the next decades or century. Most of the models are at a low resolution with some targeting high resolution in linkage to practical climate change preparedness. To calibrate and validate the models, millions of model runs are needed to find the best simulation and configuration. This paper introduces the NASA effort on Climate@Home project to build a supercomputer based-on advanced computing technologies, such as cloud computing, grid computing, and others. Climate@Home computing infrastructure includes several aspects: 1) a cloud computing platform is utilized to manage the potential spike access to the centralized components, such as grid computing server for dispatching and collecting models runs results; 2) a grid computing engine is developed based on MapReduce to dispatch models, model configuration, and collect simulation results and contributing statistics; 3) a portal serves as the entry point for the project to provide the management, sharing, and data exploration for end users; 4) scientists can access customized tools to configure model runs and visualize model results; 5) the public can access twitter and facebook to get the latest about the project. This paper will introduce the latest progress of the project and demonstrate the operational system during the AGU fall meeting. It will also discuss how this technology can become a trailblazer for other climate studies and relevant sciences. It will share how the challenges in computation and software integration were solved.
High resolution global climate modelling; the UPSCALE project, a large simulation campaign
NASA Astrophysics Data System (ADS)
Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.
2014-01-01
The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.
High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign
NASA Astrophysics Data System (ADS)
Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.
2014-08-01
The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environment Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.
Anderson, Thomas R; Hawkins, Ed; Jones, Philip D
2016-09-01
Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response to ongoing emissions of CO 2 and other greenhouse gases to the atmosphere. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.
2018-04-01
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.
EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph H. Hartman
1999-09-01
This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join thesemore » various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.« less
NASA Astrophysics Data System (ADS)
Brekke, L. D.; Scott, J.; Ferguson, I. M.; Arnold, J.; Raff, D. A.; Webb, R. S.
2012-12-01
Water managers need to understand the applicability of climate projection information available for decision-support at the scale of their applications. Applicability depends on information reliability and relevance. This need to understand applicability stems from expectations that entities rationalize adaptation investments or decisions to delay investment. It is also occurring at a time when new global climate projections are being released through the World Climate Research Programme Coupled Model Intercomparison Project phase 5 (CMIP5), which introduces new information opportunities and interpretation challenges. This project involves an interagency collaboration to evaluate the applicability of CMIP5 projections for use in water and environmental resources planning. The overarching goal is to develop and demonstrate a framework that involves dual evaluations of relevance and reliability informing an ultimate discussion and judgment of applicability, which is expected to vary with decision-making context. The framework is being developed and demonstrated within the context of reservoir systems management in California's Sacramento and San Joaquin River basins. The relevance evaluation focuses on identifying the climate variables and statistical measures relevant to long-term management questions, which may depend on satisfying multiple objectives. Past studies' results are being considered in this evaluation, along with new results from system sensitivity analyses conducted through this effort. The reliability evaluation focuses on the CMIP5 climate models' ability to simulate past conditions relative to observed references. The evaluation is being conducted across the global domain using a large menu of climate variables and statistical measures, leveraging lessons learned from similar evaluations of CMIP3 climate models. The global focus addresses a broader project goal of producing a web resource that can serve reliability information to applicability discussions around the world, with evaluation results being served through a web-portal similar to that developed by NOAA/CIRES to serve CMIP3 information on future climate extremes (http://www.esrl.noaa.gov/psd/ipcc/extremes/). The framework concludes with an applicability discussion informed by relevance and reliability results. The goal is to observe the discussion process and identify features, choice points, and challenges that might be summarized and shared with other resource management groups facing applicability questions. This presentation will discuss the project framework and preliminary results. In addition to considering CMIP5 21st century projection information, the framework is being developed to support evaluation of CMIP5 decadal predictability experiment simulations and reconcile those simulations with 21st century projections. The presentation will also discuss implications of considering the applicability of bias-corrected and downscaled information within this framework.
Flight range, fuel load and the impact of climate change on the journeys of migrant birds
Sheard, Catherine; Butchart, Stuart H. M.
2018-01-01
Climate change is predicted to increase migration distances for many migratory species, but the physiological and temporal implications of longer migratory journeys have not been explored. Here, we combine information about species' flight range potential and migratory refuelling requirements to simulate the number of stopovers required and the duration of current migratory journeys for 77 bird species breeding in Europe. Using tracking data, we show that our estimates accord with recorded journey times and stopovers for most species. We then combine projections of altered migratory distances under climate change with models of avian flight to predict future migratory journeys. We find that 37% of migratory journeys undertaken by long-distance migrants will necessitate an additional stopover in future. These greater distances and the increased number of stops will substantially increase overall journey durations of many long-distance migratory species, a factor not currently considered in climate impact studies. PMID:29467262
Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study
NASA Technical Reports Server (NTRS)
Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.;
2016-01-01
Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.
Climate Change: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Chapman, David S.; Davis, Michael G.
2010-09-01
Questions about global warming concern climate scientists and the general public alike. Specifically, what are the reliable surface temperature reconstructions over the past few centuries? And what are the best predictions of global temperature change the Earth might expect for the next century? Recent publications [National Research Council (NRC), 2006; Intergovernmental Panel on Climate Change (IPCC), 2007] permit these questions to be answered in a single informative illustration by assembling temperature reconstructions of the past thousand years with predictions for the next century. The result, shown in Figure 1, illustrates present and future warming in the context of natural variations in the past [see also Oldfield and Alverson, 2003]. To quote a Chinese proverb, “A picture's meaning can express ten thousand words.” Because it succinctly captures past inferences and future projections of climate, the illustration should be of interest to scientists, educators, policy makers, and the public.
NASA Astrophysics Data System (ADS)
Meaurio, Maite; Zabaleta, Ane; Boithias, Laurie; Epelde, Ane Miren; Sauvage, Sabine; Sánchez-Pérez, Jose-Miguel; Srinivasan, Raghavan; Antiguedad, Iñaki
2017-05-01
The climate changes projected for the 21st century will have consequences on the hydrological response of catchments. These changes, and their consequences, are most uncertain in the transition zones. The study area, in the Bay of Biscay, is located in the transition zone of the European Atlantic region, where hydrological impact of climate change was scarcely studied. In order to address this scarcity, the hydrological impacts of climate change on river discharge were assessed. To do so, a hydrological modelling was carried out considering 16 climate scenarios that include 5 General Circulation Models (GCM) from the 5th report of the Coupled Model Intercomparison Project (CMIP5), 2 statistical downscaling methods and 2 Representative Concentration Pathways. Projections for future discharge (2011-2100) were divided into three 30-year horizons (2030s, 2060s and 2090s) and a comparison was made between these time horizons and the baseline (1961-2000). The results show that the downscaling method used resulted in a higher source of uncertainty than GCM itself. In addition, the uncertainties inherent to the methods used at all the levels do not affect the results equally along the year. In spite of those uncertainties, general trends for the 2090s predict seasonal discharge decreases by around -17% in autumn, -16% in spring, -11% in winter and -7% in summer. These results are in line with those predicted for the Atlantic region (France and the Iberian Peninsula). Trends for extreme flows were also analysed: the most significant show an increase in the duration (days) of low flows. From an environmental point of view, and considering the need to meet the objectives established by the Water Framework Directive (WFD), this will be a major challenge for the future planning on water management.
Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E
2014-01-01
With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.
Staunton, Kyran M.; Robson, Simon K. A.; Burwell, Chris J.; Reside, April E.; Williams, Stephen E.
2014-01-01
With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. PMID:24586362
Thermal regimes of Rocky Mountain lakes warm with climate change
Roberts, James J.
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083
Thermal regimes of Rocky Mountain lakes warm with climate change
Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.
Thermal regimes of Rocky Mountain lakes warm with climate change.
Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M
2017-01-01
Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.
Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation datamore » for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate these factors in F.SMs should reduce current uncertainties associated with ESM predictions of carbon-climate feedbacks.« less
Future southcentral US wildfire probability due to climate change
Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.
2018-01-01
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.
Lee, Henry; Reusser, Deborah A; Olden, Julian D; Smith, Scott S; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S; Piorkowski, Robert J; McPhedran, John
2008-06-01
Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.
Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John
2008-01-01
Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change
Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming
2011-01-01
Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188
NASA Astrophysics Data System (ADS)
Caminade, C.; Ndione, J. A.; Diallo, M.; MacLeod, D.; Faye, O.; Ba, Y.; Dia, I.; Medlock, J. M.; Leach, S.; McIntyre, K. M.; Baylis, M.; Morse, A. P.
2012-04-01
Climate variability is an important component in determining the incidence of a number of diseases with significant health and socioeconomic impacts. In particular, vector born diseases are the most likely to be affected by climate; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the surrounding environmental conditions. Disease risk models of various complexities using different streams of climate forecasts as inputs have been developed within the QWeCI EU and ENHanCE ERA-NET project frameworks. This work will present two application examples, one for Africa and one for Europe. First, we focus on Rift Valley fever over sub-Saharan Africa, a zoonosis that affects domestic animals and humans by causing an acute fever. We show that the Rift Valley fever outbreak that occurred in late 2010 in the northern Sahelian region of Mauritania might have been anticipated ten days in advance using the GFS numerical weather prediction system. Then, an ensemble of regional climate projections is employed to model the climatic suitability of the Asian tiger mosquito for the future over Europe. The Asian tiger mosquito is an invasive species originally from Asia which is able to transmit West Nile and Chikungunya Fever among others. This species has spread worldwide during the last decades, mainly through the shipments of goods from Asia. Different disease models are employed and inter-compared to achieve such a task. Results show that the climatic conditions over southern England, central Western Europe and the Balkans might become more suitable for the mosquito (including the proviso that the mosquito has already been introduced) to establish itself in the future.
Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.
2016-01-01
Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful preparation for the coming changes will require greater integration of monitoring, modeling, and decision making across time, variables, and space than has been historically normal.
Lawrence, K E; Summers, S R; Heath, A C G; McFadden, A M J; Pulford, D J; Tait, A B; Pomroy, W E
2017-08-30
Haemaphysalis longicornis is the only species of tick present in New Zealand which infests livestock and is also the only competent vector for Theileria orientalis. Since 2012, New Zealand has suffered from an epidemic of infectious bovine anaemia associated with T. orientalis, an obligate intracellular protozoan parasite of cattle and buffaloes. The aim of this study was to predict the spatial distribution of habitat suitability of New Zealand for the tick H. longicornis using a simple rule-based climate envelope model, to validate the model against published data and use the validated model to project an expansion in habitat suitability for H. longicornis under two alternative climate change scenarios for the periods 2046-2065 and 2081-2100, relative to the climate of 1981-2010. A rule-based climate envelope model was developed based on the environmental requirements for off-host tick survival. The resulting model was validated against a maximum entropy environmental niche model of environmental suitability for T. orientalis transmission and against a H. longicornis occurrence map. Validation was completed using the I-similarity statistic and by linear regression. The H. longicornis climate envelope model predicted that 75% of cattle farms in the North Island, 3% of cattle farms in the South Island and 54% of cattle farms in New Zealand overall have habitats potentially suitable for the establishment of H. longicornis. The validation methods showed an acceptable level of agreement between the envelope model and published data. Both of the climate change scenarios, for each of the time periods, projected only slight to moderate increases in the average farm habitat suitability scores for all the South Island regions. However, only for the West Coast, Marlborough, Tasman, and Nelson regions did these increases in environmental suitability translate into an increased proportion of cattle farms with low or high H. longicornis habitat suitability. These results will have important implications for the geographical progression of Theileria-associated bovine anaemia (TABA) in New Zealand and will also be of interest to Haemaphysalis longicornis researchers in Australia, Japan, Korea and New Zealand. Copyright © 2017 Elsevier B.V. All rights reserved.
Lyam, Paul Terwase; Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora
2018-01-01
Climate change is predicted to impact species' genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species' ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species' adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change.
Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora
2018-01-01
Climate change is predicted to impact species’ genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species’ ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species’ adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change. PMID:29659603
NASA Astrophysics Data System (ADS)
Diouf, Ibrahima; Deme, Abdoulaye; Rodriguez-Fonseca, Belen; Suárez-Moreno, Roberto; Cisse, Moustapha; Ndione, Jacques-André; Thierno Gaye, Amadou
2014-05-01
Senegal and, in general, West African regions are affected by important outbreaks of diseases with destructive consequences for human population, livestock and country's economy. The vector-borne diseases such as mainly malaria, Rift Valley Fever and dengue are affected by the interanual to decadal variability of climate. Analysis of the spatial and temporal variability of climate parameters and associated oceanic patterns is important in order to assess the climate impact on malaria transmission. In this study, the approach developed to study the malaria-climate link is predefined by the QWeCI project (Quantifying Weather and Climate Impacts on Health in Developing Countries). Preliminary observations and simulations results over Senegal Ferlo region, confirm that the risk of malaria transmission is mainly linked to climate parameters such as rainfall, temperature and relative humidity; and a lag of one to two months between the maximum of malaria and the maximum of climate parameters as rainfall is observed. As climate variables are able to be predicted from oceanic SST variability in remote regions, this study explores seasonal predictability of malaria incidence outbreaks from previous sea surface temperatures conditions in different ocean basins. We have found causal or coincident relationship between El Niño and malaria parameters by coupling LMM UNILIV malaria model and S4CAST statistiscal model with the aim of predicting the malaria parameters with more than 6 months in advance. In particular, El Niño is linked to an important decrease of the number of mosquitoes and the malaria incidence. Results from this research, after assessing the seasonal malaria parameters, are expected to be useful for decision makers to better access to climate forecasts and application on health in the framework of rolling back malaria transmission.
Steven G. McNulty; James M. Vose; Wayne T. Swank
1998-01-01
The southeastern United States is one of the most rapidly growing human population regions in continental United States, and as the population increases, the demand for commercial, industrial, and residential water will also increase (USWRC, 1978). Forest species type, stand age, and the climate all influence the amount of water use and yield from these areas (Swank et...
Climate change and species interactions: ways forward.
Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S
2013-09-01
With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.
Predicting evolutionary responses to climate change in the sea.
Munday, Philip L; Warner, Robert R; Monro, Keyne; Pandolfi, John M; Marshall, Dustin J
2013-12-01
An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. © 2013 John Wiley & Sons Ltd/CNRS.
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.; ...
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
2017-07-06
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO2 which shows almost twice the variability in cumulative land uptake sincemore » 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntzinger, D. N.; Michalak, A. M.; Schwalm, C.
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2, and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative landmore » uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.« less
Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles
NASA Astrophysics Data System (ADS)
Burls, Natalie J.; Fedorov, Alexey V.
2017-12-01
During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).
Conlisk, Erin; Lawson, Dawn; Syphard, Alexandra D.; Franklin, Janet; Flint, Lorraine; Flint, Alan; Regan, Helen M.
2012-01-01
A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations. PMID:22623955
Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth
2018-01-01
There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.